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We introduce and explore “paired” cosmological simulations. A pair consists of an A and B simulation
with initial conditions related by the inversion δAðx; tinitialÞ ¼ −δBðx; tinitialÞ (underdensities substituted for
overdensities and vice versa). We argue that the technique is valuable for improving our understanding of
cosmic structure formation. The A and B fields are by definition equally likely draws from ΛCDM initial
conditions, and in the linear regime evolve identically up to the overall sign. As nonlinear evolution takes
hold, a region that collapses to form a halo in simulation Awill tend to expand to create a void in simulation
B. Applications include (i) contrasting the growth of A-halos and B-voids to test excursion-set theories of
structure formation, (ii) cross-correlating the density field of the A and B universes as a novel test for
perturbation theory, and (iii) canceling error terms by averaging power spectra between the two boxes.
Generalizations of the method to more elaborate field transformations are suggested.
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I. INTRODUCTION

The interpretation of cosmological observations
increasingly requires a precise understanding of non-
linear structure formation. In addition to the power
spectrum of the matter distribution, the properties and
abundances of structures such as clusters [1] or voids
[2] also have the potential to constrain cosmological
parameters.
Excursion-set theories [3–5] show that the formation of

voids from initial underdensities is nearly but not precisely
analogous to the formation of halos from overdensities
[6–9]. The imperfect symmetry suggests that directly
contrasting void and halo formation could be informative.
In this work we take a first step in this direction by
comparing results from two simulations with precisely
opposite initial conditions (underdensities substituted for
overdensities and vice versa). We refer to these simulations
as being “paired.”
The paired simulations can also be used to improve

both practical estimation and theoretical understanding of
the matter power spectrum (and higher-order correla-
tions). There are presently two approaches to calculating
the nonlinear power spectrum: analytic perturbation
theory, or computational N-body simulations. The
former comes in a wide variety of flavors, because the
simplest perturbative treatment of gravitational instability
(standard perturbation theory, SPT [10]) suffers from
divergences at increasing comoving wave number k.
These can be brought under control by partially resum-
ming some of the SPT series [11] or writing down an

effective theory [12]. The resulting theories can be tested
or calibrated on simulations [13–18].
The most familiar example of a nonstandard perturbation

theory is the Zel’dovich approximation, a linear expansion
in Lagrangian space which leads to a regrouping of terms.
While the raw Zel’dovich predictions for the auto-power
spectrum are inaccurate, in many respects it behaves better
than Eulerian perturbation theory [11,19,20]. In particular,
it correctly predicts the decay of the cross-correlation
between initial conditions and the final nonlinear field
[11,14,20–22]. In the present work we cross-correlate the
nonlinear density fields of the paired simulations, providing
an alternative performance comparison of different pertur-
bative schemes from a physical perspective. We find that
the Zel’dovich approximation continues to offer insight in
this new regime.
From a purely practical perspective the science case for

forthcoming large-scale structure surveys requires percent-
level accuracy on computations even on strongly nonlinear,
megaparsec scales [23]. Our third application for paired
simulations shows how they can be used to cancel a large
class of finite-volume errors that can compromise this
requirement. The same cancellation can be approximately
achieved by averaging over a large ensemble of uncorre-
lated simulations, but the paired approach is more computa-
tionally efficient.
After describing the simulation setup (Sec. II) we

discuss the asymmetry in the evolution of halos and voids
(Sec. II A) and then show how the technique generates new
insights into perturbation theory (Sec. II B) and improves
the accuracy of power spectrum estimates (Sec. II C).
Possible extensions to the technique are discussed in
Sec. III. We conclude in Sec. IV.*a.pontzen@ucl.ac.uk
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II. RESULTS

In this paper we present results from paired cosmological
simulations drawn from an ensemble described by the
WMAP 7-year recommended cosmological parameters
[24] (“WMAPþ BAOþH0 ML”). While these are no
longer the most precise parameters available [25], they are
sufficiently close for our present purposes where we do not
compare to observational data; adopting WMAP7 param-
eters allowed us to make use of an existing simulation
which we refer to as “A.” We perform dark-matter-only
simulations, adding the baryon density to that of the dark
matter.
We used CAMB [26] to generate the initial power

spectrum of fluctuations from which we drew a random
realization δSðx; tinitialÞ on a uniform 5123 grid in a
ð200h−1MpcÞ3 volume, so probing wave numbers
0.031 < k=ðhMpc−1Þ < 16. The initial particle displace-
ments and velocities were generated using the Zel’dovich
approximation at redshift z ¼ 99, deep in the linear regime
for the relevant scales. All simulations were run to z ¼ 0
using the P-GADGET-3 code [27,28]. The particle softening
was set to ϵ ¼ 5h−1 kpc. Halos were identified with the
SUBFIND algorithm [29].
We generated the initial conditions for the first simu-

lation (denoted “A”) using the same code as Ref. [30] and
flipped the sign of the overdensity to generate the “B”
initial conditions, δBðx; tinitialÞ ¼ −δAðx; tinitialÞ. Both sim-
ulations are on an equal footing in the sense that they are
equally probable draws from the underlying statistical
description of the initial conditions. However, their rela-
tionship with each other allows for systematic investiga-
tions into various aspects of structure formation as we
describe in the following sections.

