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Abstract 

Background Tissue hypoxia is a cardinal feature of inflammatory diseases and modulates monocyte 

function. Nitric oxide is a crucial component of the immune cell response. This study explored the 

metabolism of the endogenous inhibitor of nitric oxide production asymmetric 

dimethylarginine(ADMA) by monocyte dimethylarginine dimethylaminohydrolase 2(DDAH2), and the 

role of this pathway in the regulation of the cellular response and the local environment during 

hypoxia. 

Methods Peritoneal macrophages were isolated from a macrophage-specific DDAH2 knockout 

mouse that we developed and compared with appropriate controls. Cells were exposed to 3% 

oxygen followed by reoxygenation at 21%. Healthy volunteers underwent an 8h exposure to 

normobaric hypoxia with an inspired oxygen percentage of 12%. Peripheral blood mononuclear cells 

were isolated from blood samples taken before and at the end of this exposure.  

Results Intracellular nitrate plus nitrite(NOx) concentration was higher  in wild-type murine 

monocytes after hypoxia and reoxygenation than in normoxia-treated cells (mean(SD) 13·2(2·4) vs 

8·1(1·7) pmols/mg protein, p=0·009).  DDAH2 protein was 4·5-fold (SD 1·3) higher than in control 

cells (p=0·03). This increase led to a 24% reduction in ADMA concentration, 0·33(0.04)pmols/mg to 

0·24(0·03), p=0·002). DDAH2-deficient murine monocytes demonstrated no increase in nitric oxide 

production after hypoxic challenge. These findings were recapitulated in a human observational 

study. Mean plasma NOx concentration was elevated after hypoxic exposure (3·6(1.8)µM vs 6·4(3·2), 

p=0·01), which was associated with a reduction in intracellular ADMA in paired samples from 

3·6(0.27) pmols/mg protein to 3·15(0·3)(p<0·01). This finding was associated with a 1·9-fold(0·6) 

increase in DDAH2 expression over baseline(p=0·03). 

Discussion This study shows that in both human and murine models of acute hypoxia, increased 

DDAH2 expression mediates a reduction in intracellular ADMA concentration which in turn leads to 
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elevated nitric oxide concentrations both within the cell and in the local environment. Cells deficient 

in DDAH2 were unable to mount this response.  

Short Title 

DDAH2 regulates immune cell nitric oxide synthesis in acute hypoxia. 
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Nitric Oxide 

Hypoxia 

Dimethylarginine Dimethylaminohydrolase 

Asymmetric Dimethylarginine 

Abbreviations 

Ddah2 - Dimethylarginine Dimethylaminohydrolase 2 gene 

DDAH2 - Dimethylarginine Dimethylaminohydrolase 2 protein 

Ddah2flox/flox – LoxP positive Cre negative litter mate controls 

Ddah2MΦ- - Ddah2flox/flox LysM-cre Monocyte specific DDAH2 knockout animals 

PBMC - peripheral blood mononuclear cells 

PRMT - Protein Arginine Methyltransferases 

ADMA- asymmetric dimethylarginine 

SDMA- symmetric dimethylarginine 

L-NMMA- monomethyl-L-arginine 

DDAH- dimethylarginine dimethylaminohydrolase 

NO- nitric oxide 

NOS- nitric oxide synthase 

eNOS – endothelial nitric oxide synthase 

iNOS- inducible nitric oxide synthase 

LC-MS/MS - liquid chromatographic assay with tandem mass spectrometric detection 

NOx- nitrate and nitrite 

FiO2 – Fraction of inspired oxygen 
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1.Introduction 

Hypoxia is a cardinal feature of critical illness of many aetiologies
1
  It arises as a consequence of both 

increased metabolic demand
2
 and also changes in the microcirculation that impair delivery of oxygen 

to the tissues
3
.  Pro- and anti-inflammatory activation is also a major component of the response to 

critical illness
4, 5

.  Mediated in large part by immune cells
6
, the interaction between hypoxia and 

monocytes has been shown to play a role in the immune response
7
 and may give insights to the 

pathological responses seen in some patients in whom exaggerated systemic inflammation leads to 

organ failure and death. 

