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Abstract

We consider a male and a female in a courtship encounter over continuous time. Both
parties pay participation costs per unit time. The game ends when either one or other
of the parties quits or the female accepts the male as a mate. We assume that there is a
binary variable which determines whether the male is a “good” or “bad” type from the
female’s point of view, according to either his condition or his willingness to care for
the young after mating. This variable is not directly observable by the female, but has
fitness consequences for her: she gets a positive fitness payoff from mating with a
“good” male but a negative fitness payoff from mating with a “bad” male. We assume
also that a “good” male has a higher ratio of fitness benefit from mating to fitness cost
per unit time of courtship than a “bad” male. We show that, under suitable
assumptions, there are evolutionarily stable equilibrium behaviours in which time-
extended courtship takes place. A “good” male is willing to court for longer than a
“bad” male; in this way the duration of a male’s courtship signals his type, and acts as
a costly handicap. By not being willing to mate immediately the female achieves a
degree of screening because the posterior probability that the male is “good”,

conditional on his not having quit the game, increases with the duration of courtship.

Introduction

In most species the reproductive success of males is largely governed by the ability to
secure matings with receptive females (see for example Odendaal et al., 1985;
Andersson and Iwasa, 1996), and increases with the number of females they mate
with. Females, in contrast, invest greater resources into nurturing offspring, which
limits the number of offspring they can produce; their reproductive success may

depend to a significant extent on the quality of the males they mate with. This



consideration may be sufficient for females to be choosy about which males they mate
with even when delaying mating involves a cost (Moore and Moore 2001, Yamanoi et

al., 2000).

Active female choice gives rise to selection pressure on male physiological and
behavioural traits that influence a male’s chance of being chosen by females, leading
to the evolution of male signalling strategies (Dawkins, 1993; Johnstone, 1997). As in
many signalling problems there is scope for deceit (Krebs and Dawkins 1984); this
has the potential to reduce the credibility of signals. The seminal work of Spence
(1973) showed that if a signal has the property that the benefit from signalling,
relative to the cost, depends on the signaller’s type, then a stable game-theoretic
equilibrium may be possible in which signals tend to be informative to the receiver. In
biology this notion leads to the ‘handicap principle’ (Zahavi and Zahavi, 1997),
giving rise to evolutionarily stable outcomes in which superior males, from the point
of view of a potential female mate, produce signals that are difficult or costly for

inferior males to replicate (Grafen 1990a).

Courtship signalling by males has a variety of forms including adornments, bright
colouration and extravagant displays (Andersson, 1994). Males may offer material
gifts (e.g. Alcock, 1998; Vahed, 1998; Miller, 2000, Kondoh, 2001, Pizzari, 2003;
Tryjanowski and Hromada, 2005). The female may obtain direct fitness benefits from
such gifts in the form of enhanced nutrition for herself or direct investment in the
provisioning of offspring (Gwynne, 1984). Edible nuptial gifts however, are not
always of significant nutritional value to the female (Wedell, 1993). Gifts may also

consist of inedible tokens (Vahed, 1998; Stalhandske, 2001, 2002). Even when



nutritionally valuable gifts are offered in the majority of cases, offering a worthless
gift can still be a successful strategy (LeBas and Hockam, 2005). In some
circumstances, sending a signal with small functional benefits for the receiver may be
advantageous to the signaller by giving the receiver added incentive to pay attention
to the signal (Roberts, 1998). In contrast, Sozou and Seymour (2005), modelling
courtship as a sequential game, argue that there is an important role for gifts that are
costly to the male but worthless to the female. Because the gift is worthless to the
female (and in the model she incurs a cost in accepting it), the male will not be
exploited by a ‘gold digger’ who has no intention of mating with him. This fits within
a sexual selection framework in which the male pays a cost of signalling to the

female, and the female also pays a cost of screening the male (Pomiankowski, 1987).

