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Abstract 

Our focus is on the design of systems (pedagogical, technical, social) that encourage mathematical 

abstraction, a process we refer to as designing for abstraction. In this paper, we draw on detailed 

design experiments from our research on children’s understanding about chance and distribution to 

re-present this work as a case study in designing for abstraction. Through the case study, we 

elaborate a number of design heuristics that we claim are also identifiable in the broader literature 

on designing for mathematical abstraction. Our previous work on the micro-evolution of 

mathematical knowledge indicated that new mathematical abstractions are routinely forged in 

activity with available tools and representations, coordinated with relatively naïve unstructured 

knowledge. In this paper, we identify the role of design in steering the micro-evolution of 

knowledge towards the focus of the designer’s aspirations. A significant finding from the current 

analysis is the identification of a heuristic in designing for abstraction that requires the intentional 

blurring of the key mathematical concepts with the tools whose use might foster the construction 

of that abstraction. 

It is commonly recognized that meaningful design constructs emerge from careful analysis 

of children’s activity in relation to the designer’s own framework for mathematical abstraction. 

The case study in this paper emphasizes the insufficiency of such a model for the relationship 

between epistemology and design. In fact, the case study characterises the dialectic relationship 

between epistemological analysis and design, in which the theoretical foundations of designing for 

abstraction and for the micro-evolution of mathematical knowledge can co-emerge. 
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Designing for Mathematical Abstraction 

Our focus is on the design of systems (pedagogical, technical, social) that 

encourage mathematical abstraction, a process we refer to as designing for 

abstraction. We re-present previous work on young children’s changing meanings 

for randomness as a case study in designing for abstraction. Through the case 

study, we elaborate a number of design heuristics that we claim have broader 

significance in the literature on designing for mathematical abstraction. In 

searching for descriptions and explanations that better fit children’s activity in 

relation to our design activity, we treat theory building as a modelling exercise 

through which it appears that the conventional perception of the relationship 

between epistemology and design is insufficient. 

The aims of the original research that led to this paper can be expressed 

quite simply. We aimed to research young children’s changing meanings for 

randomness as those meanings evolved and were shaped by the digital tools that 

we made available to them. Since our concerns were to “address theoretical 

questions about the nature of learning in context” (Collins et al, 2004), we 

adopted a design research approach, culminating in a software tool, 

ChanceMaker. 

In earlier work, we reflected on the children’s meaning-making for 

randomness and distribution (Pratt, 2000), as it emerged through the design 

research, ultimately presenting a model for children’s micro-evolution of 

knowledge (Pratt and Noss, 2002). What was inescapable during that research was 

that we not only learned about the children’s meanings for randomness and 

distribution but we also became sensitized to the specific manner in which we 

could design tools that could act as a window on the children’s meaning-making. 
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In this paper, therefore, we now seek to focus explicitly on the rationale for the 

specific design decisions taken in that research and to identify heuristics to guide 

future design activity. 

We will present the case study chronologically since it is through the 

narrative that the relationship between epistemology and design becomes 

apparent. We begin by looking back at how we thought about epistemology and 

design at the start of the journey. 

Initial orientation towards epistemology and design 

When this research began (in 1994/5), the predominant view reported people’s 

understanding of randomness and probability as essentially misconceived and that 

matters of chance were mostly counter-intuitive. The fallibility of people’s 

conceptions of chance was reported, for example, in the seminal work by 

Kahneman and Tversky (for example, Kahneman, Slovic and Tversky, 1982), 

who catalogued the heuristics people used, normally in conditions where subjects 

were required to make swift judgements without recourse to tools or indeed 

teachers. Kahneman and Tversky demonstrated how, under such circumstances, 

the heuristics people used were subject to systematic bias, resulting in errors and 

evidence of misconceptions.  The view that people’s probabilistic comprehension 

is misconceived was reinforced by many other research reports, including those of 

Lecoutre (1992) and Konold (1989), who gave alternative explanations for the 

tendency of people to use a non-probabilistic approach (the equiprobability bias 

and the outcome approach respectively), in which such situations were regarded 

as mere matters of happenstance or luck. 

Our own position was strongly influenced by the ideas of Smith, diSessa 

and Rochelle (1993). They asked if building new knowledge required replacing 
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misconceptions by better more normalised ways of thinking, what would be the 

foundations of such new knowledge? Replacing misconceptions 

unproblematically without any existing basis makes an anti-constructivist 

assumption and the search for misconceptions might support designers and 

teachers who need to be aware of existing conceptual structures that have 

developmental potential. We began our project with a belief that the 

misconceptions literature was reporting the effect of a particular research method 

and that by providing new tools, we might discover new ways to think about 

children’s understanding of randomness. We recognised that our design research 

would need to sensitise us to what children might already understand about 

randomness so that we might build tools that could perturb that understanding and 

promote the development of more sophisticated knowledge. 

