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There have been relatively few studies on the implications of the physical conditions experienced by cells
during large volume (litres) cryopreservation — most studies have focused on the problem of cryo-
preservation of smaller volumes, typically up to 2 ml.

This study explores the effects of ice growth by progressive solidification, generally seen during larger
scale cryopreservation, on encapsulated liver hepatocyte spheroids, and it develops a method to reliably

sample different regions across the frozen cores of samples experiencing progressive solidification.
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These issues are examined in the context of a Bioartificial Liver Device which requires cryopreservation
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of a 2 L volume in a strict cylindrical geometry for optimal clinical delivery. Progressive solidification
cannot be avoided in this arrangement. In such a system optimal cryoprotectant concentrations and
cooling rates are known. However, applying these parameters to a large volume is challenging due to the
thermal mass and subsequent thermal lag. The specific impact of this to the cryopreservation outcome is
required.

Under conditions of progressive solidification, the spatial location of Encapsulated Liver Spheroids had
a strong impact on post-thaw recovery. Cells in areas first and last to solidify demonstrated significantly
impaired post-thaw function, whereas areas solidifying through the majority of the process exhibited
higher post-thaw outcome. It was also found that samples where the ice thawed more rapidly had

greater post-thaw viability 24 h post-thaw (75.7 + 3.9% and 62.0 + 7.2% respectively).

These findings have implications for the cryopreservation of large volumes with a rigid shape and for
the cryopreservation of a Bioartificial Liver Device.

© 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

With the increased interest in producing bio-artificial and re-
cellularized tissue scaffolds in medical settings, the cryopreserva-
tion of complex shapes becomes more significant. Large replace-
ment and temporary support organs or biomasses are often
required without delay, yet the reality is that it can take many
months to produce them. Just-in-Time manufacture is not possible

Abbreviations list: ELS, Encapsulated Liver Spheroids; PS, Progressive Solidifi-
cation; BAL, Bioartificial Liver Device; UW, University of Wisconsin Solution (Via-
span); CPA, Cryoprotective Additive.
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— neither logistically nor economically. Cryopreservation offers a
solution to this dilemma as devices can be produced and stored to
be thawed on demand [1—3]. This prospect makes the study of the
physical implications of large volume cryopreservation and the
impact of its physical parameters salient issues for research.

The primary focus of most studies on cryopreservation to date
have been of relatively small volumes, typically in cryovials. These
experience minimal spatial variation in their thermal cryopreser-
vation histories & duration as no part of the sample is more than
5 mm from the surface of the vial such that heat transfer is rela-
tively rapid. Large inhomogeneous thermal profiles tend to be
minimized and disperse relatively quickly. During cooling, cryovials
generally cool below their equilibrium melting point prior to ice
nucleation, this results in a dendrite ice structure through the
sample [4]. These parameters are not directly relevant to larger

0011-2240/© 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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volume studies; due to thermal lag in larger volumes directional
solidification occurs [4].

The present study examines cryopreservation of a 2 L biomass in
a cylindrical geometry.

In the long term it is anticipated that a fluidized bed bioreactor
BAL, will employ the same rigid cylindrical biomass chamber for
both the cell culture and patient treatment phase, this study
examined the impact of using this chamber geometry for
cryopreservation.

The chamber used in this study has a total volume of 5 L,
however the biomass component is 2 L and so residual culture
medium was drained off and replaced by air to reduce thermal
mass, as shown in Figs. 1 and 2. In larger samples such as the one
used in this study cryopreservation conditions are spatially
dependent. HepG2 cells are immobilized due to their encapsulation
in alginate and sedimentation of cells is not an issue in this study.
Biomass near the chamber wall (within 2—3 mm) will supercool
before nucleation. The remainder of the sample will not supercool,
rather it will cool asymptotically to the equilibrium freezing point
before solidifying when the ice front ‘grows’ through its location
(the biomass itself being fixed through gravity and alginate
encapsulation). After the latent heat of solidification has been
liberated, the biomass in that area will cool rapidly towards the
external environment temperature [4,5]. Ice structure here tends to
be planer and structured [4]. This type of ice formation is termed
progressive solidification (PS).