In many cases, however, courtship involves not a single, instantaneous gift or act, but
rather ongoing expenditure over a period of time. Courtship feeding in birds may
involve several episodes before and after copulation (Nisbet, 1973). In black-horned
tree crickets the duration of courtship feeding varies between males and appears to
influence the number of fertilisations achieved by a male (Brown and Kuns, 2000).
The Blue Bird of Paradise displays to a female by hanging upside down and
vocalising for a prolonged period of time (Frith and Beehler, 1998). In modern human
societies courtship typically involves a series of dinners and other outings. As well as
direct costs to the male, these activities cost time and may therefore involve a
significant opportunity cost to both sexes, i.e. a loss of the use of the time for other

purposes.



Where long courtship involves a net cost to the female, this raises the question: why
does she not avoid (or reduce) this cost by deciding immediately (or more quickly)
whether or not to mate with the male? It may be that a female cannot perfectly assess
the male’s quality because of random errors in the signal (Luttbeg 1996); with more
observation time or repeat observations these random errors are reduced. There is,
however, another possibility: that the duration of a male’s courtship effort may in
itself constitute a useful signal to the female. It is this possibility which the present

study addresses.

We consider courtship as a game extended over time. With respect to post-mating
payoffs the game is similar to that considered by Sozou and Seymour (2005). In
particular males are always willing to mate but differ in some trait — genetic quality,
or ability or willingness to provide paternal care — necessitating choosy behaviour by
females. However, whereas Sozou and Seymour (2005) consider a single gift at a
specific point in time, in the present study the courtship process involves a gradual
accumulation of costs to both the male and the female over time. This can be
conceptualised as a cycle of the male giving a small gift to the female repeated over
many rounds, with a net cost to both parties over each cycle (i.e. the cost of the
female’s time exceeds the value of the gifts to her). However, the model considered
here does not require that the courtship process necessarily involves “gifts” as such.
Instead, each cycle can simply involve some form of costly act by the male, for
example a courtship display, directed specifically at the female involved in the
encounter (not a broadcast advertisement to females in general); the female also
incurs some cost for participating in the process (e.g. a time-cost while she is

observing the male).



2. The model

2.1 Representing fitness consequences of a courtship encounter

A female and a male meet and engage in a courtship encounter which may lead to
mating resulting in the production of offspring. Payoffs represent the fitness gain or
loss arising from the encounter. We explicitly model only a single encounter, but this
should be understood as an episode within an underlying biological process in which
males and females may experience several encounters in the course of a breeding
period. A player gaining a payoff of exactly zero is neither better off nor worse off
than if the encounter had not taken place. That is, any player may gain or lose from a
courtship encounter relative to their prospective outside options. The expected
payoffs from such options can therefore be set to zero when analyzing a single
(representative) encounter. A positive payoff represents a fitness gain from the
encounter and a negative payoff represents a fitness loss. Thus if the female gets a
negative payoff from mating, this means that she would have done better not to mate
on that encounter but instead to hold out for the prospect of mating with a better male

in a future encounter.

2.2 Male type

We assume that there is a variable which characterizes the male but which is not
known a priori to the female. This can be regarded as the male’s #ype. In common
with Sozou and Seymour (2005), for simplicity we will consider this to be a binary

variable. The male’s type is either “good” (G) or “bad” (B). The case of an arbitrary



number of male types is considered in Appendix C, where it is shown that the result is

essentially the same as for the binary case.

We assume that a female gets a positive payoff from mating with a good male, and a
negative payoff from mating with a bad male. We assume that a male always gets a
positive payoff from mating, but that the ratio of his gain from mating to his cost of
courtship is higher for a good male: that is, courtship effort is, relatively speaking,
more costly for a bad male. These assumptions are presented more formally in section

2.3.

The most straightforward interpretation of a male’s type is that it is a measure of his
condition: a good male is in good condition; a bad male is in poor condition. A female
should prefer to mate with a male in good condition if male condition is positively
correlated with genetic quality, or in species with paternal care, a female should prefer
to mate with a male in good condition if such a male is a better provider of care. If a
male in good condition additionally has a lower cost of producing a strong courtship
signal relative to his gain from mating, then the signal can act as an honest indicator
of his condition, and a female should prefer to mate with a male producing a strong
courtship signal (Parker, 1982; Grafen, 1990a; Grafen 1990b). In the model presented

here, the duration of a male’s courtship effort constitutes the strength of his signal.

