
Optimization of Dialectical Outcomes
in Dialogical Argumentation∗

Anthony Hunter† and Matthias Thimm‡

June 29, 2016

Abstract
When informal arguments are presented, there may be imprecision in the lan-

guage used, and so the audience may be uncertain as to the structure of the ar-
gument graph as intended by the presenter of the arguments. For a presenter of
arguments, it is useful to know the audience’s argument graph, but the presenter
may be uncertain as to the structure of it. To model the uncertainty as to the struc-
ture of the argument graph in situations such as these, we can use probabilistic
argument graphs. The set of subgraphs of an argument graph is a sample space. A
probability value is assigned to each subgraph such that the sum is 1, thereby re-
flecting the uncertainty over which is the actual subgraph. We can then determine
the probability that a particular set of arguments is included or excluded from an
extension according to a particular Dung semantics. We represent and reason with
extensions from a graph and from its subgraphs, using a logic of dialectical out-
comes that we present. We harness this to define the notion of an argumentation
lottery, which can be used by the audience to determine the expected utility of a
debate, and can be used by the presenter to decide which arguments to present by
choosing those that maximize expected utility. We investigate some of the options
for using argumentation lotteries, and provide a computational evaluation.

1 Introduction
Computational models of argument aim to reflect how human argumentation uses con-
flicting information to construct and analyze arguments. There is a number of frame-
works for computational models of argumentation. They incorporate a formal repre-
sentation of individual arguments and techniques for comparing conflicting arguments
(for reviews see [BCD07, BH08]).

In abstract argumentation, a graph is used to represent a set of arguments and coun-
terarguments. Each node is an argument and each arc from an argument α to an argu-
ment β denotes an attack by α on β . It is a well-established and intuitive approach to
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modelling argumentation, and it offers a valuable starting point for theoretical analy-
sis of argumentation [Dun95]. However, including an argument α in a graph usually
means that one is sure that α is a justifiable argument, i. e., that it is an argument that
makes sense (independently of whether it can be accepted after relating it to other ar-
guments). Abstract argumentation does not explicitly consider whether (or to what de-
gree) an argument is believed to be justifiable or whether (or to what degree) an attack
by an argument is believed to justifiable. It only represents the existence of arguments
and counterarguments in a strict manner.

To address the need to represent and reason with (quantified) uncertainty, it has
been proposed to use a probability assignment to arguments and to attacks [BGW05].
This can be used to give a probability distribution over the subgraphs of the argument
graph, and this can then be used to give a probability assignment for a set of arguments
being an admissible set or extension of the argument graph [LON11, Hun12, Hun13c].
The probability distribution over subgraphs denotes the uncertainty over which sub-
graph is the actual graph that should be used. We refer to an argument graph with a
probability distribution over subgraphs as a probabilistic argument graph.

Consider a typical argumentation scenario for persuasion [WK95, Ben03], i. e., a
scenario where one or more agents are presenting arguments in front of an audience,
with the aim of each participant being to persuade the audience to adopt a certain
statement. We assume that each participant and the audience have some argument
graph in mind but are willing to incorporate new arguments and attacks into it. In
this context, we believe the following are two important applications for probabilistic
argument graphs:

• From an audience’s perspective, there may be uncertainty as to what the actual
argument graph is. The audience may hear various comments in a debate, for ex-
ample, but they are not sure about the exact set of arguments and attacks that are
being put forward. For instance, there may be uncertainty about whether some-
one has put forward a complex multifaceted argument, or a number of smaller
more focused arguments or there may doubt about whether some arguments are
just rephrasings of previous arguments. There may be uncertainty about which
arguments are meant to be attacked by some argument, which occurs frequently
when enthymemes (incomplete arguments) are presented. So the audience can
collate all the candidates for arguments and attacks, and construct the graph con-
taining them all, and then identify a probability distribution over its subgraphs
that reflects their uncertainty about which is the actual graph.

• From a participant’s perspective (i. e. from the perspective of someone who
is about to present arguments and/or attacks to some monological or dialogical
argumentation), there may be uncertainty about what the audience regards as the
argument graph. When a participant (such as a politician) considers present-
ing arguments to an audience, the participant might not know for sure which
arguments and attacks the audience has in mind. In other words, even before
a participant has started, the audience may already have an argument graph in
mind and the participant will be adding to that graph in the audience’s mind. To
handle this, the participant may have an argument graph which he/she assumes
will subsume the possibilities for the argument graph held by the audience, and
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then the participant might identify a probability distribution over subgraphs of
the argument graph to reflect the uncertainty as judged by the participant over
which is the subgraph being used by the audience.

In this paper we investigate the use of probabilistic argument graphs as the un-
derlying knowledge representation formalism in dialogical argumentation scenarios.
Besides the rich expressivity of probabilistic argument graphs, this formalism can also
be used for the problem of rational action selection, i. e., which arguments to disclose
in order to maximize the utility of the result of the dialogue. As we will see, we can
utilize probabilistic argument graphs to determine the probability of possible outcomes
of an argument graph.

We define these outcomes as formulae of an expressive logic of dialectical out-
comes for reasoning about subgraphs and extensions of argument graphs. This logic al-
lows the representation of complex statements about argument graphs—such as “there
is a subgraph of the graph where all preferred extensions contain either α or β”—and
can thus be used to represent desired outcomes and means to reach them. For prob-
abilistic argument graphs, we can determine the probability of those formulae. From
an audience’s perspective, this gives a better understanding of the consequences of the
debate that they are observing, and from a participant’s perspective, it gives a better
understanding of whether s/he will get the desired outcomes from his/her contributions
to the argumentation.

We further exploit probabilistic argument graphs, by introducing the notion of lot-
teries for argumentation. Lotteries are an important approach to decision-making with
uncertainty. In a lottery, there are a number of outcomes, and probability associated
with each of them. For example, if we buy a lottery ticket for 1 Euro, with the prize
being 500 Euros, and there are 1000 tickets, then we have the outcome “win” with the
probability 1/1000 and the outcome “lose” with a probability of 999/1000. We can
then measure the utility of each outcome. For instance, the utility of “win” could be
500 for the prize minus 1 for the cost of entering (i. e. net utility is 499), and the util-
ity of “lose” is -1. The expected utility of buying the ticket is then (499× 1/1000)+
(−1× 999/1000) is −1/2 Euro, whereas the expected utility of not buying the ticket
is 0 Euro, which suggests it is not a good decision to buy the ticket.

Assume that during a discussion, a debater wants to identify a good argument to
bring into the discussion and that the audience of the discussion is considering some
subgraph of G as the true argument graph. The debater does not know for sure which
subgraph is the correct one but he can identify a probability distribution over the sub-
graphs. Now, suppose he is keen that arguments α and β are accepted by the audience
(e. g. they are both in the grounded extension of whichever subgraph the audience is
using). So the outcome we want is that α and β are included in the grounded extension.
If this is not possible, then perhaps he wants the outcome where α is included and β

excluded. Suppose any other outcome is inferior to these two outcomes. By using the
probabilistic argument graphs, we are able to determine a probability for each of these
outcomes, and we can construct a lottery containing these arguments. If we identify a
utility function over outcomes, we can apply utility theory to determine the expected
utility. Furthermore, if we then consider further arguments that we can add to the dis-
cussion, we can evaluate the expected utility of each choice of further arguments to put
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forward. We can then determine which actions (i. e. which arguments to add to the
discussion) will offer the maximum expected utility.

One further issue in the above outlined approach is how to adapt a probabilistic
model when new information—that is, additional arguments and attacks—becomes
available. The basic approach for doing this is Bayesian conditioning, as it is usually
done in approaches to probabilistic reasoning [Pea88]. For example, if P is a probabil-
ity distribution over the possible graphs the audience has in mind, we expect that after
disclosing a set of arguments and attacks e the new probability distribution is P(· | e). In
particular, all argument graphs that do not contain e will receive probability zero after
e has been disclosed. This approach assumes that the audience accepts disclosed argu-
ments and attacks. However, this is not necessarily the case as discussed above. The
audience may not fully accept all proposed arguments or attacks and may simply ignore
parts of the disclosed information. This issue has also been discussed within the field
of belief revision [Han01] under the term of non-prioritized belief revision [Han99]. In
order to address this issue for the purpose of selecting the best move to make, we also
introduce two further approaches to update a probabilistic model on an argument graph
that take this uncertainty into account. In order to analyze the behaviour of these dif-
ferent update approaches and the general approach of argumentation lotteries for move
selection in argumentation dialogues, we also report on an experimental analysis that
compares these approaches in actual argumentation dialogues.

In summary, the aim of this paper is to develop the use of probabilistic argument
graphs and to apply them to argumentation lotteries. For this, we make the following
contributions:

1. we introduce a logic of dialectical outcomes for representing and reasoning with
outcomes that hold for an argument graph (Section 3);

2. we adapt previous works on probabilistic argument graphs and extend them to
our logic of dialectical outcomes (Section 4);

3. we introduce the notion of an argumentation lottery, which we show can be used
to determine the expected utility of outcomes of a probabilistic argument graph
(Section 5);

4. we show how argumentation lotteries can be used in dialogical argumentation
and, in particular, for enabling an agent to determine what would be the best
contribution to make in monological or dialogical argumentation in order to max-
imize its expected utility; moreover, we provide three concrete approaches how
probabilistic argument graphs can be updated to incorporate new information
(Section 6); and

5. we conduct an extensive empirical evaluation in order to analyze the usefulness
of argumentation lotteries for action selection in dialogical argumentation (Sec-
tion 7).

We introduce some necessary preliminaries in Section 2, discuss related work in Sec-
tion 8, and conclude in Section 9.
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This paper extends [HT14a] by introducing the notion of a logic of dialectical out-
comes (which we use to give a much more expressive way of defining outcomes in
lotteries), by introducing the notion of redistribution which takes into account how the
probability distribution needs to be defined when considering possible actions (which
is necessary if we are to have a full account of how lotteries can be used to make ra-
tional choices of what argumentation move to make), and by undertaking an empirical
evaluation.

2 Preliminaries
An abstract argument graph G is a pair G = (A ,R) where A is a set and R ⊆
A ×A [Dun95]. Each element α ∈A is called an argument and (α,β ) ∈R means
that α attacks β (accordingly, α is said to be an attacker or a counterargument for
β ). A set of arguments S⊆A attacks β ∈A iff there is an argument α ∈ S such that
α attacks β . Also, S defends α ′ ∈ A iff for each argument β ∈ A , if β attacks α ′

then S attacks β . A set S ⊆A of arguments is conflict-free iff there are no arguments
α,α ′ ∈ S such that α attacks α ′. Let ℘(X) be the power set of a set X . Let Γ be a
conflict-free set of arguments, and let Defended(A ,R) : ℘(A )→℘(A ) be a function
such that Defended(A ,R)(Γ) = {α | Γ defends α}.

Semantics are given to abstract argument graphs by extensions, i. e., sets of argu-
ments that are considered to be jointly acceptable. We consider the following types of
extensions (let Γ⊆A )

• Γ is a complete extension (co) iff Γ = Defended(A ,R)(Γ),

• Γ is a grounded extension (gr) iff it is the (uniquely determined) minimal (wrt.
set inclusion) complete extension,

• Γ is a preferred extension (pr) iff it is a maximal (wrt. set inclusion) complete
extension, and

• Γ is a stable extension (st) iff it is a preferred extension such that Γ attacks β

for each argument β ∈ Γ\A .

For G = (A ,R), let ExtensionsX (G) be the set of extensions of G according to seman-
tics X ∈ {co,pr,gr,st}.

In order to present our framework of probabilistic argument graphs we need to
introduce some notions for subgraphs of an argument graph. Let R⊗A ′ be the subset
of R involving just the arguments in A ′ ⊆ A , i. e., R⊗A ′ = {(α,β ) ∈R | α,β ∈
A ′}. Also let G /0 denote the empty graph. For argument graphs G = (A ,R) and
G′ = (A ′,R ′) we say that G′ is a subgraph of G, denoted G′ v G, iff A ′ ⊆ A and
R ′ ⊆ R⊗A ′. Note that G is also a subgraph of itself. For any argument graph G,
let Sub(G) denote the set of subgraphs of G, i. e., Sub(G) = {G′ | G′ v G}. Also for
any argument graph G = (A ,R), let Nodes(G) = A and Arcs(G) = R. Furthermore,
for any argument graph G, let SpanningSub(G) ⊆ Sub(G) denote the set of spanning
subgraphs of G (graphs that contain a subset of nodes of G but all attacks on this
subset), i. e. SpanningSub(G) = {G′ ∈ Sub(G) | Arcs(G′) = Arcs(G)⊗Nodes(G′)}.
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Figure 1: A simple argument graph G and its subgraphs.

Example 1. Consider the argument graph G depicted in Figure 1a and its subgraphs
depicted in Figures 1a to 1s. Here we have G = (A ,R) with

A = {α,β ,γ}
R = {(α,β ),(β ,α),(γ,β )}

and Sub(G)= {G,G1, . . . ,G18} and SpanningSub(G)= {G,G8,G12,G13,G15,G16,G17,G18}.
We will use G throughout the paper as a running example.

In the following, we will use the subgraphs of a graph to model uncertainty in the
original graph.

3 Logic for dialectical outcomes
We may view the construction of an argument graph as an important part of the process
of argumentation. This may be a graph that all agents see or it may be a graph in the
mind of one agent that is used to model the arguments of another agent. However,
when we construct the argument graph, it is useful to consider the outcomes of the
argument graph. These outcomes, which we call dialectical outcomes, may include
what arguments are included or excluded from the extensions of the graph and of the
subgraphs according to some dialectical semantics.

Once we consider dialectical outcomes, we may want a language to specify them.
This is the aim of the logic of dialectical outcomes which we introduce in this section.
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We present it as a logic so that we have a precise semantics for it. This means we know
exactly what is meant by any statement of the language. Furthermore, we can reason
with statements of the language using the definition of the semantics in order to answer
questions such as “is this set of statements consistent” or “does this set of statements
imply another statement”. As with some other logics such as some many-valued logics,
the logic can be useful for representation and reasoning without having a proof theory
though we may develop a proof theory in future work.

