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SUMMARY

How mechanical and biological processes are coor-
dinated across cells, tissues, and organs to produce
complex traits is a key question in biology. Card-
amine hirsuta, a relative of Arabidopsis thaliana,
uses an explosive mechanism to disperse its seeds.
We show that this trait evolved through morphome-
chanical innovations at different spatial scales. At
the organ scale, tension within the fruit wall gener-
ates the elastic energy required for explosion. This
tension is produced by differential contraction of fruit
wall tissues through an active mechanism involving
turgor pressure, cell geometry, and wall properties
of the epidermis. Explosive release of this tension
is controlled at the cellular scale by asymmetric
lignin deposition within endocarp b cells—a striking
pattern that is strictly associated with explosive
pod shatter across the Brassicaceae plant family.
By bridging these different scales, we present an
integrated mechanism for explosive seed dispersal
that links evolutionary novelty with complex trait
innovation.

INTRODUCTION

Understanding how morphological novelties evolved is a major

goal of biology. Rapid plant movements, such as the ‘‘snap’’ of

a Venus fly trap, are striking character gains that have led to trait

innovations such as carnivory (Darwin, 1875). However, the ma-

jority of fast motions in plants and fungi are adaptations for

dispersal. Catapulted pollen or synchronous puffs of fungal

spores are evolutionary solutions to the problem drag poses to

getting small particles airborne (Edwards et al., 2005; Roper
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et al., 2010). While the mechanics of these rapid movements

are well described, little is known about the cellular basis of

such novel phenotypes and how they have evolved.

Although plants are sessile, they canmove by swelling, shrink-

ing, or growing; for example, surface stomata open and close

and leaves move with a circadian rhythm (Hoshizaki and

Hamner, 1964; Schroeder et al., 1984). These movements are

water-driven and are constrained by the timescale of water

transport through cells and tissues (Skotheim and Mahadevan,

2005). To overcome this constraint and generate rapid motion

requires amechanism that stores elastic energy gradually but re-

leases it rapidly. Such physical mechanisms can be diverse and

fascinating: for example, the snap-buckling of a Venus flytrap or

the cavitation catapult of a fern sporangium (Forterre et al., 2005;

Noblin et al., 2012), but the biological processes by which they

are produced are unknown. A key problem is that rapid move-

ments are relatively rare and model species where the experi-

mental tools for detailed functional studies exist, such as Arabi-

dopsis thaliana, do not exhibit such movements. A fundamental

theoretical challenge is that rapid movements are the culmina-

tion of activities integrated across different spatial scales, hence

a complete understanding requires biomechanical models that

link causal events at the cell and tissue levels to themacroscopic

organ and plant response. To address these issues, we used

experimental and theoretical approaches to analyze explosive

seed dispersal in Cardamine hirsuta, a close relative of

A. thaliana, commonly described as popping cress for the explo-

sive shatter of its fruit pods (Hay et al., 2014; Rich, 1991).We took

advantage of the genetic tractability of C. hirsuta (Barkoulas

et al., 2008; Hay and Tsiantis, 2006; Vlad et al., 2014) combined

with biophysical experiments, high-speed videography, quanti-

tative imaging, and multi-scale mathematical modeling, in order

to investigate and fully explain the biological and physical basis

of explosive seed dispersal.

Explosive seed dispersal is a rapid movement found in various

flowering plants and was likely a key innovation for the invasive-

ness of species such as C. hirsuta, Impatiens glandulifera, and
d by Elsevier Inc.
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the dynamite tree, Hura crepitans (Clements et al., 2008; Dee-

gan, 2012; Randall, 2002; Swaine and Beer, 1977; Vogel, 2005;

Yatsu et al., 2003). Seed launch speeds have been previously

calculated using a variety of techniques including advanced

high-speed cameras, which were used to record mean speeds

ranging from 1–6 ms�1 (Deegan, 2012; Garrison et al., 2000;

Hayashi et al., 2009, 2010). Seed dispersal occurs via a process

called pod shatter in both the explosive fruit of C. hirsuta and

the non-explosive fruit of A. thaliana and relies on the precise

patterning of fruit tissues (Liljegren et al., 2004). Fruits of these

species look very similar, with a fruit wall comprised of two

valves that enclose the seeds, attached to the replum. The fruit

splits open by dehiscence along a thin line of specialized tissues

at the valve margins to allow pod shatter (Dinneny and Yanofsky,

2005). In A. thaliana, this occurs as the fruit dries out, separating

the valves from the replum and exposing the seeds for dispersal.

However, in C. hirsuta, explosive pod shatter occurs while the

fruit is turgid, not dry (Schneider, 1935). This observation contra-

dicts the established view that drying generates the energy for

explosive seed dispersal by causing fruit tissues to deform

(Beer and Swaine, 1977; Vaughn et al., 2011) and suggests

that the C. hirsuta fruit uses a previously undescribed mecha-

nism to generate tension actively.

Here, we uncover this mechanism through a comprehensive

experimental and theoretical study of explosive seed dispersal

inC. hirsuta. By combining analyses at different scales of magni-

tude, we identify specific cellular features that cause the tissue-

level mechanics underpinning explosive dispersal. We demon-

strate that tension is actively generated in C. hirsuta fruit by

the anisotropic deformation of living cells that sustain turgor

pressure. This unusual mechanism relies on a combination of

three-dimensional cellular geometry and anisotropic cell wall

properties of the fruit epidermis. Moreover, we show that the

stored potential energy giving rise to tissue tension is released

explosively via coiling of the fruit valves. This coiling mechanism

requires the asymmetric localization of lignin in a single cell layer

of the valve and represents an evolutionary novelty associated

with explosive seed dispersal across the genus Cardamine.