An alternative interpretation of male type, proposed by Sozou and Seymour (2005), is
modelled on species with facultative post-mating paternal care, e.g. humans. It is

assumed that the male makes a subjective assessment of the female’s attractiveness,



and finds her either attractive, or unattractive. The female does not know for sure her
own attractiveness to the male. The female’s attractiveness to the male is a noisy
indicator of her quality. The male values the chance of mating with her more highly if
she is attractive to him, and in this case he will stay after mating and help raise the
offspring. If she is unattractive he will still mate with her if given the opportunity, but
will then desert, resulting in a negative payoff to the female. In this interpretation, a
male discriminates between females: from his perspective they are not all the same. A
female should accordingly discriminate between males on the basis of their intentions

towards her (Camerer, 1988).

These interpretations of the game are mathematically equivalent in this model. The

key features of the payoft structure of the game are:

1. The female gets a positive payoff from mating with a good male and a

negative payoff from mating with a bad male.

2. A good male values mating with the female, relative to the costs of courtship,

more highly than a bad male.

We assume that the female has objective, internalised prior probabilities for male
type, determined by natural selection, and possibly by a limited degree of juvenile

learning. The prior probability that a (random) male will be good (G) is P,, and

1 - P, is the probability that he will be bad (B). We assume that 0 < Py < 1.



2.3 Payoffs from mating

Following Sozou and Seymour (2005), we assume that if mating takes place, the
fitness payoffs to both players will depend on the male’s type. A male gets a higher

payoff if he is good (G) rather than “bad” (B).

Let K = G (good) or B (bad) be the type of the male. The male and female expected

payoffs from mating are denoted by M(K) and F(K), respectively. We define the

possible payoffs by:
M(G)=4,, M@B)=D,, (1a)
F(G)=4,, F(B)=-C,, (1b)

where we assume:

A, >D, >0, (2a)

A_,,>O,Cf>0. (2b)

Thus, the female obtains a positive payoff from mating only if the male’s type is good
(1b, 2b); if his type is bad, her payoff from mating with him is negative. However,
any male will always mate with a female if given the opportunity because he always

gets a positive payoff, though this payoff is higher if his type is good (1a, 2a)".

'In this formulation we have assumed that the male gets a higher benefit from mating if he is a good

type, but he pays the same cost of courtship per unit time whether he is a good or bad type. An



If the female mates with a random male without any further information beyond the

prior probability of his type being good, her expected payoft is

E,f,,-g, =P A, —(1=-F)C;. &)
This may or may not be positive. If it is negative, the female cannot benefit from

mating with the male, and she will refuse to do so (i.e. quit the encounter

immediately), and receive zero payoff. If E

prior

is positive, she can receive this

is zero, she is indifferent between

rior

expected payoff by mating immediately. If £ ﬁ

these two options.

However, a third option is to attempt to gain additional information about the male’s

type before mating by engaging in extended courtship. This will be profitable if there

is a prospect of obtaining a positive expected payoff higher than E”_ . In what

prior

follows we investigate equilibrium solutions with extended courtship.

2.4 Cost of courtship

In Sozou and Seymour (2005), the male signals his type to the female by offering a

single costly gift. Here we consider courtship as a continuous process extended over

alternative formulation would be to assume that the male gets the same fitness payoff from mating
whether he is a good or bad type, but that his cost of courting the female per unit time is greater if he is
bad. Either assumption is equally acceptable in our model as the male’s behaviour is determined by the
ratio of his cost of courtship per unit time to his benefit from mating. Our results depend on this ratio

being smaller if the male is a good type rather than a bad type, i.e. ws < @y (see Table 1).



time, and assume that this involves positive costs to both sexes. The female achieves a
degree of screening by not being willing to mate immediately with the male, and the

duration of a male’s courtship effort constitutes a signal of his type.