The reason we introduce the logic of dialectical outcomes in this paper is that we
can use it to specify outcomes in the argumentation lottery. So we can specify desirable
and undesirable outcomes of an argument graph in this language, and these are the
outcomes we consider in a lottery. Part of the role of the logic is to ensure that the
outcomes in the lottery are disjoint and exhaustive.

Some of the ideas behind the logic of dialectical outcomes are inspired by similar
approaches to argumentation logics such as e. g. [BKRvdT13]. We undertake a com-
parison with the literature in Section 8. In the following presentation of the logic of
dialectical outcomes, let X be some fixed argumentation semantics, Π a set of argu-
ments, and G be a fixed argument graph with Nodes(G)⊆Π.

Definition 1. Let Π be a set of arguments. Let LΠ be the modal language defined as
follows: φ ∈LΠ iff it is defined via the following BNF

φ ::== α | ¬φ | φ ∨φ | φ ∧φ |�φ | ♦φ |�S
S′φ | �

S
S′φ

for all α ∈Π and S,S′ ⊆Π with S′ ⊆ S. If S′ = /0 we also write �S (�S) instead of �S
S′

(�S
S′ ). If S = Π we also write �S (�S) instead of �S

S′ (�S
S′ ). If both S′ = /0 and S = Π we

simply write � (�) instead of �S
S′ (�S

S′ ).

This language is based on each atom representing an argument. We allow Boolean
combinations of arguments using negation, disjunction, and conjunction. We also in-
troduce modal operators where the white operators (i. e. � and ♦) are concerned with
making statements about extensions of graphs whereas the black operators (i. e. � and
� with or without sub- or super-script) are concerned with making statements about
subgraphs. The sub- and super-scripts of �S

S′ and �S
S′ are used to constrain the sub-

graphs considered in the nested expression. More precisely, only subgraphs containing
the nodes in S but containing no nodes outside of S′ are to be considered. Diamond-
shaped operators (♦ and �) are used for existential quantification (“There is some ex-
tension/subgraph that satisfies the nested formula”) while box-shaped operators (� and
�) are used for universal quantification (“All extensions/subgraphs satisfy the nested
formula”). We formalize the meaning of these formulae in the next subsection.

3.1 Semantics for the logic of dialectical outcomes
In order to introduce the semantics in a general way, we require the following sub-
sidiary definition. Let Graphs(Π) be the set of graphs that can be constructed from the
arguments in Π:

Graphs(Π) = {G | Nodes(G)⊆Π and Arcs(G)⊆ Nodes(G)×Nodes(G)}
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The graph G is the universal graph for Π iff Nodes(G) = Π and Arcs(G) = Π×Π.
So if G is the universal graph for Π, then Graphs(Π) = Sub(G).

The semantics for our logic is based on interpretations of the form (G,E) where G
is an argument graph and E is a set of arguments.

Definition 2. The set of interpretations for the language LΠ is as follows

Interpretations(LΠ) = {(G,E) | G ∈ Graphs(Π),E ⊆Π}

We proceed by defining the satisfaction relation for the logic.

Definition 3. Let (G,E) ∈ Interpretations(LΠ) and ψ,φ ∈LΠ. The satisfaction re-
lation for a semantics X, denoted |=X , is defined as follows:

(G,E) |=X α iff α ∈ E

(G,E) |=X �φ iff for all E ′ ∈ ExtensionsX (G) we have (G,E ′) |=X φ

(G,E) |=X ♦φ iff for some E ′ ∈ ExtensionsX (G) we have (G,E ′) |=X φ

(G,E) |=X �S
S′φ iff for all G′ v G with S′ ⊆ Nodes(G′)⊆ S we have (G′,E) |=X φ

(G,E) |=X �S
S′φ iff for some G′ v G with S′ ⊆ Nodes(G′)⊆ S we have (G′,E) |=X φ

(G,E) |=X φ ∧ψ iff G,E |=X φ and (G,E) |=X ψ

(G,E) |=X φ ∨ψ iff G,E |=X φ or (G,E) |=X ψ

(G,E) |=X ¬φ iff G,E 6|=X φ

Furthermore define

G |=X φ iff for all E ∈ ExtensionsX (G) we have (G,E) |=X φ

For ψ,φ ∈ LΠ we also define φ |=X ψ iff for all G we have G |=X φ implies
G |=X ψ . We also write φ ≡X ψ if both φ |=X ψ and ψ |=X φ . We denote a tautology
by >, i. e. G |=X > for every G, and contradiction by ⊥, i. e. G 6|=X⊥ for every G.

Example 2. We continue Example 1. The following are valid inferences wrt. our logic
of dialectical outcomes:

• G |=gr α (α is included in the grounded extension of G)

• G |=st ��α (there is a subgraph G′ of G such that all stable extensions of G′

include α)

• G |=st ¬�{α}�α (it is not the case that for all subgraphs G′ of G that include α ,
all stable extensions include α)

• G |=st �♦β (there is a subgraph G′ of G that has a stable extension that contains
β )

• G |=st �{α,β}♦(α ∨β ) (all subgraphs G′ of G containing both α and β have a
stable extension that include either α or β )
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γ δ

Figure 2: Argument graph for Example 3

Our logic of dialectical outcomes is expressive enough to describe a variety of
scenarios concerning arguments, extensions, and subgraphs. Before we continue with
using our logic for the purpose of lotteries we have a first look at its logical properties.

Proposition 1. For each semantics X ∈ {co,pr,gr,st},

1. ��φ ≡X �φ , ��φ ≡X �φ , ��φ ≡X �φ , ♦♦φ ≡X ♦φ

2. ¬�φ ≡X �¬φ , ¬�φ ≡X ♦¬φ

3. α ∧¬α ≡X⊥ for every α ∈Π.

4. α ∨¬α ≡X > for every α ∈Π,

5. for every extension E ∈ ExtensionsX (G) we have G |=X ♦(
∧

α∈E α ∧
∧

α /∈E ¬α).

6. If X 6= st, G |=X �φ implies G |=X ♦φ .

7. G |=gr �φ whenever G |=gr ♦φ .

Proof. Items 1–4 and 6 follow directly from Definition 3 and the fact that every
argument graph possesses at least one grounded, preferred, and complete extension. As
for 5, Let E ∈ ExtensionsX (G) and observe G,E |=X α for every α ∈ E and G,E |=X
¬α for every α /∈ E. Therefore G,E |=X

∧
α∈E α ∧

∧
α /∈E ¬α and by definition of ♦ we

get the statement 5. For 7, note that grounded semantics is a unique-status semantics,
so there is always exactly one grounded extension [Dun95]. Therefore, �φ and ♦φ are
equivalent.

Using our logic we can phrase formulae that describe if some arguments are in-
cluded in an extension and some arguments are excluded in that extension for a given
argument graph. For instance, for a graph G containing numerous arguments including
arguments α and β , we may want to know whether argument α is included and β is
excluded from the grounded extension of G. We might be unconcerned about the other
arguments in G. Therefore, we want to know if ♦(α ∧¬β ) is a valid inference from G
wrt. the grounded semantics.
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Example 3. Consider the argument graph G in Figure 2. Some formulae that hold
include the following.

G |=st ♦(α ∧δ ∧¬β ∧¬γ)
G |=st �♦(β ∧ γ ∧¬α ∧¬δ )
G |=st �(δ ∧¬γ)
G |=gr �{α,β}♦(¬α ∧¬β )

Definition 4. The set of models for a formula φ ∈LΠ is defined via

ModelsΠ
X (φ) = {(G,E) ∈ Interpretations(LΠ) | (G,E) |=X φ}

A question we could ask of our logic of dialectical outcomes is whether we can
represent argument graphs as formulae of the language. To address this question, the
next two lemmas show that we can represent individual attacks, and then the subsequent
proposition (i. e. Proposition 2) shows that it is possible to represent any argument
graph as a formula.

Lemma 1. For α 6= β , it holds (α,β )∈Arcs(G) if and only if G |=X �{α,β}
{α,β}

(
�{β}{β}�β ∧�¬β

)
for any X ∈ {co,pr,gr,st}.

Proof. “⇒” Let G be a graph with (α,β ) ∈ Arcs(G). Then there is a subgraph G′ vG
containing only the nodes α,β and the attack (α,β ) (this corresponds to �{α,β}

{α,β}). In
G′, we have that all extensions—regardless of the semantics, all semantics considered
here have this feature—do not contain β (�¬β ). Furthermore, all subgraphs G′′ v G′

that contain only node β contain no further attack (�{β}{β}). In G′′ all extensions contain

β (�β ). Therefore G |=X �{α,β}
{α,β}

(
�{β}{β}�β ∧�¬β

)
.

“⇐” Let G be such that G |=X �{α,β}
{α,β}

(
�{β}{β}�β ∧�¬β

)
is valid and assume

(α,β ) /∈ Arcs(G). Consider any subgraph G′ v G that contains both α and β . In
order for �¬β to hold there must be an attack on β in G′. As (α,β ) /∈ Arcs(G) is as-
sumed, there must be an attack from β on β , i. e., (β ,β ) ∈ Arcs(G). But then there is a
subgraph G′′ vG′ containing only node β where β is not in an extension (the subgraph
that contains only β and the self-attack). Therefore �{β}{β}�β is not valid, contradicting
the assumption.

For any α,β we abbreviate ξα,β = �{α,β}
{α,β}

(
�{β}{β}�β ∧�¬β

)
.

Lemma 2. It holds (α,α) ∈ Arcs(G) if and only if G |=X �{α}{α}�¬α for any X ∈
{co,pr,gr,st}.

Proof. “⇒” Let G be a graph with (α,α) ∈ Arcs(G). Then there is a subgraph G′ vG
of G containing only α and its self-attack. As a self-attacking argument cannot be in
an extension it follows �¬α is valid for G′ and therefore G |=X �{α}{α}�¬α .

“⇐” Let G be such that G |=X �{α}{α}�¬α . This means there is a subgraph G′ v G
that contains only α but no extension of G′ contains α . This is equivalent to having an
attack from α to α .

10



For any α we abbreviate ξα = �{α}{α}�¬α and, for reasons of simplicity, identify
ξα,α with ξα .

Proposition 2. For finite Φ⊆ Interpretations(LΠ), there is a φ ∈LΠ such that ModelsΠ
X (φ)=

Φ.

Proof. Let Φ⊆ Interpretations(LΠ) with Φ= {(G1,E1), . . . ,(Gn,En)} and define φ =
φ1∨ . . .∨φn through

φi =
∧

α∈Ei

α ∧
∧

α /∈Ei

¬α ∧
∧

α∈Nodes(Gi)

�♦α ∧
∧

α /∈Nodes(Gi)

¬�♦α∧

∧
(α,β )∈Arcs(Gi)

ξα,β ∧
∧

(α,β )/∈Arcs(Gi)

¬ξα,β

for i = 1 . . . ,n. In order to show ModelsΠ
X (φ) = Φ we show 1.) ModelsΠ

X (φ) ⊆ Φ and
2.) ModelsΠ

X (φ)⊇Φ.

1. Let (G,E) ∈ModelsΠ
X (φ). By construction of φ there is i ∈ {1, . . . ,n} such that

(G,E) |=X φi. Due to the first two terms of the definition of φi it has to hold
E = Ei. Observe that the term �♦α reads as “there is a subgraph that has an
extension which contains α” which translates to “α has to be in the graph”.
Conversely, ¬�♦α means that α cannot be in the graph (otherwise there is al-
ways the subgraph just containing α without any edges which has an extension
containing α). So, due to the third and fourth terms, Nodes(G) = Nodes(Gi).
Due to the fifth and sixth terms and Lemmas 1 and 2, Arcs(G) = Arcs(Gi) and
therefore G = Gi.

2. For i = 1, . . . ,n note that (Gi,Ei) |=X φi by construction.

Definition 5. A formula φ ∈LΠ is unsatisfiable iff ModelsΠ
X (φ) = /0.

Obviously, for all arguments α , the formula α ∧¬α is unsatisfiable. More gener-
ally, any conjunction of literals that includes complementary literals is unsatisfiable.

3.2 Representing structure and extensions
The next definition is for a formula that captures exactly the extensions of a graph G.
The models of this formula are the pairs (G,E) where E is an extension of G with
respect to the semantics X .

Definition 6. For all G, φ ∈LΠ reflects G wrt. X iff Models
Nodes(G)
X (φ) = {(G,E) |

E ∈ ExtensionsX (G)}.

Proposition 3. For G∈Graphs(Π), and for X ∈ {co,pr,gr,st}, there is a φ ∈LΠ such
that φ reflects G wrt. X.

Proof. This follows directly from Proposition 2.

Example 4. Consider the graph G in Figure 3a and let Γ = �♦(α ∧β )∧ξα,β ∧ξβ ,α ∧
¬ξα ∧¬ξβ .

11



α β

(a) G

α β

(b) G1

α β

(c) G2

α β

(d) G3

α

(e) G4

β

(f) G5 (g) G6

Figure 3: A simple argument graph G and its subgraphs.

• ψ1 = ¬α ∧¬β ∧Γ reflects G wrt. grounded semantics

• ψ2 = ((α ∧¬β )∨ (¬α ∧β ))∧Γ reflects G wrt. preferred semantics

• ψ3 = ((¬α∧¬β )∨(α∧¬β )∨(¬α∧β ))∧Γ reflects G wrt. complete semantics

Example 5. Consider the graph G where Nodes(G)= {α,β} and Arcs(G)= {(α,α),(β ,β )}.

• ¬α ∧¬β ∧�♦(α ∧β )∧ξα ∧ξβ ∧¬ξα,β ∧¬ξβ ,α reflects G wrt. grounded, pre-
ferred, and complete semantics.

Proposition 4. For G ∈ Graphs(Π), for X ∈ {co,pr,gr,st}, and for φ ∈ LΠ, if φ

reflects G wrt. X, then G |=X φ .

Proof. If φ reflects G then ModelsX (φ) = {(G,E) |E ∈ExtensionsX (G)}which means
(G,E) |=X φ for all E ∈ ExtensionsX (G). This is equivalent to stating G |=X φ .