In the literature on children’s understanding of randomness and probability, 

there were notable exceptions to the predominant misconceptions perspective, in 

particular the critique in Wilensky’s PhD thesis (1993) of the misconceptions 

approach and to some extent, the work on intuitions of chance by Fischbein 

(1975). Our orientation at the start of this research was consistent with that of 

Wilensky, aligned to the Constructionist school (Harel & Papert, 1991), which 

claims that, by offering microworlds in which children build meaningful products, 

the children will feel in control of the tools and become engaged in learning the 

mathematical ideas designed into the microworld. Constructionism suggests the 

efficacy of designing quasi-concrete virtual objects, instantiations of powerful 

mathematical ideas. By manipulating these on-screen objects, children can gain a 

sense of the power and limitations of the embodied mathematics (Papert, 1996), 

paralleling the construction of knowledge through the use of everyday artefacts in 

the material world: 



6 

“The principle is called the power principle or ‘what comes first, 

using it or 'getting it'?’ The natural mode of acquiring most 

knowledge is through use leading to progressively deepening 

understanding. Only in school... is this order systematically inverted. 

The power principle re-inverts the inversion.” 

(p. 98) 

Although our focus was on research rather than teaching, we believed that full 

engagement in exploratory activity would provide a window on children’s 

meanings for randomness, even as those meanings changed during activity (Noss 

and Hoyles, 1996). 

The emergence of ChanceMaker 

In this section, we describe the chronological development of ChanceMaker up to 

but not including its final stage. Even in our early attempts to bootstrap the design 

process, we had in mind a particular setting in which the evolving designs would 

be used. 

The children who would use the tools were aged between 9.11 and 11.1 

years in a primary school. By deciding to work with children from this school, 

which was relatively advanced in its deployment of technological resources, the 

distraction of technical obstacles would be minimised, allowing a tight focus on 

the children’s intuitions of the stochastic. 

The initial bootstrapping idea to trigger the iterative design process in the 

ChanceMaker study envisaged a simulation of a popular game, typically played at 

school fetes; players roll a penny down a slope and win if the coin avoids landing 

on any of the lines running across its path. The children were cast as the owners of 

the roll-a-penny stall in the school fete. We hoped that such a task would be seen 
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as purposeful by the children in keeping with our Constructionist stance. The 

software design (see Figure 1) featured facilities to control the design of the 

sloped board (the controls), the entry fee and the prizes (the money). 

 

Figure 1: An early version of ChanceMaker based on a popular game played in school fetes. The 

prototypes of ChanceMaker were developed in Boxer, a Logo derivative that allows the tools to be 

re-programmable by the user but at the same time provides structures through which the designer 

can choose to make some aspects more immediately visible than others. 

 
The player clicked the roll button and the animated coin rolled down the 

slope. As more coins were rolled, a distribution of results would be seen on the 

board as each attempt left a trace. Likely positions for the coin to land would 

show up as more dense patches on the board, not only emphasising variation in 

distances travelled but also indicating a distribution of distances through the 

density of the trace at different positions. 

The children were intrigued by the task of designing a profitable game and 

were further motivated by the idea that they might build an actual game, based on 
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their prototype, for the coming school fete. As a window on the children’s 

knowledge about randomness and distribution, the task was ineffective. Their 

focus was on the game itself and on financial calculations rather than on 

randomness and distribution. 

The design was therefore modified to emphasize the idea of statistical 

distribution, by giving the children control over the movement of the coin (Figure 

2). The howfar tool is a placeholder for the children’s programming commands 

that, when executed, determine how far the coin will roll. Children were able to 

enter any legal code into the howfar tool. 

 

Figure 2: The facility to control the movement of the coin was introduced 

 

The intention was to encourage a focus on the relationship between the 

howfar box and the distances rolled by successive coins. However, the children 

were somewhat underwhelmed by the task! The motivation witnessed in the 

previous iteration had dissipated; there seemed now to be no driving force behind 

the children’s activity. The children would carry out the task, responding politely 

to the researcher’s prompts and exhortations, but there was no sense of urgency in 

them needing to find out and explore for themselves. In this respect, the task again 

was ineffective as a window on their thinking-in-change about randomness and 

distribution. It seemed that there needed to be a certain level of desire in order that 

the window might not simply reflect the researcher’s agenda and in order to 

challenge the limits of the children’s knowledge. 
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We continued to search for a design that would encourage children to 

rediscover the sense of engagement without losing the focus on randomness and 

distribution. We decided that the howfar box in Figure 2 was insufficiently 

expressive and we might be able to introduce a greater sense of engagement if the 

children had more avenues for expression. It was difficult to see what we should 

build into the howfar box by default. We used the primitive, random. If we had 

used another primitive it was difficult to see how the children would introduce 

randomness without us telling them to do so, and if we put the command random 

in there ourselves as default, we were leading their thinking too strongly and we 

would probably not gain a refined sense of their understanding of randomness. 

We wondered what would happen if we asked the children to use their 

everyday knowledge of other random situations (or rather situations that seemed 

to involve randomness to us and might do so to the children). We built gadgets, 

simulations of everyday random generators, such as dice, lotteries, spinners. 

Figure 3 shows three of these new objects, now referred to as gadgets, alongside 

the roll-a-penny device. 
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Figure 3: We introduced a range of devices, simulators of everyday experiences of randomness, 

for example, tossing a die or a coin and drawing from a lottery. The children used these simulators 

to express how they thought the roll-a-penny gadget should work. 