Regardless of whether or not mating takes place, if the male expends time and effort
courting the female he will incur a cost, and the female may also incur costs for time
spent being courted by the male. In the human context, for example, suppose
courtship involves a series of restaurant meals paid for by the male. Then the male
must incur the cost of the meals and the cost of his time. The female gets a nutritional
benefit from the meals, but must incur the cost of her time spent in restaurants. The
cost of time is an opportunity cost. We assume that this opportunity cost exceeds the
nutritional benefit to the female from each meal. Each individual meal may involve
relatively small costs to the male and the female, but a number of meals over a long

time period may add up to a significant total cost to both parties.

2.5 The courtship process
The game proceeds in continuous time. During courtship the male pays a constant
cost x per unit time and the female pays a constant cost ¢ per unit time. We assume

that x and ¢ are environmentally determined variables. They are not strategic variables

that either party can manipulate.

The game ends in one of three possible (independent) ways:

a) The female mates with the male.

b) The female quits the game without mating.



c¢) The male quits the game and mating does not occur.

We assume behaviours are defined by constant probabilities per unit time or rates for
each of the above processes. Thus, the female mates with a male at rate A. The
female quits without mating at rate €, and a male of type K quits against a female at
rate g, . We then look for optimal values of these rates, where the male’s rates are a
best reply to those of the female and the female’s rates are a best reply to those of a
male who is good with probability Prand bad with probability (1 — P;), to define a

Nash equilibrium.

The above continuous time description of the game can be thought of as derived from
a discrete-time game consisting of a sequence of rounds, each of short duration ot , by
taking the limit 6r — 0. Each round of the discrete-time game will then consist of a
sequence of moves. For example, in each round the male can decide to quit, with

probability g ot if his type is good, and g0t if his type is bad. Similarly, the female

quits without mating with probability 606t . If neither party quits, the female mates
with probability Ad¢, and the game then terminates. If none of these termination
events occur, the game proceeds to the next round. Such a sequential interpretation is
illustrated in Fig 1. However, it should be noted that the order in which events occur
is irrelevant to first order in ot , and hence the continuous-time limit is compatible

with many different sequential interpretations.

FIG 1 HERE



2.6 Duration and outcomes of the game

Consider a courtship encounter between a female and a male of type K. As stated in
section 2.5, the game ends in one of three ways: the male quits the game and mating
does not occur; the female quits the game without mating; or the female mates with
the male. The rates for these possible events are gk, 8 and A respectively. The total
rate (i.e. probability per unit time) for the game ending is given by the sum of these
rates, and hence is equal to gx + € + A. The duration of the game will therefore be
exponentially distributed, with an expected duration given by T, =1/(g, + 0+ 1).
The probability that the game ends with the male quitting is gx 7. The probability that
the game ends with the female quitting without mating is 87k. The probability that the

game ends with mating taking place is AT} .

2.7 Total payoffs from the game

As long as the game continues, the male pays a cost x per unit time. Thus, the

expected total cost to the male is x7, . The probability that the game ends with

mating taking place is AT}, and in this case the male gains fitness payoft M (K).

Thus, the male’s expected payoffis E; = M(K)AT, — xT, . From (1a), this yields:

A,A-

EY = ol (4a)
g +0+ 2
D, A-x

EM =

= ) 4b
Pog,+ 0+ (4b)



Similarly, let E” be the unconditional expected payoff to a female, allowing for the
fact that she does not know the male’s type. Then E” can be written as [Py x
(expected payoff if the male is good)] + [(1 - Py) x (expected payoftf if the male is

bad)]. That is:

A A—¢ ~
qu+6?+l

€+

Ef = T
gz +0+ 4

(1-F) )

The first term in (5) corresponds to the female’s prospect of being courted by a good
male: she has a positive fitness term from the possibility that mating will occur, but a
negative term from her expected cost of time spent in courtship. The second term
corresponds to her prospect of being courted by a bad male: both the possibility of
mating with such a male and the time spent in courtship constitute fitness costs for

her. The payoff (5) therefore may be decomposed into components:
Ef =Ef - EF, (6)

where:

ET =expected gain from mating= A{ P, ——~———(1-P)——L—1},
- TP 8 8 {’q6+0+l ( ’)qB+0+/1}

(6a)
E" =expected cost of courtship= ¢< P 1 +(1-P) !
=X = _— — _— .
- TP P T g+ 0+ 2 7 g, +0+ A

(6b)



Note that E” is always non-negative, whereas E’ can be positive, negative or zero.