Definition 7. For all G, φ ∈LΠ exactly reflects G′vG in G wrt. X iff Models
Nodes(G)
X (φ)

= {(G′,E) | E ∈ ExtensionsX (G′)}

Example 6. For Figure 3, ψ1 from Example 4 exactly reflects G in G itself with re-
spect to grounded semantics, ψ2 exactly reflects G in G itself with respect to preferred
semantics, and ψ3 exactly reflects G in G itself with respect to complete semantics.

Example 7. Consider G and its subgraph G1 in Figure 4 and observe that

φ = ((α ∧¬β )∨ (¬α ∧β ))∧♦(α ∧¬β )∧♦(¬α ∧β )

reflects G1 wrt. preferred semantics but does not exactly reflect G1 in G wrt. preferred
semantics as (G,{α}) ∈Models

{α,β ,γ}
pr (φ) as well. However, observe that

φ
′ = φ ∧��¬γ

exactly reflects G1 in G wrt. preferred semantics.

The next definition of constitutes captures when a set of formulae reflects every
subgraph of a graph. When a set of formulae minimally constitutes a graph, there is a
bijection from the set of formulae to the set of subgraphs of the graph.

12



α β γ

(a) G

α β

(b) G1

Figure 4: The argument graph G from Example 7 and one of its subgraphs.

Definition 8. For G ∈ Graphs(Π), for X ∈ {co,pr,gr,st}, and for Φ⊆LΠ, Φ consti-
tutes G with respect to X iff for each subgraph G′ v G, there is a φ ∈ Φ such that φ

exactly reflects G′ in G wrt. X. Furthermore, Φ minimally constitutes G with respect
to X iff Φ constitutes G with respect to X and it is not the case that there is a Φ′ ⊂ Φ

such that Φ′ constitutes G with respect to X.

Example 8. Consider Figure 3. The following formulae minimally constitute G with
respect to preferred semantics.

• ((α ∧¬β )∨ (¬α ∧β ))∧♦(α ∧¬β )∧♦(¬α ∧β ) exactly reflects G in G

• α ∧¬β ∧�(α ∧¬β )∧�♦β ∧¬ξβ exactly reflects G1 in G

• ¬α ∧β ∧�(¬α ∧β )∧�♦α ∧¬ξα exactly reflects G2 in G

• α ∧β ∧�(α ∧β ) exactly reflects G3 in G

• α ∧¬β ∧�α ∧��¬β exactly reflects G4 in G

• β ∧¬α ∧�β ∧��¬α exactly reflects G5 in G

• ¬α ∧¬β ∧��(¬α ∧¬β ) exactly reflects G6 in G

Proposition 5. For G ∈ Graphs(Π), for X ∈ {co,pr,gr,st}, and for Φ ⊆ LΠ, if Φ

constitutes G with respect to X, then⋃
φ∈Φ

Models
Nodes(G)
X (φ) = {(G′,E) | G′ v G and E ∈ ExtensionsX (G′)}

Proof. Assume Φ constitutes G with respect to X . Therefore, by Definition 8, for
each subgraph G′ v G, there is a φ ∈ Φ such that φ exactly reflects G′ in G wrt.
X . Therefore, by Definition 6, for each subgraph G′ v G, there is a φ ∈ Φ such that
Models

Nodes(G)
X (φ) = {(G′,E) | E ∈ ExtensionsX (G′)}. Therefore, if Φ = {φ1, . . . ,φk},

then Models
Nodes(G)
X (φ1)∪. . .∪Models

Nodes(G)
X (φk) is {(G′,E) |G′vG and E ∈ExtensionsX (G′)}.

13



Proposition 6. For G ∈ Graphs(Π), for X ∈ {co,pr,gr,st}, and for Φ ⊆ LΠ, if Φ

minimally constitutes G with respect to X, then for all φi,φ j ∈Φ, Models
Nodes(G)
X (φi)∩

Models
Nodes(G)
X (φ j) = /0.

Proof. Assume Φ minimally constitutes G with respect to X . Therefore, by Definition
8, Φ constitutes G with respect to X and it is not the case that there is a Φ′ ⊂ Φ such
that Φ′ constitutes G with respect to X . Therefore, there is exactly one φ ∈Φ for each
G′ v G such that ModelsX (φ) = {(G′,E) | E ∈ ExtensionsX (G′)}. Therefore, for each
φi,φ j ∈ Φ, where φi 6= φ j, let Models

Nodes(G)
X (φi) = {(Gi,E) | E ∈ ExtensionsX (G′)}

and Models
Nodes(G)
X (φ j) = {(G j,E) | E ∈ ExtensionsX (G′)}. Since Gi 6= G j, we have

that Models
Nodes(G)
X (φi)∩Models

Nodes(G)
X (φ j) = /0.

In this subsection, we have shown how we can use a formula to characterise the
structure and extensions of a graph. This means we can use formulae to directly discuss
individual graphs, and individual subgraphs, and their extensions. We will harness this
granularity when we use the set of subgraphs of a graph as a sample space.

3.3 Dividers
Given a graph G and a formula φ ∈LΠ the set of dividers of φ is the set of subgraphs
that have φ as an inference.

Definition 9. Let G be an argument graph and let X ∈ {co,pr,gr,st} be a semantics.
A graph G′ = (A ′,R ′)v G is a divider for φ ∈LΠ iff G′ |=X φ . Let DividersG

X (φ) be
the set of dividers of φ wrt. G and X.

Example 9. We continue Example 2. There we have among others

DividersG
gr(α ∧¬β ) = {G,G2,G3,G4,G6,G9,G12,G15}

DividersG
gr(α) = {G,G2,G3,G4,G6,G7,G9,G11,G12,G15}

DividersG
gr(β ∧¬α) = {G5,G10,G14,G16}

DividersG
gr(α ∧¬α) = /0

DividersG
gr(α ∧β ∧¬γ) = {G11}

DividersG
gr(α ∨¬α) = {G,G1, . . . ,G18}

DividersG
gr(�

{α,β}
{α,β}¬α ∧¬β ) = {G,G1,G8,G12, . . . ,G18}

Note that all formulae appearing above may have been prefixed by either 2 or 3 with-
out changing the dividers as the grounded semantics is a unique-extension semantics.
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Example 10. Consider Figure 3. There we have among others

DividersG
gr(α) = {G1,G3,G4} DividersG

pr(α) = {G1,G3,G4}
DividersG

pr(♦α) = {G,G1,G3,G4} DividersG
gr(β ) = {G2,G3,G5}

DividersG
pr(β ) = {G2,G3,G5} DividersG

pr(♦β ) = {G,G2,G3,G5}
DividersG

gr(α ∧β ) = {G3} DividersG
pr(α ∧β ) = {G3}

DividersG
pr(♦(α ∧β )) = {G3} DividersG

gr(α ∧¬β ) = {G1,G4}
DividersG

pr(α ∧¬β ) = {G1,G4} DividersG
pr(♦(α ∧¬β )) = {G,G1,G4}

DividersG
gr(¬α ∧β ) = {G2,G5} DividersG

pr(¬α ∧β ) = {G2,G5}
DividersG

pr(♦(¬α ∧β )) = {G,G2,G5} DividersG
gr(¬α ∧¬β ) = {G,G6}

DividersG
gr(¬α ∧¬β ) = {G,G6} DividersG

pr(♦(¬α ∧¬β )) = {G6}

Proposition 7. For every argument graph G and each semantics X ∈ {co,pr,gr,st}, if
ψ |=X φ then DividersG

X (ψ)⊆ DividersG
X (φ).

Proof. Let G ∈ DividersG
X (ψ). By Definition 9 it follows G |=X ψ . Assuming ψ |=X φ

we conclude G |=X φ and therefore G ∈ DividersG
X (φ).

We will use formulae in our logic of dialectical outcomes as our outcomes when
we consider lotteries. For this, we need to ensure that each outcome is disjoint from
the other outcomes. For this, we use the following definition.

Definition 10. Let G be an argument graph, and let φ ,ψ ∈LΠ. φ and ψ are disjoint
for G and wrt. semantics X iff DividersG

X (φ)∩DividersG
X (ψ) = /0. A set Φ ⊆ LΠ is

pairwise disjoint iff for each φ ,ψ ∈Φ, φ and ψ are disjoint.

Example 11. We continue Example 9 and grounded semantics. Then α ∧¬β and
β ∧¬α are disjoint and α and γ are not disjoint as, e. g., G12 is a divider for both of
them.

We can equivalently view disjointness between a pair of outcomes as inconsistency
between these outcomes as shown in the next proposition.

Proposition 8. Let G be an argument graph, and let φ ,ψ ∈LΠ. φ and ψ are disjoint
for G and wrt. semantics X iff φ ∧ψ ≡X ⊥.

Proof. Let φ ,ψ ∈LΠ and assume Π = Nodes(G).

“⇒” Let φ and ψ be disjoint and assume φ ∧ψ 6≡X ⊥. Then there is (G′,E) ∈
Interpretations(LΠ) with (G′,E) |=X φ and (G′,E) |=X ψ . But then G′ would
be a divider of both φ and ψ .

“⇐” If φ ∧ψ ≡X ⊥ then there is no (G′,E)∈ Interpretations(LΠ) with (G′,E) |=X φ

and (G′,E) |=X ψ , i. e., there is no common divider of φ and ψ .

The next definition is for when a set of outcomes is exhaustive. Again, this is re-
quired for when we use outcomes in lotteries. The definition for exhaustive is specified
as a constraint using a formula of our language for dialectical outcomes. In the subse-
quent proposition, we show that this definition is implied by to the union of the dividers
of the formulae being the set of all subgraphs of the argument graph.
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Definition 11. A set of formulae {φ1, . . . ,φk} ⊆LΠ is exhaustive for G wrt. semantics
X iff G |=X ��(φ1∨ . . .∨φk).

Proposition 9. Let {φ1, . . . ,φk} ⊆LΠ. If

DividersG
X (φ1)∪ . . .∪DividersG

X (φk) = Sub(G) (1)

then {φ1, . . . ,φk} is exhaustive for G wrt. semantics X.

Proof. Let {φ1, . . . ,φk} ⊆ LΠ be a set of formulae. Note first that DividersG
X (φ1)∪

. . .∪DividersG
X (φk) ⊆ Sub(G) for any set {φ1, . . . ,φk} ⊆ LΠ due to the definition of

dividers. Then (1) is equivalent to

DividersG
X (φ1)∪ . . .∪DividersG

X (φk) = Sub(G)

⇐⇒ ∀G′ ∈ Sub(G) : ∃i ∈ {1, . . . ,k} : G′ ∈ DividersG
X (φi)

⇐⇒ ∀G′ ∈ Sub(G) : ∃i ∈ {1, . . . ,k} : G′ |=X φi

⇐⇒ ∀G′ ∈ Sub(G) : ∃i ∈ {1, . . . ,k} : ∀E ∈ ExtensionsX (G′) : (G′,E) |=X φi (2)

and furthermore from (2) follows

=⇒ ∀G′ ∈ Sub(G) : ∃i ∈ {1, . . . ,k} : ∀E ∈ ExtensionsX (G′) : (G′,E) |=X φ1∨ . . .∨φk

⇐⇒ ∀G′ ∈ Sub(G) : ∀E ∈ ExtensionsX (G′) : (G′,E) |=X φ1∨ . . .∨φk

⇐⇒ ∀G′ ∈ Sub(G) : G′ |=X �(φ1∨ . . .∨φk)

⇐⇒ G |=X ��(φ1∨ . . .∨φk)

Note that the other direction, i. e.,from exhaustiveness follows (1), is not true in
general as the next example shows.

Example 12. Consider the graph G where Nodes(G)= {α,β} and Arcs(G)= {(α,β ),(β ,α)}
and stable semantics. Then {α,¬α} is exhaustive:

∀G′ ∈ Sub(G) : ∀E ∈ Extensionsst(G′) : (G′,E) |=X α ∨¬α

as every extension of every subgraph either contains α or not. However, observe that
G ∈ Sub(G) is not a divider for α nor ¬α as G has one extension containing α and
one extension not containing α .

Example 13. We continue Example 10 and therefore consider Figure 1 again. The
following set of formulae {φ1, . . . ,φ8} is exhaustive for G with respect to grounded
semantics:

φ1 = α ∧β ∧ γ φ2 = α ∧β ∧¬γ φ3 = α ∧¬β ∧ γ φ4 = ¬α ∧β ∧ γ

φ5 = α ∧¬β ∧¬γ φ6 = ¬α ∧β ∧¬γ φ7 = α ∧¬β ∧ γ φ8 = ¬α ∧¬β ∧¬γ

Furthermore, the formulae are pairwise disjoint (i. e. for each i, j ∈ {1, . . . ,8}, φi and
φ j are disjoint for grounded semantics).
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Example 14. Consider Figure 3. The following set of formulae {φ1, . . . ,φ5} is exhaus-
tive for G with respect to preferred semantics:

φ1 = ♦(α ∧¬β )∧♦(¬α ∧β ) Dividers(φ1) = {G}
φ2 = α ∧¬β Dividers(φ2) = {G1,G4}
φ3 = ¬α ∧β Dividers(φ3) = {G2,G5}
φ4 = ¬α ∧¬β Dividers(φ4) = {G6}
φ5 = α ∧β Dividers(φ5) = {G3}

Furthermore, the formulae are pairwise disjoint for preferred semantics (i. e. for each
i, j ∈ {1, . . . ,5}, φi and φ j are disjoint for preferred semantics).

Proposition 10. If a set of formulae Φ = {φ1, . . . ,φn} is exhaustive and pairwise dis-
joint then Φ \ {φi,φ j} ∪ {φi ∨ φ j} is also exhaustive and pairwise disjoint for every
i, j = 1, . . . ,n.

Proof. Let Φ= {φ1, . . . ,φn} be exhaustive and pairwise disjoint. That is, G |=X ��(φ1∨
. . .∨φn) and each φi,φ j ∈Φ (i 6= j) are disjoint.

Without loss of generality consider Φ′ = {φ1∨φ2,φ3, . . . ,φn}. Then Φ′ is exhaus-
tive as G |=X ��(φ1∨ . . .∨φn) is equivalent to G |=X ��((φ1∨φ2)∨φ3∨ . . .∨φn). As
Φ is pairwise disjoint so is {φ3, . . . ,φn} ⊆Φ. Let now k = 3, . . . ,n and consider φ1∨φ2
and φk. Assume DividersG

X (φ1 ∨ φ2)∩DividersG
X (φk) 6= /0 and let G′ ∈ DividersG

X (φ1 ∨
φ2)∩DividersG

X (φk). As G′ ∈ DividersG
X (φ1 ∨ φ2) it is either G′ ∈ DividersG

X (φ1) or
G′ ∈ DividersG

X (φ2) (or both). In any case, this implies Φ cannot be pairwise disjoint,
contradicting the assumption.