A. Evolution of antihalos

To begin our study of the relationship between the A and
B simulations, we show that halos map reliably onto voids
(and vice versa). This situation is illustrated in Fig. 1 which
shows, from left to right, a 20h−1Mpc slice through the
matter density field of the z ¼ 0A simulation, the z ¼ 99A
simulation, the z ¼ 99 B simulation and the z ¼ 0 B
simulation. The brightness represents projected mass den-
sity while colors track the fraction of particles identified as
halos in the A simulation. Note that the color hue of each
particle is therefore fully determined by the A simulation,
even in the B-simulation panels. The voids (light shades) in
the B simulation are identified as A-halo-dominated
regions (colored blue) interspersed by filaments, which
are A-halo-free regions (colored orange). Although our
presentation privileges the A simulation halo catalog, the
overall relationship is symmetric: a similar figure can be
made starting from the halos in the B simulation.
Figure 1 suggests that voids in the B simulation can be

identified with “antihalos,” i.e., the Lagrangian region
defined by the particles making up A-halos. However,
theories of structure formation using the excursion-set
formalism emphasize that there is an asymmetry between
the evolution of halos and voids [6–8]: voids can be
crushed by a large-scale overdensity that collapses at late
times, whereas halos are not erased by living in a large-
scale void.
The A/B comparison allows us to search for direct

evidence of this asymmetry. We take the z ¼ 0 A-halos
in three mass bins: 1014 < M=M⊙ < 1015, 1013 <
M=M⊙ < 1014 and 1012 < M=M⊙ < 1013; there are
respectively 353, 4699 and 38 537 in each range. For each
A-halo at z ¼ 0, we track the constituent particles through

FIG. 1. An illustration of the paired simulation technique. A standard ΛCDM simulation is performed as described in the text. The left
panel shows the present-day (z ¼ 0) projected density field in a 20h−1 Mpc slice through the simulation. Collapsed dark matter halos
have been identified using a friends-of-friends algorithm; the fraction of the column density contributed by particles in such structures is
color coded from orange (no contribution) to blue (100% contribution). The center-left panel shows the initial conditions, color coded
according to the same scheme. The initial conditions for the B simulation are obtained by reversing the sign of the overdensity field
(center-right panel). While the statistical properties of the linear field are unchanged by this transformation, the blue “A-halo” particles
are now associated with underdensities. Evolving the B simulation to z ¼ 0 gives rise to the right panel. The B-voids are seen to be
associated with the same particles (i.e., the same Lagrangian regions) as the A-halos.
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time in both A and B simulations to follow the collapse of
the halo (A) or expansion of the antihalo (B). At each
output time step, we record the volume-weighted1 mean
density of each Lagrangian region,

hρiV ≡
P

iρih
3
iP

ih
3
i
; ð1Þ

where the sum is over all particles i associated with a
particular region, ρi is a local density estimate computed by
PYNBODY [31] using the 64 nearest-neighbor particles, and
hi is the physical distance to the furthest of these neighbors.
We divide by the cosmic mean density ρ̄ to remove the
effects of the background expansion.
The results of the density calculation are shown in Fig. 2.

Over time, the Lagrangian region corresponding to the final
z ¼ 0 halos grows in density (dashed lines, left panel). The
differences between the three mass bins are relatively small,
with a slight trend for lower-mass regions to reach higher
densities at earlier times. The right panel shows a histogram
of the densities of the individual halos making up each
mass bin at z ¼ 0; once again, the A-simulation results are
shown by dashed lines. The variance in the mean density is

small, which is to be expected given that the halos are
identified based on a friends-of-friends algorithm which
specifies a fixed density for their boundary [29].
The solid lines show the corresponding quantities for the

antihalo regions in the B simulation. The left panel shows
that, at early times, the selected regions are underdense, as
demanded by the antisymmetry in the initial conditions.
Over time the largest antihalos become progressively less
dense, as expected for voids. The histogram (right panel)
confirms that the most massive antihalos are all well below
the cosmic mean density and can be robustly identified as
voids, confirming the more qualitative picture painted
by Fig. 1.
In the lowest mass bin, the average density of the