Nitric oxide (NO) is an important regulator of a broad range of physiological processes
8
.  In addition, 

it plays an important role in the response to infection
9-12

.  NO synthesised in response to infection 

has diverse functions including bactericidal and phagocytic function by monocytes
13

 and the 

regulation of the macro
14

 and microcirculation
15, 16

.  The interaction between nitric oxide signalling 

and hypoxia is critically important in regulating the immune response to infection
17

. 

Synthesised by the two constitutive and one inducible isoforms of nitric oxide synthase (NOS)
18

, NO 

production is regulated in part by the methylarginines asymmetric dimethylarginine (ADMA) and 

Monomethyl-L-arginine (L-NMMA)
19

.   

Methylarginines are produced by post translational methylation of certain arginine residues in 

proteins by the family of Protein Arginine Methyltransferases (PRMTs).  In mammals there are three 

methylarginine species,   ADMA, symmetrical dimethyarginine (SDMA) and L-NMMA.  ADMA and L-

NMMA competitively inhibit arginine binding to NOS and reduce NO production
20, 21

.  SDMA does not 

inhibit the activity of the NOS enzymes
22

.  Elevated circulating concentrations of ADMA have been 

associated with poor outcomes in a variety of conditions including cardiovascular disease
23, 24

, 

metabolic disorders
25

 and sepsis
26

. 

 

ADMA is metabolised by dimethylarginine dimethylaminohydrolase (DDAH) to dimethylamine and 

citrulline
27

.  The two isoforms of DDAH have different tissue distributions
27, 28

 which lead to differing 

roles in both basal and pathological states. DDAH1 knockout or pharmacological inhibition leads to a 

hypertensive phenotype
29

 and is protective in animal models of septic shock
30

 whereas knockout of 

DDAH2 leads to minimal cardiovascular disturbance but profound immune dysfunction and excess 

mortality in sepsis
31

. 

 

Recently we have demonstrated that in pulmonary endothelial cells hypoxia induces  miRNA-

mediated reduction in DDAH1 expression that results in increased ADMA concentration and reduced 

nitric oxide synthesis that is associated with pulmonary hypertension
32

.   The role of DDAH2 – the 

only isoform found in immune cells – in regulating the synthesis of NO in response to acute hypoxia 

has not been elucidated.  Here we examine for the first time the impact of normobaric hypoxia on 

NO synthesis, ADMA level and DDAH2 expression in murine models and human healthy volunteers. 

Our data provide novel insights into the pathways by which hypoxia regulates NO synthesis following 

acute hypoxic stress. 

2. Materials and Methods 

Animal Models 

Husbandry 

Animals were housed in accordance with Home Office guidelines and procedures were performed 

under Project Licence (70/7049) and Personal License (76/26000).  Throughout the care and 
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experimental phases animals were kept in standard environmental conditions with free access to 

food and water.   

Development of Genetically modified animals 

DDAH2
flox/flox 

LysMCre animals employed the LoxP Cre recombinase model with tissue specificity 

delivered via Cre expression at the Murine M Lysozyme promoter using a previously established 

technique
33

.  We have previously shown that immune cells express only DDAH2 but not DDAH1
28, 31

.  

See supplementary material for further details.  

 Isolation of resident peritoneal macrophages 

Isolation of primary macrophages was undertaken using a peritoneal washout technique.  Further 

details can be found in the supplementary materials.  

Hypoxic Chamber incubation 

To determine the impact of subacute hypoxia on isolated primary macrophages Cells were incubated 

for varied amounts of time in a sealed hypoxic incubator at 92% nitrogen, 3% oxygen and 5% CO2 at 

37°C.  Culture medium (High Glucose DMEM with Glutamine) was placed in the chamber at least 12 

hours prior to experiment in order to equilibrate medium partial pressure of oxygen with that of the 

hypoxic atmosphere.   