Example 15. We continue Example 13. As φ9 = β ≡X φ1 ∨φ2 ∨φ4 ∨φ6 we have that
{φ3,φ5,φ7,φ8,φ9} is exhaustive and pairwise disjoint.

The following result shows that any set of subgraphs of a graph can be characterized
as the dividers of some formula. As we shall use the set of subgraphs of a graph as the
sample space for a probability distribution, it means the language allows us to talk
about the sample space.

Proposition 11. For any Ψ⊆ Sub(G), there is a formula φ ∈LΠ such that

DividersG
X (φ) = Ψ

Proof. Let Ψ⊆ Sub(G) with Ψ = {G1, . . . ,Gn}. For each i = 1, . . . ,n, let E i be the set
of X-extensions of Gi and consider the set Mi = {(Gi,E) | E ∈ E i} of interpretations.
By Proposition 2 there is φi with ModelsX (φi) = Mi and therefore DividersG

X (φi) =
{Gi}. Define φ = φ1 ∨ . . . ∨ φn and observe DividersG

X (φ) = DividersG
X (φ1) ∪ . . . ∪

DividersG
X (φn) = {G1, . . . ,Gn}= Ψ.

In a later section, we will use formulae as outcomes in argumentation lotteries. For
this, we will want to avoid both tautologies and contradictions as outcomes in useful
argumentation lotteries.
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4 Probability distributions
Given an argument graph G we represent the uncertainty we may have over the ar-
guments and/or attacks by using the set of subgraphs Sub(G) as the sample space.
This means we are unsure which subgraph is the “correct” subgraph. Then using
this sample space, we define a probability distribution as follows. Note, in previous
work, we restricted consideration to the spanning subgraphs—i. e. subgraphs contain-
ing all attacks on a subset of arguments—thereby denoting uncertainty in the arguments
[Hun12], or on the full subgraphs—i. e. subgraphs containing all arguments but a sub-
set of attacks—thereby denoting uncertainty in the attacks [Hun13c]. Here we allow
the representation of uncertainty in both arguments and attacks.

Definition 12. Let G be an argument graph. A probability distribution P for G is a
function P : Sub(G)→ [0,1] such that ∑G′vG P(G′) = 1.

Given a probability distribution over subgraphs, we can obtain the probability of
each argument and each attack as a marginal distribution. More specifically, for an
argument graph G and a probability distribution P, the marginal distribution for an
argument α is

P(α) = ∑
G′vG s.t. α∈Nodes(G′)

P(G′)

The marginal distribution for an attack (α,β ) is

P((α,β )) = ∑
G′vG s.t. (α,β )∈Arcs(G′)

P(G′)

Note that these probabilities describe the uncertainty to which an argument or attack is
believed to be justifiable, i. e. whether it is appropriate to consider this element to be
present in the argument graph. In particular, a high probability of an argument does not
necessarily imply that the argument is highly acceptable, see below.

Example 16. We consider Figure 1. Define a probability distribution P on G via
P(G) = P(G5) = P(G8) = 0.1, P(G9) = 0.7, and P(G′) = 0 for the remaining sub-
graphs G′ of G. Then the marginal distributions are as follows: P(α) = 1, P(β ) = 1,
P(γ) = 0.2, P((α,β )) = 0.9, P((β ,α)) = 0.3, and P((γ,β )) = 0.1.

If the probability distribution is restricted to a distribution over full subgraphs, then
the arguments are certain, and the attacks may be uncertain, whereas if the probability
distribution is restricted to a distribution over spanning subgraphs, then the attacks are
certain, and the arguments may be uncertain.

Now we use the probability distribution over subgraphs to give a probability that a
certain formula in LΠ holds. As defined below, the probability that φ ∈LΠ is true in
G is the sum of the probabilities of the subgraphs for which φ is true.

Definition 13. Let G be an argument graph and let X ∈ {co,pr,gr,st} be a semantics.
Also let P be a probability distribution for G. For a φ ∈LΠ, the probability of φ wrt.
X is

PX (φ) = ∑
G′∈DividersG

X (φ)

P(G′)
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Example 17. We continue Example 16. There we have Pgr(α ∧¬β ) = 0.8 (as G and
G9 are the only dividers with positive probabilities) and Pgr(β ∧¬α) = 0.1 (as G5 is
the only divider with positive probability).

The notion of the probability of a formula subsumes the definition of the probability
that a set of arguments is an extension, and it subsumes the definition for the probability
that an argument is an inference, cf. [LON11, Hun12, Hun13c].

Proposition 12. For every argument graph G and each semantics X ∈ {co,pr,gr,st},
1. If φ ≡X⊥, then PX (φ) = 0

2. If φ ≡X >, then PX (φ) = 1

3. If φ |=X ψ , then PX (φ)≤ PX (ψ)

4. If φ ∧ψ is unsatisfiable, then PX (φ ∨ψ) = PX (φ)+PX (ψ).

Proof.

1. If φ ≡X⊥ then ModelsΠ
X (φ) = /0 and therefore DividersG

X (φ) = /0. It follows
PX (φ) = ∑G′∈ /0 P(G′) = 0.

2. If φ ≡X > then ModelsΠ
X (φ)= Interpretations(LΠ) and therefore DividersG

X (φ)=
{G′ | G′ v G}. It follows PX (φ) = ∑G′vG P(G′) = 1.

3. If φ |=X ψ then DividersG
X (φ)⊆ DividersG

X (ψ) due to Proposition 7. It follows

PX (φ) = ∑
G′∈DividersG

X (φ)

P(G′)≤ ∑
G′∈DividersG

X (ψ)

P(G′) = PX (ψ)

4. Let φ ∧ψ be unsatisfiable, i. e., ModelsΠ
X (φ ∧ψ) = /0 and PX (φ ∧ψ) = 0. Then

we have PX (φ ∨ψ) = PX (φ)+PX (ψ)−PX (φ ∧ψ) = PX (φ)+PX (ψ).

Proposition 13. Let G be the argument graph, let {φ1, . . . ,φk} ⊆LΠ, and let P be a
probability distribution. If {φ1, . . . ,φk} is exhaustive and pairwise disjoint for G wrt.
X, then

k

∑
i=1

PX (φi) = 1

Proof. Consider

k

∑
i=1

PX (φi) =
k

∑
i=1

∑
G′∈DividersG

X (φi)

P(G′)

As {φ1, . . . ,φk} ⊆LΠ is exhaustive and pairwise disjoint it follows that for every G′ v
G the term P(G′) appears exactly once in the above sum (G′ is a divider for exactly one
formula). This means the above sum becomes

k

∑
i=1

∑
G′∈DividersG

X (φi)

PX (G′) = ∑
G′∈Sub(G)

P(G′) = 1
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In general, the probability distribution is on the set of all subgraphs of the argument
graph. However, often the uncertainty will be more focused. For instance, it may be fo-
cused on some full subgraphs (thereby reflecting uncertainty in some of the arguments)
or on some spanning subgraphs (thereby reflecting uncertainty in some of the attacks)
or on some combination of arguments and attacks.

5 Argumentation as a lottery
In this section, we show how we can use the logic of dialectical outcomes, and the
probability distribution over subgraphs of the argument graph, to give a definition for
argumentation lotteries. Our primary aim is to have a mechanism for artificial agents
to evaluate the options they have for arguments and/or attacks to present in dialogical
argumentation. We are therefore drawing on the computational ability of an artificial
agent to evaluate the extensions of an argument graph and of its subgraphs.

5.1 A brief review of lotteries
We start by briefly reviewing the notion of a lottery which is an idea that comes from de-
cision theory. A lottery is a probability distribution over a set of possible outcomes that
are assumed to be disjoint and exhaustive. A lottery with possible outcomes φ1, . . . ,φn
that can occur with probabilities p1, . . . , pn is written [p1,φ1; . . . ; pn,φn].

Example 18. Consider a gamble involving a die with 6 sides. Let these sides be called
s1, s2, s3, s4, s5, and s6. Also assume that each side is equally to occur when the die is
rolled. This can be represented by the following lottery.

[1/6,s1;1/6,s2;1/6,s3;1/6,s4;1/6,s5;1/6,s6]

Individual agents may have preferences over the outcomes, which we model using
utility functions. A utility function U assigns to each outcome a real value with the
interpretation that larger values indicate larger utility. In the above example a utility
function U defined via U(s1) = . . .=U(s5) = 1 and U(s6) = 2 means that the outcome
s6 is preferred to all other outcomes, which themselves are equally preferred. Note that
the values of a utility function usually do not have any specific semantics (a value twice
as large as another value does not necessarily mean that it is twice as preferred).

A utility function can be used to give an evaluation of how much an agent values an
outcome (i. e. how much utility the agent will obtain from the outcome) and monetary
values can be used for illustration purposes. For instance, in gambling, it is often
clear what the monetary value of each outcome is. But many other outcomes can be
quantified in terms of monetary value.

Given the probability distribution over outcomes (as specified in the lottery) and the
utility function, an overall value can be calculated for the return that can be expected
from a lottery as follows: For a utility function U , the expected utility of a lottery L,
denoted E(L,U), is given by

E(L,U) =
n

∑
i=1

piU(φi)
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For decision making, each action has a resulting lottery that incorporates all the
possible outcomes of the action, together with associated probability distribution. In
utility theory, the principle of maximum expected utility states that a rational agent
should choose an action that maximizes its expected utility.

Example 19. Consider that you are a contestant in a TV game show. The host offers
you a $1 million prize or a gamble on the flip of a coin. If the coins comes up heads,
you win $3 million, otherwise you end up with nothing. The lotteries could then be
represented as follows

• For action of coin-flip gamble, the lottery Lcoinflip is [1/2,heads;1/2, tails]

• For action of collect prize, the lottery Lcollectprize is [1,get prize]

If we take the absolute monetary values as the utility values, then we get the following
utility function: U(get prize)= 1M, U(heads)= 3M, and U(tails)= 0. So the expected
utility of the lotteries are as follows

• For action of coin-flip gamble, we have the lottery Lcoinflip, and hence E(Lcoinflip,U)=
1.5M

• For action of collect prize, we have the lottery Lcollectprize, and hence E(Lcollectprize,U)=
1M

So according to the principle of maximum expected utility, the rational agent should
choose the action of coin-flip gamble (if s/he accepts this utility function).

However, this does not mean that accepting the bet is a better or more rational
decision for everyone. For instance, for most people considering this example, utility
is not directly proportional to monetary value, because the utility (interpreted as the
positive change in your lifestyle) for your first million is very high whereas the utility
for an additional million is much smaller. This could be reflected by the utility function
U ′, where U ′(get prize)= 1M, U ′(heads)= 1.5M, and U ′(tails)= 0, and so the revised
expected utility would be E(Lcoinflip,U) = 750K. Hence, the rational agent who accepts
utility function U ′ should choose the action of collect prize (and so not enter the coin-
flip gamble).

Utility theory and decision theory are extensively studied subjects in economics,
social sciences, philosophy, psychology, and more recently in artificial intelligence.
For an introduction, see [Pet09]. We have only presented a simple and commonly
used form of lottery here. There are numerous alternatives that have been developed
to address specific concerns or perceived shortcomings of the simple lottery. Further-
more, we refer the reader to the literature on lotteries for methods for obtaining utility
functions for applications.

5.2 Argumentation lotteries
We can view an argument graph G as invoking a lottery. For that we use formulae
of LΠ as outcomes and the probability of a formula holding as the probability of the
outcome. Furthermore, it is quite natural to think of formulae as having utility. For
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example, for an argument graph containing arguments α , β , and γ , and we prefer to
have α and β and to not have γ , otherwise we prefer either α or β and not γ , otherwise
we are indifferent about the outcome, then we have the preferences over outcomes
where α ∧ β ∧¬γ is most preferred, α ∧¬β ∧¬γ and ¬α ∧ β ∧¬γ are the second
most preferred, and then ¬α ∧¬β is the least preferred. Since, we can identify this
preference ordering, we can identify a utility function to indicate the degree to which
we prefer each of the options. For instance, we could let the utility function U be
U(α ∧β ∧¬γ) = 10, U(α ∧¬β ∧¬γ) = 5, U(¬α ∧β ∧¬γ) = 5 and U(¬α ∧¬β ) = 0,
and U(φ) =−10 for every other option φ .

We formalize the construction of a lottery for argumentation as follow. For this we
need to ensure that the formulae we use as outcomes in the lottery are pairwise disjoint
and together they are exhaustive.

Definition 14. Let G be the argument graph, let {φ1, . . . ,φk} ⊆ LΠ, and let P be a
probability distribution. The tuple [PX (φ1),φ1; . . . ;PX (φk),φk] is an argumentation
lottery for G wrt. semantics X iff {φ1, . . . ,φk} is exhaustive and pairwise disjoint for G
wrt. X.

Example 20. We continue Example 17. Recall that {φ3,φ5,φ7,φ8,φ9} is exhaustive
and pairwise disjoint for G with respect to grounded semantics (see Example 14) and
let P be as defined in Example 16. This gives the following argumentation lottery

[P(φ3),φ3;P(φ5),φ5;P(φ7),φ7;P(φ8),φ8;P(φ9),φ9] = [0.1,φ3;0.7,φ5;0,φ7;0.1,φ8;0.1,φ9]

Define a utility function U via U(φ3) = 10, U(φ5) = 5, U(φ7) = 5, U(φ8) = 0, and for
k ∈ {1,2,4,6,9}, U(φk) =−10. Observe that U favours α and/or γ , but not β , in our
grounded extension. Therefore the expected utility is (0.1 · 10)+ (0.7 · 5)+ (0.0 · 5)+
(0.1 ·0)+(0.1 ·−10) = 3.5.