 

In this design, the children were required to model the behaviour of the 

roll-a-penny device using a gadget as the controller. Each gadget could be 

activated by a command such as click dice or repeat 50 [click 

dice]. The behaviour of any gadget could be changed by editing its flipside.  

Figure 4 shows the flipside of the die gadget. 

 

Figure 4: Each device could be flipped to reveal a flipside, which indicated how the device 
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worked. Here, the computer ‘chooses’ at random from 1 to 5. The flipside could be edited so the 

children might decide, for example, that the die should choose from 1 to 6. 

 

By default, the roll-a-penny always went to the same distance of 4. We 

anticipated that the children would not believe that the roll-a-penny device 

should behave in this way and would search for a better model. For example, if 

the children believed that the roll-a-penny should behave somewhat like a die, 

they might edit the roll-a-penny flip-side to read click dice and then 

further edit the dice gadget to cover a range from 0 to 7 as appropriate for the 

roll-a-penny device. Essentially, the gadgets acted as a more expressive 

language to control the behaviour of the roll-a-penny device. 

Although the expressiveness of the design was improved, when we tested 

this design, it seemed that the task was too obscure. Although we had not yet 

found a solution to the problem of designing for both engagement and focus, we 

had in fact stumbled upon what turned out to be a key development in the task 

design, which we will pick up again later. 

Thoughts about epistemology and design, based on the iterative development of 

ChanceMaker 

The experience of these early iterations led to a re-evaluation of our position on 

epistemology and design, which needed to accommodate the experience of 

observing children’s levels of engagement and focus. Such factors clearly 

impacted on our ability to make inferences about meaning-making for 

randomness. In fact, these insights led to parallel research activity on a pair of 

connected constructs, purpose and utility (Ainley, Pratt and Hansen, 2006). 
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A purposeful task has a meaningful outcome for the learner in terms of an 

actual or virtual product, the solution of an engaging problem, or an argument or 

justification for a point of view. Designing tasks that engender such purpose is 

necessary but not sufficient for children to engage with the utility of ideas. In fact, 

the purpose of a task, as perceived by the learner, may be quite distinct from the 

intended learning outcomes. The purpose creates the necessity for the learner to 

use mathematical knowledge in pursuing the task and a benchmark for the child to 

recognise progress. Because the mathematical ideas are being used towards this 

end, children might come to appreciate utility: how and why the mathematics is 

useful, a form of understanding that has been largely ignored in the literature and 

is typically given little prominence in schools. Consider this example. Schools 

typically emphasize the learning of mode, median and mean as algorithms but an 

understanding of the utility of average would involve an appreciation of when 

average might be deployed as a useful idea. We regard gaining an understanding 

of utility as an essential element of mathematical abstraction. 

Papert’s Power Principle states that technology can allow children to learn 

mathematics through its use. We came to understand that, in order to build an 

appropriate window on the children’s meanings for randomness, we needed to 

connect purpose and utility; not only must the task be seen as purposeful, as was 

the case with our first bootstrapping design, but also randomness and distribution 

must be seen as having utility. At this stage, we had not succeeded in connecting 

purpose and utility but the failure of the designs to date had opened up for us the 

potential significance of utility in children’s abstracting process. 

At about that time, we had also in fact stumbled upon a break-through idea: 

whereas previously we saw gadgets as mechanisms for expressing how the roll-
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a-penny device should operate, the gadgets could themselves be broken and 

perhaps mending the gadgets could become the sought after purposeful task. The 

idea of mending a gadget took hold of our imaginations since it promised a 

constructionist “building-like” approach towards the study. We could reduce the 

obscurity of the previous iteration by removing the need to connect the other 

gadgets to the roll-a-penny device and simply offer all the gadgets as potentially 

broken. The challenge would then be to identify which gadgets were ‘working 

properly’ (that is to say, not broken) and to mend them. By careful design of the 

tools for mending, we intended to offer a purposeful task that would be likely to 

lead to the construction of utilities for randomness and distribution. The lack of 

clarity in the meaning of ‘working properly’ acted as a prompt for children to test 

out personal conjectures and provided a window through which the researcher 

might appreciate how the children thought coins, spinners and dice should behave. 

When the children felt they had some appreciation of which gadgets were 

not working properly, they would be challenged to mend them. Indeed, as the task 

involved the children in making decisions about the performance of the gadget 

and about how to modify that performance, the task would we hoped, be seen as 

playful and engaging and encourage the children to be careless about their own 

naivety. 

In summary, our initial epistemological position oriented us towards a 

constructionist perspective on the mathematical knowledge but the early iterations 

in the emergence of ChanceMaker enabled us to recognize the fundamental need 

to design a connection between purpose as might be construed by children and the 

utility of randomness and distribution. By stumbling upon the key role that 

mending gadgets might play, we understood that knowledge about randomness 
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was defined by knowing what was not random (for example, we might regard a 

process as random because we are unable to predict its outcome). We describe in 

more detail in the next section what this really meant about children’s 

construction of meanings about randomness but even at this stage we understood 

that offering opportunities for mending gadgets would provide a window on how 

they anticipate randomness and so reveal their meanings for what was and what 

was not random. 