At larger volumes, with a low surface area to volume ratio, the
thawing rates will always be slow — ice is a poor conductor of heat
[6]. The thawing profile has a significant impact on the recovery
profile of encapsulate liver spheroids (ELS); an earlier study
showed there was a significant reduction in cell viability and
function at longer thawing times [7]. An experimental warming
device was constructed which allowed thawing of large volumes
rapidly so as to make possible the examination of spatial effects in
large volume samples.

This study examined the effect of location within a sample
experiencing PS on cell membrane viability and functional
outcome. These experimental designs enabled the examination of
the spatial significance of cooling and thawing separately. We have
previously developed a method to produce PS in smaller (6 ml)
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Fig. 1. (a) A schematic of a 6 ml vial designed to produce PS (progressive solidification).
Heat is extracted only from the base of the vial (shown by the arrow) with no thermal
transfer through the other edges, and so the sample progressively solidified upwards.
Prior to thaw, the cells were removed from the vial and dissected into quintiles as
shown to the right of the vial. (b) A schematic of the face of the BAL chamber is shown
to the right. As this biomass is cooled from the edges, each semi-circle line represents

equal cryopreservation conditions. The maximum biomass depth was 7 cm (from the
number ‘5’ in the figure directly down).

vials. Producing PS in 6 ml vials gave significant cost and time
savings while replicating large volume conditions [4], when
determining the post-thaw outcome on ELS. Vials have been
compared to samples cooled directly in a 2 L set-up where only a
portion of the volume contained cells (the remainder was cell free
alginate beads). Additionally a thawing device was used to deter-
mine the impact of thawing time on ELS. These three set-ups are
detailed in Figs. 1 and 2.

2. Materials and methods
2.1. Cell culture and encapsulation

The production of ELS has been described in detail previously
[8]. HepG2 cells (human-derived hepatocyte cell-line) were grown
in monolayer culture for 7 days and passaged at 80—90% conflu-
ence. Culture medium composed of alpha-MEM medium, supple-
mented with 50 U/ml penicillin, 50 pug/ml streptomycin (both
Invitrogen plc. Carlsbad, CA, USA), and 10% human blood plasma
(National Blood Transfusion Service, UK). A suspension of
3.5 x 10° cells/ml in culture medium mixed 1:1 with 2% aqueous
alginate solution (FMC biopolymers, Philadelphia, USA), was passed
through a jetcutter system (GenialLab, Braunschweig, Germany)
resulting in spherical droplets with a diameter of 500—550 pum,
which were cross linked by ejection into a buffer containing
0.204 M CaCl,. These (ELS) were grown in culture medium at a ratio
of beads to medium of 1:58 in a fluidized bed bioreactor in a 5% CO,
humidified incubator at 37 °C for 11 days, with medium changed
every 2—3 days.

2.2. Modification of the controlled rate freezer to achieve PS in
small volumes during cryopreservation

As previously described [4], a controlled rate freezer (EF600-
103, Asymptote, Cambridge, UK) was modified to achieve PS during
cryopreservation by the addition of a module designed to take 6 ml
polypropylene vials (Sigma, St Louis, MO, USA, #Z376825,
16 mm x 57 mm). This is shown in Fig. 1.

2.3. Modification and application of 2 L cryopreservation chamber
by adding warming device

The standard large volume cryopreservation chamber consisted
of a 5 L cylindrical polycarbonate chamber with simple poly-
carbonate end caps, into which 2 L of alginate beads (alginate
without liver spheroids) were added.

For the thawing studies this was modified by adding two larger
end caps with a cavity included in each end that was not in contact
with the biomass. Between these end caps 25 aluminium tubes
with 7 mm diameter ran through the space occupied by the 2 L
alginate beads through which warmed ethanol was passed. This
design is shown in Fig. 2.

The ethanol was warmed through a heat exchanger placed in a
30 °C water bath.

2.4. Cryopreservation protocol for 6 ml PS samples

We previously developed a scale down process which allowed
the PS to form in 6 ml samples; while still large by cryopreservation
standards, allowed for economical testing.