Example 21. We return to Figure 3. Consider the formulae φ1 = ♦(α ∧¬β ) and φ2 =
¬(♦(α ∧¬β )). These are exhaustive and disjoint. Suppose P(G) = 0.8, P(G1) = 0.1,
and P(G2) = 0.1. Therefore Ppr(φ1) = P(G)+P(G1) = 0.9 and Ppr(φ2) = P(G2) = 0.1.
This gives the following argumentation lottery

[Ppr(φ1),φ1;Ppr(φ2),φ2]

Let U be the utility function where U(φ1) = 10, and U(φ2) = −10. Observe that U
favours to have an extension with α and not β before anything else. Therefore the
expected utility is (0.9 ·10)+(0.1 ·−10) = 8.

The following result shows that there is always an argumentation lottery. Further-
more, with the use of subsumption, we can restructure the argumentation lottery to
reduce the number of outcomes as illustrated in the above example.

Proposition 14. Let G be an argument graph, P a probability distribution on G, and
{φ1, . . . ,φk} is the following set.

{α1∧ . . .∧αm∧¬β1∧ . . .∧¬βn | {α1, . . . ,αm} ⊆ Nodes(G) and

{β1, . . . ,βn}= Nodes(G)\{α1, . . . ,αm}}
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Then [P(φ1),φ1; . . . ;P(φk),φk] is an argumentation lottery for G with respect to grounded
semantics.

Proof. We have to show that Φ = {φ1, . . . ,φk} is exhaustive and pairwise disjoint for
G wrt. grounded semantics.

(Exhaustive) Φ is exhaustive iff G |=gr ��(φ1∨ . . .∨φk)

iff G,E |=gr ��(φ1∨ . . .∨φk) for all E ∈ Extensionsgr(G)

iff G′,E |=gr �(φ1∨ . . .∨φk) for all E ∈ Extensionsgr(G) and G′ v G

iff G′,E ′ |=gr φ1∨ . . .∨φk for all E ′ ∈ Extensionsgr(G′) and G′ v G

Note that the last statement is true as there is i ∈ {1, . . . ,k} such that φi = α1 ∧ . . .∧
αm∧¬β1∧ . . .∧¬βn with E ′ = {α1, . . . ,αm}.

(Disjoint) For all i, j ∈ {1, . . . ,k}, i 6= j we have that φi and φ j are disjoint as there
is necessarily a γ ∈ Nodes(G) such that φi |=gr γ and φ j |=gr ¬γ (or the other way
around).

Example 22. Let G be the argument graph in Figure 3. Also let P a probability dis-
tribution on G. Applying Proposition 14, if {φ1, . . . ,φ4} is the set of the following
formulae, then [P(φ1),φ1; . . . ;P(φ4),φ4] is an argumentation lottery for G with respect
to any semantics.

φ1 = α ∧β φ2 = ¬α ∧β φ3 = α ∧¬β φ4 = ¬α ∧¬β

The next result draws on the notion of when a set of formulae minimally constitutes
an argument graph (Definition 8). If a set of formulae minimally constitutes a set of
formulae a graph with respect to a semantics, then we can construct an argumentation
lottery using these formulae as the outcomes. In this case, there is a unique formula for
each subgraph of the graph.

Proposition 15. Let G be an argument graph, let P be a probability distribution on G,
let X ∈ {co,pr,gr,st}, and Φ ⊆LΠ. If Φ minimally constitutes G with respect to X,
where Φ = {φ1, . . . ,φk}, then [P(φ1),φ1; . . . ;P(φk),φk] is an argumentation lottery for
G with respect to X.

Proof. Assume Φ minimally constitutes G with respect to X .

• (Exhaustive) Models(φ1)∪. . .∪Models(φk) = {(G′,E) |G′vG and E ∈ExtensionsX (G′)}
by Proposition 5. For each φi ∈Φ, let ModelsX (φi) = {(Gi,E) |E ∈ExtensionsX (Gi)}.
Therefore, for each Gi v G, there is a φi ∈ Φ such that Gi |=X φi. Therefore, by
Proposition 9, Φ is exhaustive.

• (Disjoint) By Proposition 6, for all φi,φ j ∈Φ, Models(φi)∩Models(φ j) = /0. For
each φi ∈Φ, let ModelsX (φi) = {(Gi,E) | E ∈ ExtensionsX (Gi)}. Therefore, for
each Gi v G, Gi |=X φi, and for all φ j ∈Φ, if φi 6= φ j, then Gi 6|=X φ j. Therefore,
for each Gi,G j v G, Dividers(Gi)∩Dividers(G j) = /0. Therefore, by Definition
10, Φ is pairwise disjoint for G with respect to X .
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Since, Φ is exhaustive and pairwise disjoint for G with respect to X , [P(φ1),φ1; . . . ;P(φk),φk]
is an argumentation lottery for G with respect to X .

Example 23. Let G be the argument graph in Figure 3. Also let P a probability dis-
tribution on G. Applying Proposition 15, if {φ1, . . . ,φ7} is the set of the following
formulae, then [P(φ1),φ1; . . . ;P(φ7),φ7] is an argumentation lottery for G with respect
to grounded semantics.

φ1 = ¬α ∧¬β ∧�(α ∧β )∧�{α}{α}α ∧�
{β}
{β}β φ5 = α ∧�¬β

φ2 = α ∧¬β ∧�β ∧¬ξβ φ6 =�¬α ∧β

φ3 = ¬α ∧β ∧�α ∧¬ξα φ7 = ¬α ∧¬β ∧¬�α ∧¬�β

φ4 = α ∧β

Now that we have defined the notion of an argumentation lottery and shown how
they can be constructed in general, we will consider in the following section how they
can be used by participants in argumentation. Note, we are primarily considered with
artificial agents who have the computational capacity to evaluate the probability of
outcomes by identifying the extensions of the subgraphs of a graph, and thereby have
the computational ability to calculate the expected utility of a lottery.

6 Using Lotteries in Dialogical Argumentation
Argument lotteries are a general tool for evaluating the uncertainty of outcomes in
argument graphs. In this section, we will discuss two particular application scenarios
of argumentation lotteries in scenarios of dialogical argumentation, one for a passive
audience of an argumentation dialogue, and one for active participants in argumentation
dialogue. We will only briefly discuss the first application scenario and focus on the
second.

6.1 Audience evaluation of argumentation
We believe that expected utility is a useful formal tool for an audience to judge ar-
gumentation. From the audience’s perspective, we are interested in modelling how a
member of the audience may evaluate some arguments. For example, a member of the
audience of a political speech may listen to the arguments and counterarguments that
the politician has presented, or a member of the audience of a debate may hear the argu-
ments and counterarguments exchanged by the participants. In each case, an argument
graph is produced. The member of the audience then may look at the arguments and the
attacks and she may be uncertain whether some of the arguments should be included in
the graph (perhaps some arguments are rephrasing of previously expressed arguments),
and/or whether some of the attacks hold (perhaps the arguments are enthymemes, and
she doubts that the enthymemes can be decoded so that it can be attacked by the given
counterarguments).

In order to represent the uncertainty in the arguments and attacks, the member of the
audience identifies a probability distribution over the subgraphs. With this probability

24



distribution, she can determine the probability that specific arguments are included or
excluded according to specific semantics. Furthermore, by determining the expected
utility of the corresponding argumentation lottery, she can determine the worth of the
consequences of the debate to her in utility-theoretic terms.

Example 24. Consider Figure 1 with the probability distribution where P(G) = 0.1,
P(G5) = 0.1, P(G8) = 0.1, and P(G9) = 0.7. Also consider the following formulae

φ1 = α ∧¬β ∧ γ φ2 = α ∧¬β ∧¬γ φ3 = ¬α ∧¬β ∧ γ φ4 = ¬α ∧¬β ∧¬γ φ5 = β

The above set of formulae is exhaustive and pairwise disjoint for G with respect to
grounded semantics. Let the utility function be U(φ1) = 10, U(φ2) = 5, U(φ3) = 5,
U(φ4) = 0, and U(φ5) = −10. Observe that U favours α and/or γ , but not β , in our
grounded extension. Therefore the expected utility is = 3.5.

So what we have presented so far in this paper already supports our member of the
audience. She constructs the graph G from the arguments and attacks presented, she
identifies her probability distribution, and she determines the probabilistic outcomes.
Moreover, by determining the expected utility of the lottery corresponding to an ar-
gument graph, she can determine what it is likely to get from the argument graph. In
other words, given the outcomes of interest to the member of the audience, the utility
function used for those outcomes, and the probability distribution it used to express the
uncertainty about which is the actual argument graph, the member of the audience has
an evaluation of how good the argument graph is for her.

6.2 Maximizing expected utility in argumentation
We now consider the argumentation lottery from the perspective of the participant.
When an agent presents an argument α , this can be viewed as a lottery by the agent
since there is uncertainty about whether α will be included or excluded from the view-
point of the audience according to some semantics. If the agent’s probability distribu-
tion is P then it can assess the outcome of presenting argument α by evaluating the
lottery

[PX (α),α;PX (¬α),¬α]

with respect to its utility function U . Now suppose the agent has a choice of arguments
to present say α1, α2, or α3, and for each of the arguments αi ∈ {α1,α2,α3}, if αi
is presented, the agent is unsure whether αi will be in, out or undecided from the
viewpoint of the audience according to, e. g., grounded semantics. So each αi is an
option for an action with an associated lottery Li, respectively, of the above form. Given
these lotteries, we can choose the argument αi that maximizes expected utility. In the
same way, suppose that an agent has a choice of which sets of arguments to present,
say A1, A2, or A3, but the agent is concerned about another argument β in G. For
instance, in a dialogue, β may have been given earlier, and the agent wants to know
which would be the best arguments to add at this stage in order to get a particular
outcome concerning β .

25



6.2.1 Basic framework for selecting contributions

We organize the ideas outlined above as follows. A dialogue (such as a discussion,
debate, etc) is a sequence of moves involving two or more agents. We assume two
agents for simplicity here and we assume the agents take it in turns. We also assume
each move is a set of zero or more arguments and zero or more attacks. We therefore
assume an abstract notion of a dialogue.

Definition 15. A dialogue is a sequence of moves D = [M1, . . . ,Mn] where each Mi ∈
{M1, . . . ,Mn} is a tuple of the form (R,S) where R is a set of arguments and S is a set
of attacks. We use a function D as an equivalent representation of a dialogue. So for
each i ∈ {1, . . . ,n}, D(i) = Mi.

In this paper, we are not concerned with the broader issues concerning dialogues
such as protocols, results of information exchange, etc. [KJRM09, BA09, CS10].
Rather, we are concerned with the specific issue of strategic move selection [Thi14a],
where at some point in the dialogue it is the turn of one of the agents to make the next
move (i. e. to make the next contribution). Let the proponent be the agent who wants
to make the next contribution to a dialogue , and let the audience be the person or peo-
ple who will hear (or read) that contribution to the dialogue. So we are concerned with
how the next move Mn+1 can be added to the dialogue (assuming that the dialogue has
not terminated at step n).

We assume that the proponent has an argument graph GP in mind (i. e. the pro-
ponent graph) that contains all the arguments and attacks that s/he is aware of. This
contains all the arguments and attacks that the proponent may use in his/her contribu-
tion. So the proponent graph may include arguments and/or attacks that are only there
because the audience may have them in their graph. We also assume that the proponent
has a model of the audience GA (i. e. the audience graph) that contains all the arguments
and attacks that s/he thinks the audience is aware of. We assume that GA v GP.

Example 25. Consider Figure 1. If G is the proponent graph, then any of G1 to G18
could be selected as the audience graph.

According to Definition 15, each move (i. e. contribution to the dialogue) is a pair
(R,S) where R is a set of arguments and S is a set of attacks. When a proponent is
choosing its move, it may have a number of options from which to pick its move. We
assume the following constraint on options, and so we assume the move is a set of
arguments and attacks obtained from the proponent graph.

Definition 16. An option for the proponent is a pair (R,S) where R⊆Nodes(GP) and
S⊆ Arcs(GP).

Example 26. Continuing Example 25, any tuple in℘({α,β ,γ})×℘({(α,β ),(β ,α),(γ,β )})
is an option.

Suppose the proponent can choose between a number of options for the next con-
tribution. The proponent needs to choose one of them. For this, it needs to consider
the effect of that contribution on its audience model. Let the options be C1, . . . ,Ck.
Now suppose GA is the argument graph that includes all the possible arguments and
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attacks that the intended audience may currently entertain (i. e. the audience graph).
For each option for a contribution Ci ∈ {C1, . . . ,Ck}, we let GA +Ci be the argument
graph obtained by augmenting GA with the arguments and attacks in Ci.

Definition 17. Let G be an argument graph and let C be an option for the proponent.
The augmentation of G by C, denoted G+C, is the following graph.

(Nodes(G)∪Nodes(C),Arcs(G)∪Ok(G,C))

where Ok(G,C) = {(α,β )∈Arcs(C) |α ∈Nodes(G)∪Nodes(C) and β ∈Nodes(G)∪
Nodes(C)}.

In augmentation, we need to check when adding arcs from the option that the source
and destination nodes are in the augmented graph (i. e. the source and destination nodes
need to be in Nodes(G)∪Nodes(C)). We do this check using the Ok(C) function.

Example 27. Consider the audience graph GA where Nodes(GA)= {α} and Arcs(GA)=
/0. Let C be the contribution where Nodes(C) = {β} and Arcs(C) = {(β ,α),(γ,α)}.
So GA+C is the graph where Nodes(GA+C) = {α,β} and Arcs(GA+C) = {(β ,α)}.

So far, we assumed that the proponent knows the exact nature of the audience
graph. We now turn to the probabilistic setting where the proponent is uncertain to
what the exact audience graph is. The only remaining assumption we entertain is that
the actual audience graph is a subgraph of the proponent graph. More formally, let
P : Sub(G)→ [0,1] be a probability distribution such that P(G′) is the degree of belief
of the proponent that the audience graph is G′ v G. We first consider the issue of what
happens with P when the proponent discloses its selected contribution C. There are
various ways for how we could calculate this a posteriori probability distribution. We
start with a simple method below, which corresponds to classical Bayesian conditioning
[Pea88], and then later consider some alternatives. For that, we assume for now that
the audience will believe in the contribution C. That is, subgraphs G′′ < G that do not
contain C should have zero probability after disclosing C.