The maturation of ChanceMaker 

The task associated with the mature version of ChanceMaker was presented to the 

children in two parts. The first section below focuses on the initial challenge. 

Later, we describe the second part of the task. First then, it was explained that we 

were developing gadgets to behave like various familiar objects such as coins, 

spinners and dice. The children were asked to help us by playing with these 

gadgets and identifying which ones they thought were behaving ‘properly’. 

Identifying which gadgets were not working properly 

In the mature version of ChanceMaker1, we offered a range of gadgets; three are 

shown in Figure 5. 

                                                

1 The version shown here is coded in Imagine Logo (http://www.r-e-

m.co.uk/logo/?comp=imagine) 
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Figure 5: Three gadgets from ChanceMaker were the coin, the spinner and the dice. In each 

case, the strength tool could be pulled and let go in order to create an animated representation of 

‘throwing’ the gadget. 

 

The children were able to simulate the throwing or tossing of the gadget, 

either by pulling on the strength control, the black disc beneath the gadget itself, 

or by clicking directly on the gadget in order to replicate an experiment using the 

same strength as last time. The task was to decide which of the gadgets were 

working properly and which were not. 

When children worked with ChanceMaker, we observed them articulating 

four expert-like meanings for randomness. In each instance, we give one example 

for illustrative purposes, though there were many such occurrences in the original 

data: 

(i) Unpredictability – when the children were unable to predict the 

next outcome, they would tend to regard the gadget as random. For 

example, in response to the question, “Do you think there is any 

number which is harder to get than any other number?” one child 

commented, “No . . . because it just comes out at random and any 

number could come out at any time so you don’t really know which 

one is going to come out or which one is not going to come out.” 
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(ii) Unsteerability – when the children were unable to control the next 

outcome, they would typically view the gadget as random. For 

example, when asked to summarize how he would decide on 

randomness, one child responded, “Well, you decide by . . . if 

you’re not controlling it or if you’re not affecting it by doing 

anything, and if it’s like not bad weather or anything or nothing’s 

blowing it over or anything, that will be quite random, but if the 

wind was blowing it or you were putting force or it or something 

then it’s not that random.” 

(iii) Irregularity – when there appeared to be no sustainable pattern in 

results, the children would regard the gadget as random. For 

example, when asked how he would test the fairness of a dice, one 

child answered, “Testing it, I’d roll it and if it kept on going on one 

or another then I might think it’s got like a magnet or something 

inside it . . . I’d test it about ten, fifteen times.” 

(iv) Fairness – when  the gadget appeared to be fair, the children would 

tend to regard the gadget as random. For example, one set of 

questions in the interview was designed to ascertain how the child 

thought about two spinners, one of which had uniform sectors and 

another, which had unequal size sectors. On the first uniform 

spinner, children often expressed concerns that the spinner may not 

be unsteerable but nevertheless recognized that there was no 

particular bias towards one number. In contrast, the same child 

would often regard the non-uniform spinner as non-random. One 

child commented, “No, because whoever made this, made the one 
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and the three bigger so you’ll get the one and the three most of the 

time.” 

We say expert-like because at face value their meanings for randomness 

appear consistent with much expert opinion. However, we observed the children 

shifting quite rapidly between the four meanings, choosing whichever was 

triggered by seemingly superficial (from the mathematical point of view) aspects 

of the gadget or random generator. For example, a child referred to the 

unsteerability of a device and moments later referred instead to its 

unpredictability; the fact that situations that were not controlled were often not 

predictable apparently encouraged children to express these resources 

interchangeably. 

At the same time, they would often fail to problematise potential conflicts. 

Thus, certain spinners might have been regarded as unfair (and so not random), 

because the sectors were unequal, and at the same time irregular, unsteerable or 

unpredictable (and so random), because they were not exactly able to determine 

the outcomes. In practice, such conflicts, which might have led to a new 

conceptualization of randomness, were not articulated; the children would 

categorize the spinner as random if they happened to pay attention to the 

unpredictability and not random if they happened to consider the non-uniform 

configuration of the spinner. 

Thoughts about epistemology and design based on identifying broken gadgets 

In trying to make sense of this data in which children quickly switched between 

meanings according to superficial (from our point of view) contextual stimuli, we 

regarded these meanings as, at best, weakly connected pieces of fragmented 
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knowledge. Perhaps even more significantly, the children would not articulate 

meanings for long-term randomness. 

It is in the literature on physics education that we found the most persuasive 

theory of conceptual change that accounts for such fragmentation. diSessa (1993) 

has proposed that knowledge is, at least initially, made up of many small 

unstructured heterogeneous particles of knowledge, which he calls 

phenomenological primitives, or p-prims for short. P-prims are abstracted directly 

from experience. One characteristic of p-prims is that they contain priorities that 

shape how and when those pieces of knowledge are used to make sense of 

phenomena.  As p-prims become recognized by the organism as more reliable in 

relation to their consistency, they are more likely to be called upon in the future as 

tools for abstracting. Gradually, through a process diSessa calls tuning towards 

expertise (1993), clusters of connected p-prims will begin to appear 

simultaneously triggered by similar phenomena. diSessa refers to these clusters as 

coordination classes, roughly analogous to concepts. We were impressed by the 

extent to which this theory provides explanatory power for the inconsistency both 

between and within children (see, for example, Pratt & Noss, 2002). 