Human Normobaric Hypoxia Study 

Ethical Approval was received from the University College London Ethical review panel on 4th March 

2014 ref: 2416.001 for conduct of a prospective observational study into the effects of acute 

normobaric hypoxia on endogenous regulators of nitric oxide synthesis on healthy volunteers. 

Normobaric Hypoxia 

In order to study the relationship between acute hypoxia and methylarginine regulation, a healthy 

volunteer study was designed that explored the effect of moderate normobaric hypoxia on plasma 

methylarginine concentrations, monocyte DDAH2 expression and indices of haemodynamic function.  

In brief, healthy male volunteers aged between 18 and 60 were recruited and consent obtained.  

Following baseline haemodynamic and clinical observations, patients underwent phlebotomy and 

samples of blood were taken for plasma separation and isolation of peripheral blood mononuclear 

cells (PBMCs).  Cardiovascular assessment was undertaken before entry to the hypoxic chamber.   

Participants then underwent an 8 hour exposure to 12.0% oxygen in a hypoxic chamber with 

continuous observation of patient and environmental conditions.  At 20 minutes after chamber entry 

and after each successive hour of hypoxic exposure, volunteers underwent haemodynamic and 

oxygenation assessments and completed a Lake Louise acute mountain sickness assessment 

modified to exclude the sleep assessment.  This ensured that features of acute mountain sickness 

could be detected early and participants removed from the hypoxic chamber in this eventuality. 

Details of the hypoxic chamber, monitoring and safety can be found in the supplementary materials. 

Following completion of the eight hour exposure period, participants underwent a repeat cycle of 

testing including blood sampling, observations and cardiovascular assessment.  Samples from both 

the pre and post exposure phases were prepared and stored immediately upon collection at -80°C. 

Isolation of peripheral blood mononuclear cells 
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Blood collected from the patient was diluted with twice the volume of balanced salt solution and 

layered carefully over an equal volume of Ficoll-Paque Premium (GE Life Sciences, UK) separation 

medium to avoid mixing of the two liquids. 

The sample was centrifuged at 400g at 18-20°C for 40mins in a swinging bucket centrifuge without 

break to facilitate separation of the sample into plasma/platelets, monocyte and 

erythrocyte/granulocyte layers  

Following separation, the plasma portion of the separated blood was removed using manual 

pipetting and stored for later analysis.  The mononuclear cell layer was removed without disruption 

of the Ficoll Medium and resuspended in RLT buffer for subsequent mRNA analysis or phosphate 

buffered saline with protease inhibitor for protein quantification and western blotting 

Plasma sample preparation for analysis 

Whole blood was collected in EDTA at 1.5mg/ml for analysis and stored on ice for subsequent 

preparation.  Within 60mins of collection, the cells were removed from plasma by centrifugation for 

10 minutes at 1,000-2,000g. Centrifugation for 15 minutes at 2,000g depletes platelets in the plasma 

sample.  The separated plasma was stored separately at -80 °C pending subsequent analysis. 

Sample preparation and analysis 

Measurement of nitric oxide concentration in biological tissues:  The Sievers NOA 280i (GE Analytical 

Instruments) was used to measure nitrate + nitrite (NOx) content of biological samples using a 

chemiluminescent technique.   Further details can be found in the supplementary materials. Nitric 

oxide was re-derived from nitrites and nitrates (stable end-products of NO activity) by reduction in 

heated vanadium chloride. NO was detected and quantified in a gas-phase chemiluminescent 

reaction with ozone which emits in the red/infra-red spectrum. Tissue homogenate or plasma 

samples underwent protein extraction using methanol precipitation.  The supernatant from the 

samples were run in triplicate, averaged and NO quantified by calculation against a standard curve of 

sodium nitrate (0-200μM). 