Definition 18. Let P be a probability distribution over G and let C be an option. We
define the simple redistribution of P wrt. C, denoted P′, for all G′ v G via

P′(G′) =
{

∑G′=G′′+C P(G′′) if C v G′

0 otherwise (3)

Example 28. Consider Figure 1. Let the proponent graph be G, and let P(G16) = 0.8,
P(G18) = 0.2, and P(G′) = 0 for all other subgraphs. Now consider contributions C1
where Nodes(C1) = {α} and Arcs(C1) = {(α,β )} and C2 where Nodes(C2) = {γ}
and Arcs(C2) = {(γ,β )}. So G16 +C1 is G9, G18 +C1 is G15, G16 +C2 is G13, and
G18 +C2 is G17. Therefore, we get P1 as the simple redistribution of P wrt. C1 and P2
as the simple redistribution of P wrt. C2 with.

P1(G9) = 0.8 P1(G15) = 0.2 P2(G13) = 0.8 P2(G17) = 0.2

all P1(G′) = P2(G′) = 0 for all other subgraphs, respectively.
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Proposition 16. Let P be a probability distribution over G and let C be an option. If
P′ is the simple redistribution of P wrt. C, then P′ is a probability distribution over G.

Proof. We have to show that ∑G′:G′vG P′(G′)= 1. Note that in (3) only those subgraphs
G′ v G receive a positive probability in P′ for which C v G′ holds. Therefore we have

∑
G′:G′vG

P′(G′) = ∑
G′:CvG′vG

∑
G′′:G′=G′′+C

P(G′′)

= ∑
G′′:CvG′′+CvG

P(G′′)

= ∑
G′′:G′′vG

P(G′′)

= 1

We can now define the argumentation lottery for selecting a move. Essentially, it is
Definition 14 with the probability distribution obtained for the candidate.

Definition 19. Let GP be the proponent graph, let P be a probability distribution over
G, and let P′ be the simple probability distribution of P wrt. an option C. Also let
{φ1, . . . ,φk}⊆LΠ be exhaustive and pairwise disjoint for G wrt. X. The argumentation
lottery [P′X (φ1),φ1; . . . ;P′X (φk),φk] is the candidate lottery for C wrt. G and semantics
X.

Example 29. Consider the proponent graph GP in Figure 5. Assume that the out-
comes of interest are α and ¬α where U(α) = 10 and U(¬α) = −10 and that the a
priori probability distribution P of the proponent on the audience graphs is as depicted
in Table 1a (the subgraphs G1,G2,G3,G4 of GP have the probability indicated in Ta-
ble 1a, all other subgraphs have zero probability). Hence, the expected utility of the
argumentation lottery on GP and P is (0.2×10)+(0.8× (−10)) =−6.

• Now consider the contribution C1 = ({δ},{(δ ,β )}), which yields the a posteri-
ori probability distribution P1 depicted in Table 1b. Hence, the expected utility
of the argumentation lottery on GP and P1 is (0.8×10)+(0.2× (−10)) = 6.

• Finally consider the contribution C2 = ({ε},{(ε,γ)}), which yields the a poste-
riori probability distribution P2 depicted in Table 1c. Hence, the expected utility
of the argumentation lottery on GP and P2 is (0.3×10)+(0.7× (−10)) =−4.

So both contributions increase the expected utility, with C1 being the contribution that
maximizes utility.

To show how the candidate lottery could be used in a “real-world” dialogue, we
consider the following example where one agent needs to choose a good argument to
present to the other agent for persuasion.

Example 30. Consider the situation where a couple is looking to buy a new car. Sup-
pose the proponent graph GP contains the following three arguments, and one attack
from β to α .

28



αβ γ εδ

Figure 5: Proponent graph GP for Example 29

G1 β → α ← γ 0.1
G2 β → α 0.6
G3 α ← γ 0.1
G4 α 0.2

(a)

G1
1 δ → β → α ← γ 0.1

G1
2 δ → β → α 0.6

G1
3 δ α ← γ 0.1

G1
4 δ α 0.2

(b)

G2
1 β → α ← γ ← ε 0.1

G2
2 β → α ε 0.6

G2
3 α ← γ ← ε 0.1

G2
4 α ε 0.2

(c)

Table 1: Subgraphs and probability distributions for Example 29

• α = “The car is a nice red colour, and that is the only criterion to consider,
therefore we should buy it.”

• β = “It is a nice red colour, but I don’t agree that that is the only criterion to
consider.”

• γ = “The car is the most economical and easy car to drive out of the options
available to us, and those are the criteria we want to satisfy, so we should buy
the car.”

Consider the subgraph G1 of GP that contains α and β and the attack β → α . Fur-
thermore assume that the probability distribution of the proponent is simply defined by
P(G1) = 1. Also suppose the proponent likes the red car and wants the couple to buy
it. The proponent has two arguments to make this case (α and γ) and the proponent
wants the outcome α ∨ γ and does not want the outcome ¬(α ∨ γ). Let U(α ∨ γ) = 10
and U(¬(α ∨ γ)) =−1 So the proponent has two choices of contribution.

• C1 where Nodes(C1) = {α} and Arcs(C1) = /0

• C2 where Nodes(C2) = {γ} and Arcs(C2) = /0

Using the simple redistribution, we get the following graphs each with probability 1.

• C1 results in β → α with probability 1

• C2 results in β → α γ with probability 1

So we get the following lottery calculations

• C1 gives (0×10)+(1× (−1)) =−1

• C2 gives (1×10)+(0× (−1)) = 10

Hence, the optimal contribution for the proponent is C2.
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So by harnessing a probabilistic argument graph, and an argumentation lottery, a
participant can optimize its choice of actions in argumentation. This can be for exam-
ple in monological argumentation (e. g. in a speech or a written article) or dialogical
argumentation (e. g. a discussion or debate) when a participant wants to present argu-
ments and/or counterarguments in order to convince the audience that some particular
arguments should be accepted and some should be rejected.

In our presentation in this section, we have left the details of the dialogue open so
that the approach can be adapted to specific dialogue systems (for instance for persua-
sion [Pra06]). We have also left open how the utility function would be obtained, as
this depends on the nature, functionality and resources of the artificial agent. Nonethe-
less, if the agent has some form of agenda with regard to argumentation, it should be
possible to extract a utility function to represent the priorities of that agenda.

In the basic framework, we used the simple redistribution (Definition 18) to incor-
porate a contribution into the probabilistic model the proponent has about the audience.
The simple redistribution is an intuitive and simple way to redistribute the probability,
but there are alternatives. We present two alternatives, namely sticky redistribution
(which we will illustrate with an application in supporting value-based argumentation)
and rough redistribution (which we will illustrate with an application in handling en-
thymemes), in the next two subsections.

6.2.2 Sticky redistribution

Sticky redistribution is a generalization of the simple redistribution where not all the
probability mass is redistributed from G′ to G′+C. Rather, there is some “stickiness”,
and so some probability mass remains with G′. This models the idea that the audience
might not fully believe in the contribution the proponent is making. For this, we intro-
duce a stickiness coefficient which specifies the proportion of the probability mass that
is reassigned.

Definition 20. Let P be a probability distribution over a graph G, and let C be an
option. We define the sticky redistribution of P wrt. C, denoted P′, for all G′ v G via

P′(G′) =
{

µ ∑G′=G′′+C(P(G′′)+(1−µ)P(G′)) if C v G′

(1−µ)P(G′) otherwise (4)

where µ ∈ [0,1] is the stickiness coefficient.

Example 31. Consider Figure 1 and assume P with P(G16) = 0.8, P(G18) = 0.2, and
P(G′) = 0 for all other subgraphs. Now consider contributions C1 where Nodes(C1) =
{α} and Arcs(C1)= {(α,β )} and C2 where Nodes(C2)= {γ} and Arcs(C2)= {(γ,β )}.
So G16 +C1 is G9, G18 +C1 is G15, G16 +C2 is G13, and G18 +C2 is G17. Let µ = 0.5
be the stickiness coefficient. Therefore, we get P1 as sticky redistribution of P wrt. C1
and P2 as sticky redistribution of P wrt. C2 with

P1(G16) = 0.4 P1(G18) = 0.1 P1(G9) = 0.4 P1(G15) = 0.1
P2(G16) = 0.4 P2(G18) = 0.1 P2(G13) = 0.4 P2(G17) = 0.1
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Obviously, if we set the stickiness coefficient to µ = 1, then the sticky redistribution
is the same as the simple redistribution. At the other extreme, if we set the stickiness
coefficient to µ = 0, then the sticky redistribution returns the original distribution, and
hence the augmented subgraph is ignored.

Proposition 17. Let P be a probability distribution over G, and let C be an option. If
P′ is the sticky redistribution of P wrt. C, then P′ is a probability distribution over G.

Proof. We have to show that ∑G′:G′vG P′(G′) = 1:

∑
G′:G′vG

P′(G′) = ∑
G′:CvG′vG

P(G′)+ ∑
G′:C 6vG′vG

P(G′)

= ∑
G′:CvG′vG

(
µ ∑

G′′:G′=G′′+C
P(G′′)+(1−µ)P(G′)

)
+ ∑

G′:C 6vG′vG
(1−µ)P(G′)

= ∑
G′:CvG′vG

µ ∑
G′′:G′=G′′+C

P(G′′)+ ∑
G′:CvG′vG

(1−µ)P(G′)+ ∑
G′:C 6vG′vG

(1−µ)P(G′)

= ∑
G′′:CvG′′+CvG

µP(G′′)+ ∑
G′:G′vG

(1−µ)P(G′)

= µ ∑
G′′:G′′vG

P(G′′)+(1−µ) ∑
G′:G′vG

P(G′)

= µ +(1−µ) = 1

We now consider an application of the sticky redistribution for enhancing value-
based argumentation frameworks [Ben03]. To introduce this extension of abstract ar-
gumentation, we use the following examples.

Example 32. (Example taken from [Ben03]) Consider the following arguments con-
cerning the theft by Hal of insulin from Carla’s House because he has lost his through
no fault of his own. We give the argument graph below.

• α = “Hal is justified because a person can use other people’s property to save a
life” (LIFE)

• β = “It is wrong to infringe the property rights of others” (PROPERTY)

• γ = “If Hal compensates Carla, then property rights have not been infringed”
(PROPERTY)

So {α,γ} is the preferred extension, but it may appear unjust to accept α based on the
value of (LIFE) using the argument γ which is based on the value of (PROPERTY).

α (LIFE) β (PROPERTY) γ (PROPERTY)

Example 33. (Example taken from [Ben03]) We now extend Example 32 by consider-
ing the extra argument δ , and the resulting argument graph, below.
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• δ = “If Hal were too poor to compensate, then he should be allowed to take the
insulin (LIFE)”

So {β ,δ} are the acceptable, but it may appear even more unjust for α to now be
defeated taking δ into account.

α (LIFE) β (PROPERTY) γ (PROPERTY) δ (LIFE)

A value-based argument system extends an abstract argument system with a set
of values V , a function val that assigns a value to each argument, a set of audiences Π,
and a set of preference relations �π⊆ V ×V where π ∈ Π and A �π B denotes that A
is more or equally preferred for π than B.

Definitions for abstract argumentation are specialized to those for an audience π

and its preferred values. So the usual definitions for abstract argumentation are revised
to use the following definitions for an audience.

• A attacksπ B iff A attacks B and not B�π A.

• A set of arguments S is conflict free for π iff there are no arguments A,B ∈ S
such that A attacksπ B

• A set of arguments S defends an argument A for π iff if B attacksπ A, then S
attacksπ B

Example 34. (Example taken from [Ben03]) Returning to Example 32, let V = {PROPERTY,LIFE},
val(α) = LIFE, val(β ) = PROPERTY, val(γ) = PROPERTY, Π = {π1}, and LIFE �π1
PROPERTY. So the argument graph becomes the following, with the desired effect that
α is in the extension unconditionally.

α (LIFE) β (PROPERTY) γ (PROPERTY)

Example 35. (Example taken from [Ben03]) Returning to Example 33, let V = {PROPERTY,LIFE},
val(α) = LIFE, val(β ) = PROPERTY, val(γ) = PROPERTY, Π = {π1}, and LIFE �π1
PROPERTY. So the argument graph becomes the following, with the desired effect that
both α and δ are accepted.

α (LIFE) β (PROPERTY) γ (PROPERTY) δ (LIFE)

So value-based argumentation deletes attacks where the value of the attacking ar-
gument is greater than or equal to the value of the attacked argument. So given an
argument graph, value-based argumentation makes a binary decision on whether to
keep or delete each arc. We can refine this by using probabilistic argumentation so that
there is a probability that the arc is kept and a probability that it is deleted. So when the
audience is presented an argument β that attacks an argument α , and the audience is
thought to value β higher than α , then the contribution has a probability of being made.
We can use sticky redistribution for this. We illustrate this in the following example.
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Example 36. We use the arguments in Example 32 to construct the argument graph in
a number of steps of the dialogue. Let us suppose one agent is making all the non-empty
contributions (the odd moves), and the other agent is just making an empty contribution
when it is its turn (the even moves). The contributions are listed below.

• C1 = ({α,β ,γ}, /0)

• C2 = ( /0, /0)

• C3 = ( /0,{(β ,α)})

• C4 = ( /0, /0)

• C5 = ( /0,{(γ,β )})

For the agent making the odd moves, let us suppose at the start it may assume the
actual audience graph is the empty graph (thus receiving probability 1 and all other
subgraphs receiving probability zero). Now, we consider the moves in sequence, and
the effect they have on the audience model. Let us assume that we use the simple redis-
tribution for all moves except for when the attack (α,β ) is added (we use a stickiness
coefficient of 0.2). This amounts to the idea that val(α) �π val(β ) very likely holds
according to the audience.

• After the move C1, a simple redistribution results in the audience model being
the graph containing the arguments, and this graph has probability 1.

G1
1 = α β γ

• After the move C2, there is no update.

G2
1 = α β γ

• After the move C3, it is the case that val(α) �π val(β ), and so a sticky redis-
tribution results in the following two argument graphs, where P(G3

1) = 0.2 and
P(G3

2) = 0.8

G3
1 = α ← β γ G3

2 = α β γ

• After the move C4, there is no update.