antihalos turns around and starts to grow (relative to the
cosmic mean) at low redshift. This is consistent with
the expected “void-crushing” process [6]. The right panel
shows that the majority of antihalos remain underdense,
but the mean is dragged up by a few regions. Inspection of
these high-density cases confirms that they are being
crushed by larger-scale collapse. The effect is only evident
at low mass; otherwise, even if antihalos are contained
within a B overdensity, there has not been time for
gravitational collapse to crush them. We can describe
the antihalos above a density threshold of hρiV=ρ̄ > 200 as
“fully crushed,” since they have achieved a mean density
comparable to that of a halo. Even at 1012 M⊙ (the
minimum mass we can reliably resolve), only 0.1% of
antihalos at z ¼ 0 exceed the threshold. It is far more
common to find antihalos that have been crushed only
along two dimensions, and now form the diffuse mass in a
cosmic filament.
In summary, antihalos correspond closely to voids,

especially on large scales. There is presently significant
interest in formulating reliable ways of defining voids so
that such structures can be identified and used for cosmo-
logical inference in large-scale structure surveys [32]. By
selecting antihalos that have not been crushed, one could
arrive at a clean definition of voids. We will explore this
further in a future paper.

B. Perturbation theory

In this section we show how our paired simulation
approach can be used to study cosmological perturbation
theory. Given a density field for a given simulation labeled
X we define

δXðkÞ≡
Z

d3x

�
ρXðxÞ
ρ̄

− 1

�
e−ik·x; ð2Þ

where k is a comoving wave vector, δXðkÞ is the Fourier-
space overdensity, x is the comoving position, ρXðxÞ is the
density, and ρ̄ is the mean density. The cross-power
spectrum between fields X and Y, PXYðkÞ, is defined by

FIG. 2. The volume-averaged density of Lagrangian regions
corresponding to z ¼ 0 A-halos of different mass ranges (from
darkest to lightest: 1014 < M=M⊙ < 1015, 1013 < M=M⊙ <
1014 and 1012 < M=M⊙ < 1013 respectively). The left panel
shows the evolution of each mass bin’s mean density; the right
panel shows the spread of halo-averaged densities within the bin
at z ¼ 0. Dashed lines show the regions in the A simulation (so at
z ¼ 0 these correspond to halos); solid lines show the corre-
sponding “antihalo” regions in the B simulation. The most
massive antihalos can be identified as voids. At lower masses
there is a tail of crushed, high-density antihalos, reflecting the
known void-in-cloud evolution asymmetry.

1The volume weighting is crucial because much of the mass
within voids is contained inside rare but dense halos [6] which
contaminate the mass-weighted mean.
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1

2
hδ⋆XðkÞδYðk0Þ þ δ⋆YðkÞδXðk0Þi
¼ ð2πÞ3PXYðkÞδDðk − k0Þ; ð3Þ

where angular brackets denote the ensemble average, and
δD represents the Dirac delta function. We will make use of
the simulated density fields A and B, but also the linearly
evolved field L which is defined as

δLðk; tÞ ¼ δAðk; tinitialÞDðt; tinitialÞ; ð4Þ
where Dðt; tinitialÞ is the linear growth factor. From these
three fields, there are six power spectra that can be
constructed; however, in the true ensemble average, two
of these (PAA ¼ PBB and PAL ¼ −PBL) contain identical
information. (In practice, since the volume of simulations
is finite, there is residual information in PAA − PBB and
PAL þ PBL that we will discuss in Sec. II C.)
We modified the GENPK code2 [33,34] to calculate

cross-correlations between two GADGET outputs. For the
purposes of the present discussion we construct four
power spectrum estimates: PðkÞ ¼ ðPAAðkÞ þ PBBðkÞÞ=2,
P×LðkÞ ¼ ðPALðkÞ − PBLðkÞÞ=2, PAB and PLLðkÞ. We
assume that particle shot noise is uncorrelated between
A and B simulations and therefore do not subtract its
contribution to the cross-spectra; the validity of this
assumption does not affect our results, since shot noise
is highly subdominant over the scales of interest.
We start by focussing on the cross-correlations P×L and

PAB; these are plotted for a range of redshifts in Fig. 3
(upper and lower panels respectively), normalized by PLL.
The quantity P×L=PLL is sometimes called the propagator;
it expresses the degree of coherence between the nonlinear
and linear fields and has been studied extensively
[11,14,20,35]. These studies have revealed that the con-
nection between the initial overdensity and final nonlinear
structure is poorly described by SPT, but (as we rederive in
the Appendix) accurately predicted by resumming the
Zel’dovich approximation which gives

Pzel
×LðkÞ ¼ e−ðk=kNLÞ2PLLðkÞ ð5Þ

where kNL is the wave vector corresponding to the scale at
which the linear and nonlinear fields decohere,

k−2NL ¼ 1

12π2

Z
∞

0

PLðk0Þdk0: ð6Þ

The qualitative reason for this decoherence is straightfor-
ward: in the nonlinear evolution, the particles have moved
(from their initial positions) an rms distance hΔx2i1=2 that is
proportional to k−1NL; for scales below this limit, the original
information has been erased by the displacements.3