2.8 Evolutionary equilibria

A male’s strategy is a vector s,, =(q,,q,) of quitting rates, and a female’s strategy is
a vector s, = (6, 1) of quitting and mating rates. A Nash Equilibrium (NE) is a pair of
strategies, (s),,8,), such that neither player can get a higher expected payoff by

adopting a different strategy, i.e.:

E"(s),,8;) > E"(s},,8,) for all sz, and (7a)

EY(s),87) = EY (s,,sy)  for K=G or B, and all sy. (7b)

That is, each strategy s, and s, is a best reply to the other.

We look for mating solutions with extended courtship, i.e. Nash equilibria in which
mating is not immediate and occurs with probability greater than zero. We analyse the
game in a series of steps, progressively making deductions about the nature of any
such solutions of the game. Evolutionary stability of equilibria is discussed in section

3.6 and in Appendix A.

3. Analysis

3.1 Notation for detailed analysis

We define the following cost-benefit ratios (each having the dimensions of time™):



®)

Table 1 summarises the notation used in this paper.

Note that (2a) implies that 0 < w; < @, . In other words, the ratio of the male’s cost

per unit time of courting the female to his gain from mating is smaller if his type is

good.

Table 1. Major symbolic notation used in this paper with the associated meaning.

Female Male
Symbol Meaning Symbol Meaning
- - Pf Prior probability that male type is
“good”
A. p Fitness gain to female from A, Fitness gain to a good male from
mating with a good male mating
C p Fitness cost to female from D, Fitness gain to a bad male from mating
mating with a bad male
EF Total expected payoft to a female E? Total expected payoff to a male of
from courtship type K (= G or B) from courting
¢ Cost of courtship per unit time X Cost of courtship per unit time
2] Rate of quitting against male dx Rate of quitting by male of type K (=
G or B)
A Rate of mating with courting éB Lower bound for ¢ to define a Nash
male equilibrium (section 3.5)
o, ¢/A, (L=G); ¢/C, (L=B) @ x/A4, (K=G); x/D, (K=B)




Ratio of female’s cost per unit Ratio of male’s cost per unit time for
time for participating in the courting to his gain from mating,
courtship process to her gain or where K represents the male’s type

loss from mating with a male of

type L

Using the notation of (8), the male expected payoffs (4a, b) can be expressed as:

A-w,

. A—w,
T og(ge 0+ 1)

M _
Eq _xa)B(qB+¢9+/1)'

Ey

)

Notice that the male gets a positive payoff if and only if the female’s mating rate 4 is
higher than the ratio of the male’s courtship cost per unit time to his gain from mating

(wg if he is a good type, or wg if he is a bad type).

The female’s expected payoff (5) may be expressed as:

P A-o, L A+oy,
E _¢{PJ‘O'G(QG+9+1) (¢ Pf)O'B(qB-f-H-f-i)}' (10)

Notice from the first term inside the curly brackets in (10) that, even if the female is
sure that the male’s type is good (i.e. if Pr—1), the female’s mating rate A must be
greater than og for her to get a positive expected fitness benefit from the game. If it is

less, then her expected cost of time spent on courtship will be greater than her gain




from mating (unless she quits immediately with 6 = oo, in which case she will spend

no time on courtship and mating will not occur).

A summary of the main findings of the analysis that follows is given at the end of this

section, in section 3.8.

3.2 The female never quits

If the female is to obtain a positive total expected payoff E” = E" — E” (see equation
(6a)), the expected fitness cost of the time she spends being courted, £, must be less
than her expected fitness gain from mating E” . This requires that she must mate with
a sufficiently high rate: specifically 4 > o, (see (10)). Otherwise her expected payoff
would be negative, and she would do better by quitting immediately (i.e. 8= o) to
obtain a zero payoff. Thus, an equilibrium with mating requires that 4 > o, and 6

finite.

We now show that a female strategy with 8> 0 cannot be optimal. Consider such a
strategy, (60, 1), with positive 8 and A finite. If this is not worse for the female than
quitting immediately then it must give a non-negative expected payoff, i.e.