In order to promote tuning towards expertise, we needed to allow and 

encourage the children to test the limits of their abstractions, that is, to test out 

their personal conjectures about the behaviour of the quasi-concrete objects that 

we were offering. Otherwise, how would children come to an appreciation of the 

lack of explanatory power in their current internal meanings about long-term 

aggregated behaviour? The aim then was not to classify such abstractions as 

misconceived but to support children in recognizing that they do not have 

powerful explanations, much in the manner of classical cognitive conflict 

approaches (Piaget, 1963). 
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We saw the second part of the task, mending the broken gadgets, as an 

opportunity to use new tools that would build in feedback mechanisms that were 

designed to increase the likelihood that children would identify the lack of 

explanatory power of their fragmented knowledge pieces in certain situations. 

 

Figure 6: The workings of the die gadget allow the child to continue playing at top level by 

clicking on the image of the gadget but also to use the tools to mend the gadget. The tools include 

a list or chart of previous results, the possibility of keeping a chart to compare later with a new 

chart, the total number of throws so far, an option to repeat quickly many throws (how many can 

be set by the child) and, most importantly, the facility to edit the workings of the box. Here, the die 

is choosing randomly with a bias towards throwing a 6. A child might edit this so that the die 

chooses from 1 to 6 with no bias. 

 

Figure 6 shows the mending tools inside the die gadget. The other gadgets 

were similarly organized. The children were able to continue to play with the 

gadget itself as if at top-level or repeat quickly many throws of the die. It was 

possible to inspect the results or indeed to graph those results. In Figure 6, the 

child has simulated the roll of the die 10 times. The results can been seen as a list 

in the Results Box or as a graph, here depicted as a pie chart. 
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The workings box was introduced to the children as how the gadget 

works. So, in Figure 6, the die “chooses” between 1, 2, 3, 4, 5, 6, 6 and 6. No 

further detail on how the die might do this was offered and none was asked for. 

The researcher also demonstrated how the workings box could be edited so that 

the gadget could have a different set of choices. Thus, in Figure 7, the workings 

box has been edited so that the die chooses, in more conventional style, between 

1, 2, 3, 4, 5 and 6. The child has simulated the throwing of the die 10 times and a 

pie chart has been generated. Typically, on seeing such a graph, a child might 

decide there are too many 6’s in the workings box! 

 

Figure 7: Here, the child has modified the workings of the die gadget so that the die chooses 

randomly from 1 to 6. However, the pie chart, after ten throws only, seems to indicate a bias 

towards 6, and it would be typical now if the child were to continue editing the working box, 

perhaps by removing the 6! 

Thus, two important feedback mechanisms were i. the facility to observe the 

behaviour of animated gadgets and ii. to examine the lists of results and the 

graphs, such as pie charts and pictograms. Of course, children regularly ignore or 

do not perceive the significance of feedback but by setting the activity within a 
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purposeful task, we expected the desire to understand would minimize that 

possibility. 

In making our design decisions, we sought to emphasize the lack of 

explanatory power in certain situations of the child’s fragmented knowledge (in 

the lists below, the design decision relate to the final design shown in Figures 6 

and 7): 

• We made available prior results so that children might realize that 

apparent patterns were not sustained over a longer period. 

• Children, who felt that the order of the numbers on the spinner was 

important, could edit the workings box to test whether different 

orders of numbers would influence the spinner’s behaviour.  

• We expected from our early designs and from the literature that some 

children would predict that the outcome from the coin and many of 

the other gadgets to be influenced by how they threw the gadget. 

Hence, we provided a strength control through which they could throw 

the gadget with differing strengths. In fact, the strength mechanism 

was a redundant control. In other words, the strength control had no 

influence over the mathematics although it did extend or reduce the 

time of the animation. Thus, for example, the coin would spin longer 

or shorter depending on the strength of the throw but whether it would 

land as a head or a tail did not in any way depend on the value of the 

strength. In practice, children needed to explore the strength control for 

extended periods before they rejected the idea that the value of the 

strength had an impact on the outcome. 
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Cobb et al (2003) have recently argued that design research offers an 

approach in which theory cannot only be tested but can do work. The above list 

demonstrates some instances of how design could empower children to test 

conjectures. The knowledge-in-pieces perspective on the micro-evolution of 

knowledge makes an important prediction: The fragmented knowledge could, 

under appropriate conditions, evolve structures through tuning towards expertise. 

This prediction inspired us to move beyond the commonly espoused model of 

cognitive conflict by seeking to support recognition of the power of certain 

situated yet normative abstractions and we designed our system to mobilize 

current knowledge towards this end. 