RESULTS AND DISCUSSION

Seed Dispersal Dynamics
To quantify explosive seed dispersal inC. hirsuta at the plant and

organ level, we recorded the shatter of fruit pods using high-

speed videography, extrapolated the trajectories of launched

seeds, andmeasured the distribution of seeds dispersed around

parent plants. During explosive pod shatter the two valves curl

back from the fruit pod, initially peeling the seeds off the inner

septum and launching them at speeds in excess of 10 ms�1 (Fig-

ures 1A–1C; Movie S1). This process is rapid, taking less than

3 ms, and fires the small seeds upon ballistic trajectories to

land within a 2-m radius of the parent plant (Figures 1D and

1E). The exploded valves come to rest in a curled configuration

of three or four coils (Figure 1C). We identified key properties

of the valve associated with explosive pod shatter by comparing

the valves of non-explosive A. thaliana and explosive C. hirsuta

fruit. Two striking features differentiated these fruit. First,

C. hirsuta valves contain more lignin, localized asymmetrically
to cell walls on the inner side of the endocarp b layer (Figures

1F and 1G) (Vaughn et al., 2011). Lignin is a complex phenylpro-

panoid polymer that adds stiffness to secondary cell walls, sug-

gesting that this inner valve layer is considerably stiffer in the

explosive fruit of C. hirsuta. Second, shallow incisions to the

outside of the turgid valve caused wounds that gaped instantly

inC. hirsuta but not in A. thaliana (Figures S1A–S1D). This obser-

vation implies that, in C. hirsuta, the outer tissue layer is under

tension while the valve is flat, prior to explosion.

To examine the mechanical properties of different tissues

within the C. hirsuta valve, we performed simple dissections. A

valve curves lengthwise both in water (Figure 1H) and in air (Fig-

ures 1A–1C) when released from the fruit. However, when we

separate the lignified tissue from the rest of the valve, this curva-

ture vanishes (Figures 1I and S1M). Moreover, whenwe separate

the outer valve tissues from the inner lignified layer, the outer

layer shortens while the lignified layer does not (Table S1). Based

on these findings, we considered the C. hirsuta valve as three

mechanical layers: an active soft outer layer, a passive middle

layer, and a stiff inner layer. The exocarp (active outer layer)

is attached to the inextensible secondary cell wall of the endo-

carp b (stiff inner layer) through the mesocarp and the non-ligni-

fied part of the endocarp b (middle layer), which act as a passive

buffer (Figure 1G). Therefore, a shortening of the exocarp, while

the stiff endocarp b conserves its length, causes the valve to

naturally coil when released from the fruit.

These observations suggest a mathematical model for the

whole valve based on three elastic layers, each with a different

reference geometry, attached together so that, in the flat state,

the outer layer is in tension and the other two are in compression.

The elastic energy stored in this trilayer is determined by the

deformation of underlying tissues and can be expressed as a

function of the curvature along the length of the valve (an explicit

energy description is given in Supplemental Experimental Proce-

dures). Theparameters required for themodel consist of geomet-

ric parameters measured in live fruit and fresh sections (Supple-

mental Experimental Procedures) and material parameters

characterizing the stiffness of each layer. The Young’s modulus

of lignin is readily available in the literature (Burgert and Dunlop,

2011) and characterizes the stiffness of the endocarp b layer.

We obtained the tissue-level stiffness of the exocarp and middle

layers from extensometer measurements of the valve (Supple-

mental Experimental Procedures). Initially, the trilayered valve is

flat, storing elastic energy. Upon dehiscence, the valve is free

to coil on itself, transforming elastic potential energy to kinetic en-

ergy. We described the dynamics of the coiling using classical

mechanics and found that themodel closely matched our obser-

vations of valve coiling (Figures 1A–1Cand1J;Movie S2; Supple-

mental Experimental Procedures). We validated the spatio-

temporal accuracy of this model by directly comparing model

simulations with measured trajectories of distinct points along

the valve tracked from high-speedmovies of explosive pod shat-

ter (Figure 1K). The striking agreement we observed between

model and data confirms that the dynamics of explosive pod

shatter are captured correctly and suggests that this tissue-scale

model should be predictive of seed dispersal at the plant scale.

To test this hypothesis, we used the model dynamics of a sin-

gle valve to obtain the ballistic trajectories of seeds explosively
Cell 166, 222–233, June 30, 2016 223



Figure 1. Dynamic Model of Explosive Seed

Dispersal in C. hirsuta

(A–C) Explosive seed dispersal recorded at 15,000

fps: the two valves detach from the fruit (A), curl

back with seeds adhered to the inner valve surface

(B), and launch seeds while coiling (C); t, time be-

tween frames; arrows indicate seeds.

(D) Seed flight paths extrapolated from measured

launch conditions; n = 229 seeds from 14 fruits;

velocity max: 10.4 ms�1, mean: 5.0 ± 2.1 ms�1.

(E) Measured distribution of 52,585 seeds

dispersed by 21 plants (red) overlaid with

computed distribution of seeds ejected from a

single valve using model dynamics (blue).

