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GENE THERAPY FOR OBSTETRIC CONDITIONS 1 

 2 

INTRODUCTION 3 

The first clinical trials of gene therapy in the 1990s offered the promise of a new paradigm for the 4 

treatment of genetic diseases. Over the decades that followed the challenges and setbacks which 5 

gene therapy faced often overshadowed any successes. Despite this, recent years have seen cause 6 

for renewed optimism. In 2012 GlyberaTM, an adeno-associated viral vector expressing lipoprotein 7 

lipase, became the first gene therapy product to receive marketing authorization in Europe, with a 8 

licence to treat familial lipoprotein lipase deficiency (1). This followed the earlier licensing in China of 9 

two gene therapies: GendicineTM for head and neck squamous cell carcinoma and OncorineTM for 10 

late-stage nasopharyngeal cancer. By this stage over 1800 clinical trials had been, or were being, 11 

conducted worldwide, and the therapeutic targets had expanded far beyond purely genetic 12 

disorders (2). So far no trials of gene therapy have been carried out in pregnancy, but an increasing 13 

understanding of the molecular mechanisms underlying obstetric diseases means that it is likely to 14 

have a role to play in the future. This review will discuss how gene therapy works, its potential 15 

application in obstetric conditions and the risks and limitations associated with its use in this setting. 16 

It will also address the ethical and regulatory issues that will be faced by any potential clinical trial of 17 

gene therapy during pregnancy. 18 

WHAT IS GENE THERAPY? 19 

Gene therapy is the introduction of genetic material into a cell so that it produces a therapeutic 20 

protein product. A gene therapy must therefore consist of genetic information, the transgene, and a 21 

way of introducing it into the cell, the vector. The genetic information contained in a transgene can 22 

include the code for the desired protein and promoters to regulate its expression. Depending on the 23 

therapeutic aim, the protein, regulation and vector may be designed to act in various ways. 24 
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Types of transgene 25 

The actions of proteins generated by gene therapy, like all therapeutic proteins, can be divided into 26 

several broad categories (3). The most simple and intuitive strategy is to introduce the gene for a 27 

protein that is missing or defective, for example the β-haemoglobin chain for treatment of β-28 

thalassemia. There are numerous other single gene disorders that would be amenable to this 29 

strategy, including cystic fibrosis, haemophilia, Duchenne muscular dystrophy, and X-linked severe 30 

combined immunodeficiency (SCID-X). However, while monogenic disorders have been targeted 31 

since the first clinical trials of gene therapy, achieving long term, safe, therapeutic expression has 32 

proven difficult (2). In other fields, most notably oncology, a variety of therapeutic actions have been 33 

exploited. Many of these involve interfering with existing pathways that contribute to tumour 34 

growth, such as the formation of new blood vessels. Vascular endothelial growth factors (VEGFs) are 35 

important mediators of angiogenesis and their overexpression has been associated with poor 36 

prognosis in ovarian cancer (4). Anti-angiogenic gene therapy, which produces soluble VEGF 37 

receptors to bind excess VEGF, has improved survival in a mouse model of ovarian cancer and is 38 

planned to undergo a phase I clinical trial (5). Proteins with novel functions can also be produced, for 39 

example enzymes that convert a nontoxic pro-drug into a cytotoxic metabolite, known as suicide 40 

gene therapy. One example is herpes simplex virus 1 thymidine kinase (HSV1TK), which 41 

phosphorylates ganciclovir (CGV) and converts it into the toxic CGV-triphosphate. Combination of 42 

HSV1TK gene transfer using adenovirus vectors followed by CGV therapy has also been studied in 43 

animal models as a potential treatment for uterine leiomyomata (fibroids) (6). Given the wide range 44 

of actions of protein messengers, receptors and enzymes, there are many obstetric conditions in 45 

which manipulation of protein pathways, particularly in relation to growth factors and angiogenesis, 46 

could prove beneficial. 47 
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 48 

Figure 1: Gene therapy involves using a vector, either viral or non-viral, to introduce a transgene, which in turn 49 

codes for a therapeutic protein. 50 

 51 

Types of vector 52 

An ideal vector would introduce the transgene efficiently and specifically to the target cells, both 53 

dividing and non-dividing, and cause it to be expressed for as long as desired, with no adverse 54 

effects. For obstetric conditions the length of time would most likely be short, limited by gestational 55 

length. The vector would also be able to carry a large amount of genetic material and be simple and 56 

cheap to manufacture (7). In reality the non-viral and viral vectors currently available each have their 57 

own advantages and limitations (8).  58 

Non-viral methods involve introducing the transgene either physically or chemically into the target 59 

cell(s).  The most widely used non-viral vectors in clinical trials are liposomes, which are artificial lipid 60 

vesicles containing the transgene that introduce it into the cell by binding with the cell membrane. 61 

Membrane binding can be enhanced by incorporating viral envelope proteins into the lipid vesicle, 62 

Transgene 

•Replacing a protein that is missing or defective 

•Augmenting an existing pathway 

•Providing a novel function or activity 

•Interfering with a molecule or organism 

•Delivering other compounds or proteins e.g. cytotoxic drugs 
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creating a kind of hybrid vector known as a virosome. Other methods to enhance gene transfer 63 

include: microinjection of DNA directly into the nucleus, which can be used in the research setting 64 

but is not feasible clinically; hyperdynamic injection using a high volume over a short period of time; 65 

a gene gun, which penetrates cells with microparticles coated in DNA; and electroporation or 66 

ultrasound, which uses electrical pulses or high frequency sound waves to make the cell membrane 67 

temporarily permeable to genetic material. Non-viral vectors are associated with fewer side-effects 68 

than viral vectors but also with reduced efficacy and only short-term expression (9, 10). 69 

Viruses are a natural choice of vector because, as obligate intracellular parasites, they have evolved 70 

to introduce their own DNA or RNA into host cells and use the cell machinery to replicate (Figure 2). 71 

To produce a viral vector, the genes governing viral replication and protein production are removed 72 

and replaced by the chosen transgene, incorporating a promoter to regulate its expression. Viral 73 

vectors can be divided into two main categories: those where the transgene forms an episome 74 

within the cytoplasm of the cell, such as adenoviruses, and those that integrate the transgene into 75 

the host DNA, such as retroviruses and lentiviruses. Adeno-associated virus (AAV) vectors share 76 

characteristics of both groups, mainly forming episomes, but over time have the potential to 77 

integrate as well (11). The choice of viral vector, therefore, depends on the therapeutic aim. 78 

Adenoviruses, which normally cause respiratory and gastrointestinal infections, infect a wide range 79 

of dividing and non-dividing cells. They also trigger a host immune response, with B cells generating 80 

antibodies to their surface proteins and T cells targeting infected cells by recognising the presence of 81 

functional virus proteins (8). Adenoviral vectors are efficient, have widespread action, and can carry 82 

large transgenes. Their usefulness in treating monogenic disorders is limited by their short-term 83 

expression, however this makes them of particular interest for use in obstetric conditions, where 84 

short-term expression may be desirable.  85 

  86 
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 87 

Figure 2: Similarities and differences between wild-type adenoviral replication and replication-deficient 88 

adenoviral vector action. (1) Fibre proteins on the viral capsid bind to coxsackievirus adenovirus receptors 89 

(CARs) on the cell surface (2) The virus is taken up via endocytosis (3) Within the endosome the fibres are shed 90 

and the viral core enters the cytosol (4) Microtubules transport the viral core to the nucleus, where DNA 91 

enters via a nuclear pore (5) Infection with a wild-type adenovirus results in DNA replication and synthesis of 92 

new viral structural and function proteins. These are assembled into new viral particles, which are then 93 

released from the cell (6) Transfection with a replication-deficient adenoviral vector results in transgenic 94 

protein expression. 95 

 96 

Immunogenicity has been a problem, especially with early vector backbones. In 1999 a systemic 97 

inflammatory response to a high dose of adenovirus vector resulted in multi-organ failure and the 98 

death of an 18 year-old participant in a clinical trial of adenoviral gene therapy for ornithine 99 

transcarbamylase deficiency, an inborn error of urea synthesis (12).  The participant’s enrolment in 100 
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the trial was subsequently criticised, as the inclusion criteria specified an ammonia level of <70M, 101 

while his ammonia level had fluctuated above and below this cut off before enrolment. 102 