The quantitative corrections to the Zel’dovich description
arising from higher-order effects can be estimated in a
formal resummation scheme and are seen to be small in the
case of P×L [36]. By contrast, finite-order standard per-
turbation theory—an expansion in the Eulerian density
contrast, shown by dashed lines in Fig. 3—performs worse
in describing the decorrelation. For that reason, the
Zel’dovich result has been used as an inspiration for
partially resumming perturbation theory to combine the
best of both worlds. For example, both resummed standard
perturbation theory (RPT) [11,35] and resummed
Lagrangian perturbation theory (LPT) [20] are designed
to reproduce the Zel’dovich cross-correlation result at tree
level [14].
We will now show that the cross-correlation between the

A and B simulations provides a new test bed for perturba-
tion theory schemes. The PAB measurements from the
simulations are shown in the lower panel of Fig. 3 along
with one-loop SPT (dashed lines), showing that the
perturbation theory gives a reasonable prediction at suffi-
ciently low k but once more diverges in the high-k limit.4

As in the AL case, it is possible to use the Zel’dovich
approximation to find a far better description of the AB
decorrelation. The solid line in the lower panel of Fig. 3
shows the result, derived in the Appendix:

FIG. 3. The cross-power spectra, for four redshifts
0.3 < z < 9.0, of simulated and linearly evolved fields (P×L,
upper panel) and A and B simulations (PAB, lower panel), each
normalized by the linear power PLL. The Zel’dovich resumma-
tion from the Appendix is shown as a solid line, and gives
excellent agreement with the simulations even at low redshift.
Standard perturbation theory at one-loop order is shown by the
dashed line and is in poor agreement with the simulations at all
redshifts. These results are known for the linear cross-correlation
(upper panel) but continue to hold for the new PAB cross-
correlation (lower panel).

2http://github.com/sbird/GenPK.
3Even better agreement could be found by fitting the scale of

the Gaussian suppression, kNL, at each redshift.

4We used the COPTER code [14] to calculate perturbation
theory results for this paper.
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Pzel
ABðkÞ ¼ e−ð2k=kNLÞ2PLLðkÞ; ð7Þ

giving an excellent fit to the simulation results. One
justification for this form is to imagine that the particle
displacements are doubled in magnitude relative to the AL
displacements, so that the relevant wave number is halved.
However the more formal derivation of Eq. (7) as given in
the Appendix requires an unconventional choice of resum-
mation. The reason why this particular choice is appropriate
for the Pzel

AB calculation is discussed further in the Appendix.
Instead of directly studying cross-correlations, we can

use the new information to empirically constrain the terms
within SPT. In this approach, the nonlinear overdensity
field δA is written as the sum of terms of increasing powers
of the linear field, δA ¼ δ1 þ δ2 þ � � �. The power spectrum
is then expanded as a series in the auto- and cross-power of
these individual terms; schematically

PAA ¼ PBB ¼ P11 þ P13 þ P22 þ P15 þ P24 þ P33 þ � � �
ð8Þ

to two-loop order, where Pij denotes the parts of the power
spectrum formed from contracting a term which is ith order
in δL with one which is jth order.5 Note that there are no
terms for which iþ j is odd, since the ensemble

expectation value is identically zero in such cases. We
have suppressed the k parameter for brevity.
By cross-correlating the A and B simulated densities

with the linear field, we obtain the series

PAL ¼ −PBL ¼ P11 þ
1

2
ðP13 þ P15 þ � � �Þ; ð9Þ

where the factor 1=2 arises because, unlike in the auto-
correlation case, there are no Pji terms to absorb into the
Pij terms. Cross-correlating with the B field gives

PAB ¼ −P11 − P13 þ P22 − P15 þ P24 − P33 þ � � � ; ð10Þ

where we have picked up a minus sign in front of each Pij
term for which i and j are odd (so that an odd number of B
linear fields appears).
Truncating at the two-loop order, the relationships (8),

(9) and (10) can be partially inverted to obtain

P13 þ P15 þ � � � ¼ 1

2
ðPLA − PLBÞ − PLL; ð11aÞ

P22 þ P24 þ � � � ¼ 1

2
ðPAA þ PBB þ PABÞ; ð11bÞ

P33 þ � � � ¼ PLL − PLA þ PLB −
1

2
PAB þ 1

4
ðPAA þ PBBÞ:

ð11cÞ
The leading-order lhs of Eqs. (11a) and (11b) can be
computed using one-loop SPT. The rhs can be measured

FIG. 4. The power spectrum empirically split into different SPT series according to Eq. (11), normalized for convenience to
P22;SPTð0.1hMpc−1Þ. The three equations are labeled by their SPT contributions. Dashed lines show the SPT calculation for these terms
(although we can only compute for one-loop order). Dotted lines show the equivalent results for RPT which incorporates high-order
effects even in the one-loop truncation. Points show measurements from the paired simulations, from which we can verify the
effectiveness of resummation, and also see directly that the magnitude of two-loop P33 terms is small at sufficiently low k.