(F) Cartoon of C. hirsuta fruit, dashed line indicates

transverse cut shown in adjacent cartoon, dashed

lines through valve demarcate section shown in

(G); dotted lines indicate longitudinal segment of

valve shown in (H) and (I). v, valve; r, replum;

endocarp b layer, blue; seed, gray.

(G) Transverse valve section labeled as a me-

chanical trilayer; lignified endocarp b secondary

cell walls (End) stain pink with phloroglucinol; non-

lignified cells form two layers, exocarp (Exo) and

mesocarp/non-lignified endocarp b (Mes). Scale

bar, 10 mm.

(H and I) Valve segments in water, intact (H) or

lacking endocarp b layer (I). Scale bar, 1 mm.

(J) Simulated trajectories of coiling valves from

model. Valves shown at successive time intervals

(red); valve tip and midpoint are marked (blue) to

visualize how their position changes over time.

(K) Trajectories at nine points on the valves quan-

tified from high-speed movies (red); and simulated

from the model at equivalent time steps (blue).

Axes in (J) and (K) show distance (mm).

See also Figure S1 and Movies S1 and S2.
dispersed away from the parent plant. Taking from themodel the

initial velocity of each seed catapulted from the valve and a

spatial orientation of the valve on the plant, we computed the

motion and probability distribution of multiple seeds through

Monte Carlo simulations (Supplemental Experimental Proce-
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dures). In high speedmovies we observed

a transient adhesion between seeds

and valve (Figure 1B, arrow), which we

modeled via a linear viscoelastic force

provided by a pectic cell surface. This

means that the force of attachment de-

pends linearly on both time and the dis-

tance between seed and valve. When

the distance between seed and valve ex-

ceeds a critical length, this attachment

breaks and the seed is released to follow

a ballistic trajectory under the influence

of aerodynamic drag. Comparing seed

distributions and seed launch angles be-

tween theoretical predictions and direct

measurements, we found the assumption

of viscoelastic adhesion to be the only

mechanism consistent with the data (Fig-
ure 1E; Supplemental Experimental Procedures). We also found

that the distance of dispersed seeds had a plateau in its distribu-

tion (Figure 1E) (Schneider, 1935), suggesting that this launch

mechanism appears tuned to spread seeds over a maximal

area, rather than to achieve a maximal distance.



Figure 2. Loss of the Endocarp b Layer in lig2 Prevents Explosive Pod Shatter

(A–F) Exploded fruit observed in air and transverse valve sections throughmature stage 17 fruit of wild-type (A–C) and lig2 (D–F). Lignified cell walls stain pink with

phloroglucinol (B and E) and cyanwith TBO (C and F). Note vascular bundles contain lignified xylem cells. Wild-type valves have 9.2 ± 0.1 cell layersmid-valve and

lig2 valves have 8.2 ± 0.1, n = 36 valves, data represented as mean ± SEM. Scale bars, 5 mm (A and D), 20 mm (B, C, E, and F).

(G) Cartoon ofC. hirsuta chromosome 6 region containing LIG2. Name and position of fivemarkers used formapping are indicated above chromosome; scale bar,

10 cM. Zoomed-in region flanked by two additional markers contains 19 predicted genes (arrows) and a single non-synonymous SNP (*); scale bar, 10 kb.

Zoomed-in CARHR188820/LIG2 locus containing a C2523 > T mutation in exon 11 that causes a Q340 > STOP mutation (*) before the NLS at amino acids

367–383, LIG2 exons are shown as dark gray boxes, non-coding sequences as lines, and the START codon is indicated by an arrow, upstream gene

CAHR188810 is shown as a light gray box. Scale bar, 500 bp.

(H–K) Mature fruits of wild-type (H), lig2 (I), lig2 complemented with a fluorescently tagged genomic LIG2 construct, LIG2-YFP (J), and not complemented with a

fluorescently tagged mutant lig2 construct, lig2-YFP (K). Scale bars, 5 mm.

See also Figure S2.
Endocarp b Deletion Mutant Is Non-explosive
To investigate whether the endocarp b layer is strictly required

for explosive pod shatter, we took a genetic approach. Having

shown that this stiff layer plays a mechanical role in generating

valve curvature, we reasoned that an endocarp b deletion

mutant should reveal how important this layer is for explosive

shatter. This class of mutant had not been previously identified

in A. thaliana, so rather than follow a targeted genome editing

approach we conducted a mutant screen. We screened a popu-

lation of ethyl methanesulfonate (EMS)-treated C. hirsuta plants

for mutants with less lignified valves. In one such mutant, less

lignin2 (lig2), the entire endocarp b cell layer was missing (Fig-

ures 2A–2F). We showed that lig2 is a loss-of-function mutant

caused by a premature stop codon before the nuclear localiza-

tion signal in the C. hirsuta ortholog of the DNA-binding protein
BRASSINOSTEROID-INSENSITIVE4 (At5g24630; Figures 2G–

2K) (Breuer et al., 2007; Kirik et al., 2007). LIG2 is expressed in

endocarp b cells and throughout the fruit, and the lig2 mutation

prevents nuclear accumulation of LIG2, resulting in loss of

endocarp b layer integrity through mechanisms that remain

to be determined (Figure S2). Importantly, pod shatter in the

lig2 mutant was non-explosive (Figure 2D), providing genetic

evidence that the endocarp b layer is indeed necessary for

explosive pod shatter.