Furthermore, there was criticism that adverse events in previous participants in the trial had not 103 

been properly reported. Detailed investigations suggested that the participant had an exaggerated 104 

vector-induced activation of innate immunity, which was not predicted based on the preclinical and 105 

clinical data available at the time (13). By removing more of the viral genes, newer generation 106 

helper-dependent adenoviral vectors have been developed that produce less of an immune 107 

response (14). Even so, their expression is limited to weeks or months, in part because episomes are 108 

not replicated and so are gradually lost from dividing cell populations.  109 

Retroviruses and lentiviruses generate little immune response and integrate into the host genome. 110 

Consequently they have the potential to provide long-term expression(15). This is important for the 111 

correction of monogenic diseases, but also carries with it the risk of insertional mutagenesis.    112 

Transgenes can include their own promoters, to improve and regulate expression after they have 113 

been introduced. Integration of a transgene into the host genome has the potential to influence the 114 

expression of nearby genes and if inserted upstream of a proto-oncogene, this can lead to 115 

malignancy. There are concerns that the fetal genome may be more susceptible to insertional 116 

mutagenesis due to the higher proliferation that takes place in utero (16). Insertional mutagenesis 117 

and subsequent leukemia has been seen during some haematopoietic stem cell gene therapy trials, 118 

such as for SCID-X (17). Both retroviruses and lentiviruses have a tendency to integrate in actively 119 

transcribed genes, with retroviruses favouring the transcription start regions (8). Retroviruses but 120 

not lentiviruses are limited by the fact that they can only transduce dividing cells because the 121 

preintegration complex cannot cross the nuclear membrane (18). This could be an advantage for 122 

targeting the placenta for example, which is a highly replicating organ.  123 

Like adenoviruses, AAV infects a wide range of cells, but without causing any disease in humans. The 124 

natural virus has a tendency to integrate into a safe region of chromosome 19. This tendency is lost 125 



 

 
Gene Therapy for Obstetric Conditions Submitted version   7 

when the viral genes are removed to convert it into a vector, but the theoretical possibility of 126 

insertional mutagenesis remains (8, 10). Insertion occurs much less frequently than with 127 

retroviruses, however, and the transgene mainly forms episomes. This means that long-term 128 

expression is best achieved in non-dividing cells (14). Although AAV vectors do not produce the 129 

immune response associated with adenoviral vectors, they are limited in the size of transgene that 130 

they can carry and the presence of neutralizing antibodies from previous natural infection can limit 131 

their gene transfer. 132 

Targeting delivery with viral vectors 133 

One of the advantages of viral vectors is that they generate more efficient and widespread 134 

introduction of the transgene than non-viral vectors. On the other hand it can be harder to target 135 

delivery into specific cells, increasing the risk of harmful production of the protein in inappropriate 136 

organs and the introduction of the transgene into germ cells, both of which are particular concerns 137 

when considering gene therapy for obstetric conditions. Germline gene therapy, deliberate gene 138 

transfer to oocytes or sperm cells to produce changes in future generations, was not considered to 139 

be acceptable for ethical and safety reasons by the Gene Therapy Advisory Council in 1998 (19). 140 

More recently mitochondrial DNA replacement (20) has been achieved in human oocytes using 141 

spindle transfer and in January 2015 the UK government approved regulations to govern application 142 

of these techniques to eradicate the transmission of serious mitochondrial disease from mother to 143 

child (21). Inadvertent germline transmission remains a risk with some types of vector, either to the 144 

pregnant woman, or, if there were a significant chance of the vector crossing the placenta, to the 145 

fetus. In reality this risk if very low and is discussed in detail later. The targeting of viral vectors to 146 

specific cells can be improved by using ex vivo gene transfer, by modifying the vector or transgene, 147 

and by altering the route of administration. 148 

With ex vivo gene transfer some of the target cell population, commonly stem cells, are removed, 149 

transduced outside the body and then returned to the patient (10, 17). This avoids the risk of 150 
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inappropriate vector spread and allows higher multiplicities of infection of the viral vector to be used 151 

without the risk of systemic side-effects. It is particularly suited to congenital haematological 152 

conditions, for example the primary immunodeficiency SCID-X, where the stem cell population is 153 

easily accessible from the blood or bone marrow (22). However, it has also been used to generate 154 

skin grafts from epidermal stem cells in xeroderma pigmentosum and to modify hepatocytes for 155 

autologous transplantation in familial hypercholesterolaemia. In the case of obstetric disorders 156 

arising from the placenta, chorionic villi could be sampled under ultrasound guidance, with stem 157 

cells isolated and transduced ex vivo (23). The amniotic fluid provides an alternative source of 158 

multipotent stem cells that would be matched to the placenta (24-27). 159 

Alternative ways of targeting gene therapies include: using vectors created from viruses  that 160 

naturally target certain cell types, such as herpes simplex viral vectors to transduce the central 161 

nervous system (28); modifying the virus vector envelope proteins to target certain cell types 162 

(pseudotyping); and using tissue-specific promoters (8, 14). In the case of adenoviruses, the fibre 163 

proteins that form part of their capsid normally allow them to enter cells by interacting with the 164 

coxsackievirus and adenovirus receptor (CAR). This receptor is found on a range of cells, making 165 

delivery with adenoviral vectors normally quite non-specific. The fibre-mutant adenovirus vector 166 

carrying the Arg-Gly-Asp peptide sequence (Ad-RGD) has altered fibre proteins which allow it to 167 

enter cells via integrin receptors. This increases its tropism for certain cell types/organs, including 168 

the placenta (29), endometriotic cells (30), and human leiomyoma cells, suggesting it could be used 169 

to deliver targeted treatment for uterine fibroids (31). Protein expression could also be increased in 170 

endometriotic cells lines by using promoters that are specific to endometriosis cells: secretory 171 

leukocyte protease inhibitor (SLPI) and heparanase.  172 

In obstetric disorders, targeting may also be achievable by altering the route of administration. The 173 

therapeutic targets during pregnancy can be broadly considered to be the fetus, the placenta, or the 174 

mother. Fetal gene therapy generally relies on direct administration, for example to the fetal 175 
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peritoneal cavity, umbilical vein, or amniotic fluid. However, attempts have been made to deliver 176 

viral vectors to the fetus via intraplacental injection in pre-clinical studies (32-36) with variable 177 

success, depending in part on the stage of gestation (32) (See Table 2). These studies have shown 178 

that direct intraplacental injection results in effective local gene transfer to the placenta. However, 179 

in situations where the target was the placenta rather than the fetus, unwanted spread to the fetus 180 

and the mother could be an issue. An alternative method is to deliver gene therapy to the placenta 181 

by injection into the uterine arteries, targeting the maternal side of the uteroplacental circulation. In 182 

rabbits, low levels of gene transfer to the placenta were achieved using angiographically guided 183 

injection of non-viral vectors into the uterine artery (37). Targeted gene transfer to the uterine 184 

artery can also be achieved using direct external vascular application of the vector in combination 185 

with Pluronic gel (38). This is a thermolabile gel which is liquid when cold and solidifies upon 186 

warming, allowing the vector to coat the external vessel wall.  187 

FETAL GENE THERAPY 188 

When prenatal diagnostic methods identify a fetus with a life-threatening genetic disorder that 189 

manifests in utero, fetal gene therapy is an appealing idea with several potential advantages over 190 

postnatal gene therapy, including: the ability to target cells and tissues that are inaccessible 191 

postnatally; the relative immaturity of the fetal immune system, allowing tolerance of the transgene 192 

product; the possibility of preventing or limiting the complications of diseases that develop before or 193 

shortly after birth; and the need for lower doses of the vector, thus reducing production costs (7, 14, 194 