Preparation of samples for Mass Spectrometric analysis 

 Deuterium
7
 labelled ADMA was used as an internal labelled control.  A 50µL sample of supernatant 

from cell lysis or conditioned medium was collected and a known concentration of labelled 

deuterium standard was added.  Following protein extraction with methanol the solution underwent 

centrifugation at 16000g for 10minutes.  The sample was then dried and the residue re-suspended in 

mobile phase (0.1% formic acid) for analysis.  A standard curve of ADMA samples of 10 known 

concentrations was prepared (0 to 100μM).   

Statistics 

Statistical analysis was performed using the Prism software package (GraphPad Inc, CA, USA).  

Normally distributed data was analysed using a t test or Analysis of Variance (ANOVA) with 

Bonferroni post-test comparison of groups as appropriate.  Non parametric data was analysed using 

a Mann Whitney U test.  In human studies, pre and post intervention samples are compared using 

paired analyses.  All values were expressed as mean ± (SD).  Significance was accepted for values of p 

< 0.05. 
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3. Results 

Animal models of hypoxia 

The synthesis of nitric oxide by isolated wild type primary murine monocytes exposed to hypoxic and 

normoxic conditions was determined.  Intracellular nitrate plus nitrite concentration was higher  in 

wild-type murine monocytes after hypoxia and reoxygenation than in normoxia-treated cells 

(mean(SD)) 13·2(2.4) pmols/mg protein vs 8·1(1·7) (p=0·009)(Fig 1A), and accumulation of 

extracellular nitric oxide (Nitrate+Nitrite) increased after hypoxic challenge (13·7(3.1)µM vs 

1·9(0·18), p=0·002)(Fig 1B).  This was associated with induction of the inducible form of nitric oxide 

synthase in monocytes, (mean (SD)) 4.0 (1.3) fold increase in iNOS mRNA (p=0.01)  (Fig 1C).   DDAH2 

protein was 4·5-fold (SD 1·3) higher than in control cells (p=0·03) (Fig 1D) and Ddah2 mRNA was also 

increased by (mean(SD)) 3.6(0.12) fold over control cells (Fig 1E). This increase was associated with a 

24% reduction in ADMA concentration (mean(SD) 0·33(0.04)pmols/mg to 0·24(0·03), p=0·002)(Fig 

1F). There was no significant difference observed in intracellular L-arginine (Fig S1A, p=0.597) or L-

NMMA (Fig S1B, p=0.74) concentrations following hypoxic incubation. 
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Successful knockout of DDAH2 from primary peritoneal monocytes isolated from monocyte-specific 

Ddah2 knockout mice (Ddah2flox/flox LysM-cre; Ddah2
MΦ

) was demonstrated by western blot and 

qPCR (Fig 2A).  Comparison of NOx synthesis before and after hypoxic exposure was undertaken in 

peritoneal monocytes from the Ddah2
MΦ-

 mice and their Ddah2
flox/flox 

litter mate controls.  Cells 

deficient in DDAH2 displayed reduced intracellular NOx concentrations at baseline compared to 

controls, mean (SD) 5.15(0.61) vs 7.7(0.87) µM/mg protein (p=0.014) (Fig 2B).  Following hypoxic 

exposure, Ddah2
flox/flox 

cells displayed significant induction of NOx synthesis (11.6(0.94) µM/mg 

A           B            C 
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Figure 1: The impact of hypoxia on endogenous regulators of nitric oxide (NO) synthesis in primary peritoneal 

murine macrophages.  A: Cell lysate NOx concentration at 24 hours of reoxygenation following 12 hours of 

hypoxic exposure (White bars: control cells not exposed to hypoxia, grey bars: hypoxia-treated cells,  n=6 per 

group, * p<0.05, NOx concentration in culture medium corrected to cell lysate protein concentration at the 

termination of the experiment).  B: Serial measurements of the accumulation of nitrate/nitrite (NOx) in culture 