G4
1 = α ← β γ G4

2 = α β γ

• After the move C4, it is not the case that val(β ) �π val(γ), and so a simple
redistribution results in the following two additional argument graphs,

G5
1 = α ← β ← γ G5

2 = α β ← γ

The final probabilistic assignment in the dialogue is P(G5
1) = 0.04, P(G5

2) = 0.16,
P(G4

1) = 0.16 and P(G4
2) = 0.64. Therefore PX (α) = 1 (for every semantics X ∈

{co,pr,gr,st}).

33



By using sticky redistribution, we get a finer grained way of updating the proponent
model. It allows for the modelling of an audience that does not completely accept an
update. There may be various reasons for why the audience might be reluctant to accept
an update. We give one example that refines value-based argumentation. Whilst we
have not considered selecting moves in this subsection, it is clear that using the sticky
redistribution as opposed to simple redistribution can have a substantial influence on
the expected utility of any option for a contribution. Note, the definition for stickiness
is illustrative for a range of possible definitions. The definition applies stickiness to the
whole contribution, but it would be possible to do it for part of a contribution according
to some criteria. If we did this, we could for instance deal with Example 36 with all
the arguments and attacks in the same contribution (instead of splitting them into one
contribution for the arguments, and one contribution for each attack).

6.2.3 Rough redistribution

In general a contribution is a pair (R,S) where R is a set of arguments, and S is a set of
attacks. However, often in real argumentation, the attacks are inferred from the argu-
ments being presented. The arguments are presented explicitly by the proponent, and
the audience has to determine whether an attack holds between any pair of arguments.
This option treats arguments as enthymemes, and so there is uncertainty as whether the
audience decodes them correctly. If the audience decodes them incorrectly, then the
attack relationships may be different to those assumed by the proponent.

To address this need, we introduce (in the next definition) a form of redistribution
that considers the possible subgraphs that can be formed from the model of the audi-
ence. For this, we start with the definition of the function Super(G,G′,C) which takes
a proponent graph G, a possible audience graph G′, and the option C, and returns the
subset of arcs that appear in G that either involve an attack between the arguments in
G′ and the arguments in C, or involve an attack between the arguments in C. These
are the attacks for which there is uncertainty as to whether the audience regards them
as attacks. In other words, the audience may only regard some subset (even the empty
set) as being attacks involving the arguments in C.

Then starting with a proponent graph G, and the option C, rough distribution assigns
mass to the subgraphs G′ vG by considering each G′′, where G′′+C⊆G′ is a possible
audience graph. For each such G′′, Super(G,G′′,C) is calculated, and each subset C′ of
Super(G,G′′,C), that when added to G′′+C gives G′, is identified. The number of such
C is multiplied by P(G′) and normalized by dividing by the number of possibilities for
C (i. e. 2|Super(G,G′′,C)|).

Definition 21. Let P be a probability distribution over G, and let C be an option.
Define

Super(G,G′,C) ={(α,β ) ∈ Arcs(G) | (α ∈ Nodes(G′) and β ∈ Nodes(C))

or (α ∈ Nodes(C) and β ∈ Nodes(G′))

or (α ∈ Nodes(C) and β ∈ Nodes(C))}
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We define the rough redistribution wrt. P, denoted P′, for all G′ v G via

P′(G′) =
{

∑G′′:G′′+CvG′
1

2|Super(G,G′′ ,C)| ∑C′⊆Super(G,G′′,C):G′′+C+C′=G′ P(G′′) if C v G′

0 otherwise
(5)

Example 37. Consider Figure 3. Let G be the proponent graph, and let P be a proba-
bility distribution over G where P(G4) = 0.8, P(G6) = 0.2, and P(G′) = 0 for all other
subgraphs.

Now suppose that the option C is such that Nodes(C) = {β} and Arcs(C) = /0. With
this option, we calculate the super sets as follows.

• Super(G,G,C) = {(α,β ),(β ,α)}

• Super(G,G1,C) = {(α,β ),(β ,α)}

• Super(G,G2,C) = {(α,β ),(β ,α)}

• Super(G,G3,C) = {(α,β ),(β ,α)}

• Super(G,G4,C) = {(α,β ),(β ,α)}

• Super(G,G5,C) = /0

• Super(G,G6,C) = /0

Next we calculate P′(G′) for each G′ v G. For this below, we only explicitly consider
G′′ v G′ such that P(G′′) 6= 0. If P(G′′) = 0, then it cannot contribute to P′(G′).

• For G, because of case (i) below, P′(G) = 1/|Super(G,G,C)| × 0.8 = 1/4×
0.8 = 0.2.

i If G′′ = G4, then G′′+C v G, and if C′ = ( /0,{(α,β ),(β ,α)}), then G′′+
C+C′ = G.

ii If G′′ = G6, then there is no C′ ⊆ Super(G,G6,C) such that G′′+C+C′ =
G.

• For G1, because of case (i) below, P′(G1) = 1/|Super(G,G1,C)|×0.8 = 1/4×
0.8 = 0.2.

i If G′′=G4, then G′′+CvG1, and if C′=( /0,{(α,β )}), then G′′+C+C′=
G1.

ii If G′′ = G6, then there is no C′ ⊆ Super(G,G6,C) such that G′′+C+C′ =
G1.

• For G2, because of case (i) below, P′(G2) = 1/|Super(G,G2,C)|×0.8 = 1/4×
0.8 = 0.2.

i If G′′=G4, then G′′+CvG2, and if C′=( /0,{(β ,α)}), then G′′+C+C′=
G2.
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ii If G′′ = G6, then there is no C′ ⊆ Super(G,G6,C) such that G′′+C+C′ =
G2.

• For G3, because of case (i) below, P′(G3) = 1/|Super(G,G3,C)|×0.8 = 1/4×
0.8 = 0.2.

i If G′′ = G4, then G′′+C v G3, and if C′ = ( /0, /0}), then G′′+C+C′ = G3.

ii If G′′ = G6, then there is no C′ ⊆ Super(G,G6,C) such that G′′+C+C′ =
G3.

• For G4, since C 6⊆ G4, P(G4) = 0.

• For G5, because of case (i) below, P′(G5) = 1/|Super(G,G5,C)| × 0.8 = 1×
0.8 = 0.2.

i If G′′ = G6, then G′′+C v G5, and if C′ = ( /0, /0}), then G′′+C+C′ = G5.

• For G6, since C 6⊆ G6, P(G6) = 0.

To summarize, the rough redistribution results in the following distribution P′(G) =
0.2, P′(G1)= 0.2, P′(G2)= 0.2, P′(G3)= 0.2, P′(G4)= 0, P′(G5)= 0.2, and P′(G6)=
0.

Proposition 18. Let P be a probability distribution over G, and let C be an option. If
P′ is the rough redistribution from P wrt. C, then P′ is a probability distribution over
G.

Proof. We have to show that ∑G′:G′vG P′(G′)= 1. Note that in (5) only those subgraphs
G′ v G receive a positive probability in P′ for which C v G′ holds. Therefore we have

∑
G′:G′vG

P′(G′)

= ∑
G′:CvG′vG

P′(G′)

= ∑
G′:CvG′vG

∑
G′′:G′′+CvG′

1
2|Super(G,G′′,C)| ∑

C′⊆Super(G,G′′,C):G′′+C+C′=G′
P(G′′)

= ∑
G′:CvG′vG

∑
G′′:G′′+CvG′

∑
C′⊆Super(G,G′′,C):G′′+C+C′=G′

1
2|Super(G,G′′,C)|P(G

′′)︸ ︷︷ ︸
p(G′′)

Let us calculate now how often the term p(G′′) appears in the above sum. This term
appears whenever we have G′ and C′ with G′′ +C +C′ = G′. Note that there are
2|Super(G,G′′,C)| different subsets of Super(G,G′′,C) and for every subset C′⊆Super(G,G′′,C)
we have one appearance of p(G′′) for the uniquely determined G′ = G′′ +C +C′

(for fixed G′′). Therefore, p(G′′) appears 2|Super(G,G′′,C)|-times. Furthermore, note
that p(G′′) appears for every G′′ v G this number of times, as for every G′′ there is
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G′ = G′′+C satisfying the condition of the first sum. Therefore, the above equation
simplifies to

∑
G′:G′vG

P′(G′)

= ∑
G′′:G′′vG

2|Super(G,G′′,C)|p(G′′)

= ∑
G′′:G′′vG

2|Super(G,G′′,C)| 1
2|Super(G,G′′,C)|P(G

′′)

= ∑
G′′:G′′vG

P(G′′)

= 1

Real arguments (i. e. those presented by people in general) are normally enthymemes.
We consider two types which we will refer to as implicit support enthymemes and im-
plicit claim enthymemes. An implicit support enthymeme does not explicitly represent
some of the premises for entailing its claim. So if ∆ is the set of premises explicitly
given for an implicit support enthymeme, and δ is the claim, then ∆ does not entail
δ , but there are some implicitly assumable premises ∆′ such that ∆′ ∪∆ is a consis-
tent set of formulae that entails δ . An implicit claim enthymeme does not explicitly
represent all of its claim. In the rest of this section, we will consider implicit support
enthymemes.

For instance, for a claim that you need an umbrella today, a husband may give his
wife the premise the weather report predicts rain. Clearly, the premise does not entail
the claim, but it is easy for the wife to identify the common knowledge used by the
husband (i. e. if the weather report predicts rain, then you need an umbrella today) in
order to reconstruct the intended argument correctly.

In the following example, we show how we can use rough redistribution to capture
aspects of the uncertainty of handling enthymemes.

Example 38. Consider the following arguments in the context of a conversation late
in the evening (example adapted from [SW95]). Suppose one agent has said α , and the
other agent has replied with β .

• α = “You need a coffee”

• β = “Coffee would keep me awake”

There is ambiguity with β . Two possible interpretations of β are β1 and β2 below.
Here, β1 appears to be consistent with α , and whereas β2 appears to be inconsistent
with α .

• β1 = “Coffee would keep me awake and I need to sleep now. Therefore, I don’t
need a coffee.”

• β2 = “Coffee would keep me awake and I would like to stay awake longer. There-
fore, I need a coffee.”
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Now we consider these arguments in the context of the space of graphs in Figure 3.
We consider the proponent argument graph G as given in the following table, with the
audience model being given by P in the table. Now suppose that the option C is such
that Nodes(C) = {β} and Arcs(C) = /0. With this option, we calculate the super sets
given in the table.

Subgraph G G1 G2 G3 G4
Structure β → α β α α β

P 0.1 0.5 0.4 0 0
Super(G,G,C) {(β ,α)} {(β ,α)} {(β ,α)}
1/2|Super(G,G,C)| 1/2 1/2 1/2 1 1

Next we calculate P′(G′) for each G′ v G. For this below, we only explicitly consider
G′′ v G′ such that P(G′′) 6= 0. If P(G′′) = 0, then it cannot contribute to P′(G′).

• For G, because of (i) to (iv) below, P′(G) = (2× (1/2|Super(G,G,C)| × 0.1)) +
(1/2|Super(G,G1,C)|×0.5))+(1/2|Super(G,G2,C)|×0.4)= (2×(1/2×0.1))+(1/2×
0.5)+(1/2×0.4) = 0.75.

i If G′′ = G, then G′′+C v G, and if C′ = ( /0, /0), then G′′+C+C′ = G.

ii If G′′ = G, then G′′+CvG, and if C′ = ( /0,{β ,α)), then G′′+C+C′ = G.

iii If G′′ = G1, then G′′+C v G, and if C′ = ( /0,{β ,α)), then G′′+C+C′ =
G1.

iv If G′′ = G2, then G′′+C v G, and if C′ = ( /0,{β ,α)), then G′′+C+C′ =
G2.

• For G1, because of (i) below, P′(G) = 1/2|Super(G,G1,C)|×0.5 = 0.25.

i If G′′ = G1, then G′′+C v G1, and if C′ = ( /0, /0), then G′′+C+C′ = G1.

• For G2, since C 6v G2, P′(G2) = 0.

• For G3, because of (i) to (iii) below, P′(G3) = 0.

i If G′′ = G, then G′′+C 6v G3,

ii If G′′ = G1, then G′′+C 6v G3,

iii If G′′ = G2, then G′′+C 6v G3,

• For G4, since C 6v G4, P′(G4) = 0.

To summarize, the rough redistribution results in the following distribution P′(G) =
0.75, and P′(G1) = 0.25. This means that after β is said, the audience graph (i. e. the
graph for the hearer of β ) is mostly like to be G, and less likely to be G1. Hence, the
most likely interpretation is that the speaker of β is that they do not want an coffee.

Using rough redistribution, we can revise the uncertainty over the audience graph
resulting from the addition of enthymemes. The revised probability distribution can
then be analyzed to determine the uncertainty of attacks by enthymemes. This can then
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be used to determine the probability of outcomes, and it can be used by an agent in an
argumentation lottery to choose optimal dialogues.

In previous work, we have considered decoding of enthymemes in the context of
logical arguments (i. e. arguments of the form 〈∆,δ 〉 where ∆ is a set of formulae en-
tailing δ ) [Hun07, BH12], and in the context of probabilistic argumentation where we
have considered how the possible interpretations of an enthymeme can be used to de-
termine the probability distribution over the subgraphs of the argument graph. Using
the proposal in the paper, i.e. rough redistributions, addresses a different problem (i. e.
how to update a model of the user by a new dialogue move).

7 Experimental Evaluation
We implemented the concepts introduced in this paper and, in particular, the game
setting described in the previous section in Tweety1, cf. [Thi14b]. Moreover, we con-
ducted some empirical evaluation of the different variants of the lottery approach for
move selection in order to validate its feasibility and performance compared to more
simple approaches. In this section, we first give an overview on the scenario consid-
ered for our empirical evaluation. Afterwards we describe the concrete setup of the
experiment and then report on our findings.

7.1 Overview
We consider a scenario where a single agent Ag is placed in front of an audience Aud.
The agent Ag believes in some argument graph G0 and assigns utility to some formulae
on the arguments in G0 with a utility function U . The audience Aud also believes
in some argument graph G1. The goal of Ag is to bring forward a subgraph C v G0
such that the grounded extension of G1 +C maximizes utility of Ag, i. e., the agent Ag
could convince the audience Aud of its own opinion to a maximal degree. In order to
accomplish this, Ag can make use of a probability distribution P0 on the subgraphs of
G0 such that for every G′ vG0 the value P(G′) is the belief of Ag in G′ = G1. The aim
of our evaluation is to compare different approaches on how to select C.