39-41) . For these reasons fetal gene therapy has been the focus of much research, including many in 195 

vivo pre-clinical animal studies that have shown efficacy to cure disease such as in mice haemophilia 196 

(42)  metabolic storage disorders (43, 44) and muscular dystrophy (45), retinal blindness in mice (46) 197 

and birds (47), and in mice to prevent the development of fetal anomalies such as cleft palate (48). 198 

There are no studies performed in large animal models of disease but plasma levels of therapeutic 199 

transgenic factor IX protein expression have been achieved in normal sheep (49) and non-human 200 
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primates (50) after fetal gene therapy using adeno-associated virus factor IX vector injection, and 201 

neuronal transduction of the central and peripheral nervous systems is seen after systemic AAV 202 

vector injection in non-human primates (51). Target diseases are considered to be those that are 203 

life-threatening, that have pathology beginning in utero where accurate prenatal diagnosis is 204 

feasible, a postnatal treatment would be too late or is not available, and a disease where there is a 205 

close correlation between the genotype and the phenotype (52). At present no disease fits the 206 

criteria and with current vector systems still being developed for postnatal treatment, it may be 207 

some years before a fetal gene therapy may be translated into the clinic.  An alternative strategy is 208 

to gene correct fetal stem cells that are available in the amniotic fluid or placenta for example, which 209 

can then be delivered back into the fetus as an autologous transplant (53). This avoids the fetal 210 

immune system which is responsible for the failure of in utero stem cell transplantation for non-211 

immune deficiency congenital disease such as thalassaemia and metabolic storage disorders (54). 212 

Pilot studies in sheep demonstrate the feasibility of this approach (24, 55) whereby CD34+ stem cells 213 

with hematopoietic potential were derived from fetal sheep amniotic fluid, transduced and 214 

underwent autologous transplantation into fetal sheep and immunodeficient mice. It has advantages 215 

over systemic fetal gene transfer since transduction is limited to selected fetal cells, is performed 216 

outside the fetus in well controlled conditions and it allows for detailed safety testing such as 217 

insertion site analysis.  218 

MATERNAL GENE THERAPY 219 

The use of transgenic proteins in cell cultures and pregnant animals has helped to elucidate the 220 

molecular mechanisms underlying normal pregnancy and obstetric diseases. This has the potential 221 

for translation into gene therapies given to the pregnant woman rather than the fetus. Due to the 222 

inherent interdependence that occurs in pregnancy, maternal gene therapy has the prospect of 223 

providing both maternal and fetal benefit for a number of conditions. Furthermore, because 224 

pregnancy represents a limited time period, the challenges of producing long-term gene expression 225 
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would not apply. Maternal gene therapy has not been explored as widely as fetal gene therapy, but 226 

may have a role in both obstetric and non-obstetric conditions. 227 

Fetal growth restriction 228 

Fetal growth restriction (FGR) is a serious condition affecting 8% of all pregnancies and contributing 229 

to 50% of stillbirths (56). In this condition, the fetus fails to achieve its growth potential and is born 230 

smaller than anticipated. The causes are heterogeneous and can include structural abnormalities of 231 

the fetus, aneuploidy, congenital viral infection or maternal medical disorders. More commonly, 232 

impaired uteroplacental function restricts delivery of nutrients to the fetus, resulting in slowing or 233 

even cessation of fetal growth. In about 1 in 500 cases, FGR is severe and early in onset, occurring 234 

before 28 weeks gestation. Current management is to deliver the fetus before death or irreversible 235 

organ damage occurs, particularly to the brain. However, early delivery in severe early onset FGR 236 

adds additional risks to the baby from extremely preterm birth, with its own attendant short- and 237 

long-term complications (57). Furthermore FGR may be detected while the fetal weight is far below 238 

500g, a situation considered by many to be non-viable. Even modest increases in birthweight (e.g. 239 

from 500 to 600g) and gestation at delivery (e.g. from 26 to 27 weeks) are associated with significant 240 

improvements in mortality and morbidity (58). It is in these severe early-onset cases of FGR that 241 

maternal gene therapy is initially being considered, where the benefit of gaining gestation or fetal 242 

weight outweighs any potential risks of a novel therapy. If it is found to be safe and efficacious there 243 

is potential to use maternal gene therapy in more moderate FGR, which affects a larger number of 244 

pregnancies. 245 

In normal pregnancy, trophoblast invasion of the maternal spiral arteries produces a low resistance, 246 

high flow maternal uterine circulation. These changes are enhanced by the placental production of 247 

vasoactive substances such as VEGF, which causes vasodilation and angiogenesis. In uteroplacental 248 

FGR, trophoblast invasion is impaired, resulting in a relative reduction in uterine artery blood flow 249 

(59, 60). There is also a reduction in available maternal VEGF and an increase in its soluble receptor, 250 
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soluble fms-like tyrosine kinase 1 (sFlt1) (61, 62). Our research over the last eight years has 251 

demonstrated that adenovirus vector (Ad) mediated manipulation of VEGF expression in the uterine 252 

arteries produces an increase in uterine artery blood flow (63-65) and ameliorates the effects of FGR 253 

in animal models (66, 67).  254 

There are currently seven proteins within the VEGF family, of which five occur naturally in humans: 255 

VEGF-A, VEGF-B, VEGF-C, VEGF-D, and placental growth factor (PlGF). These proteins bind to various 256 

combinations of the three VEGF receptors to produce different angiogenic and lymphangiogenic 257 

effects (68). VEGF-A occurs in a variety of isoforms depending on pre-RNA splicing, including VEGF-258 

A165. In contrast VEGF-D is naturally produced in an inactive long form, and has to be shortened to 259 

the active form, VEGF-DΔNΔC. With a viral vector, however, the pre-processed active form can be 260 

produced directly. Both VEGF-A165 and VEGF-DΔNΔC have angiogenic effects, although the effect of 261 

VEGF-DΔNΔC appears to be more diffuse (69). 262 

The short and long-term effects of adenovirus vectors containing the A165 (Ad.VEGF-A165) or pre-263 

processed D isoform (Ad.VEGF-DΔNΔC) of VEGF were initially studied in normal sheep pregnancy. This 264 

involved performing a laparotomy in mid-gestation dams to inject the VEGF adenoviral vector into 265 

one uterine artery and a non-vasoactive control adenoviral vector coding for bacterial ß-266 

galactosidase (Ad.LacZ) into the contralateral uterine artery. Short-term studies comparing Ad.VEGF-267 

A165 with Ad.LacZ found that uterine artery blood flow, as assessed by Doppler ultrasound, increased 268 

in both arteries 4-7 days after administration, as expected with increasing gestation. However, while 269 

the increased flow was not significant in the Ad.LacZ treated arteries, there was a significant three-270 

fold increase in blood flow in the Ad.VEGF-A165 treated vessels. This was associated with a reduced 271 

contractile response and increased relaxation response of Ad.VEGF-A165 vs. Ad.LacZ treated vessels 272 

(63). Levels of endothelial nitric oxide synthase (eNOS) and VEGF receptor 2 (VEGFR-2) were also up-273 

regulated at day 4-7 in vessels transduced with Ad.VEGF-A165 compared with those transduced with 274 

Ad.LacZ (64). Similar results were achieved in short-term studies comparing Ad.VEGF-DΔNΔC with 275 
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Ad.LacZ, in which vessels administered Ad.VEGF-DΔNΔC had a significantly reduced contractile 276 

response, a significantly increased relaxation response, and a significant increase in phosphorylated 277 

eNOS (64). Furthermore, compared with non-transduced vessels at the same gestational age, there 278 

was a significant increase in endothelial cell proliferation in the main branch of the uterine artery 4-7 279 

days after transduction with Ad.VEGF-DΔNΔC.  280 

 281 

Figure 3: Injection of Ad.VEGF-A165 (5x10
11

 vector particles) into the uterine artery of a pregnant ewe (day 98±2 282 

of 140 day gestation) produces a significantly greater increase in uterine artery volume blood flow from 283 

baseline as measured by implanted flow probes than a control vector (Ad.LacZ) injected into the contralateral 284 

uterine artery (p=0.02). Change in uterine artery volume blood flow was calculated as a percentage change 285 

from baseline (measured over 3 days before administration; adjusted to 0) and presented as mean ± SE (64). 286 