medium during reoxygenation at a FiO2 of 21% following hypoxic exposure for 12 hours at a FiO2 of 3%. (White 

bars: control cells not exposed to hypoxia, grey bars: hypoxia-treated cells,  n=6 per group, * p<0.05, NOx 

concentration in culture medium corrected to cell lysate protein concentration at the termination of the 

experiment). C: Quantitative PCR of inducible nitric oxide synthase mRNA expression in resident peritoneal 

macrophages from wild type (C57BL/6) mice: from control cells (white bar) and those exposed to 12 hours of 

hypoxia (grey bar).  (n=6 per group, * p<0.05).  D: Change in DDAH2 protein expression following 12 hour 

hypoxic exposure.  Representative image of control (C) vs hypoxia (H) treated cells and quantification of n=6 

per group, control (white) and hypoxia-treated (grey bar) (* p<0.05) All bars represent mean (+SEM).E: 

Quantitative PCR of Ddah2 mRNA expression in resident peritoneal macrophages from wild type (C57BL/6) 

mice: from control cells (white bar) and those exposed to 12 hours of hypoxia.  (n=6 per group, * p<0.05).  F: 

Change in cell lysate  asymmetric dimethylarginine (ADMA) concentration in murine primary peritoneal 

macrophages in control (white) and hypoxia-treated (grey) cells, corrected for lysate protein concentration 

(n=6 per group, * p<0.05).   
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protein (p<0.01).  By contrast, peritoneal macrophages from Ddah2
MΦ- 

mice displayed no significant 

increase in intracellular NOx following hypoxic exposure (p=0.10) (Fig 2B).  This was associated with 

changes in intracellular ADMA in Ddah2
flox/flox  

mice; cells showed a similar decrease in ADMA 

concentration to that seen in wild type peritoneal macrophages (p=0.01) (Fig 2C).  In contrast to this, 

Ddah2
MΦ-

 mice displayed a trend to increased ADMA level following hypoxia with concentrations of 

0.13(0.04) µM/mg protein prior to exposure and of 0.28(0.03) µM/mg protein following hypoxic 

treatment (p=0.06) (Fig 2C).  No significant differences were observed in L-arginine (Fig 2D) or SDMA 

(Fig 2E) concentrations between the monocytes derived from Ddah2
MΦ-

 mice and their Ddah2
flox/flox 

litter mate controls in their response to hypoxia. 
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Figure 2: The impact of Ddah2 knockout on endogenous regulators of NO synthesis in response to 

hypoxic exposure.  A: Demonstration of Ddah2 mRNA and protein knockout in peritoneal macrophages 

derived from Ddah2 macrophage-specific knockout mice (Ddah2
MΦ-

) or littermate flox/flox controls 

(Ddah2
flox/flox 

).  Representative western blot and quantitative PCR analysis of Ddah2 mRNA expression 

(n=6, * p<0.01).  Panels B to E: analysis of Ddah2
MΦ-

 or Ddah2
flox/flox 

–derived macrophages following 12 

hour hypoxic exposure and 24 hour reoxygenation. White bar: control cells, grey bar: hypoxia-treated 

cells. B: Change in intracellular NOx concentration (corrected for cell lysate protein concentration) (n=6 

per group, *p<0.05). C: Change in intracellular ADMA concentration (corrected for cell lysate protein 

concentration) (n=6 per group, *p<0.05). D: Change in intracellular L-arginine concentration (corrected 

for cell lysate protein concentration) (n=6 per group).  E: Change in intracellular SDMA concentration 

(corrected for cell lysate protein concentration) (n=6 per group). All bars represent mean (+SEM). 
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Human Hypoxia studies 

Of fifteen participants, four exhibited subjective symptoms of acute mountain sickness with 

modified Lake Louise score of between 1 and 3 without significant objective symptoms.  One 

volunteer developed significant nausea during the second half of the experimental period and was 

withdrawn from the hypoxic chamber.  After a period of observation following extraction form the 

chamber there were no subjective or objective sequelae in this volunteer and follow up at 24 hours 

revealed no residual symptoms.  The participant was excluded from the study and further analysis.  