E"(0,2)=E"(6,2)— E"(0,1)> 0. As she has a positive expected cost of courtship
E"(0,2), it follows that her expected gain from mating E’ (6, 1) must also be

positive. Now consider the alternative female strategy (0, 8+A4); this has the same
expected duration of courtship, but the female never quits and the game is more likely

to end in mating. From (6b), the alternative strategy has the same expected cost of



courtship, i.e. EX(0,0+ 1) = E"(6,A). However, from (6a), the female’s expected
gain from mating is now E’(0,0+ 1)=(0+ A)/Ax E"(6,1). Thus, since E’(6,1) is
positive and 6> 0, it follows that E”(0,60+ 1) > E(6,4), and hence for total

expected payoffs, that E“(0,0+ 1) > E"(0,1). Therefore the alternative strategy

gives the female a higher total expected payoff.

This shows that any female strategy (6, A) that involves quitting with positive
probability (i.e. with 8> 0 and A finite) and that gives a positive expected payoff will

be less fit than a strategy that involves never quitting.

If the female mates immediately (i.e. A = o), then she receives expected payoff E’

prior
given by (3), which is independent of 6. Hence, any finite value of #1is irrelevant to
her expected payoff if she mates immediately. There is therefore no loss of generality
in assuming that = 0 in this case also. Hence, in any equilibrium with mating, we

can assume that the female never quits (i.e. 6=0).

Now observe from (10) that the condition E” (0,4 )> 0 for a positive expected payoff

for the female if she never quits may be expressed in the form:

P> O'G(/1+GB)(qG+/1) .
7" o, (/1 + 0y )(qG + /1)+ o (ﬂ -0 )(qB + l)

(11)



3.3 A good male never quits

From the result in section 3.2 that, if she does not quit immediately, the female’s
optimal quitting strategy is 8= 0, it follows that the male and female expected payoffs

(9, 10) reduce to:

A—w A—w
EY =x—2"% EY =x—2"% 12
¢ xa)G(QG_i_ﬂ") ’ xa)B(QB_i_ﬂ") (12
A—0 A+o
Ef =P ———9 __(1-P)——L 1. 13
¢{ "o (g6 +2) ( f)UB(‘]B+’1)} ()

The female’s strategy is now completely determined by her choice of mating
frequency A . The male’s strategy is determined by his quitting vector s,, = (qG,q B).

Table 2 shows the male’s best reply (BR) to various values of 4, and in turn the

female’s best reply A to each quitting strategy s, .

Table 2. Five cases (column 1), with possible ranges of the female mating rate 4
given in column 2. The third and fourth columns give the best reply (BR) male
quitting strategies to any A in the given range. The fifth column gives the female’s

best reply A to the male quitting strategy defined in the third and fourth columns.

Case A range BR ¢, BR ¢, BR 4
1 A<wg <w, 'S 00 undetermined
2 A=w; <®, | undetermined 0 0
3 O, <A<, 0 0 o0
4 O; < A=w, 0 undetermined | undetermined




5 O <0z <A 0 0 0

From the male’s point of view, the game is very much like a war of attrition (Maynard
Smith, 1974): he is waiting for a resource (mating) and faces a constant hazard rate of
A for gaining the resource. The ratio of his cost of courtship per unit time to the value
of the resource to him is g (if he is good) or w; (if he is bad). If 4 is less than this
ratio he should quit immediately. If 4 is greater than this ratio he should wait
indefinitely without quitting. If 4 is exactly equal to this ratio then all values of his

quitting rate are equal best replies, giving him an expected payoff of zero.

Cases 2 and 3 in Table 2 cannot define Nash equilibria since the values of A in the
second and fifth columns are incompatible. For values of A4 in case 1, the male cannot
obtain a positive payoff from any female, and so the best he can do is to quit
immediately to obtain zero payoff. In this case there is no courtship. In contrast,
values of A in case 5 are so large that the male’s best strategy is never to quit. The
female’s best reply is then to mate immediately, since she cannot avoid mating with a

bad male by waiting for him to quit first.