 287 

Longer-term effects on uterine artery volume blood flow were assessed using implanted flow 288 

probes. In vessels injected with Ad.VEGF-A165, a significant increase in uterine artery volume blood 289 

flow persisted at 28 days after administration compared with vessels injected with Ad.LacZ (Figure 3) 290 

(64). The same trend was seen after injection with Ad.VEGF-DΔNΔC (65). In both cases this was 291 

associated with a persistent reduction in vascular contractile responses in the uterine arteries, as 292 

well as a significantly increased number of adventitial blood vessels at 30-45 days after 293 

administration (64, 65). At this stage, human VEGF expression was no longer detectable by enzyme-294 
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linked immunosorbent assay (ELISA) in the uterine arteries or uterine wall and there was no on-295 

going up-regulation of VEGFR-2. These findings show that the beneficial effects of Ad.VEGF 296 

administration persist even after transgene expression has ceased, which is probably related to the 297 

formation of new vessels in the uterine artery adventitia (63-65). 298 

Subsequent experiments were carried out using a sheep model of FGR, whereby adolescent ewes 299 

conceive through single sire donor embryo transfer (to minimise genetic heterogeneity and ensure 300 

optimise pregnancy rates) and are subsequently overnourished. The high dietary intake in these still-301 

growing adolescent dams results in nutrient partitioning away from the gravid uterus, causing 302 

accelerated maternal tissue growth at the expense of the fetus (70). This is associated with a 42% 303 

reduction in uterine artery volume blood flow from mid-gestation, followed by placental and fetal 304 

growth restriction relative to the normally growing fetuses of adolescent dams fed a moderate 305 

(control) diet. In this situation approximately 52% of high-intake pregnancies demonstrate "marked" 306 

FGR, an accepted definition of which is a birth weight more than two standard deviations (SD) below 307 

the genetic potential (71), which can be estimated from contemporaneous control-intake 308 

pregnancies on a study-by-study basis. In these pregnancies fetal and placental weights are reduced 309 

by 48%, whilst the remaining pregnancies (48%) are considered "non-FGR" (72). This experimental 310 

paradigm replicates key clinical features of human uteroplacental insufficiency without requiring any 311 

surgical interference to the uteroplacental circulation (73). An asymmetrical pattern of growth 312 

restriction is observed, with prioritisation of brain growth (brain sparing) and increased umbilical 313 

artery Doppler indices (74, 75). There is also impaired placental vascularisation and secretory 314 

function, and reduced placental expression of VEGF (76-78).   315 

Overnourished adolescent ewes were randomised to receive Ad.VEGF-A165 or a control treatment 316 

(Ad.LacZ or saline) injected into both uterine arteries in mid-pregnancy. The fetal growth velocity, as 317 

determined by serial ultrasound measurements of fetal abdominal circumference by a single masked 318 

assessor, was significantly increased in the Ad. VEGF-A165 group compared with the Ad.LacZ or saline 319 
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groups at 3-4 weeks after injection, and there appeared to be amelioration of fetal brain sparing (66, 320 

79). At necropsy at 131 days gestation (term = 145 days), significantly fewer fetuses demonstrated 321 

marked FGR in the Ad.VEGF-A165 group than in the Ad.LacZ or saline groups. Increased fetal growth 322 

velocity was also demonstrated in a second experimental group, in which overnourished adolescent 323 

dams were similarly randomised to receive uterine artery injections of either Ad.VEGF-A165 or saline, 324 

however the pregnancies were allowed to continue until spontaneous delivery at term (Figure 325 

4)(80). At birth Ad.VEGF-A165-treated lambs tended to be heavier (p=0.081) and demonstrated 326 

increased absolute postnatal growth velocity during the first three months of life (81). Fractional 327 

growth rates were not different, indicating appropriate growth relative to initial birth weight, and 328 

body composition analysis revealed greater lean tissue mass. No impact on the epigenetic status of 329 

key somatotrophic axis genes was observed. 330 

 331 

Figure 4: Serial ultrasound measurements of: a. fetal abdominal circumference (AC); and b. fetal biparietal 332 

diameter to AC ratio (a marker of fetal brain sparing) in 57 singleton-bearing adolescent ewes receiving a 333 

control (n=12) or high dietary intake (n=45) to promote normal or compromised fetal growth, respectively 334 

(80). Overnourished ewes were randomised to receive bilateral uterine artery injections of Ad.VEGF-A165 (n-335 

18), Ad.LacZ (n=14) or saline (n=13) in mid-pregnancy. Control-fed ewes all received saline (n=12). Those time 336 

points at which there were significant differences between Ad.VEGF-A165 and Ad.LacZ/saline-treated 337 

overnourished groups are indicated. 338 
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An alternative animal model of FGR is periconceptual nutrient deprivation in the guinea pig, which 340 

impairs placental functional development, reduces the placental exchange and trophoblastic 341 

surface, increases the thickness of the exchange barrier and causes a 40% reduction in fetal weight 342 

with brain sparing (82), all of which are features of human FGR. A further advantage of this model is 343 

the fact that guinea pig placentation is the most similar to human placentation with a haemochorial 344 

type of placenta, and a homologous process of trophoblast invasion (83) and trophoblast cell 345 

proliferation (84). Mid-gestation nutrient-restricted Dunkin Hartley guinea pigs underwent 346 

laparotomy at 30-34 days gestation (term = 65) and the uterine and radial arteries were transduced 347 

with Ad.VEGF-A165 or Ad.LacZ, using a thermosensitive Pluronic gel (67). At necropsy, 31-34 days 348 

later, administration of Ad.VEGF-A165 was associated with a significantly lower brain:liver weight 349 

ratio, suggesting an attenuation of brain sparing. 350 

In 2013 the European Union awarded a Framework Programme 7 grant to the EVERREST consortium 351 

(85) which aims to conduct a phase I/IIa clinical trial to assess the safety and efficacy of Ad.VEGF 352 

gene therapy given into the uterine arteries of pregnant women with severe early onset FGR. The 353 

project is being undertaken by the EVERREST Consortium, a multinational, multidisciplinary group, 354 

including experts in bioethics, fetal medicine, fetal therapy, obstetrics and neonatology. The clinical 355 

trial protocol is currently under development, requiring input from a wide range of healthcare 356 

experts within the consortium to consider inclusion, exclusion criteria and adverse event reporting. 357 

The ethical and regulatory issues which are raised by a trial of this nature and the development of 358 

the clinical trial protocol will be discussed later in the article. 359 

Another therapeutic strategy in FGR is to try and improve placental function instead of increasing 360 

uteroplacental blood supply. In normal pregnancy insulin-like growth factors (IGFs) I and II act within 361 

the placenta to promote fibroblast proliferation and survival, and increase placental uptake and 362 

transfer of glucose and amino acids (86). IGF-I also regulates cytotrophoblast and 363 

syncytiotrophoblast differentiation (86). In sheep, direct administration of IGF-I, via a continuous 364 
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maternal infusion or regular injections into the amniotic cavity, has been shown to increase fetal 365 

growth rate in a placental embolisation model of FGR (87, 88). Translating these routes of 366 

administration into clinical practice would prove challenging, making IGF gene therapy an attractive 367 

alternative.  368 

The potential for IGF gene therapy to alter placental growth and function has been demonstrated in 369 

vitro in cell cultures. Human primary placental fibroblasts transduced with adenoviral vectors 370 

expressing either IGF-I (Ad.IGF-I) or IGF-II (Ad.IGF-II) showed significantly increased proliferation and 371 

cell migration compared with non-transduced controls (89). Transduction of the BeWo 372 

choriocarcinoma cell line by Ad.IGF-I also resulted in significantly increased amino acid uptake and 373 

significant increases in mRNA and protein expression of amino acid (90) and glucose transporters 374 