Secondary Cell Wall Geometry Enables Explosive
Energy Release
We have shown that the lignified endocarp b layer is required for

explosive pod shatter and has a mechanical role in generating

valve curvature. However, explosive pod shatter also requires
Cell 166, 222–233, June 30, 2016 225



Figure 3. Lignified Cell Wall Geometry Triggers Explosive Energy

Release

(A) Cartoon of valve geometry specified in model, exocarp (red), middle layers

(green), lignified endocarp b (blue), for wild-type (hinged), and boxed endocarp

b cell wall.

(B and C) Lignin autofluorescence in endocarp b cell walls pre- (B) and post-

explosion (C); cartoons show hinge angle, n = 659 cells, data represented as

mean ± SEM. Scale bars, 20 mm.

(D) Cartoon of how the endocarp b hinge mechanism triggers energy release.

Left panel: valves are curved in cross section and building tension while

attached to the fruit. Dehiscence zones (orange) form along the valve margins,

weakening this attachment. Right panel: valves flatten in cross section via

opening of the lignified endocarp b hinge (blue). Valves detach from the fruit as

226 Cell 166, 222–233, June 30, 2016
a means of rapid energy release. To identify this mechanism, we

investigated the role of the fruit valve geometry and the geometry

of the lignified secondary cell walls of the endocarp b layer. Dur-

ing fruit maturation, the growing seeds deform the valve, so that

the valve cross-section is not flat but rather is bowed outward

(Figures 3A, S3A, and S3B). In order to release valve tension

by coiling lengthwise, the valve must first flatten in cross-section

(Figure 3A). The same principle is in action in so-called ‘‘slap

bracelets’’ (these bracelets are made out of a strip of metal

with a curved cross section when the central axis is straight

and a flat cross section when the central axis is coiled). For the

fruit valve to deform from a curved to a flat cross-section, either

the endocarp b layer must widen (Figure 3A, blue) or the exocarp

layer must narrow (Figure 3A, red). We hypothesized that the ge-

ometry of the endocarp b secondary cell wall provides the key:

lignin is deposited with subcellular precision to form three stiff

rods connected by very thin hinges (Figures 2B and 2C; Figures

S3C and S3D). We observed that these hinged cell walls open

during explosion (Figures 3B and 3C), enabling the stiff endocarp

b layer to widen passively at a negligible cost of mechanical en-

ergy (Figure 3A; Supplemental Experimental Procedures). There-

fore, once sufficient tension is established along the length of the

valve and the dehiscence zone weakens at the valve margins,

this hinge mechanism allows the valve to change freely from a

curved to a flat cross-section and release the tension by coiling

(Figure 3D).

This mechanism for energy release can be quantified by

modeling the energy landscape of the valve from the moment

it detaches from the fruit (Figure 3E; Supplemental Experimental

Procedures). For this analysis, we identified three valve configu-

rations: the initial state with a curved cross-section, a transitory

state with a flattened cross-section, and the final energy mini-

mizing (equilibrium) state that is coiled lengthwise (Figure 3A).

The energy in each valve configuration is the sum of the bending

and stretching contributions due to the deformation of the three

idealized tissue layers shown in Figure 3A. We found that the

equilibrium configuration of the detached valve is a coiled struc-

ture with three to four coils, which matches well with experi-

mental data for fully hydrated valves (Figures 3E and S3L). We

also computed a drop in energy of �0.5 mJ from the initial valve

configuration to the coiled state (Figure 3E). This energy, con-

verted from elastic potential energy into kinetic energy, is what

drives the explosive nature of pod shatter and seed dispersal
they coil to relieve tension, transferring kinetic energy to launch seeds (brown).

Replum (yellow).

(E) Energy profile of valve with hinged (red) or boxed (blue) endocarp b wall

geometry modeled during explosive pod shatter. Energy computed once the

valve cross-section is flat and plotted as a function of longitudinal curvature.

For each case, the energy minimizer is shown as a point on the curve and the

energy released as a dashed line; coils per valve are indicated for these points.

Points on the y axis indicate initial energy when the valve cross section is

curved; note that energy input is required to flatten the valve with boxed

endocarp b wall geometry.

(F–H) Fruit observed in air and transverse valve sections through mature

NST3::VND7 fruit (F). Boxed geometry of lignified endocarp b cells and two

adjacent mesocarp layers stained pink (G) and cyan (H). Scale bars, 5 mm (F);

20 mm (G and H).

See also Figure S3.



Figure 4. Morphomechanical Innovation Drives Explosive Seed Dispersal

Endocarp b secondary cell wall geometry in representative species with explosive pod shatter in Cardamine and with non-explosive pod shatter in a Brassi-

caceae-wide sample. Lignified cell walls stain cyan with TBO in transverse valve sections through mature fruit; fruit morphology is shown for each species and

their phylogenetic relationship is indicated by the cladogram below. Scale bars, 10 mm (cells); 2 mm (fruits).

See also Figure S4.
inC. hirsuta. Our model suggests that the passive opening of the

hinged secondary cell wall in the endocarp b layer during cross-

sectional flattening of the valve is of fundamental importance in

explosive pod shatter. Without hinges, the valve transition from

a curved to a flat cross-section would require energy input,

which would considerably alter the energy landscape during

pod shatter. For example, the same computation using a

‘‘boxed’’ geometry for the lignified endocarp b cell wall results

in a much smaller energy difference between the initial and the

equilibrium states and fewer coils in the equilibrium state valve

(Figures 3A and 3E; Supplemental Experimental Procedures).