It follows that the only possible Nash equilibria in which mating occurs arise from
cases 4 and 5, with extended courtship being possible only in case 4. In both these

cases ¢, =0, 1.e. a good male does not quit.



3.4 Best reply strategies
The female’s best reply choice of A to a bad male’s quitting strategy g, is obtained

by maximizing E” (1) given by (13). To find this value, consider

1dET 1 —c
=P —(-p)—L=%s
) GB(qB+/1)

¥

There are several cases.

If ¢, < o, then dE"/dA is always positive, and E”(1) is monotonically increasing

in A.Hence E”(A) is maximized at A = oo. From (13), (8) and (3), E" () = E¥,

prior

and it follows that the female should mate immediately if E

prior

> 0, but should quit

<0 (to obtain payoff 0). If EX

prior

immediately if E”

prior

=0, the female is indifferent

between these two options.

If ¢, > o, then dE"/dA >0 if and only if:

1-P -0
1+(]_B > ( f)(qB B) . (14)
Pioy
This holds for any A >0 when the right-hand-side is < 1. That is, when
o
5 < (15)



Again, the female’s best reply is to mate immediately (A = ) if E'

prior

>0, but to quit

immediately if E”

prior

< 0. Clearly condition (15) includes the case g, < o, .

Finally, if
O

, 16

95> 712 P, (16)

then (14) yields a unique, finite value 1 = 1"(g,) at which E” is maximized. This is

given by:

45+ PJUB

A(q,) = .
(4) \/(I_PJ')(QB_UB)_\/PJUB

(17)

The denominator of 1°(g,) is positive when (16) holds, and clearly 1°(g,) — « as

qz = GB/(I — P,). At the other extreme, A°(g,) —> % as g, —> . It is easy to show
that A7(¢,) has a unique minimum at ¢, = ¢q,, where ¢, =20, / (1 — \/E ), and that

A= 2'(q.) =20, \/Ff / (1 - \/Ff ) From case 4 of Table 2, the requirement that ¢,

defines a Nash equilibrium is that g, is a solution of 1*(¢,) = ®,, and it follows from

the above analysis that this will be the case if and only if 4., < @, which gives:

(o Y
A Crvw i o



Further, if this inequality is strict, then there are exactly two such solutions for ¢g,.

We denote these by ¢, and ¢, withg, < ¢, <g, (see Fig 2). Clearly, (18) will always
hold if w, is sufficiently large, and from the definition (8) this holds if either the
courtship cost x is large, or the fitness gain D, to a bad male from mating is small.
On the other hand, if @, is sufficiently small, then (18) is not satisfied, and in this

case there can be no equilibrium solutions with extended courtship. The female’s best
response is then either to mate immediately (if she gets a positive payoff) or to quit
immediately (otherwise). This case arises if either the courtship cost x is small or the

fitness gain D, is large.

FIG 2 HERE

3.5 The condition for the female to get a positive payoff

When (16) holds, so that there may be extended courtship equilibria, it remains to
consider whether the condition (11) for a female to obtain a positive expected payoff

also holds. Substituting the valuesq. =0, 4 = w, (from case 4 of Table 2) we find

that (11) holds if and only if w, > o, and ¢, > ¢,, where:

- _a)B{(l_Pf)O-G(a)B-i_O-B)_l}. (19)

q =
’ Pioy(0,-05)



It is possible to obtain ¢, < g, < ¢, , in which case both ¢, and ¢, are Nash equilibria
(and from section 3.6 below, ¢, is then evolutionarily stable). It is also possible to

obtain ¢, < ¢, < ¢, in which case there are no Nash equilibria. In this case, the

female cannot obtain a positive payoff by mating (either immediately or otherwise),

and she should quit immediately. These cases are illustrated in Fig 2.

3.6 Evolutionary stability

As we have seen in the preceding analysis, there are two possible Nash equilibria

determined by bad male quitting strategies ¢, , g; . In both cases the female’s mating
strategy is 4 = @, . We have also seen (Fig 2) that often ¢, is not compatible with

(11) (i.e. g, < ¢, ), and sometimes neither g, nor g, is compatible with (11). As

noted above, if (11) is not satisfied, there cannot be a Nash equilibrium with mating as

females would always do best to quit immediately without mating. However,

sometimes both strategies are compatible with (11) (i.e. ¢, < g, < g, — see Fig 2). In
this section we show that if ¢; is compatible with (11), and therefore an equilibrium

solution, then it is evolutionarily stable, but if ¢, is compatible with (11) it is

evolutionarily unstable.