(91).  375 

The effects of intraplacental IGF gene therapy have been studied in vivo using murine and rabbit 376 

models of FGR, resulting from reduced uteroplacental blood supply (90-92). In the mouse model, 377 

one of the two mesenteric branches of the uterine artery (MUAL) is ligated at laparotomy at day 18 378 

of gestation (term = 19-20 days) (93). This results in reduced pup birthweight and a significant 379 

reduction in placental expression of IGF-I, IGF-II, large neutral amino acid transporters (LAT) 1 and 2, 380 

and glucose transporter 8 (GLUT8) compared with sham surgery (90, 91, 93). Intraplacental 381 

administration of Ad.IGF-I at the time of MUAL resulted in significantly increased transporter 382 

expression compared with MUAL alone, with levels comparable to a sham surgery control group (90, 383 

91). The rabbit model harnesses the natural vascular watershed along each horn of the bicornuate 384 

uterus, which affects the third pup from the ovarian end (the runt). Dams underwent laparotomy at 385 

day 21, with PBS, Ad.IGF-I, or Ad.LacZ injected into the placenta of the runt in one horn (92). Where 386 

runts were administered PBS, the pups closest to the ovarian end of the same horn also received 387 

intraplacental PBS, to act as a control group. Fetal, placental, liver, lung, and musculoskeletal weight 388 

were significantly lower in runts administered PBS compared with controls. However, runts 389 
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administered intraplacental Ad.IGF-I had significantly higher fetal, liver, and musculoskeletal weights 390 

than runts receiving PBS or Ad.LacZ. In Ad.IGF-I runts these weights were comparable to the control 391 

group, indicating normalisation of fetal growth. A note of caution is raised, however, by the loss of 392 

all pups in four of the 14 dams administered intraplacental adenoviral vector. 393 

Pre-eclampsia 394 

Pre-eclampsia is a multisystem disorder, which manifests as maternal hypertension and proteinuria 395 

after 20 weeks gestation. It affects 2-8% of pregnancies and in its severe form can lead to eclampsia, 396 

multi-organ failure, and maternal and fetal mortality (94). Although the manifestations of pre-397 

eclampsia can often be managed in the short term, the only cure is to deliver the fetus and placenta, 398 

sometimes very prematurely.  Pre-eclampsia and FGR often co-exist, especially onset is early in 399 

gestation (before 28 weeks), which reflects an overlap in the pathophysiology of the two conditions. 400 

In pre-eclampsia, as in FGR, there is a relatively anti-angiogenic state, with an increase in sFlt-1 and a 401 

reduction in available maternal VEGF (95, 96). Excess sFlt-1 production may be caused by placental 402 

hypoperfusion and hypoxia secondary to inadequate trophoblast invasion, by inflammatory 403 

cytokines such as tumour necrosis factor α (TNF-α) secondary to oxidative stress, or by a 404 

combination of these factors. Either way, placental damage leads to the production of 405 

proinflammatory microparticles, cytokines, sFlt-1 and other factors which in turn cause maternal 406 

endothelial dysfunction and the clinical manifestations of the disease.  407 

The role of sFlt-1 in the pathophysiology of pre-eclampsia has been examined in animal experiments 408 

using pregnant rats (97, 98) and mice (99). Increases in maternal sFlt-1 levels, achieved either using 409 

sFlt-1 infusion (98) or by systemic delivery of an adenoviral vector expressing sFlt-1 (Ad.sFlt-1) (97, 410 

99) results in hypertension, proteinuria, renal pathology, and a significant reduction in fetal and 411 

placental weight. These changes can be ameliorated by the simultaneous administration of an 412 

adenoviral vector expressing VEGF-A165 (Ad.VEGF-A165), which significantly reduces maternal plasma 413 

sFlt-1 levels compared with Ad.sFlt-1 alone (99). When pregnant mice were administered Ad.VEGF- 414 
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A165 concurrently with Ad.sFlt-1, there was no evidence of the renal pathology or heavy albuminuria 415 

that resulted from injection of Ad.sFlt-1 alone. Furthermore, in contrast to the significant rise in 416 

blood pressure produced by Ad.sFlt-1 compared to a control vector, simultaneous administration of 417 

Ad.sFlt-1 and Ad.VEGF-A165 resulted in a fall in blood pressure over the subsequent two days. A 418 

similar short-term fall in maternal blood pressure and reduction in sFlt-1 levels was seen in healthy 419 

pregnant mice administered a haemaglutinating virus of Japan envelope (HVJ-E) vector containing 420 

the transgene for VEGF-A165 directly into the extraamniotic cavity on day 14.5 of gestation (100). 421 

For more long-term expression, application of adenovirus vectors containing VEGF-A121 (Ad.VEGF-422 

A121) has been investigated in the BPH/5 inbred mouse strain, which develops a pre-eclampsia-like 423 

syndrome (101). Untreated pregnant BPH/5 mice demonstrate defective trophoblast invasion, 424 

decreased uterine artery end-diastolic flow, increased fetal resorption, and late-gestational 425 

hypertension and proteinuria. Serum VEGF and placental VEGF expression is lower in the strain 426 

compared with ‘normal’ mice but without an increase in sFlt-1. Systemic intravenous delivery of 427 

Ad.VEGF-A121 at 7.5 dpc in BPH/5 mice resulted in higher levels of VEGF when compared to mice 428 

receiving control Ad.LacZ vector, that were comparable to untreated C57 mice at the same 429 

gestation. Treatment also ameliorated the late gestation blood pressure rise, prevented the 430 

development of proteinuria, and reduced fetal resorption by 50% compared with BPH/5 mice given 431 

Ad.LacZ. These studies demonstrate the potential for manipulating VEGF to prevent the 432 

development of or to treat pre-eclampsia. 433 

Another potential therapeutic protein system is heme oxygenase (HO), an enzyme that consists of 434 

two functional isoforms: the inducible form HO-1 and the constitutively active form HO-2, which is 435 

important in the maintenance of healthy pregnancy. Through production of both carbon monoxide 436 

and bilirubin, HO has the ability to block the production of both sFlt1 and reactive oxygen species, 437 

and thus could be a novel therapeutic agent in the management of preeclampsia (96). In an 438 

established mouse model of spontaneous miscarriage due to immunological mismatching (CBA/J x 439 
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DBA/2J combination) intraperitoneal injection of an adenovirus containing the HO-1 gene at 5 dpc 440 

reduced fetal loss with evidence of diminished placental apoptosis (102). This suggests a protective 441 

effect of systemic HO-1 up-regulation on pregnancy outcome and the prevention of oxidative 442 

damage in the placenta. 443 

Gene therapy may also have a role in developing novel therapeutics to manage pre-eclampsia. 444 

Calcitonin gene related peptide (CGRP), a neuropeptide and vasodilator, has increased levels in 445 

normal pregnancy, but plasma levels are lower in women with pre-eclampsia. Plasma CGRP levels 446 

rise in response to magnesium sulphate, a drug used clinically to prevent eclamptic fits in severe pre-447 

eclampsia. Experiments in rat models of pre-eclampsia induced using L-NAME to chronically inhibit 448 

nitric oxide production found that CGRP co-administration with L-NAME prevented the development 449 

of gestational hypertension and reduced fetal mortality. Its potential for direct clinical application is 450 

limited by its short half-life of 10 minutes, but this may be surmountable with the use of short-term 451 

gene therapy (103). 452 

Preterm birth 453 

Preterm delivery is the last major complication of pregnancy to be considered, affecting at least 10% 454 

of pregnancies worldwide, and is increasing in prevalence. There have, as yet, been no studies 455 

published on the use of gene therapies to delay delivery in women who are in threatened preterm 456 

labour, or to prevent preterm labour in high risk women. This is probably due to the multifactorial 457 

nature of the condition for which some authors have described a “preterm parturition syndrome” 458 