In our experience, there is usually some element of what the child understands 

that can be regarded as a root of expert knowledge. We need to elaborate what we 

mean by ‘root’. In diSessa’s terminology, fragmented knowledge manifests itself 

through articulations, often apparently inconsistent in nature, that the teacher or 

designer might note. Some of that inferred knowledge might not be inconsistent 

with expert knowledge even though it is likely to be different in scope. The 

child’s knowledge might be more situated or even too generally applied; its power 

might not be recognised in the face of competing fragments of knowledge. For 

example, the ChanceMaker children had an appreciation of the unpredictability, 

irregularity and unsteerability of randomness. How might these meanings be used 

as starting points to support a process of tuning towards expertise, which might 

respond to the conflict generated by the earlier design decisions? What decisions 

might we make to increase the likelihood of triggering p-prims out of which 

expert knowledge might develop? 

In order to support tuning towards expertise, we needed to identify and 

exploit what we recognized as the children’s current knowledge. We have already 
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described, for example, how the ChanceMaker children had an appreciation of 

short-term randomness, articulated through local meanings such as fairness. In 

order to facilitate tuning towards expertise, we needed to design opportunities for 

building on that knowledge, as described below. 

• We sought to mobilize (in the sense of tuning towards expertise) 

children’s keen understanding of fairness, as attached to the 

appearance of a gadget, so that their notion of fairness was re-attached 

to the appearance of the pie chart and the workings box. 

• We also sought to mobilize the children’s appreciation of 

unpredictability by facilitating a recognition of its limitation to only 

short-term randomness, introducing through the design of the tools the 

possibility of predictability in relation to the aggregate over a longer 

term. We intended that tuning towards expertise might involve a move 

whereby local meanings for randomness and fairness would be 

mobilized to construct global meanings for predictability in the long 

term. 

• Furthermore, we hoped that the repeat tool might enable the children to 

try out many cases to test out whether their idea worked in the longer 

term and to discover that what had been unpredictable in the short term 

seemed in some aggregated sense to be predictable in the long term. 

Mending the gadgets 

The second challenge to the children was to mend the broken gadgets using the 

tools found by opening up the gadget. We observed the children attempting to 

mend the gadgets, in particular by using the workings box. Details of their activity 

have been reported elsewhere (see by way of more detailed illustration the activity 
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of Anne and Rebecca in Pratt & Noss, 2002). Here, bearing in mind our focus on 

design, we give a précis of that activity. 

The children tried out different configurations and inspected the Results 

Box and the workings box to understand the consequence of their mending 

actions. Typically, they would notice how the pie chart was not uniform, which 

conflicted, it seemed, with their expectation of fairness. The children would edit 

the workings box accordingly. So, if the pie chart contained too many 6’s, they 

might remove a 6 from the workings box. Sometimes, by responding in this 

direct way to the data, the children would under-represent an outcome in the 

workings box. So, a die with workings box that read 

choosefrom [1 1 2 2 3 3 4 4 5 5 6 6] might by chance generate a 

surplus of 2’s. In response, the children might edit the workings box to read 

choosefrom [1 1 2 3 3 4 4 5 5 6 6]. It typically took substantial 

experimentation before they experimented with a workings box that read 

choosefrom [1 2 3 4 5 6]. Even then they might respond to, say, a large 

number of 1’s by editing the workings box once more to become 

choosefrom [2 3 4 5 6]. 

Eventually, the children would usually realize that 

choosefrom [1 2 3 4 5 6] would only mend the dice gadget if the dice 

were thrown many times. We characterized the way children expressed this 

construction with the phrase, “the more times you throw the dice, the more even 

is the pie chart”. When challenged by the researchers with a workings box 

which did not have a uniform configuration, the children were typically once 

more puzzled and, after further experimentation, would articulate (through mouse-
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clicks in the medium of ChanceMaker as well as natural language) the idea that 

“the more even is the dice’s workings box, the more even is its pie chart” and in 

some cases “the more times you through the dice, the more even is the pie chart, 

provided the workings box is even”. 

The children moved from one gadget to another and we were struck by how, 

with each new gadget, they typically began the search for meaning from the 

beginning, not using the heuristics that they seemed to have constructed from the 

previous gadgets. In fact, since the internal structure was identical across the 

gadgets, we were surprised as observers at the fresh struggle for meaning with 

each gadget. However, we also noted that when all else failed, when they could 

find no other explanation for the new gadget’s behaviour, children would often 

“remember” that “the more times you throw the dice, the more even is its pie 

chart” and “the more uniform is the dice’s workings box, the fairer is its pie 

chart”, conjecturing that perhaps this rule works also for the new gadget. Indeed, 

as the children became familiar with more gadgets, the time needed for them to 

become familiar with the new gadget and re-use the same heuristics for making 

sense of the gadget’s behaviour reduced. Eventually, some children were able to 

anticipate outcomes. In one case near the end of two hours of activity, for 

example, the children were challenged by the researcher, “What I had really 

wanted was for the ones to have a very good chance and the twos to have only a 

fairly good chance.” One of the children immediately edited the workings box to 

read choose-from [1 1 1 2 2 3 4 5 6]. In the context of the earlier 

struggles to make sense of the gadget’s behaviour, this was strong evidence that 

the children were using the workings box as a predictor of behaviour. 
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Thoughts about epistemology and design based on mending the gadgets 

Activity with the workings box led to a sense of the utility of distribution, 

or at least this situated version of the broader mathematical concept, in that 

distribution could be seen as a stochastic control over how a gadget works, both in 

the short term and in the long term. In retrospect, we see that we designed for 

purposeful activity that was optimized for the construction of situated utilities for 

distribution because distribution in the form of the workings box acted as a 

stochastic control over the long-term behaviour of the gadgets.  