5By convention the Pij term absorbs the Pji term if i ≠ j; this
leads to a potentially confusing factor of 2 notational discrepancy
between the formal definition of symmetric (i ¼ j) and asym-
metric (i ≠ j) terms [37]. We nevertheless adopt this convention
for compatibility with the existing literature.
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from our paired simulations, and predicted by RPT (or
other resummed theories). The comparison is shown in
Fig. 4: the simulation results are shown as points, SPT by
dashed lines and RPT by dotted lines.
The one-loop SPT predictions for the P13 and P22 class

terms are poor for k > 0.2hMpc−1, although the errors are
opposite in sign and so significantly cancel to produce
reasonable predictions of the autocorrelation [38]. The
strength of RPT (dotted lines) in predicting the P13 series
derives directly from its exact agreement with the Zel’dovich
approximation in the PAL cross-correlation (Fig. 3).
By adding the AB cross-correlation we have been able to

construct an expression that, at leading order, returns P33 (a
two-loop term) directly from simulations for the first time.
Such terms must be small at low k for perturbation theory to
be valid. Our results demonstrate that this requirement does
in fact hold in numerical simulations.
Being able to extract different perturbation theory terms

empirically also gives the opportunity for testing resum-
mation schemes. The addition of the “B” simulation gives
access to a distinctive higher-order test that is not available
from existing methods. At present we do not have code to
calculate two-loop predictions so this comparison is left for
future work.

C. Improving the accuracy of structure
formation simulations

As a final example application of paired simulations, we
turn to a more immediately practical question. Since
numerical simulations of nonlinear structure formation
can probe only a finite dynamic range, practitioners need
to balance the box size against the ability to resolve small
scales. The finite volume has two effects. First, it removes
all power below kmin ¼ 2π=Lbox, where Lbox is the comov-
ing size of the box [39]. This could be tackled in a
computationally efficient way by assuming a separate-
universe approximation and rescaling the background
cosmology in each “patch” [40]; we will not consider this
further here. The second effect of the small box is that it
samples only a small number of modes for wave numbers
reaching k ¼ kmin, leading to variance effects that vanish in
a true ensemble mean. Paired simulations can be helpful in
tackling this problem.
In this section we will need to make a clear distinction

between the theoretical power spectrum PðkÞ, as defined by
Eq. (3), and the measured power spectrum ~PðkÞ which is
defined with reference to the discretized density field
components in a simulation

~PðkÞ ¼ 1

Nk

X

i∈Sk

δ�i δi; ð12Þ

where δi is the density field Fourier component with index
i, Sk is the set of such components that are used in the
power spectrum estimate for wave number k, and Nk is the

size of that set. Shot-noise corrections [41] can be applied
to Eq. (12) without changing the discussion; we omit it for
simplicity. Expanding δi to second order in perturbation
theory, we have

~PðkÞ≃ 1

Nk

X

i∈Sk

ðδ�i;Lδi;L þGijkðδ�j;Lδ�k;Lδi;LÞ þ c:c:þ � � �Þ

ð13Þ
where δi;L is the linear amplitude for component i, c.c.
indicates the complex conjugate of the preceding term,D is
the linear growth factor, and Gijk describes how mode i
grows in response to the amplitude of modes j and k,
evaluated at a given redshift. The linear growth function has
been absorbed into the definition of the linear field
according to Eq. (4). There is an assumed summation over
all modes j and k.
Given simulations of a specified box size, the ideal

quantity to calculate is h ~PðkÞi, i.e., an average over all
possible realizations of the initial field δi;L. This is typically
attempted by computing tens or even hundreds of realiza-
tions [42,43], which is computationally costly. The leading-
order correction that this generates compared to a single
realization can actually be applied by hand, since
h ~PðkÞi ¼ PLðkÞ þ � � �. The required “first-order corrected”
power spectrum estimate is

~PðkÞcorr;1 ¼ ~PAAðkÞ þ PLðkÞ − ~PLLðkÞ; ð14Þ

so that ~PðkÞcorr;1 − h ~PðkÞi is third order in δ. Note that this
is different from the usual approach of “canceling” sample
variance [44] by estimating

~PðkÞcorr;std ¼ ~PAAðkÞ
PLðkÞ
~PLLðkÞ

; ð15Þ

which is hard to justify from a theoretical point of view
(though one gets the right answer on linear scales by
construction).
With a paired simulation in hand, we can go further and

apply the next-to-leading-order correction because, inspect-
ing Eq. (13), the error has odd parity in δL and so reverses
sign in PBB. Thus,

~PðkÞcorr;2 ¼
1

2
ð ~PAAðkÞ þ ~PBBðkÞÞ þ PLðkÞ − ~PLLðkÞ:

ð16Þ
Residual errors in ~PðkÞcorr;2 compared to h ~PðkÞi are then
fourth order in δ.
The corrections arising from this change are highly

significant in the case of a 200h−1 Mpc box. Figure 5
shows the correction Δ ~PðkÞ ¼ ð ~PBBðkÞ − ~PAAðkÞÞ=2, as a
fraction of ~PðkÞcorr;2. The corrections reach ∼5% even at
small scales, k ¼ 1.0h−1 Mpc, and modest redshifts, z ¼ 1,
where one might hope that the box-size effects are minimal.
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This is consistent with what is found by averaging over
hundreds of realizations [43] or comparing to increased box
sizes which better sample the large-scale modes [23].
Moreover, unlike the second-order cosmic variance, the

third-order error is strongly correlated over different k’s,
presumably because it arises from the coupling to a small
number of low-k modes [45]. In other words, the sample
variance is not determined solely by the number of modes
in the initial conditions at the same wave number, but can
instead be dominated by the Gijk coupling to the poorly
sampled low-k modes.
By performing just one additional simulation, it is

possible to remove this bias to third-order accuracy. The
fourth-order term is left invariant by the averaging. Overall,
our paired technique enables significant gains in computa-
tional efficiency when generating nonlinear power spectra
for comparison with large cosmological surveys. A more
comprehensive exploration of how pairing can improve the
accuracy of structure formation simulations, including on
measurement correlations beyond the power spectrum, is
presented in Ref. [46].

III. EXTENSIONS

As well as fleshing out the three applications in Sec. II,
future work could examine wider classes of statistics-
preserving transformations; for example, anything of the
form

δðkÞ → TðkÞδðkÞ ð17Þ

with jTðkÞj2 ¼ 1 is suitable. For the overdensity field to
remain real, one additionally requires TðkÞ ¼ Tð−kÞ⋆ but
otherwise there are no restrictions. In particular there is no
requirement for T to be isotropic or homogeneous.
Condition (17) ensures that the power spectrum is

unchanged; our method of cross-correlation will then allow
the study of structure growth in the presence of the correct
cosmological background. The form of TðkÞ is dictated by
the specific aspect of structure growth under study.
Section II’s A-B simulations correspond to the simplest

case of TðkÞ ¼ −1; as another example, a translation x →
xþ Δx corresponds to the case TðkÞ ¼ eik·Δx. Let us
briefly consider one further illustrative extension, given by

TðkÞ ¼ 1 − 2Θðk0 − jkjÞ; ð18Þ
where Θ is the Heaviside step function. The resulting
transformation flips the sign of δ for wave numbers below
a critical k0. We can refer to the simulation resulting from the
new initial conditions as “spliced” (abbreviated to S) since
the initial conditions are identical to A for k > k0 and to B
for k < k0. In terms of perturbation theory, this splicing
operation is more complex than a k-independent trans-
formation because it breaks loop terms into an infrared
and ultraviolet part with different signs. Being able to
segregate parts of loop integrals fully within a numerical
simulation in principle allows a very detailed comparison
with perturbation theory. Here we will consider only the
qualitative results.
Because the S and A simulations are anticorrelated on

large scales, the low-k modes destroy the high-k corre-
lations over time (Fig. 6, top panel) just as with the A-B
cross correlation (Fig. 3, lower panel). On the other hand,
cross-correlating S with B reveals that the low-k modes
remain positively correlated at all times, showing that the
anticorrelation on small scales does not affect the larger
scales. Furthermore, as nonlinear power grows in the late-
time universe, the ratio PSB=P ultimately becomes pos-
itive at large k: structure growth is coherent between the S
and B universes because it is regulated by the largest scale
modes. A full understanding of the coupling of large- and
small-scale modes is necessary for distinguishing the
bispectrum due to nonlinear evolution [47] from any
primordial contribution. Using our technique this behav-
ior is exposed to quantitative study without ever changing
the power spectrum away from ΛCDM, and with just three
simulations rather than expensive averages over large
numbers [45].
One could expand to an even broader class of trans-

formations where two independent, uncorrelated initial
realizations (δI and δII, say) are available:

δðkÞ → TðkÞδIðkÞ þ SðkÞδIIðkÞ ð19Þ
where jTðkÞj2 þ jSðkÞj2 ¼ 1. This includes another inter-
esting special case where the k < k0 modes are kept

FIG. 5. Finite-box errors in power spectrum estimates can be
vastly reduced using a paired simulation. Here we show our
correction for the next-to-leading-order error term Δ ~PðkÞ ¼
~PðkÞcorr;2 − ~PðkÞcorr;1 as a fraction of ~PðkÞcorr;2. Despite having
a reasonable 200h−1 Mpc box size, correlated artifacts from the
small number of large-scale modes propagate down to create an
apparent bias in the power spectrum, reaching ≃5% on scales as
small as k ¼ 1 Mpc−1h at z ¼ 1. This cannot be corrected by
older techniques that divide out cosmic variance in the linear
power, as it is an inherently nonlinear effect.
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fixed while k > k0 modes are randomized (rather than
anticorrelated). This specialization has been studied else-
where [48,49] using large numbers of runs with indepen-
dent δII fields. Applications include studying the
insensitivity of the evolved universe to early small-scale
fluctuations [48], and averaging away stochastic fluctua-
tions in halo spin alignments [50] or local bias measure-
ments [51]. Our approach of pulling out information from
a single additional simulation with transformed initial
conditions could also be applied to this specialization,
for example as another way to isolate the contribution of
modes in a specific k range to the perturbation theory
loop terms.