Notably, this boxed geometry is found inA. thaliana andBrassica

crops (Spence et al., 1996), plausibly explaining why pod shatter

is non-explosive in these related species.

Hinged Secondary Cell Wall Geometry Is an Evolutionary
Novelty
To test our hypothesis that the hinged geometry of endocarp b

cells provides the key mechanism for explosive energy release,

we employed transgenic and phylogenetic analyses. We

modified secondary cell wall patterning in endocarp b cells to

create a boxed geometry that cannot ‘‘open,’’ and assessed

explosive pod shatter. To do this, we expressed the A. thaliana

VASCULAR-RELATED NAC-DOMAIN PROTEIN7 (VND7) gene,

which induces secondary wall formation (Kubo et al., 2005), us-

ing the promoter of the C. hirsuta NAC SECONDARY WALL

THICKENING PROMOTING FACTOR3 (NST3) gene (Mitsuda

et al., 2007). This transgene initiates lignification of the endocarp

b at a similar stage to wild-type and subsequently lignifies two

adjacent mesocarp cell layers but not the endocarp a (Figures

S3E–S3K). In comparison to wild-type, the secondary wall of

endocarp b cells in NST3::VND7 lines was uniformly thickened
and lignified, creating a stiff box around each cell (Figures 3G

and 3H). This modified geometry prevented explosive pod shat-

ter and dehisced valves formed only one coil, similar to our

model predictions (Figures 3E, 3F, and S3L). Therefore, the

hinged geometry of the endocarp b secondary cell wall is funda-

mental to the explosive release of energy stored in the valve.

To test whether the hinged geometry found in the endocarp b

secondary cell wall of C. hirsuta may represent a morphome-

chanical innovation associated with trait evolution, we analyzed

this character across a broad sample of species in the Brassica-

ceae. To our knowledge, Cardamine is the only genus in this

large plant family where explosive seed dispersal is found,

and we observed a hinged secondary cell wall in the endocarp

b layer of all Cardamine species that we sampled with explosive

pod shatter (Figure 4). Conversely, we observed a boxed

secondary cell wall in the endocarp b layer of a wide sample

of species with non-explosive pod shatter (Figures 4 and S4).

Together with this phylogenetic association, we have provided

genetic evidence that the endocarp b cell layer, and specifically

the geometry of its secondary cell wall, is necessary for explo-

sive pod shatter. Additionally, we have provided a model that

explicitly describes how this cell wall geometry enables explo-

sive pod shatter. Therefore, we conclude that the hinged geom-

etry of endocarp b secondary cell walls in Cardamine is an

evolutionary novelty that allows valves to release elastic poten-

tial energy stored in the valve trilayer to drive ballistic seed

dispersal.

Turgor-Driven Shrinkage
We have identified the role of the endocarp b secondary cell wall

in energy release; however, the other critical component for

explosive pod shatter is the build-up of elastic energy in the
Cell 166, 222–233, June 30, 2016 227



Figure 5. Turgor-Driven Shrinkage

(A–C) Exocarp cells aligned to longitudinal fruit axis. (A) Side view of segmented cells from CLSM stacks of propidium iodine (PI)-stained fruits pre- and post-

explosion, in water. (B) Top and side view of PI-stained cells treated with 1 M salt or water prior to imaging, cell outlines in yellow were used for quantitation and

crosshairs show principal directions of shrinkage (red) and expansion (white). (C) Side view of cells segmented from CLSM stacks of PI-stained short valve

segments treated with 1 M salt or water prior to imaging. Scale bars, 50 mm (A, B), 20 mm (C).

(D–F) FEM simulations of cells pressurized from 0 Mpa (left) to 0.7 MPa (right); heatmap shows relative increase (orange) or decrease (blue) in cell length; hor-

izontal yellow line shows initial length. Cell dimensions: 1003 203 20 mm for A. thaliana exocarp cells (D), 503 503 20 mm for C. hirsuta exocarp cells (E and F).

Cell wall material: isotropic (D and E), anisotropic (F). Pressure: 0 MPa (left, D and E), 0.7 MPa (right, D–F).

(G) FEM simulations of exocarp cells in immature fruit of cell dimensions 303 203 14 mm (left) and mature fruit of cell dimensions 503 503 20 mm (right), micro-

indented by a CFM tip. Heatmap shows stress in MPa. Scale bar, 20 mm.

(H) Barplot of turgor pressure and cell wall elasticity parameters given by the FEM model for immature (dark gray) and mature (light gray) exocarp cells shown in

(G). Young’s modulus in the width (Ewidth) and length (Elength) directions of the cell wall, defined by the fruit’s principal axes.

(I) Sensitivity analysis of FEM model. Effect of best-fit parameters and values 15% lower and higher for pressure (dashed lines) and the Young’s modulus ratio

(Ewidth:Elength, solid lines) on cell stiffness (N/m) and cell volume (ratio change), shown on the left and right y axes, respectively.