For the current studies, 5 ml aliquots of ELS were harvested and
mixed 1:1 with a freezing solution (24% Me,SO, 76% UW v/v) pre-
cooled to 4 °C. Once equilibrated (15 min), 90% of the excess CPA
supernatant was removed, giving a final volume of 5.5 ml of 12%
Me,S0, 38% UW, and 50% ELS in culture medium, by volume, with
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Fig. 2. (a) A schematic of the BAL chamber with representative pouch which contained cells. These pouches were nylon mesh, permeable to culture medium and ice but
impermeable to ELS. This chamber was cooled from the edges (as indicated in purple), and ice developed radially to the central semi-circle, with the semicircles representing areas
that solidified at the same time. The biomass fill is represented by the dotted black line. This pouch was extracted and dissected into 5 as shown on the right of the figure. These
sections were thawed consistently to determine spatial differences in damage on cooling. This approximately replicated conditions in a vial shown in Fig. 1. (b) — the large chamber
used for thawing experiments. This was cooled from the edges as the BAL chamber. 25 warming tubes were passed through the biomass (indicated in red), with ethanol equally
distributed through each tube using larger endcaps. The opening at the top was used for addition and removal of vials, and was sealed prior to cryopreservation. Pouches were
placed within 5 cm of either the inlet or outlet tubes, with pouches of cells nearer the warming inlet thawing more rapidly. Pouches were removed for viability studies on thaw. Both

BAL set-ups had a diameter of 15 cm and length of 30 cm.

minimal supernatant. Icestart (1% w/v, Asymptote, Cambridge, UK)
was added and sank by gravity to the base of the vial, which
minimised undercooling in the sample. These vials and the CRF
were cooled to 4 °C before 5 vials (containing 5.5 ml each) were
placed into the module on the EF600. The EF600-103 was pro-
grammed to cool at 0.3 °C/min from 4 °C to —100 °C. The samples
were held in the EF600-103 at —100 °C for 1 h after the cooling
cycle was complete, before being transferred to liquid nitrogen
storage for 7 days.

2.5. Cryopreservation protocol for 2 L PS samples without warming
device

As culturing 2 L of biomass was uneconomical, 2 L of alginate
beads free from cells were produced instead, and equilibrated to a
final concentration of 12% Me,SO in UW (University of Wisconsin
Solution) solution. These were cooled to 4 °C and placed horizon-
tally into a cylindrical freezing chamber with a total volume of 5 L
(including 3 L air fraction).

Into this biomass pouches which were porous to liquid and ice
(but not to alginate beads) were placed. ELS to a volume of 10 ml
were added to these pouches. The pouch was adjusted to transcend
the entire range of cooling histories in the freezing chamber.

The freezing chamber was then placed onto a specially adapted
Asymptote large volume controlled rate freezer, with a curved
cooling plate shaped to the chamber walls. Samples were cooled at
0.3 °C/min from 4 °C to —100 °C. Ice developed from the edges
towards the centre of the chamber. Internal cooling profiles have
been published elsewhere [4].

2.6. Thawing and dissection of 6 ml volume PS samples

Each sample was removed from liquid nitrogen storage to a
sterile hood. There the vial was submerged in 37 °C water for 25s to
loosen the ice core. The sample vial lid was opened and an incision
made in the vial’s base. The frozen sample was pushed out of the

vial through its top while still solid. A scalpel was used to dissect
the sample into 5 equal circular segments from different locations
as shown in Fig. 1. These were named quintiles, with the 1st quintile
having frozen first and the 5th having been in the area frozen last
during the cooling cycle.

Each of these segments was thawed by addition of culture
medium in 330s and re-cultured in a T175 flask.

2.7. Thawing of 2 litre PS sample without warming device

The freezing chamber was removed from LN; and its edges
warmed in warm water for 60s. The end caps of the chamber were
then removed and the frozen mass extracted. The pouches con-
taining ELS were removed from the ice using a scalpel. These were
then dissected into 5 components, thawed in 330s, and re-cultured.
Post-thaw assays were carried out immediately on thaw as the
extraction process could not be carried out under sterile conditions.

2.8. Thawing of 2 L sample with warming device

To thaw, the chamber was removed from liquid nitrogen and
allowed to warm in air for 20 min. Ethanol warmed to 30 °C was
then passed through the chamber tubing at a rate of 4 L/min. The
ethanol did not come into direct contact with the biomass.