Note that the dialogue in our scenario implements a direct argumentation proto-
col [TG10], i. e., the agent Ag brings forward C in one single step. Furthermore, the
audience is assumed to be passive and will not bring forward arguments itself.

In order to simplify the scenario for our evaluation, we will assume G1 v G0, i. e.,
the actual audience graph is a subgraph of the graph of Ag. This means that there are
no arguments and attacks the agent Ag is unaware of. Note that this is rather a technical
restriction than a restriction of the scenario. The probability distribution P0 of Ag may
assign a low (or zero) probability to specific arguments/attacks which represents the
intuition that Ag believes Aud is ignorant of these arguments/attacks. So instead of
modeling that Ag is unaware of an argument α , we model that Ag is unaware of Aud
knowing α . Although this is conceptually different, it does not make such a huge
difference in our technical treatment.

1http://www.tweetyproject.org
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7.2 Setup
We will consider the following different variations on selecting the contribution C in
the above described dialogue scenario:

Random Choose C v G0 with uniform probability from all subgraphs of G0.

Utility-based Choose C v G0 such that C has maximal utility among all subgraphs of
G0.

Lottery-simple Choose C vG0 such that the lottery of the simple redistribution of P0
with C has maximal expected utility wrt. U .

Lottery-sticky-µ This is the same as Lottery-simple but we use the sticky redistribu-
tion with the stickiness coefficient µ .

Lottery-rough This is the same as Lottery-simple but we use the rough redistribution.

For the Lottery-sticky-µ instantiation we consider variations with µ = 0.1,0.3,0.5,0.7,0.9.
In total, we compare nine different approaches for move selection.

For the setup of the dialogue, we generated random connected graphs with up to 7
arguments using the Erdös-Rényi model2. We identified G0 with the selected bench-
mark graph, randomly generated the probability distribution P0 on the subgraphs of
G0, and randomly generated the utility function U (with all utilities in the range [0,1]).
Then we sampled (wrt. to the probability distribution P0) some subgraph of G0 to be the
actual subgraph G1 assigned to the audience. For each of the nine different approaches
for move selection we determined the best contribution C and determined the utility of
the grounded extension of G1 +C.

We repeated the experiment with 45 times (15 different graphs with 3 repetitions
each) and computed the average utility and standard deviation for each approach over
these graphs. The implementation of the experiment and the used graphs can be found
online3.

7.3 Results
The final results can be seen in Figure 6 which shows for each move selection strategy
the average utility and standard deviation after executing the dialogue (larger num-
bers mean more successful dialogues). As expected, all our more sophisticated models
outperform the base line approaches random and utility-based. Moreover, all lottery-
based approaches also have a much smaller standard deviation, which is an indica-
tor for their robustness wrt. the randomly generated instances, while the performance
of the base line approaches random and utility-based strongly depend on the actual
instance—which is evidenced by the large standard deviation—and thus are not gen-
erally applicable strategies. Interestingly, the strategy lottery-rough, although being
the most complex of the lottery-based strategies, performs worst among those. For all

2Due to the complexity of some of our approaches we could not include larger graphs as this would have
been infeasible. Ongoing research is about more effective algorithms for these approaches.

3http://mthimm.de/r/?r=tweety-lotteries
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Figure 6: Performance of the random (R), utility-based (U), lottery-simple (LS),
lottery-sticky-0.1 (L1), lottery-sticky-0.3 (L3), lottery-sticky-0.5 (L5), lottery-sticky-
0.7 (L7), lottery-sticky-0.9 (L9), and lottery-rough (LR) strategies for move selection
in comparison (with standard deviation)

tested values of µ the strategy lottery-sticky-µ performed best with only minor dif-
ferences between the different values of µ . Also a little bit surprising, is that there is
no linear or other obvious relationship between the value of µ and the average utility.
For µ = 0.3 and µ = 0.9 the strategies performed best in our experiments. It is, how-
ever, imaginable that these observations are due to the relatively small scope of this
experimental evaluation.

8 Comparison with the literature
Logical encodings of argument graphs were proposed by Besnard and Doutre [BD04],
and subsequently developed in a range of encodings for specific semantics (for ex-
ample, using an ASP encoding [EGW10], using a CSP encoding [AD11], and using
Łukasiewicz’s three valued logic [Dyr13]). In a generalization of the idea of encod-
ings, Besnard et al. [BDH14] provide a model checking approach to encoding where a
formula θ is constructed to characterize the extensions of a graph G with respect to a
semantics X such that the models of θ (for example using classical logic) are isomor-
phic to the extensions of the graph G with respect to the semantics X .

Modal logics have also been harnessed for logical reasoning with argument graphs.
In [CG09], modal logic is used to encode the constraints on labellings that can be ob-
tained from an argument graph according to particular semantics, and this gives for in-
stance a correspondence of the labellings of the argument graph and the possible worlds
model of the argument graph. And in Grossi [Gro10], an argument graph is treated as
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a Kripke frame, and modal operators are introduced to capture “there exists an attack-
ing argument such that”, and “there is an argument such that”. Using this operators,
notions of abstract argumentation such as acceptability, conflictfreeness, completeness,
and various semantics can be axiomatized.

In an approach to reason about the specification of an argument graph, Villata et
al. [VBG+13] introduce a satisfaction relation with a model being a pair (R,S) where
R is a binary relation, and S is a subset of the set of arguments in the argument graph.
Operators are introduced such as p� q to denote that the arguments in p attack the
arguments in q, p � q to denote the arguments in p defend the arguments in q, F(q)
to denote the arguments in q are conflictfree, C(q) to denote the arguments in q are a
complete extension, and P(q) to denote the arguments in q are a preferred extension.
Using this language, axioms can be written concerning the structure and extensions of
an argument graph that can be checked as to their satisfaction by a specific argument
graph.

When comparing our proposal for a logic of dialectical outcomes with the logical
encodings considered above, we see that our language involves constructs not consid-
ered in their encodings. In our language, we are able to write formulae that concern the
membership of some or all extensions with respect to any semantics and with respect
to some or all the subgraphs of the argument graph. This expressibility is needed for
representing and reasoning with dialectical outcomes where there is uncertainty about
the structure of the argument graph and the need to bring probability theory into the
argumentation.

Our logic of dialectical outcomes was inspired by the proposal by Booth et al.
[BKRvdT13] for a logical theory about dynamics in abstract argumentation. They as-
sume a model is a labelling (as defined by Caminada [Cam06]), and then a satisfaction
relation is |=G⊆LG×FG where LG is the set of labellings for the argument graph
G and FG is the set of formulae of the language. The language has atoms for an
argument being in, out, or undecided, and Boolean combinations can be obtained us-
ing disjunction and negation. Whilst our logic of dialectical outcomes does not have
the distinction between out and undecided, we go beyond this proposal by having for-
mulae that concern membership of some/all extensions, and with respect to some/all
subgraphs.

There are a number of proposals for using probability theory in argumentation in-
cluding the epistemic approach (e. g. [Thi12, Hun13b, HT14b]) and the constellations
approach (e. g. [LON11, Hun12]) . The epistemic approach is concerned with rep-
resenting and reasoning with the uncertainty about the belief in individual arguments
using a probability distribution over the subsets of the arguments in the graph (i. e.
P : ℘(Nodes(G))→ [0,1] and so for an argument α ∈ Nodes(G) the belief P(α) in
the argument is ∑X∈℘(Nodes(G)) s. t. α∈X P(X)). In contrast, the constellations approach,
which we also followed in our work here, is concerned with representing and reason-
ing with the uncertainty about the structure of the graph using a probability distribution
over the subgraphs of the graph (i. e. P : Sub(G)→ [0,1]).

Most dialogue systems are aimed at providing protocols for dialogues (e. g. [Pra05,
Pra06, FT11, CP12]), but strategies, in particular taking into account beliefs of the
opponent are under-developed. Some proposals for strategies include [BH09, TG10,
BA11, FT12], and see [Thi14a] for a review of strategies in multi-agent argumentation.
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In order to operate strategically in an argumentation dialogue, it is desirable for the
agent to handle the uncertainty concerning the argumentation including the knowledge,
aims, and behaviour of the other agent(s). We can consider uncertainty from either the
audience’s perspective or the participant’s perspective. In previous work, we have mod-
elled audiences in terms of the beliefs and desires to assist a participant in choosing the
most believable or the most desirable arguments to make [Hun04b, Hun04a]. However,
these proposal do not consider the uncertainty associated with modelling the audience,
and they do not provide a utility-theoretic framework.

Besides probability theory, other formalisms for representing uncertainty—such as
possibility theory and fuzzy logic—have also been applied to computational models
of argumentation [AP04, AP06, ACGS08, JCV08]. For example, in [AP04, ACGS08]
classic-logical knowledge bases are augmented with uncertainty values to sentences
and those are used to derive uncertainty values for arguments constructed from them.
In order to determine defeat between arguments, these uncertainty values are taken
into account and thus provide a more realistic approach for comparing arguments. In
[AP04] this framework has been applied to a negotiation setting in multi-agent systems.
In [JCV08] the attack relation in argument graphs is is a fuzzy relation and, similarly
to our probabilistic setting, this relation can be used to define uncertain notions of
extensions and acceptability of arguments. We believe that the choice of the actual for-
malism for representing uncertainty (probability theory, possibility theory, fuzzy logic)
is orthogonal to the work presented in this paper and that our notions of argumentation
lottery and their use in dialogical argumentation could also be phrased using a different
approach than probability theory.

Another approach to incorporate a “graded” assessment of the acceptability of ar-
guments in argument graphs is provided by ranking semantics, see e. g. [BDKM16,
GM15, AB13, TG14]. In this setting, the topology of the argument graph is exploited
in order to obtain a more fine-grained ranking of arguments, from the most acceptable
to the least acceptable ones. For example, in [GM15] an argument is more acceptable
than another if the former is defended by more arguments than the latter (everything
else being the same). These works are therefore concerned with a kind of intrinsic
uncertainty in argumentation graphs, similar to the epistemic approach of probabilistic
argumentation [Thi12, Hun13b, HT14b]. Acceptability rankings of arguments are de-
rived from the topology of the plain argumentation graph. As we follow the constella-
tions approach of probabilistic argumentation [LON11, Hun12] we deal with extrinsic
uncertainty. The uncertainty on the acceptability of arguments stems from the uncer-
tainty we may have in the topology of the argument graph. In could be worthwhile to
consider combinations of both forms of uncertainty for future work.

Persuasion has also been considered through uncertainty modelling of the audience
[OAL12]. This uncertainty is with respect to the structure of the graph, but there is no
consideration of dialogues or strategies. In a proposal by Rienstra et al., a probabilistic
model of the opponent has been used in a dialogue strategy allowing the selection of
moves for an agent based on what it believes the other agent believes [RTO13]. This
uncertainty concerns what the opposing agent is aware of rather than what it believes.
In another approach to a probabilistic opponent model, the history of previous dia-
logues is used to estimate the arguments that an agent might put forward [HSM+13].
The method for updating the opponent model is of exponential complexity, and there
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is no consideration of how utility theory could be employed.
Utility theory has been considered previously in argumentation to consider issues of

manipulation (for example [RL08, RL09, RPRS08, ON10]) and to analyze an argument
graph to quantify the degree of conflict [MT08]). Utility theory has also been used to
determine the best move for an agent to make based in an argumentation dialogue using
either minimax reasoning with a finite state machine [Hun13a] or analyzing probabilis-
tic finite state machine [Hun14]. However, the proposal in [HT14a], and extended in
this paper, is the first framework for using lotteries in argumentation.

9 Discussion
In this paper, we have investigated how probabilistic argumentation can be harnessed
to formalize the notion of a lottery for argumentation. An argumentation lottery can be
used to judge the expected utility of the outcomes in an argument graph. Furthermore,
an argumentation lottery can be constructed for each of a number of possible contribu-
tions that can be made to a discussions, debate, etc. These lotteries can then be used to
determine the contribution that maximizes the expected utility.

Therefore, an agent making a decision on what contribution (if any) to make in
argumentation now has a formal tool to make the best choice. Primarily, we are con-
cerned with using argumentation lotteries with artificial agents who have the computa-
tional capacity to represent and reason with probability distributions over the subgraphs
and to undertake the expected utility calculations for each possible move. Given recent
developments in algorithms and systems for computing with argument graphs (e. g.
[CDG+15, NAD14]), we believe it is viable for artificial agents to undertake these
calculations. Our empirical evaluations (reported in Section 7) with naive algorithms
for identifying extensions supports this claim. Furthermore, specialised techniques for
estimating the probability of extensions using Monte-Carlo techniques have been de-
veloped [FFP13].

The notion of a dialogue used in this paper (Definition 15) is general and covers
the vast majority of proposals for dialogical argumentation in the literature on compu-
tational models of argument. We therefore believe that our proposal for argumentation
lotteries and the use of redistribution is applicable for a wide variety of situations in
computational argumentation.

In order to use our framework, it is necessary to obtain a probability distribution
over the subgraphs of the argument graph. Such a distribution can be obtained em-
pirically by learning from previous dialogues together with studies of classes of user.
Some recent studies indicate the potential viability of an empirical approach for de-
veloping computational models of argument [CTO14, RK15]. An empirical approach
to obtaining the probability distribution fits our aim of primarily supporting artificial
agents to optimize their dialogue argumentation. Nonetheless, our framework is suf-
ficiently general as to be used (in principle) by any agent with objective or subjective
probabilities concerning dialectical outcomes.

In future work, we would like to further investigate how we can optimize strategies
for dialogues, including consideration of how lotteries can be used for diverse types of
dialogue, and further investigate possible definitions and properties of redistributions.
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To support this, we would like to explore how our approach to using lotteries could
draw further on established results in game theory. We would also like to investigate
how our approach could be integrated with techniques for updating argument graphs
to enforce particular outcomes (see for example [CFL10, Bau12]) since our notion of
a contribution can be regarded as an update.
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