Of the participants that completed the study, nine physiological, plasma and paired monocyte 

samples collection and analysis, a further three underwent plasma and physiological analysis only. 

Hypoxic exposure in the fifteen participants led to an immediate reduction in arterial oxygenation to 

a mean(SD) value of 86(2.0)% which was sustained throughout the period of hypoxic chamber 

exposure (Fig 3A).  No significant differences in indices of cardiovascular function were detected by 

non-invasive assessment of cardiovascular function, although a trend towards reduced systemic 

vascular resistance with compensatory increase in cardiac output was observed in the post prandial 

period (Fig 3B-F).  Following completion of the hypoxia study protocol, participants were removed 

from the hypoxic chamber and arterial oxygen saturations assessed after 5mins of exposure to the 

normoxic environment.  At this time, mean(SD) oxygen saturations were 97(1.0)% and heart rate 

was 71(10) bpm. 
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Eight hour hypoxic exposure led to a significant increase in plasma NOx concentration (Mean (SD)) 

3.6 (1.8)µM vs 6.4 (3.2)µM  p=0.01 (Fig 4A).  This was associated with a significant reduction in 

plasma ADMA concentration from 0.42 (0.12)µM at baseline, to 0.29(0.05)µM after exposure 

(p<0.01) (Fig 4B).  There were no significant differences in plasma arginine, SDMA or L-NMMA 

concentration (Fig S2A-C respectively).  As a consequence of the reduction in ADMA concentration, 

plasma arginine:ADMA ratio was significantly reduced following hypoxia (p<0.01)(Fig 4C). 

Intracellular concentrations of methylarginines in peripheral blood mononuclear cells (PBMC) 

displayed a similar pattern with significant reduction in ADMA in paired samples from 3·6 pmols/mg 

 Figure 3: The impact of normobaric hypoxia on he althy volunteers exposed to an eight hour stimulus at 12% FiO2.  

A: The impact of exposure to 12% FiO2 on healthy volunteer peripheral arterial oxygen saturations measured at rest 

prior to entrance (0).  Subsequent regular measurements are summarised hourly. (n=12) B: The impact of exposure 

to 12% FiO2 on healthy volunteer heart rate measured at rest prior to entrance (0).  Subsequent regular 

measurements are summarised hourly. (n=12). C&D: The impact of exposure to 12% FiO2 on healthy volunteer 

systolic (C) and diastolic (D) blood pressure measured at rest prior to entrance (0) and following entry to the 

hypoxic chamber. (n=12)  E&F: Change in cardiac index(E) and systemic vascular resistance index (F) following 

exposure to normobaric hypoxia at a FiO2 of 12% (n=12). 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

11 

 

protein [0·27] to 3·15 [0·3] (p=0·0009)(Fig 4D) but no significant variation in intracellular arginine, 

SDMA or L-NMMA concentration (Fig S2D-F). Similarly, the intracellular Arginine:ADMA ratio was 

reduced (p<0.01) (Fig 4E).   Consistent with previous observations of the relationship between 

plasma and monocyte ADMA concentrations
34

, at baseline there was no apparent correlation (r
2
 

=0.08, p=0.44) (Fig S2G).  However following hypoxia, a positive correlation between PBMC and 

extracellular ADMA level was observed (r
2
=0.72, p=0.01) (Fig 4F). 
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Figure 4: The impact of normobaric hypoxia at a FiO2 of 12%  on nitric oxide synthesis and methylarginine 

concentrations in plasma and peripheral blood mononuclear cells (PBMC) from a prospective observational 

healthy volunteer study.  A: Change in plasma Nitrate/Nitrite (NOx) following 8 hour hypoxic exposure, each 

line represents plasma NOx concentration before and at the end of the exposure period, (n=12, * p<0.05). B: 