At the outset, there was no evidence to suggest the children could use the 

workings box to anticipate outcomes. Indeed, most of the early activity was 

characterized by surprise when the actual outcomes failed to match expectations. 

Only with experience and the construction of relatively reliable situated 

abstractions did the children begin to find that what happened matched their 

predictions. At this point, the workings box became something more than a way 

of changing what might happen; it became a way of predicting what would 

happen. In that sense the workings box could be thought of as a representation 

or embodiment of a piece of mathematics, a formalism for describing probability 

distribution. 

From the design perspective, the workings box seems to embody a fusion 

between control and representation. Whereas the utility of the workings box as a 

control was that it could change how the gadget behaved, the utility of the 

workings box as a representation was that it could describe how the gadget 

would behave. This ambiguous role for the workings box appeared to provide 

the link between informal activity and formal representation, but the link was only 
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activated in practice because of the design success in connecting purpose and 

utility. 

We referred to the first heuristic, “the more times you throw the dice, the 

more even is the pie chart”, as N, and the second heuristic, “the more uniform is 

the dice’s workings box, the fairer is its pie chart”, as D. We also referred to the 

co-ordination of these two as N.D. In fact N, D and N.D are examples of what 

Noss and Hoyles (1996) call situated abstractions, in which abstraction is 

conceived, not so much as pulling away from context, but as a process of 

constructing mathematical meanings by drawing context into abstraction, 

populating abstraction with objects and relationships of the setting. We began to 

see connections between situated abstractions and diSessa’s knowledge-in-pieces. 

In fact, in using situated abstractions, rather than p-prims, as our analytical 

construct, we apply the knowledge-in-pieces metaphor at a somewhat larger grain 

size. Whereas p-prims are largely subconscious and so small in granularity that 

they can scarcely be represented in language (though diSessa tentatively attempts 

to do this by referring, for example, to the p-prim “I push it, it moves”), we prefer 

to think of abstraction at a level more commensurate with learners’ conscious, 

expressible and therefore observable articulations. 

The knowledge-in-pieces framework makes a second prediction: children’s 

abstraction would be sensitive to context, since small changes in the situation 

would trigger quite different p-prims. 

We felt that our epistemological position could now begin to articulate under what 

circumstances children might re-use pieces of knowledge in new settings, and 

how knowledge, which is becoming tuned towards expertise, be “transferred” 

across such settings? 
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It appeared to us that situated abstractions are likely to remain un-cued in 

new situations precisely because the relevant pieces of knowledge are not 

connected to that situation. We found it helpful, therefore, to think of a contextual 

neighbourhood surrounding pieces of knowledge. The neighbourhood captures 

the domain over which the idea has been encountered and found to be powerful by 

the child in explaining the on-screen behaviour. The short version of what we 

propose is that mathematical abstraction is a process of broadening that contextual 

neighbourhood, rather than of de-contextualization. 

Discussion and summary 

We set out to elaborate a case study of design research, seeking to identify design 

heuristics that emerged. We also aimed to convey the dialectic relationship 

between designing for abstraction and the designers’ perspective on the micro-

evolution of mathematical knowledge. We now summarise the situation. 

First we discuss the design heuristics that have been illustrated through this 

case study. A starting point was that a knowledge-in-pieces framework for 

understanding conceptual change led us to envisage the design task, not so much 

as supporting the replacement of misconceptions with normalized knowledge, as 

seeking to re-prioritise underlying p-prims. 

We therefore designed to enable children to test out their personal 

conjectures and to support enhancement of priorities that might be attached to 

pieces of knowledge that we could envisage might lie at the root of normalized 

knowledge, i.e. standard knowledge, socially accepted by the mathematical 

community. Our window on children’s knowledge had to be sensitive to the 

children's pre-existing meanings for randomness and distribution. In practice, we 

recognized the importance of fairness, a meaning for randomness articulated by 
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all of our sample children and generally associated with the immediate physical 

appearance of the gadgets. So we designed tools such as the pie chart to 

encourage realignment of the notion of fairness with that of equally likely 

outcomes.  

 To summarise, we can state the above design activity in terms of two 

emergent design heuristics: 

1. Enable the testing by children of their personal conjectures. 

2. Seek to enhance the explanatory power of knowledge that might offer a 

route to normalized knowledge. 

In order to execute the second heuristic, we needed to design a task which 

would be likely to engage the child in activity, focussed on the key mathematical 

concepts of randomness and distribution. In effect, we designed a window on that 

mathematical activity through a task seen as purposeful by the child. The task was 

carefully designed so that in pursuing his aims, the child would be likely to come 

to appreciate the utility of distribution. Thus, the task design connected purpose 

and utility by inventing a novel representation for distribution and presenting it as 

a means of control over core mathematical activity. The children used each 

workings box as a control over the behaviour of the corresponding gadget; 

subsequently each workings box became a means for the children to predict the 

behaviour of the gadgets. In this sense, the workings box fused control with 

representation, enabling a blurring of the informal and the formal and providing a 

natural connection between the purposeful activity of the task and the key 

mathematical concept that we wanted the children to address. In short, a third and 

fourth design heuristic emerged: 
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3. Construct a task design that will be likely to generate purposeful 

activity and tools that encourage the construction of utilities for the 

key mathematical concepts. 