When melting was observed, the whole set-up was shaken on a
plate shaker at a rate of 20 rotations/min. When the biomass was
observed to be completely thawed, the ethanol was stopped and
the chamber removed to a sterile hood where spatially constrained
pouches were sampled.

Samples were taken linearly across the device (5 cm from each
end cap) after thawing since the pouches limited movement in this
direction.
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2.9. Post-thaw functional tests post-cryopreservation

2.9.1. Viability assay

Aviability assay was carried out using PI/FDA staining. First 20 pl
PI (propidium iodine solution, 1 mg/ml, Sigma) and 10 ul FDA
(fluorescein diacetate solution 1 mg/ml, Sigma) were added to ELS
and incubated at room temperature for 90 s. Next the ELS were
washed once in PBS (Invitrogen) and then florescence at 617 nm
(excitation) and 520 nm (emission) measured, with 1 s and 150 ms
exposure for PI and FDA staining respectively. The total FDA in-
tensity was compared to the total PI plus FDA intensity using Nikon
imaging software, giving both a cell membrane integrity and
metabolic viability read-out.

2.9.2. Total cell counts

A known volume of ELS was removed from alginate post-
cryopreservation in 16 mM EDTA (Applichem, Darmstadt, Ger-
many) solution before the ELS were disaggregated and a nucleic
count carried out using the nucleocounter system. As HepG2 cells
are mononuclear this equates to cell number.

2.9.3. Enzyme-linked-immuno-sorbent-assays (ELISA)

Alpha-1-fetoprotein and alpha-1-antitrypsin production were
quantified by sandwich ELISA in ELS conditioned media collected
1-3 days post-thaw. This was normalized with cell counts and
compared to an unfrozen control.

Mouse monoclonal antibodies (Abcam, Cambridge, UK cat #
ab10071 and ab10072) were used as a capture and as an HRP linked
antibody respectively, with Applichem (cat # A6935) used for a
standard curve.

2.94. MTT

A known volume of ELS was prepared and a 0.75% w/v MTT
solution (tetrazolium salt, Invitrogen) was added to the ELS. After
3 h incubation the MTT was removed and the crystal product dis-
solved using acidified isopropanol (4 mM HCl in propan-2-ol). Total
absorbance was measured at 570 nm on an Anthos III microplate
reader and quantified using MANTA software.

2.9.5. Glucose and lactate measurements

Culture medium samples were taken throughout the culture
process, and the glucose concentration measured with an Analox
GM7 device using oxidase enzyme reactions (using Analox, London,
UK reagent GMRD-002A). This was then related to glucose con-
sumption per sample.

The Analox GM7 was also used for lactate measurements on
medium samples using an L-Lactate oxidase reaction using reagents
GMRD 092A and GMRD 092B, from Analox. This related to total
consumption per condition.

2.10. Statistics

To determine significance, an appropriate Student’s t-test was
performed. Significance was determined at P < 0.01 unless other-
wise stated. Samples for cell functional analysis contained five
replicates unless indicated differently.

3. Results
3.1. Progressive solidification in 6 ml samples
3.1.1. Viability and viable cell number
Fig. 3 shows viability and viable cell number for samples in 6 ml

vials experiencing PS on cryopreservation from days 1—3 post-
thaw. There is a trend for highest viability and viable cell number

to appear in quintiles 1—3, which then falls to a minimum in
quintile 5 (top of sample).

On day 1 post-thaw, quintile 3 has a viability and viable cell
number of 42.8 + 3.9% and 3.0 + 0.4 million cells/ml respectively
compared to 15.9 + 2.0% and 0.9 + 0.1 million cells/ml for quintile 5.
This improves to 77.1 + 11.3% and 7.1 + 1.0 million cells/ml for
quintile 3 and 48.8 + 7.5% and 2.9 + 0.3 million cells/ml for quintile
5 on day 3 post-thaw. Viable cell number was significantly
(P < 0.01) lower in the 5th quintile compared to all other quintiles
at all time points. Viability was significantly (P < 0.01) lower in the
5th quintile compared with all other quintiles on days 2 and 3 post-
thaw, and significantly lower than quintiles 1,2, and 3 on day 3
post-thaw.