See also Table S1 and Movies S3, S4, and S5.
system. To address this mechanism, we investigated the cellular

basis for the differential shortening of the fruit valve that gener-

ates tension (Figures 1H and 1I). We measured a 20% reduction

in cell length in the outermost exocarp layer between the flat

valve, attached to the fruit, and the curled, detached valve (Fig-

ure 5A; Table S1). To understand themechanics of this cell short-

ening, we challenged a previous proposal that shrinkage in the

C. hirsuta valve is caused by passive loss of cell turgor pressure

via drying (Vaughn et al., 2011). Under the ‘‘drying’’ hypothesis,

detached valves would flatten out in pure water where cell turgor

pressure is high due to osmosis. Yet, we observed higher curva-

ture in water than in air, which then flattened out upon transfer to

salt solution where the cells lost turgor (Figures S1H–S1J). More-

over, explosive shatter can be prevented by drying fruits with

alcohol or freezing them (Figures S1E–S1G). These results

show that drying is not the cause of exocarp cell shortening in

C. hirsuta and suggest that exocarp shortening is an active pro-

cess, requiring living cells that can sustain turgor pressure.

Turgor-induced shrinkage is counter-intuitive since turgor

pressure drives plant cell expansion. To resolve this apparent

contradiction, we compared the three-dimensional shape of

exocarp cells at low turgor (1 M salt treatment) and high turgor
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(pure water). We found that exocarp cells in mature fruit re-

sponded to increased turgor by a 53% expansion in volume

but a 12% shrinkage in length (along the fruit axis), accompanied

by an expansion in depth (40%) and width (18%) (Figures 5B and

5C; Table S1). Therefore, as exocarp cells pump up, they

shorten, analogous to artificial air muscles that contract when

pressurized (Tondu, 2012). However, while the valve is attached

to the fruit, these cells are prevented from contracting because

the stiff endocarp b layer is inextensible, so the valve is held

flat in a state of tension. In this state, the system is building

elastic energy. When the valve is detached from the fruit,

exocarp cells are free to relax toward their reference dimensions

and hence, in the energy-minimizing state, the valve is coiled.

To understand how contraction in one direction can occur dur-

ing overall volumetric expansion, we considered the stresses

that develop in the cell wall during an increase in turgor and

explored which cellular parameters were responsible for this

behavior. To approach this problem, we constructed a finite-

element model of pressurized cells (Bassel et al., 2014) and

used this model to identify the parameters required to mimic

the cell deformations measured in response to osmotic treat-

ments (Figures 5C–5F; Supplemental Experimental Procedures).



First, we used rectangular boxes made of isotropic material to

model typical plant cells, such as exocarp cells in A. thaliana

(100 3 20 3 20 mm, length 3 width 3 depth). When these cells

were inflated with an internal pressure of 0.7 MPa, we found

that the cells lengthened, as expected (Figure 5D; Movie S3).

However, when we used cellular dimensions for the exocarp of

C. hirsuta fruit that are competent to explode (50 3 50 3

20 mm), the cells shortened slightly (Figure 5E; Movie S4). The

increased surface area of the relatively shallow cells caused

the surface and bottom walls to bulge out, increasing the depth

and shortening the length of cells. However, the shortening was

negligible and insufficient to reproduce the change in geometry

observed in osmotic treatments (Figure 5C; Table S1). Next,

we hypothesized that an anisotropic cell wall material, which is

stiffer in the longitudinal direction of the fruit, might cause the

cells to shorten. Using the same cell template, we implemented

anisotropic material properties for the cell wall in our model.

We found that a significantly higher Young’s modulus in the

longitudinal compared to the transverse direction resulted in

12% shrinkage in length when cells increased in volume by

53%, which matched the deformations of exocarp cells

measured during osmotic experiments (Figures 5C and 5F; Table

S1; Movie S5). These results suggest that both cell shape and

cell wall anisotropy play an important role in turgor-driven

shrinkage and predict that changes in cell geometry or wall

material properties during fruit development may contribute to

explosive pod shatter.

We then tested whether turgor pressure increased in the valve

during development, since valve tension requires turgid cells.

Although the absolute stiffness measured by cellular force mi-

croscopy (CFM) (Routier-Kierzkowska et al., 2012) was higher

in the exocarp of mature rather than immature C. hirsuta fruits,

we investigated whether this could simply be an effect of cell ge-

ometry (Figure 5G). This is because larger cells are expected to

appear stiffer given the same turgor pressure (Weber et al.,

2015). We performed finite element simulations of pressurized

cells to model the exocarp of immature fruits, for which we

assumed an isotropic cell wall material, as well as mature fruits

with cell walls stiffer in the longitudinal direction (Supplemental

Experimental Procedures). The cellular models could fit both

the deformations measured during osmotic treatments and the

stiffness data quantified by CFM. Mechanical parameters such

as the Young’s moduli (Ewidth and Elength) and turgor pressure ex-

tracted from the model fit (Figure 5H) are within the ranges pre-

viously reported for plant cells (Cosgrove, 2016; Kim et al., 2015;