4. Identify or design representations of key mathematical concepts that 

can be used as control points needed by the child to pursue their aim.  

We can now revisit other work and try to identify post-hoc whether these 

four heuristics appear relevant to their designs. To explain what we mean, we turn 

to a familiar example for readers of this journal. Young children using the Logo 

turtle to draw pictures or create animations may already have fuzzy ways of 

thinking about distance or angle. By using commands such as FD 50 and RT 

90, they test out those personal conjectures and begin to revise their ideas through 

use. These commands are acting as controls over the drawing/animation activity 

and become representations in the sense that gradually many of these children will 

be able to predict the result of issuing the command and even create procedures 

where the result of the procedure is imagined in advance of execution. The utility 

of angle will be seen in terms of its power to produce pictures and more generally 

create or describe movement. What the turtle graphics commands like FD 50 

manage to do is to combine computation – it will do something potentially useful 

when run - with representation – what it will do can be predicted from the 

representation. In earlier work, we named this duality 'auto-expressive':  

"environments in which the only way to manipulate and reconstruct objects is to 

express explicitly the relationships between them" (Noss, Healy & Hoyles, 1997, 

p.5). The same is true of the workings box. 

Put this way, it is now possible to understand the failure of earlier iterations 

of ChanceMaker, in which the gadgets were used to express how the roll-a-
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penny device should behave. The immature gadgets were not representing some 

generic mathematical idea; rather they were limited to the functioning of an 

everyday phenomenon such as a coin or die. In this sense, they did not possess the 

expressiveness and generality of a mathematical representation. In contrast, the 

workings box in each mature gadget contained within itself the dual 

characteristics of controlling behaviour of the gadget and representing a powerful 

mathematical idea. 

Our second aim for the case study was to articulate the relationship between 

epistemology and design. Our case study highlights the evolution of this 

reciprocal relationship.  It is commonly understood that “the design of a tool 

reflects the designer’s intentions, thoughts and compromises” (Yerushalmy, 1999, 

p. 171) but in our emphasis, in effect, we add the reciprocal that the designer’s 

epistemological understanding reflects the design of the tool. Taken together, 

these two statements capture the dialectical nature of the relationship between 

epistemology and design. Below we trace the manner in which as a result of the 

design process our understanding of epistemology changed. 

Our original stance, essentially Constructionist, became more refined 

through several stages. Our early experiences in trying to bootstrap the design 

research helped us to recognize the significance and non-triviality of designing a 

task through which the child’s purpose for the task leads to the construction of 

utility for a key mathematical concept. Such insights have led us to review our 

stance on knowledge construction to incorporate the notions of purpose and utility 

as discussed in the section on Thoughts about epistemology and design, based on 

the iterative development of ChanceMaker. Designing for abstraction then has to 
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consider what children might find purposeful and to invent tasks that optimize the 

chance that such a purpose might lead to the construction of utility.  

A second change in our epistemological understanding took place. We 

found that adopting diSessa's framework gave us insight into the evolution of the 

children's thinking in terms of the situated abstractions, N, D and N.D. Situated 

abstractions (SA) seemed to offer a way of thinking about knowledge at a grain 

size more aligned to the children’s articulations than the sub-conscious behaviour 

captured by diSessa’s p-prims. In contrast, but complementary to, the p-prim idea, 

the notion of situated abstraction privileges the explicit and expressed rather than 

the implicit and intuitive. In characterising expression-with-tool, the evolution of 

the children's thinking that led to the N, D and N.D. SAs were firmly embedded 

within the toolset. This naturally led us to asking what, if anything, might be 

'transferred' in this process. While the evolution of conceptual change at the p-

prim level involves reorganisation and evolution, we found it helpful in the SA 

analysis to think in terms of contextual neighbourhoods over which SAs were 

seen to apply. Of course the determination of contextual neighbourhoods was, as 

best we can judge, entirely implicit - even subconscious - much as diSessa's p-

prims.  

Thought of in this light, therefore, designing for mathematical abstraction 

becomes a challenge to create a domain for the articulation of situated 

abstractions, and the means by which the contextual neighbourhoods can be 

refined and expanded. The breadth or limitation of a contextual neighbourhood is 

appreciated through recognising (possibly sub-consciously) the relevance of prior 

knowledge to ongoing activity. By fusing control over mathematical activity with 

the representation of that mathematics, the designer offers the opportunity for 
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activation and transformation of the contextual neighbourhood as additional or 

restricted utility of the mathematical concept. 

We have shown through this case study how designing for abstraction can 

generate new theory not only about design in the form of heuristics, as 

summarised in the first part of this discussion, but also, as in the second part, 

about the mutually generative nature of epistemology and design. 
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