3.2. Protein production

Fig. 4 shows the production of alpha-1-antitrypsin and alpha-1-
fetoprotein for the 24 h starting one day post-thaw. These are
proteins normally produced by ELS, and it is essential that the ELS
protein producing functions recover post-thaw in order to make
the BAL a viable treatment.

The highest productions of the tested proteins were observed at
quintile 3, with the extremes of the sample (quintile 1 and quintile
5) showing lower post-thaw production. Alpha-1-antitrypsin pro-
duction was 21.5 + 0.6, 33.6 + 5.3, and 114 + 0.4 ug alpha-1-
antitrypsin per ml ELS per 24 h for the 1st, 3rd and 5th quintiles
respectively. Alpha-1-fetoprotein production was 3.6 + 0.7,
4.9 + 0.9, and 1.9 + 0.2 pug per ml ELS per 24 h for the 1st, 3rd and
5th quintiles respectively. Alpha-1-antitrypsin production was
significantly higher in the 3rd quintile than in both the 5th and 1st
quintile (P < 0.01). Alpha-1-fetoprotein production was signifi-
cantly higher in the 3rd quintile compared with the 5th quintile
(P < 0.05).

3.3. Glucose consumption and lactate production

Fig. 4 shows glucose consumption and lactate production in 6 ml
cryopreserved PS samples 2 days post-thaw. Glucose consumption
was 246 + 60, 288 + 53, and 115 + 25 puMoles of glucose per ml ELS
per 24 h for the 1st, 3rd and 5th quintiles respectively. Lactate
production was 44 + 7, 88 + 10, and 67 + 6 pMoles of lactate per ml
ELS per 24 h for the 1st, 3rd and 5th quintiles respectively.

The 1st and 5th quintiles have significantly lower (P < 0.01)
lactate production than the 3rd quintile. Glucose consumption in
the 5th quintile is significantly lower than in the 3rd quintile
(P < 0.01).

3.4. Progressive solidification in a pouch in a 2 L volume

3.4.1. Viability and viable cell number

Viability in samples cooled as part of a 2 L mass of alginate beads
immediately post-thaw is in the 80—90% range for quintiles 1—4 of
the sample. The viability drops significantly (P < 0.01) to
39.8+ 18.1% at the biomass top (5th quintile) of the sample as can be
seen in Fig. 4.

Fig. 5 shows that the highest viable cell density is found in the
3rd quintile, at 11.93 + 1.61 million cells/ml ELS. This declines
significantly (P < 0.01) towards the extremes of the sample, with
5.91 + 0.54 and 4.6 + 0.95 million cells/ml recorded in the 1st and
5th quintiles respectively.

3.5. MIT

The pattern for MTT activity showed no significant difference in
cell function between the 2nd, 3rd, and 4th quintiles, with function
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Lactate and glucose average of n = 5 + SD.

between 0.6 and 0.85 MTT absorbance units per ml ELS of the
unfrozen control. Function fell at the edges, with 0.30 + 0.02 and
0.20 + 0.002 fractions of the unfrozen control measured (signifi-
cantly worse than quintiles 2—4, P < 0.01); these were both
significantly worse than the 2"—4th quintiles, with the 1st quintile

being significantly better than the 5th (P < 0.01), Fig. 6.

3.6. Thawing of a 2 L volume

Fig. 7 shows thermal profiles in the inlet and outlet tubes of the
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warming ethanol fluid. The pre-warmed ethanol started to be
pumped through the warming device after 900s. The initial tem-
perature difference between the ethanol going into and coming out
of the chamber was 33 °C, though it rapidly equilibrates to a 10 °C
difference. After 1700s of ethanol flowing through the device, areas
near the flow output were observed frozen while the majority of
the sample had thawed. To complete thawing, the flow direction
was reversed for the final 300s.

The entire thawing process took 50 min, 35 of which used
ethanol warming.

3.7. Warming rates impact on viability and viable cell number

On thaw, samples were taken from pouches 5 cm from the inlet
of the flow and 5 cm from the flow outlet and re-cultured, results
shown in Fig. 8. At 24 h post thaw, ELS thawed near the inlet had
viability significantly (P < 0.01) higher than the outlet, at 75.7+ 3.9%
and 62.0+ 7.2% respectively. The viable cell numbers at the entrance
were also significantly (P < 0.01) higher, at 4.7 + 0.4 million cells/ml
and 3.2 + 0.4 million cells/ml for samples near the inlet and outlet
respectively.