(104).  Known triggers to parturition that could be amenable to gene therapy interventions include 459 

intrauterine infection/inflammation, uterine ischaemia and progesterone.  460 

Pre-pregnancy and early pregnancy 461 
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Gene therapy is also being explored in a number of conditions that have a direct effect on fertility 462 

and early pregnancy, including endometriosis (105), ovarian failure (106), uterine fibroids (9), and 463 

miscarriage (102, 107). 464 

Uterine fibroids, or leiomyomas, are benign tumours of the myometrial smooth muscle, which can 465 

increase the risk of pre-term labour, fetal malposition, obstructed labour and post-partum 466 

haemorrhage. Two potential gene therapies have been developed to treat uterine fibroids, both 467 

based on adenoviral vectors. The first is a suicide gene therapy using HSV1TK/GCV, where herpes 468 

simplex virus 1 thymidine kinase is used to convert ganciclovir into a toxic metabolite (6). The second 469 

uses a transgene for a dominant negative estrogen receptor (DNER), which inhibits the action of 470 

‘normal’ wild-type estrogen receptors (108). In a rat model that is characterised by a mutation in the 471 

tuberous sclerosis 2 tumour suppressor gene, injection of either gene therapy directly into the 472 

uterine fibroids significantly reduced their volume over 30 days compared with control injections. 473 

Because of the potential impact on a fetus, either from the direct effects of these transgenes or from 474 

extensive fibroid degeneration, such gene therapies would need to be carried out before pregnancy. 475 

Gene therapy has been used in early pregnancy in a mouse model of spontaneous miscarriage (102, 476 

107). Successful pregnancy is dependent on changes in the maternal immune system, which allow it 477 

to tolerate the presence of the fetus, specifically up-regulation of Th2 cytokines relative to Th1 478 

cytokines. Two groups have used maternal intraperitoneal adenoviral gene therapy at 5 dpc, 479 

resulting in beneficial effects on the Th2/Th1 cytokine ratio and significant reductions in fetal 480 

resorption. As described above, Zenclussen et al. showed that overexpressing the HO-1 enzyme in 481 

the maternal peritoneal cavity protected locally against rejection in transplantation models probably 482 

due to its anti-oxidant, anti-inflammatory and cytoprotective functions (102). A separate group 483 

investigated the effect of adenovirus vector containing the anti-inflammatory fusion protein CTLA4Ig 484 

transgene. Vector injection into the peritoneal cavity reduced fetal loss rate in a mouse model of 485 

miscarriage (CBA/J x DBA/2 cross) by skewing the Th2/Th1 cytokine balance, expanding peripheral 486 
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CD4(+) CD25(+) regulatory T cell populations and inducing indoleamine 2,3 dioxygenase (IDO) mRNA 487 

and Foxp3 expression at the maternal-fetal interface, molecules that are key regulatory factors for 488 

feto-maternal tolerance (107). The mechanism of action appears to be related to inhibition of 489 

maternal spleen lymphocyte proliferation and regulation of apoptosis in the feto-placental unit 490 

(109). 491 

Non-obstetric conditions during pregnancy 492 

Oncology accounts for over two thirds of gene therapy trials, and in the future maternal cancer may 493 

become an indication for gene therapy during pregnancy (2). Pregnant women diagnosed with 494 

cancer can face a painful choice between ending the pregnancy early to start treatment, through 495 

termination or iatrogenic preterm delivery, undergoing treatment known to have adverse fetal 496 

effects, or risking their own health by delaying intervention.  497 

The field of cancer gene therapy is too wide to examine in detail but it is worth considering one 498 

study on the effect of the antioxidant manganese superoxide dismutase (MnSOD) in pregnant mice 499 

(110). MnSOD can protect against the side-effects of radiotherapy, but must be present for 24-48 500 

hours after radiation exposure to be effective against on-going apoptosis. Administration of the 501 

protein, even on multiple occasions, has not been effective at achieving this. Liposome mediated 502 

gene transfer of MnSOD to mid-gestation pregnant mice 24 hours before total body irradiation 503 

significantly increased pup survival over 220 days compared with pups from untreated irradiated 504 

mothers. However, there was still a significant reduction in litter size and pup weight compared with 505 

non-irradiated mice. This may be in part because whole body irradiation exposed the fetuses directly 506 

to ionising radiation, rather than just the indirect effect of cytokines crossing the placenta. With the 507 

use of targeted radiotherapy and shielding, fetal outcome may be further improved. 508 

RISKS AND LIMITATIONS OF MATERNAL AND PLACENTAL GENE THERAPY 509 
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Some of the risks associated with gene therapy have already been discussed, and are currently being 510 

ameliorated with developments in vector design. The risk of insertional mutagenesis with retroviral 511 

vectors may be reduced by switching from retroviruses to lentiviruses, which are less likely to 512 

integrate near actively transcribed genes, the development of self-inactivating vectors, and the use 513 

of tissue-specific promoters rather than viral promoters (17). The immune reactions seen with 514 

adenoviruses are being addressed using helper-dependent adenoviral vectors, which provoke less of 515 

a T-cell response, using serotypes to which patients are unlikely to have pre-existing immunity, and 516 

coating vectors with polymers like PEG to protect them from neutralising antibodies (111).  517 

With maternal gene therapy, as with many obstetric or fetal interventions, an important risk is that 518 

the intervention will be ineffective or only partially effective. In conditions such as recurrent 519 

miscarriage, severe early onset FGR, and early onset pre-eclampsia this could mean that a pregnancy 520 

which may have otherwise ended in miscarriage, stillbirth or termination instead leads to the 521 

livebirth of a child with chronic health problems (52). Whether parents perceive this as a risk or a 522 

benefit will be an individual matter, but it would need to be discussed as part of any pre-procedure 523 

counselling. With the use of adenoviral vectors, which are well suited to the relatively short-term 524 

nature of most obstetric conditions, there is also a risk that the generation of antibodies may mean 525 

that an intervention could only be given once. This could have implications for future pregnancies 526 

and for the woman’s long-term health if she were later to require adenoviral gene therapy for 527 

another indication. 528 

Placental transmission 529 

As maternal gene therapy would target the maternal system, and possibly the maternal side of the 530 

placenta, placental transmission to the fetus would generally be undesirable. If significant placental 531 

transmission were to occur it could potentially lead to fetal gene transfer with the attendant risks of 532 

fetal germline transmission and insertional mutagenesis, as well as the adverse effects of the 533 

expressed protein on fetal development. This may be particularly important in the case of growth 534 
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factors (112, 113). Even in the case of placental gene therapy with direct intraplacental 535 

administration, excessive spread to the fetus may not be desirable. The findings of pre-clinical 536 

studies using maternal and placental administration are summarised in Tables 1 and 2 respectively. 537 

The majority of studies in pregnant animals have been performed using adenoviral vectors. Wildtype 538 

adenovirus is able to cross the placenta, as demonstrated by the presence of viral DNA in amniotic 539 

fluid at amniocentesis (114). Whether this ability is retained by adenoviral vectors may depend upon 540 

the animal used, the dose given, and the route of administration. Intravascular administration to 541 

pregnant sheep (63, 64), mice (29), and guinea pigs (38) produced transgenic protein expression in 542 

the placenta but not in the fetuses. The same pattern was seen when adenoviral vector was applied 543 

to the outer surface of the uterine and radial arteries in guinea pigs using a thermolabile Pluronic gel 544 