Change in plasma ADMA following 8 hour hypoxic exposure, each line represents plasma concentration before 

and at the end of the exposure period, (n=9, * p<0.05).  C: Change in plasma L-arginine:ADMA ratio following 8 

hour hypoxic exposure (n=9, * p<0.05). D: Change in PBMC ADMA concentration following 8 hour hypoxic 

exposure, each line represents intracellular concentration, corrected for cell lysate protein level before and at 

the end of the exposure period, (n=9, * p<0.05). E:Change in PBMC L-arginine:ADMA ratio following 8 hour 

hypoxic exposure, corrected for cell lysate protein level before and at the end of the exposure period, (n=9, * 

p<0.05).  F: The relationship between PBMC (corrected for PBMC lysate protein) and plasma ADMA 

concentrations following 8 hour hypoxic exposure (n=9). All bars represent mean (+SEM). 
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In human subjects, the increase in NOx synthesis was not mediated by increased eNOS expression in 

PBMCs (Mean (SD)) change over baseline 0.68(0.28) fold (p=0.09)(Fig 5A).  There was no discernible 

iNOS mRNA and iNOS protein was not detectable in human PBMCs (data not shown).  Reduction in 

monocyte ADMA was associated with an increase in DDAH2 mRNA expression (Mean (SD) increase 

of 1.9(0.6) fold over baseline (p=0.03) (Fig 5B) DDAH2 protein (Mean (SD) fold increase 2.5(0.94, 

p=0.034)(Fig 5C). 

4. Discussion 

Inflammation either at the site of infection or systemically leads to an environment in which 

monocytes are exposed to grossly deranged conditions including hypoxia.  It has been shown that 

acute hypoxia leads to delay in constitutive apoptosis in monocytes
35

.  Hypoxia also has organism 

specific effects on bactericidal activity and the microenvironment itself
7
.  The impact of acute 

hypoxic stress on regulators of NO synthesis by circulating immune cells has not been well 

elucidated and potentially has an impact both on immune cell function and also on the local 

microenvironment.   

This study deepens our understanding of this process by exploring the impact of hypoxia on 

monocyte DDAH2 expression and regulation of NO synthesis.  By using primary cells isolated from 

macrophage specific DDAH2 deficient mice and their relevant controls we have been able to 

elucidate the role this enzyme plays in regulating NO synthesis in hypoxia.  Translating this work into 

humans has allowed us to demonstrate that this mechanism is preserved in humans following a 

clinically relevant degree of systemic hypoxia.  It has previously been shown that in endothelial cells, 

DDAH2 is downregulated in Hypoxia.  This suggests that DDAH2 regulation in hypoxia may be tissue 

specific and reflect differing adaptive responses to hypoxic stress. 

A                B        C 
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Figure 5: Impact of normobaric hypoxic exposure on regulators of nitric oxide synthesis in human peripheral 

blood mononuclear cells.  A: Change in eNOS mRNA following 8 hour hypoxic exposure, each line represents 

eNOS mRNA expression before and at the end of the exposure period (n=10, * p<0.05). B: Change in DDAH2 

mRNA following 8 hour hypoxic exposure, each line represents DDAH2 mRNA expression before and at the end 

of the exposure period, (n=10, * p<0.05). C: Representative western blot and quantification of DDAH2 protein 

expression following hypoxic challenge.  Representative image: participant number (x) followed by B, Before or 

A, After hypoxic challenge. Quantification: Fold change in DDAH2 expression over the course of the study 

period (n=8, * p<0.05). Bars represent mean (+SEM). 
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We have previously shown that global and macrophage specific knockout of DDAH2 in murine 

models of severe sepsis leads to a significant excess mortality which is mediated by impaired 

macrophage phagocytosis, bactericidal ability and NO synthesis
31

.  Sepsis is a complex physiological 

insult in which multiple processes contribute to organ dysfunction and death.  This study shows that 

a cardinal feature of critical illness – hypoxia - leads to a significant increase in monocyte NO 

synthesis mediated by an increase in DDAH2 expression that reduces ADMA concentrations and 

facilitates increased NOS activity.  The mechanism of hypoxia mediated induction of DDAH2 requires 

further elucidation however recent work has shown that NRF2 induces DDAH2 expression
36

 which in 

turn, has been shown to be induced by hypoxia
37

.  