4. Discussion

Our results show that the heterogeneous spatial conditions
characterized during cryopreservation determine function post-
thaw. In terms of viability and viable cell number, there is a gen-
eral decline in outcome days 1—3 post-thaw from the 1st to 5th
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Fig. 6. MTT viability of samples cryopreserved in porous pouches in a 2 L mass of
alginate beads as a fraction of an unfrozen control. Assessments made immediately
post-thaw. Quintiles 2—4 had significantly improved MTT viability compared with the
top and bottom quintiles. n = 5 + SD, significance defined as p < 0.01 using an un-
paired Student’s T-test.
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Fig. 7. Temperatures measured in the warming fluid (ethanol) entering (black) and
leaving (grey) the thawing tubes of the chamber with warming device. Ethanol was
equilibrated to 30 °C as the chamber warms in air, after 900s the ethanol was pumped
through the thawing tubes at 4 L/minute. The temperature difference stabilized at
around 10 °C, with average temperature rising as the biomass warms. Most of the
alginate bead and ELS has thawed by 2600s, where the flow was briefly reversed to
dislodge remaining ice. The chamber was removed from the warming circuit after
3000s.

quintile. Functional assessments confirm this, with the exception of
the first area to solidify (1st quintile) which displays larger damage
than those areas solidifying later (2nd to 4th quintiles) in the
process. The 5th quintile, the final area to solidify on cooling had
the lowest function of all. This is consistent between samples
cooled either in a 6 ml or 2 L volume, each experiencing PS, and
between several different post-thaw functional assays, indicating
that it is a direct consequence of the process of ice formation and
not simply volume. Viable cell number is seen to increase rapidly
post-thaw. This is from a combination of non-viable (membrane
permeable) cells recovering, as well as from rapid post-thaw pro-
liferation and indicates that cells are able to recover quickly from
cryopreservation stresses.

The lower functional outcome in the 1st quintile of the samples
was expected as biomass in this location experienced supercooling,
with subsequent rapid formation of ice (localized to the edge region
in a larger volume) on nucleation, and a distinct temperature
discontinuity. these conditions are harmful to many cell types [1,9]
including ELS [9,10]. Localized warming would have also occurred
in this region during sample extraction from the vial, which may
also have had a negative impact on post-thaw outcome. The
discontinuity between simple viability and cell function has been
observed before in this system [7] undergoing cryopreservation,
and highlights that simple cell counts or viabilities are not sufficient
to mark cryopreservation success. The data indicate that the cells in
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Fig. 8. Viability (left) and viable cell number (right) of samples near the inlet (black), or outlet (grey) days 1—3 post thaw. Both viability and viable cell number are significantly
better in samples nearer the warmer inlet 1 day post-thaw. No significant difference is observed in any set at any other time point. n = 5 + SD, significance defined as p < 0.01, using
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the 1st area to solidify tend to survive cryopreservation relatively
well, but they have greater per-cell damage resulting in lower
functional outcome. This contrasts with the 3rd quintile, which
tends to have equally good post-thaw cell viability, but much
greater per-cell performance indicative of lower levels of damage.

The central regions (2nd to 4th quintile) experienced favourable
conditions on cryopreservation, likely due to the combination of
optimal cooling rates and ice formation, but without the detri-
mental effects of supercooling. Studies agree that reducing super-
cooling is beneficial to post-thaw outcome, hence the inclusion of
ice nucleators or manual nucleation in many freezing protocols
[9—11]. As the biomass further away from the chamber edge will
not experience supercooling (rather a slowly expanding ice front at
the equilibrium freezing point) good viability in this central region
agrees well with these data.

The last region (5th quintile) to solidify in the biomass has a
much worse post-thaw outcome. It is well reported that the last
region to solidify in cylindrical or spherical containers — the most
common and efficient approximate shape for large biological
samples — experiences a rapid reduction in temperature on
freezing [4,5]. This deviates from the optimum cooling conditions
on cryopreservation.