(38). In contrast, after intravascular administration in rabbits (37) and multiple dose intravascular 545 

administration in rats (33), transgenic protein expression was detected in both the placenta and fetal 546 

organs. Following maternal intraperitoneal administration, microscopy only demonstrated transgene 547 

expression in the maternal side of the placenta, and not in fetal tissue (102, 107). Using PCR, 548 

however, the transgene and adenovirus were detected in fetal homogenate (102). Direct 549 

intraplacental administration of adenoviral vectors has almost always been found to result in 550 

transgenic protein expression in the fetus and dam (32-36, 92), with the site of highest fetal 551 

expression depending on the gestation of administration (32).  552 

In the case of hybrid and non-viral vectors, the evidence is more limited and variable. Following 553 

administration of plasmid/PEI or plasmid/liposome complexes into the uterine arteries of pregnant 554 

rabbits, gene transfer was detected in the placenta and fetuses (37). Injection of virosomes into the 555 

extraamniotic space in pregnant mice, however, produced expression in the decidua, basal lamina of 556 

the placenta, and amnion, but not in the fetus (115). In contrast, after intravenous administration of 557 

liposomes in mice, the vector was not detected in either placental or fetal tissue (110).  558 
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Given the variation in placental structure between animals, however, these findings may not be 559 

directly applicable to human pregnancy. Studies exposing human placental villous explants to high 560 

dose adenoviral vector found occasional transduction of the underlying cytotrophoblast when the 561 

overlying syncytiotrophoblast was deficient, but no evidence of the vector crossing the basement 562 

membrane (116). Given the importance of placental transmission to the safety of maternal gene 563 

therapy more evidence is required, and further studies in the ex vivo perfused human placenta are 564 

currently underway. 565 

Germline transmission 566 

The risk to the woman of oocyte transduction is probably no higher during pregnancy than at any 567 

other time. The risk of fetal germline gene transfer after maternal gene therapy, however, will 568 

depend on the degree of placental transmission and the gestation at which gene therapy is given. 569 

Germline transmission has been observed after in utero fetal gene therapy, particularly in early 570 

gestation. Intraperitoneal administration of a retroviral vector to fetal sheep resulted in low-level 571 

transduction of sperm cells, with lower levels at later gestations (117). However, unlike humans, 572 

where germ cell compartmentalisation is complete by 7 weeks gestation, germ cells in fetal sheep 573 

continue to migrate to the testes after birth. In non-human primates, oocyte transduction has been 574 

observed after fetal intraperitoneal administration of a lentiviral vector in the late first trimester, but 575 

this route of administration has not been studied at later gestations (118). Although, theoretically, 576 

maternal gene therapy in the second or third trimester should carry a very low risk of fetal germline 577 

modification, this will be an important safety consideration for clinical translation. 578 

Placental toxicity 579 

The future use of gene therapy in pregnancy would not be possible if it resulted in significant 580 

placental toxicity. So far, however, such toxicity has not been demonstrated. Administration of an 581 

adenoviral vector into the uterine arteries of pregnant rabbits did not produce any evidence of a 582 
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placental inflammatory response, reflected by the number of placental macrophages and T cells (37). 583 

Similarly when human placental villous explants were exposed to 5x1010 vp/ml of adenoviral vector 584 

expressing VEGF or LacZ for 60 minutes there was no increase in human chorionic gonadotrophin or 585 

lactate dehydrogenase, both of which can be released by placental cell damage (116). Further work 586 

to study the effect of viral vectors on perfused human placental tissue is on-going. 587 

ETHICAL AND REGULATORY ISSUES 588 

Medical research involving pregnant women raises specific ethical and regulatory issues, particularly 589 

in relation to early phase trials. While maternal gene therapy has yet to be considered by national 590 

ethical and regulatory bodies, parallels may be drawn with regulatory reviews of hypothetical fetal 591 

gene therapy proposals. 592 

Clinical research in pregnancy 593 

Clinical research in pregnancy remains limited, despite recognition that the physiological and 594 

metabolic changes of pregnancy mean the results of clinical trials in non-pregnant subjects (often 595 

predominantly male) may not be transferrable. The exclusion of pregnant women from many clinical 596 

trials has been criticised as putting them at an unfair disadvantage by restricting their access to 597 

evidence-based medicine (119, 120). Despite the 2002 Council for International Organizations of 598 

Medical Sciences (CIOMS) recommendation that pregnant women be presumed eligible to 599 

participate in research, progress has been slow. It has been argued that the reluctance to conduct 600 

clinical trials during pregnancy may arise from a residing reaction to the thalidomide tragedy, 601 

coupled with the categorisation of pregnant women as a vulnerable group (121).  602 

The categorisation of all pregnant women as vulnerable to coercion or undue influence, as laid out 603 

by the United States Code of Federal Regulations (122), has been challenged over recent years (121, 604 

123). However, in clinical trials which involve risks to the mother for potential benefit to the fetus, it 605 

could be argued that the internal and external pressures a pregnant woman faces affect her ability 606 
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to freely decide about participation (121, 124). While this must be a consideration for clinical 607 

researchers, and careful thought should be given to the consent procedures in any obstetric trial, it 608 

should not be seen as an insurmountable obstacle to conducting research in pregnancy. There are 609 

many occasions in routine obstetric care where an intervention that has a risk to the pregnant 610 

woman is performed for the benefit of the fetus, including antenatal corticosteroids for fetal lung 611 

maturation, antiarrhythmics for fetal tachyarrhythmias, and Caesarean section for fetal acidaemia. 612 

There is also a precedent for carrying out clinical trials of such interventions, including laser ablation 613 

for twin-twin transfusion syndrome (125) or prenatal open repair of myelomeningocele (126).  614 

In semi-structured qualitative interviews, 24 women in four European countries who had 615 

experienced a pregnancy complicated by severe early onset fetal growth restriction were asked 616 

about their attitudes towards a future clinical trial of maternal gene therapy for this condition (127). 617 

The majority of women had felt capable of making treatment decisions during their pregnancies, and 618 

while they recognised the challenges of deciding whether or not to participate in such a trial, felt 619 

that with time and information it would have been their decision to make. Similarly CIOMS 620 

recommends that, even where these risks are uncertain, it is up to the pregnant woman to decide 621 

whether she considers them acceptable (124).  622 

Early phase clinical trials in pregnancy 623 

The development of entirely novel obstetric therapies, such as gene therapies, requires phase I 624 

safety trials, where the risks and benefits are inherently uncertain. Furthermore, because the 625 

primary outcome is safety, phase I trials often use a dose-escalation design, where the starting dose 626 

may be so low that no beneficial effect is anticipated. The Council of Europe “Additional Protocol to 627 

the Convention on Human Rights and Biomedicine, concerning Biomedical Research” states that in 628 

research involving competent adults which does not produce a direct benefit, the risks should be 629 

acceptable to the participant (128). In pregnancy, however, it requires that such research should 630 

have only minimal risks. Similarly, the United States Code of Federal Regulations states that research 631 
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without direct benefit to the mother of fetus should involve only minimal fetal risks (122). It has 632 

been argued that while maternal and fetal risks should be minimised, they should not have to be 633 

minimal (129), as this constitutes an unreasonable barrier to obstetric research. Under the current 634 

regulations, however, the future of early phase trials for those interventions that can only be carried 635 

out in pregnancy may depend on the regulatory interpretation of potential benefit. 636 

Implications from national reviews of in utero gene therapy 637 

In February 1998 the UK Gene Therapy Advisory Committee (GTAC) New and Emerging Technologies 638 

group presented their report on the potential uses of gene therapy in utero (19). This was followed, 639 

in March 1999, by the US National Institute for Health (NIH) Recombinant DNA Advisory Committee 640 

report on the scientific, medical, and ethical issues relating to prenatal gene therapy (52). At the 641 

time both reports concluded that there was insufficient data to support a trial of fetal gene therapy. 642 

They recommended that the risk benefit analysis and informed decision-making process would be 643 

key elements of any future trials, and highlighted the psychosocial and emotional risks to pregnant 644 

women, including the risk of coercion. They also advised that informed consent for participation 645 

should include a clear explanation that the intervention would be experimental and that long-term 646 

follow-up would be needed. Gene therapy to the mother intended to benefit the fetus was not 647 

considered at the time, but any such application would need to weigh up the potential risks to the 648 

mother as with any other gene therapy treatment, but also the risk to the fetus if significant 649 

placental gene transfer were to occur. 650 

CONCLUSION 651 

An increasing understanding of the molecular basis of disease (allowing identification of potentially 652 

therapeutic transgenes) together with on-going developments in vector design (allowing targeted 653 

and regulated delivery) mean that gene therapy offers an ever-expanding range of future 654 

therapeutic possibilities. In order to harness these advances for the benefit of pregnant women it is 655 
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vital that investigation continues into the pathophysiology of obstetric diseases, and that this is 656 

translated into clinical research. Pregnancy offers unique ethical and practical challenges for the 657 

conduct of clinical trials, which would only be intensified in a trial of maternal gene therapy. It is only 658 

by addressing these challenges, however, that we can hope to provide evidence-based therapeutics 659 

to future generations of pregnant women. 660 

 661 
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Table 1: Summary of vector spread and transgene expression following maternally administered gene therapy, pfu = plaque-forming units, vp = viral 1008 

particles, PCR = polymerase chain reaction, ELISA = enzyme-linked immunosorbent assay.  1009 

Author Route of delivery Animal Vector(s) Dose Day of 

administration 

(term) 

Days until 

harvesting 

Methods of detection Detected in 

placenta? 