IV. CONCLUSIONS

We have introduced the technique of “paired” simula-
tions. We run two simulations (“A” and “B”) that are
identical except for having inverted initial linear over-
densities (δA ¼ −δB). Since by definition the linear field is
symmetric about zero, the two simulations have identical
statistical properties. We illustrated how this can be used to
better understand the evolution of voids, extract informa-
tion on the physical basis of perturbation theories, and
eliminate a class of finite-volume effects from power
spectrum estimates with greater efficiency than existing
techniques. Extensions to a broader class of transforma-
tions of the initial density field could further enhance the
power of this technique.
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APPENDIX: AB CROSS-CORRELATIONS IN THE
ZEL’DOVICH APPROXIMATION

In this appendix, we derive the result quoted in the text
for the cross-power spectrum of the A and B simulations in
the Zel’dovich approximation. Our approach closely fol-
lows that of previous works [20,52], but extends to the
cross-power spectrum with an alternative resummation that
we will describe in due course.
The Zel’dovich approximation is the linear-order sol-

ution to Lagrangian perturbation theory. The central quan-
tity is the displacement field ΨðqÞ which describes the
movement of particles from their initial positions q to their
final position x ¼ qþΨðqÞ. All information about the
system is then expressed in terms ofΨðqÞ. For example, the
local density is

ρðxÞ ¼ ρ̄

����
d3q
d3x

����; ðA1Þ

where jd3q=d3xj denotes the Jacobian determinant of the
transformation between Lagrangian and Eulerian coordi-
nates q and x, and ρ̄ is the volume-averaged density. This
allows the fractional overdensity in Fourier space, δðkÞ, to
be written

δðkÞ≡
Z

d3x

�
ρðxÞ
ρ̄

− 1

�
e−ik·x

¼
Z

d3qe−ik·q½e−ik·ΨðqÞ − 1�; ðA2Þ

where Eq. (A1) has been used to transform the integration
variable to q for the first term, whereas the second term has
been rewritten with a relabeling of the integration coor-
dinate from x to q. Mass conservation demands that
hδðkÞi ¼ 0 which, combined with Eq. (A2), implies

FIG. 6. As an example extension, we show the cross-correlation
between the spliced (“S”) simulation and the original (“A” and
“B”) pair. Modes in the S initial conditions are equal to the “A”
modes on small scales (k > 0.5 Mpc−1h), but to the “B” modes
on large scales (k < 0.5 Mpc−1h). In cross-correlation with the A
simulation, one sees the effect of large-scale streaming decorre-
lating the small scales. Conversely, the lower panel shows a trend
towards coherence between S and B simulations on small scales,
showing that the final power at large k is being sourced by low-k
density fluctuations. All three simulations have a ΛCDM power
spectrum, so the effects are being directly measured within a
realistic cosmological setting rather than a toy model.
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Z
d3qe−ik·qhe−ik·ΨðqÞi ¼

Z
d3qe−ik·q; ðA3Þ

a result that we will use momentarily.
The cross-power spectrum PXYðkÞ between fields X and

Y is defined by

hδXðkÞδYðk0Þi ¼ ð2πÞ3δDðkþ k0ÞPXYðkÞ; ðA4Þ

where δD is the Dirac delta function. Substituting two
copies of Eq. (A2) into this definition gives the following
expression for the cross-power in terms of the displacement
fields:

PXYðkÞ ¼
Z

d3re−ik·r½he−ik·ΔΨi − 1�; ðA5Þ

where we have used Eq. (A3) and defined ΔΨ≡ΨXðqÞ −
ΨYðq0Þ with r≡ q − q0.
The treatment to this point has been exact (up to shell

crossing). We now introduce the perturbative element by
employing the Zel’dovich approximation, in which the
displacement is related to the linear-theory density field
δLðkÞ by

Ψzel
X ðkÞ ¼ iαX

k
k2

δLðkÞ ðA6Þ

for a constant αX depending on which field X we consider.
For the A field, αA ¼ 1; for the B field, αB ¼ −1.
We additionally want to be able to calculate the cross-

correlation PAL between the true and linearly evolved
fields. Since the Zel’dovich approximation and linear
theory have to agree in the limit of small density variations,
we can represent the linear theory by multiplying the
displacements by some small number αL ≪ 1, but then
dividing the output density field (A2) by the same small
number αL. One can think of this procedure as rescaling the
input linear field by a growth factor appropriate for some
very early time, then undoing the scaling in the final
expression. As a verification, we can recalculate the linear
field from Eq. (A2), substituting Eq. (A6) and then Taylor
expanding in αL:

δzelL ðkÞ≃ 1

αL

Z
d3qe−ik·q

Z
d3k0

ð2πÞ3 αL
k · k0

k02 δLðk0Þeik0·q

¼ δLðkÞ; ðA7Þ

confirming the recovery of the linear density field.
We now return to Eq. (A5) and insert Eq. (A6) for the

displacement fields. In the Zel’dovich picture,ΨX is always
Gaussian, so we can apply the cumulant expansion
he−Gi ¼ exp ½− 1

2
hG2i�. We divide the final expression

by jαXαY j; for αA ¼ 1 and αB ¼ −1 this has no effect,

whereas for αL ≪ 1 this captures the shift to linear theory
described above. Put together, we obtain the following
expression for auto- and cross-spectra:

Pzel
XYðkÞ¼

1

jαXαY j
Z

d3re−ik·r½e−ðαX−αYÞ2Iðk;0Þ=2þαXαYJðk;rÞ−1�

ðA8Þ

where Iðk; rÞ captures the effect of the displacement field
for two points at distance r on a Fourier mode with wave
vector k and is given by

Iðk; rÞ ¼
Z

d3k0

ð2πÞ3
ðk · k0Þ2

k04
cosðk0 · rÞPLðk0Þ; ðA9Þ

and Jðk; rÞ ¼ Iðk; rÞ − Iðk; 0Þ. The exponent in the inte-
gral above has two pieces, one that depends on r (propor-
tional to Jðk; rÞ) and the one that does not [proportional to
Iðk; 0Þ]. The piece that does not depend on r can be pulled
out of the integral to generate a k-dependent exponential
suppression. The exponential for the other piece is
expanded to first order and integrated to generate a linear
power spectrum term and a harmless k ¼ 0 correction

Pzel
XYðkÞ¼e−ðαX−αYÞ2ðk=kNLÞ2 ½PLðkÞ−Iðk;0ÞδDðkÞ�; ðA10Þ

where kNL is the wave number corresponding to a non-
linearity scale, defined by

k−2NL ¼ 1

2
Iðk; 0Þk−2 ¼ 1

12π2

Z
∞

0

PLðk0Þdk0: ðA11Þ

It follows that

Pzel
ALðkÞ ¼ e−ðk=kNLÞ2PLðkÞ; and ðA12Þ

Pzel
ABðkÞ ¼ e−4ðk=kNLÞ2PLðkÞ; ðA13Þ

which are the results quoted in the main text. The
decorrelation scale between the A and B fields is half that
of the decorrelation scale between A and L fields, a result
confirmed in our measurements from the simulations.
This derivation looks deceptively close to the resummed

LPT approach of Ref. [20], which we denote by “M.”
However, there is an important conceptual difference in
the detail. In Ref. [20], the equivalent of our Eq. (A8) is
given by

Pzel;M
XY ðkÞ¼ 1

jαXαY j
Z
d3re−ik·r½e−ðα2Xþα2Y ÞIðk;0Þ=2þαXαYIðk;rÞ−1�:

ðA14Þ

Equations (A8) and (A14) are mathematically equivalent:
we have just moved a constant from the r-independent
piece back into the r-dependent piece (which we later
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expand). At infinite order in the expansion this does not
matter, but following the same reasoning as above we
obtain to the first order in expanded integral,

Pzel;M
AL ðkÞ ¼ e−ðk=kNLÞ2PLðkÞ; ðA15Þ

Pzel;M
AB ðkÞ ¼ e−2ðk=kNLÞ2PLðkÞ: ðA16Þ

The cross-correlation between the initial and final fields is
the same, but the AB decorrelation scale differs by a factor
of 2. The difference can be attributed to resummation of a
different set of operators, so one needs to justify why our
choice is appropriate for the problem in hand.
For the case of constructing the auto-power spectrum,

any large-scale displacements appear (at sufficiently short
wavelengths) to be a uniform translation, and so become

irrelevant. However this is no longer true in the AB case
where such displacements—occurring in opposite direc-
tions in the two fields—strongly suppress power. For this
reason, we want our tree-level solution for the cross-
correlation to include the effect of coherent displacements;
in other words we construct Eq. (A8) such that the
perturbative terms vanish for small separations, r → 0,
an approach also taken by Ref. [53]. This construction
implicitly underlies the intuitive description given in
Sec. II B that the AB particle displacement is doubled
relative to the AL displacement: one has to assume that the
displacements are coherent, which only becomes exactly
true in the r → 0 (“eikonal”) limit. Conversely, Eq. (A14) is
well suited to expanding the auto-power (αX ¼ αY ¼ 1)
precisely because it is insensitive to large-wavelength
displacements.
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