In macrophage specific knockout cells exposed to a hypoxic challenge, basal NOx is reduced and the 

increase in intracellular NOx seen in the floxed control cells upon exposure to hypoxia is not 

observed in the knockout cells.  We postulate that this is one of the mechanisms by which animals 

deficient in DDAH2 demonstrate impaired monocyte function and elevated mortality in animal 

models of sepsis
31

 and may in part explain the association between polymorphisms of the human 

DDAH2 gene and outcome in patients with septic shock
38

 

This study also highlights differing mechanisms in the synthesis of NO across species.  In our murine 

studies, elevated iNOS was observed in isolated hypoxic primary murine macrophages consistent 

with previous studies of the impact of hypoxia on the inducible isoform of the enzyme
39

. By contrast, 

in the human samples, only a trend towards increased eNOS expression was observed.  This is 

consistent with studies showing that in the absence of a pro inflammatory cytokine, iNOS induction 

is not observed in human hypoxia
40

.  A number of studies have demonstrated previously that eNOS 

is present in human monocytes.  There is limited evidence regarding the impact of hypoxia on 

immune cell eNOS expression, however a number of differing stimuli have been shown to regulate 

eNOS in isolated human monocytes
41

.  Our data presented here suggest that regulation of eNOS 

activity in human macrophages by modulation of the concentration of competitive inhibitors 

contributes significantly to hypoxia-induced NO synthesis by these cells. 

In summary, this study demonstrates that DDAH2 regulates ADMA mediated inhibition of NO 

synthesis in isolated murine primary monocytes and translates this observation into humans 

exposed to a clinically relevant model of normobaric hypoxia.  We postulate that we have identified 

a novel mechanism, conserved between mice and humans that contributes to the monocyte 

response to hypoxia.  It may also give insights into the mechanism by which polymorphisms in the 

human DDAH2 gene functionally impact NO synthesis and lead to clinically relevant outcomes in 

humans with septic shock. 

5. Conclusions 

• The regulation of nitric oxide synthesis by immune cells is a key component of the immune 

response to pathophysiological stress and regulates both cell function and the 

microenvironment 

• Here we show that acute hypoxia – a cardinal feature of pathological stress – leads to 

increased immune cell nitric oxide synthesis and that this is mediated by asymmetric 

dimethylarginine and the enzyme that metabolises it in monocytes, dimethylarginine 

Dimethylaminohydrolase 2. 

• This translational study gives insights into the mechanism through which tissue hypoxia 

leads to local increases in nitric oxide level and offers avenues for further investigation of 

how this response may become pathological in some patients.  Furthermore, DDAH2 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

14 

 

modulation may possess therapeutic potential as a modulator of immune cell nitric oxide 

synthesis in response to pathological stress. 
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Highlights 

• The regulation of nitric oxide synthesis by immune cells is a key component of the immune 

response to pathophysiological stress and regulates both cell function and the 

microenvironment 

• Here we show that acute hypoxia – a cardinal feature of pathological stress – leads to 

increased immune cell nitric oxide synthesis and that this is mediated by asymmetric 

dimethylarginine and the enzyme that metabolises it in monocytes, dimethylarginine 

Dimethylaminohydrolase 2. 

• This translational study gives insights into the mechanism through which tissue hypoxia 

leads to local increases in nitric oxide level and offers avenues for further investigation of 

how this response may become pathological in some patients.  Furthermore, DDAH2 

modulation may possess therapeutic potential as a modulator of immune cell nitric oxide 

synthesis in response to pathological stress. 