Detected 

in fetus? 

Heikkila 

2001 

Uterine artery Rabbit Ad.LacZ 1x10
10

 pfu 14-28 (30) 3 X-gal staining and PCR Yes Yes 

Plasmid/PEI 250 g 

Plasmid/liposome 500 g 

David 2008 Uterine artery Sheep Ad.VEGF-A165 or  

Ad.LacZ 

5x10
11

 

particles 

88-102 (145) 4-7 ELISA and PCR Yes No 

Mehta 

2012 

Uterine artery Sheep Ad.VEGF-A165 or  

Ad.LacZ 

5x10
11

 

particles 

80-102 (145) 30-45  ELISA and PCR No No 

Mehta 

2011 

Uterine artery Guinea 

pig 

Ad.LacZ 1x10
10

 vp 45 (65) 2-7 ELISA, X-gal staining and 

PCR 

Yes No 

Internal iliac artery 

Pluronic gel to 

outer surface of 

uterine and radial 
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arteries 

Xing 2000 Jugular vein Rat Ad.GFP-GT3 or 

Ad.CMV-GT3 

2.3x10
10

 

pfu 

14 (22) 6  Immunofluorescence, PCR 

and Southern blot 

No Unclear if 

tested 

3 doses, 

total 

5.4x10
10

 

pfu 

14-16 (22) 6 days from 

first dose 

Yes Yes 

Katayama 

2011 

Tail vein Mouse Ad-RGD.Luc or  

WT-Ad.Luc 

5x10
8
 pfu 10.5 (20) 2  Immunofluorescence and 

PCR 

Yes No 

Epperly 

2011 

Intravenous Mouse MnSOD plasmid 100 g 13 (20) 1 Immunohistochemistry 

and PCR 

No No 

Zenclussen 

2006 

Maternal 

peritoneal cavity 

Mouse Ad.HO-1 or 

Ad.GFP 

1x10
5
 and 

1x10
8
 pfu 

5 (20) 9  Fluorescent microscopy Yes No 

PCR Yes Yes 

Li 2009 Maternal 

peritoneal cavity 

Mouse Ad.CTLA41g or 

Ad.GFP 

1x10
5
 pfu 5 (20) 9  Confocal laser scanning 

microscopy 

Yes No 

Vectors: Ad.CMV-GT3 = adenoviral vector expressing  human glucose transporter 3 gene under control of a cytomegalovirus promoter, Ad.GFP = adenoviral vector 1010 

expressing green fluorescent protein, Ad.CTLA41g = adenoviral vector expressing green fluorescent protein and cytotoxic T lymphocyte-associated antigen 4, Ad.GFP-GT3 = 1011 

adenoviral vector expressing  green fluorescent protein and human glucose transporter 3 gene under control of a cytomegalovirus promoter, Ad.HO-1 = adenoviral vector 1012 
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expressing heme oxygenase 1, Ad.LacZ =adenoviral vector expressing  β-galactosidase, Ad-RGD.Luc = modified adenoviral vector expressing firefly luciferase, Ad.VEGF-A165 1013 

= adenoviral vector expressing  vascular endothelial growth factor A165 isoform, MnSOD = manganese superoxide dismutase, WT-Ad.Luc = wildtype adenoviral vector 1014 

expressing firefly luciferase. 1015 

  1016 
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Table 2: Summary of vector spread and transgene expression following intraplacental administration of gene therapy, pfu = plaque-forming units, cfu = 1017 

colony-forming units, PCR = polymerase chain reaction. 1018 

Author Animal Vector(s) Dose Volume of 

injection 

Day of 

administration 

(term) 

Days until 

harvesting 

Methods of 

detection 

Detected in 

placenta? 

Detected in 

fetus? 

Detected in 

dam? 

Woo 

1997 

Mouse Ad.RSVLuc 5x10
7
 pfu per 

placenta 

3 μL per 

placenta 

12.5 (19.5-20.5) 3 Luciferase 

activity 

Yes Yes Yes 

Ad.RSVLacZ X-gal 

staining 

Yes Yes Yes 

Türkay 

1999 

Mouse Ad.CMVntLacZ or 

Ad.RSVntLacZ 

5x10
5
 to 1x10

9
 

pfu per 

placenta 

500 nl per 

placenta 

9.5 (20) 4 X-gal 

staining 

Not 

examined 

Yes Yes 

Ad.CMVntLacZ or 

Ad.RSVntLacZ 

2.5x10
6
 to 

1x10
9
 pfu per 

placenta 

500 nl per 

placenta 

11.5 (20) 2 X-gal 

staining 

Not 

examined 

Yes Yes 

Ad.CMVntLacZ  2x10
8
 pfu per 

placenta 

1l 14.5 (20) 4 X-gal 

staining 

Not 

examined 

Yes Unclear if 

tested 
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LZ.LacZ 9x10
5
 cfu per 

placenta 

500 nl per 

placenta 

9.5 (20) 4 X-gal 

staining 

Not 

examined 

Yes  No 

LZ.LacZ 9x10
5
 cfu per 

placenta 

500 nl per 

placenta 

11.5 (20) 2 X-gal 

staining 

Not 

examined 

Yes No 

Xing 

2000 

Rat Ad.GFP-GT3 or 

Ad.CMV-GT3 

0.75 to 

1.125x10
8
 pfu 

per placenta 

5-7.5μL per 

placenta 

14 (22) 5-6 PCR Yes Yes Yes 

Senoo 

2000 

Mouse Ad.CALacZ 3x10
6
 pfu per 

placenta 

Not stated 14 (20) 3 X-gal 

staining 

Not 

examined 

No Unclear if 

tested 

Katz 

2009 

Mouse Ad.LacZ 1x10
8
 pfu per 

placenta 

5 μL per 

placenta 

14 (20) 3 X-gal 

staining 

Yes Yes (1 of 9) Not 

examined 

Keswani 

2015 

Rabbit Ad.LacZ 1x10
9
 pfu per 

placenta 

40 μl per 

placenta 

21 (30) 2 X-gal 

staining 

Yes Equivocal Yes 

PCR Yes Yes Not 

examined 

Vectors: Ad.LacZ =adenoviral vector expressing  β-galactosidase, Ad.CMV-GT3 = adenoviral vector expressing  human glucose transporter 3 gene under control of a 1019 

cytomegalovirus promoter, Ad.GFP-GT3 = adenoviral vector expressing  green fluorescent protein and human glucose transporter 3 gene under control of a 1020 

cytomegalovirus promoter, Ad.RSVLuc = adenoviral vector expressing firefly luciferase under a respiratory syncytial virus promoter, Ad.RSVLacZ = adenoviral vector 1021 
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expressing β-galactosidase under a respiratory syncytial virus promoter, Ad.CMVntLacZ = adenoviral vector expressing β-galactosidase under a cytomegalovirus promoter, 1022 

Ad.RSVntLacZ = adenoviral vector expressing β-galactosidase under a respiratory syncytial virus promoter, LZ.RSLacZ = lentiviral vector expressing β-galactosidase, 1023 

Ad.CALacZ = adenoviral vector expressing β-galactosidase under a synthetic CAG promoter 1024 

 1025 