Pritchard et al., 1989; Wang et al., 2004; Weber et al., 2015). The

value of the Young’s modulus for the stiffer direction (Elength) is

approximate, as the simulation is less sensitive to variation of

this parameter (Figure 5I). In contrast, the model is very sensitive

to variations in turgor pressure (Figure 5I), so the value for this

parameter is more precise. Because we were able to fit the

data for both immature and mature fruits without invoking any

substantial change in turgor pressure as the fruit developed (Fig-

ure 5H), we conclude that the increase in apparent stiffness as

the fruit matures is due to the changes in cell geometry rather

than an increase in turgor pressure. This suggests that tension

develops in the valve while the cell turgor pressure remains rela-

tively constant at 0.65–0.7 MPa.
Cellular Mechanics Play a Key Role in Turgor-Driven
Shrinkage
A key prediction from the cellular model is that exocarp cell

shortening can only occur in anisotropic cells. To test this, we

estimated the degree of cell anisotropy that best fit the measure-

ments from CFM and osmotic treatments in finite element simu-

lations. Our results showed that exocarp cell walls became

distinctly anisotropic during development, becoming stiffer in

length (along the fruit axis) and softer in width directions (Fig-

ure 5H). Because plant cell walls are directionally reinforced by

stiff cellulose microfibrils, these results predict a significant

change in their net alignment in the cell walls of the exocarp layer

during fruit development. Cortical microtubules (CMTs) act as

tracks at the plasma membrane to guide cellulose deposition

(Paredez et al., 2006). In growing cells, the alignment of CMT ar-

rays predicts the direction of minimal cell expansion, since stiff

cellulose microfibrils restrict growth. We observed well-aligned

CMT arrays in the exocarp that reoriented from transverse

(45�–90�) to longitudinal (0�–30�) before valves were competent

to curl (Figures 6A and 6B). We verified a similar reorientation

in cellulose microfibril alignment (Figure S5). This reorientation

increases longitudinal cell wall stiffness and switches the

maximal direction of cell expansion to the width direction,

contributing to the change in cell shape from rectangular to

square.

To understand whether CMT reorientation and subsequent

cell shape changemight provide sufficient developmental inputs

to cause cell shortening, we analyzed valve tension in situ. Spe-

cifically, we analyzed the development of tension in the valve by

quantifying the magnitude and principal direction of shrinkage in

the exocarp after excision at successive stages of fruit develop-

ment (Figures 6C–6E, 6I, and S6). In valves that were full-length

but not yet competent to curl, maximal tension was aligned

across the valve, possibly exerted by expanding seeds (Figures

6C, S3A, S3B, and S6). The tension required to curl is exerted

along the length of the valve and increased sharply once exocarp

cells began to expand in width, coincident with thickening and

lignification of endocarp b secondary cell walls (Figures 6D–6I

and S6). In summary, our analysis suggests the following

sequence of events: a change in cell wall anisotropy following

CMT reorientation, coupled with tension in the direction of the

fruit width, causes exocarp cell growth to switch from the length

to the width direction. This reorientation drives a change in

exocarp cell shape from rectangular to square. Subsequent

anisotropic deformation of these cells results in their shortening,

causing tension to rapidly establish along the length of the valve.

This tension is harnessed to drive curvature by coincident stiff-

ening of the endocarp b layer (Figure 6I).

Valve Extension Experiment Links Multi-scale Models
Our results show that themechanism of explosive seed dispersal

has important features at the organ, tissue, and cellular scales.

We have developed a series of models to understand each of

these features and how they are connected at different scales.

To validate our multiscale approach, we devised a link between

a mechanical experiment performed at the organ level with a

theoretical model built from organ and tissue levels. We then

compared the predictions provided independently by this model
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Figure 6. Cellular Determinants of Valve Tension

(A and B) Principal direction and degree of cortical microtubule (CMT) alignment (red lines) in exocarp cells (outlined in cyan) of fruit at stage 16 (A, 12 mm fruit

length) and stage 17a (B, 17 mm fruit length); CMTs visualized by GFP-TUA6 expression; barplots quantify the distribution of CMT orientations, relative to the

longitudinal fruit axis, n = 66 cells. Scale bars, 50 mm.

(C–E) Principal direction and amount of tension (red lines) in hydrated exocarp cells during successive stages of fruit development: early stage 17a (C), late stage

17a (D), and stage 17b (E). Heatmap shows tension as% cell shrinkage in the exocarp after tension is release by excising the valve from the fruit. In (A)–(E) images

are aligned to the longitudinal fruit axis. L, fruit length in mm; curl, no curl, valve does or does not curl when cut. Scale bars, 50 mm.

(F–H) Transverse TBO-stained sections of fruit valves at early stage 17a (F), late stage 17a (G), and stage 17b (H), showing progressive thickening and lignification

of endocarp b secondary cell walls. Scale bars, 10 mm.

(I) Barplot of valve tension (% shrinkage in longitudinal direction, dashed line) shown on left y axis and exocarp cell shape (cell length/width ratio, solid line) shown

on right y axis, relative to CMT reorientation (gray) and endocarp b lignification (blue) during development, fruit length shown as a heatmap on x axis.

See also Figures S5 and S6.
and our cell-level model (Figure 7; Supplemental Experimental

Procedures).

To measure the force required to extend whole valves, we

clamped a curled valve, freshly excised from the fruit, to a high

precision extensometer and recorded force-displacement mea-

surements as the clamps were moved apart, flattening the valve

(Figures 7A and S7). We recorded five replicates of this experi-

ment. We then used an organ-level model, treating the excised

valve as a single elastic beam with intrinsic curvature, to fit the

experimental force-displacement curves and extract the

bending stiffness of the whole valve (Figure 7A). In our tissue-

level model, we used this effective stiffness to compute the

Young’s modulus of the exocarp layer (Figure 7B; Supplemental

Experimental Procedures). This is an important parameter of our

tissue-level model in determining the total energy available for

coiling. Therefore, we used the closematch that we obtained be-

tween the simulated and measured dynamics of valve coiling

and seed launch (Figures 1E and 1K) to validate this parameter

value. Hence, an additional outcome of this experiment to bridge

different modeling scales was an experimentally determined

value for the elasticity of the exocarp.