Fig 3a shows the female’s best reply curve A = 1%(q,), and Fig 3b shows the male’s
best reply curve g, = ¢,(A). First consider the equilibrium (g, 4) = (¢g,,®;) -
Suppose a small perturbation decreases g, below g, . Then the female’s best reply

satisfies 1°(¢g,) > w, (Fig 3a). Thus, there will be selection pressure to increase A



above w,. But then the male’s best reply is ¢,(1) = 0 (Fig 3b). It follows that there
will be selection pressure to decrease g, still further, and hence the equilibrium
(¢,>®,) is unstable. Similarly, a small perturbation in ¢, above g, will be amplified

by selection.

The reverse argument applies to the equilibrium (g;,®,), so that small perturbations
in g,, either above or below ¢,", will die out under selection pressure. If a small
perturbation increases A above @, then the male’s best reply is ¢,(1)= 0. There
will therefore be selection pressure to decrease g, below ¢, . But then the female’s

best reply is 1°(¢q,) < @, , so there will be selection pressure to reverse her excursion
above A=, . A similar argument applies to a small perturbation that decreases

Abelow @, .

FIG 3 HERE

More generally, a perturbation away from equilibrium has the form
(¢,,@,)—> (g, +r,m, +s) with r and s small. Assuming an evolutionary dynamics
which tends to move ¢, and A in the direction of best replies, the possible

evolutionary trajectories are illustrated in Fig 4. However, this picture is inconclusive,
and suggests that there could be cycles around equilibrium. In Appendix A we

consider stability with respect to a particular class of best reply evolutionary
dynamics, and show that (¢,,®,) is in fact locally asymptotically stable with respect

to any dynamics in this class.



FIG 4 HERE

3.7 Equilibrium outcomes

We have shown that there are three possible equilibrium behaviours for the female: a)
quit immediately, in which case no courtship or mating occurs; b) mate immediately;
c¢) engage in extended courtship. It is optimal for the female to quit immediately,

giving her a payoff of zero, if she cannot obtain a positive payoff from behaviour b)

or behaviour c). Conversely, if her payoff E”

i (€Quation (3)) from immediate mating
is positive then this will be better than quitting immediately. But if she can get a

higher payoff from engaging in extended courtship, then her best strategy is to engage

in extended courtship rather than to mate immediately.

Using equation (3) and the notation (8), £

prior

is positive if and only if P, > P7,

where:

(20)

As discussed in section 3.4, the Nash equilibrium with extended courtship,

(95.4)=(q;, @), can exist only if P, < a’,where a=w,/Q20c, +w,) (see (18)),

and the female can obtain a positive payoff from this behaviour only if ¢; > ¢,, given
by (19). In this case, the female’s expected payoff from extended courtship is

necessarily larger than E”

prior *



In this section, we regard the female cost-benefit parameters o, and o, as fixed, and

consider the possible female equilibrium behaviours as functions of the male

parameters P,, the prior probability that a male is good, and ®,, a bad male’s cost-

benefit ratio.

From this perspective, P/ (equation (20)) is fixed and « is a function of @, . Thus,
the region in the (P, ®,)-plane in which £ ;W is negative is separated from the
region in which it is positive by the line P, = P; (Fig 5). Similarly, the threshold in

the (P,,®,)-plane separating the region in which ¢ exists from the region in which

it does not is determined by the relation P, = o’ . That is, by the curve

a)B:ZGB\/E/(l—\/E).

The equilibrium quitting rate for a bad male, ¢, , when it exists, may or may not give
the female a positive payoff. By definition, ¢, is the larger root of the equation
A(q5) = @, in which 17(q,), given by (17), is a function of P,. Thus, ¢, is a
function of P, and @, . Clearly, the threshold g,, given by (19), is also a function of
P, and w,. I