Furthermore, as the cryoprotectant Me;SO is toxic at long
exposure times and high concentrations in the liquid state [1,12,13],
the last area to freeze will endure the largest CPA toxicity linked
injury. The effects of solute-redistribution on solidification, which
will cause the freezing solution to depart from its optimal freezing
concentrations, must also be taken into account. This solute-
redistribution will cause increasing damage with increased dis-
tance from the ice nucleation point, and is greater with the slow
rate of ice growth seen in our system [ 14,15]. Damage in this section
could perhaps be mitigated by adding more excess supernatant
above the biomass. This will reduce the rapid temperature fall after
solidification, and it will also provide space that the freeze
concentrated material can dilute into. A balance must be struck
between excess volume and acceptable cryopreservation condi-
tions — a larger total volume will reduce practical cooling and
warming rates.

Data for the large scale freezing largely agreed with that seen in
smaller 6 ml PS samples for the central regions (quintiles 2—5).
Lower viable cell number is observed in quintile 1 in 6 ml samples
compared with large volumes — this is likely an artifact of poor
warming as the sample edges were warmed slightly to extract the
biomass. The overall viability is higher on average as these data
points were taken on thaw and so delayed onset cell death will not
have impacted on viability [3,10]. As samples cooled without using
the thawing device were thawed equally, the heterogeneous

outcome can be linked with the physical differences on cooling.

The impact of small differences in warming rates is distinctly
visible from Fig. 8. At day 1 post-thaw samples 5 cm from the outlet
of the warming tubes having only 2/3 of the viable cell number of
those 5 cm from the inlet. This is surprising as the thawing time was
not dissimilar (only 5 min difference in 50 min of thaw time), and it
emphasizes the importance of consistent and rapid thawing for
successful post-thaw outcome of large volume cryopreservation.
The flow time of the warming fluid through the system was 1.5 s;
having faster thaw time to minimize spatial variation on thaw was
difficult to achieve practically. For optimal cryopreservation, this
data suggests that novel, faster, and more consistent thawing
methods need to be developed to realize optimal large volume
cryopreservation.

Despite there being fewer studies in the literature, warming
may just prove to be as important as cooling rates in developing
successful cryopreservation procedures. Rapid warming is gener-
ally favored in protocols, though this can only be readily achieved in
small volumes, such as cryo-straws and water baths, or with
compressed cryobags [2,12]. With the advent and need for large
volume cryopreservation, this problem is starting to be addressed.
Most extant work focuses on tissue grafts cooled in traditional ice
forming cryopreservation where cracking or tearing can occur with
non-optimal thawing protocols, or it examines warming large
vitrified samples where cracking must also be avoided but rapid
thawing is essential to avoid ice nucleation [13,16—19]. It has been
posited that methods such as nanoparticle and dielectric warming
may be required for more rapid thawing strategies [13,17,20].

These data highlight that spatial dimensions become very
important when considering successful cryopreservation with PS
present. In this study, cells have been immobilized through their
encapsulation in alginate, so localized effects can be studied accu-
rately without mixing of biological material. The same is true for
complete organs, where cells rigidly adhere to the intercellular
matrix.

5. Conclusion

This study has shown there exists a region in samples experi-
encing progressive solidification on freezing that optimized post-
thaw function of ELS.

The last quintile in the sample to solidify displays a significantly
worse outcome. While this is not ideal, the cylindrical nature of the
bioartificial liver means that the last quintile to solidify (measured
by radius) contains less than 4% of the total biomass and so its
impact on total outcome is minimal. The 1st and 2nd quintiles
contain approximately half of the biomass. Usage of the same
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chamber for cryopreservation as is used in the cell culture and
treatment phases is possible, though challenges remain.

For large volume thawing, perfusing warm fluid through a sys-
tem may not be sufficient, and new methods will have to be utilized
to optimize cryopreservation strategies.

This study demonstrated that functional outcome of a biomass
may vary intra-sample on the large scale, an important consider-
ation for all large volume cryopreservation. In addition, thawing
profiles can be as important as cooling profiles and must be
controlled effectively for rapid recovery of large scale cry-
opreserved biomasses.
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