Next, we compared the value for the Young’s modulus of the

exocarp layer, derived above, with an independent calculation

from our cell-level model. The Young’s modulus was computed

in the cell-level model by simulating a stretched file of turgid

exocarp cells and measuring the force exerted at the ends of

the file (Figure 7B). Parameters in the cell-level model are based

on imaging experiments that were performed in water, where
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the cells are maximally turgid, therefore the force estimated

fromthismodel is expected tobeslightly higher than that obtained

from valve extension experiments, which were performed in air.

The computed force acting on the exocarp layer before explosion

in the tissue-level model (mean of five experimental replicates =

37 ± 20 mN, max = 75 mN) is in good agreement with the value

obtained from the cellular model (61 ± 9 mN), showing that the

predictive value of each model is consistent across scales. Note

that this force corresponds to an approximate weight of 5 g;

four ordersofmagnitudegreater thanaC.hirsutaseed, illustrating

the considerable force required to disperse small projectiles that

are dominated by drag (Vogel, 2005).

Conclusions
Through a combined experimental and theoretical analysis, we

have identified cellular innovations for the storage and rapid

release of energy that underpin the evolution of explosive seed

dispersal in C. hirsuta. Our study demonstrates the strength of

combining a genetically tractable systemwith theoretical models

at different spatial scales to obtain an integrated and compre-

hensive understanding of the developmental and mechanical

basis of this rapid plant movement. In particular, we have shown

that the mechanical catalyst for explosive energy release is the

hinged cell wall of a single fruit layer, which appears to have

evolved once in the Brassicaceae and promoted ballistic seed

dispersal. A specific prediction from our work is that genes regu-

lating secondary cell wall synthesis and patterning are likely tar-

gets of evolutionary modification. Additionally, we found that



Figure 7. Linking Multi-scale Models

(A) Force-displacement curves measured (blue

dots) and computed from an organ model (red line)

showing the force exerted, as a valve is pulled from

curved to flat in air. Insets show valve at three time

points during the experiment indicated by arrows

on the curve, overlaid in red is the corresponding

profile calculated from the organ model. Scale

bars, 1 mm.

(B) Cartoon of experimental design: valve stiffness

(yellow) determined in (A) was used to compute

exocarp stiffness (red), from which exocarp pulling

force (F) was calculated. The same force param-

eter was extracted independently from the cell-

level model.

See also Figure S7.
tissue shortening in the fruit valve does not arise from passive

shrinkage as previously thought, but is an active, turgor-driven

process dependent on the three-dimensional geometry and

anisotropy of exocarp cells. It will be interesting to determine

whether this cellular mechanism, that shares design principles

with robotic ‘‘air muscles,’’ has been used by other organisms

as a common evolutionary solution to power rapid movements.

EXPERIMENTAL PROCEDURES

Plant Material and Generation of Transgenic Plants

The C. hirsuta reference accession Oxford (Hay and Tsiantis, 2006) was

used as wild-type in this study. The lig2 mutant was isolated from an EMS

screen and the causal mutation identified by map-based cloning and whole

genome sequencing. The following transgenes were constructed using

multisite Gateway in the pGREENII125 binary vector containing norflurazon

selection: pLIG2::gLIG2-vYFP, pLIG2::glig2-vYFP, ChpNST3::AtVND7-vYFP

and ChpNST3::GUS. 35S::GFP:TUA6 was described previously (Ueda

et al., 1999). Constructs were transformed into C. hirsuta by floral dip using

Agrobacterium tumefaciens. Primers used for plasmid construction and

gene expression analysis are listed in Table S2.
Image Analysis, Microscopy, and Osmotic

Treatments

MorphoGraphX was used for quantitative image

analysis (Barbier de Reuille et al., 2015). The main

axes of cellular deformation were quantified using

the algorithm normally used to compute principal

directions of growth. The principal orientation of

GFP-TUA6 signal was computed using the Fibril

orientations algorithm. Images were acquired by

confocal laser scanning microscopy, light micro-

scopy, and transmission electron microscopy. Os-

motic treatments were performed with segments

of fruit valve pre-stained with propidium iodide

(PI). Turgid cells were imaged in deionized water.

These samples were then treated with 1 M NaCl,

re-stained, and plasmolyzed cells were reimaged

in deionized water. GUS, lignin, and cellulose

microfibril staining were performed as previously

described (Landrein et al., 2013; Liljegren et al.,

2000; Roeder et al., 2003).

Force Measurements and High-Speed

Videography

Cellular force microscopy was performed as previ-

ously described (Routier-Kierzkowska et al., 2012;
Weber et al., 2015). A high precision extensometer was custom built from a

miniature load cell and a piezoelectric micropositioner arm, which progres-

sively stretched the whole fruit valve by increments of 50 mm. Explosive pod

shatter was filmed with two synchronized high-speed cameras fitted either

with 55 mm or 105 mm lenses and configured to save images at 1,500 frames

per second (fps) and 2563 1,024 pixels, or at 15,000 fps and 2563 272 pixels.

Seed trajectories were tracked manually using software custom-written in

MATLAB (Walker et al., 2009).

Further details of thesemethods and a detailed description of all models can

be found in the Supplemental Experimental Procedures.
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The accession number for the genomic DNA sequence of C. hirsuta LIG2 gene
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