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ABSTRACT

This paper provides an algorithm for simulating improper (or
noncircular) complex-valued stationary Gaussian processes.
The technique utilizes recently developed methods for multi-
variate Gaussian processes from the circulant embedding lit-
erature. The method can be performed in O(n log2 n) oper-
ations, where n is the length of the desired sequence. The
method is exact, except when eigenvalues of prescribed cir-
culant matrices are negative. We evaluate the performance
of the algorithm empirically, and provide a practical example
where the method is guaranteed to be exact for all n, with an
improper fractional Gaussian noise process.

Index Terms— Circulant embedding, improper, noncir-
cular, complex-valued, fractional Gaussian noise

1. INTRODUCTION

Bivariate time series are commonly represented as complex-
valued signals in numerous applications including wireless
communication [1], meteorology and oceanography [2], and
functional Magnetic Resonance Imaging (fMRI) [3]. There
have been important methodological developments in ma-
chine learning and signal processing for complex-valued
signals, see e.g. the books by [4, 5]. There is a growing
interest in analyzing complex-valued processes that are said
to be improper (see e.g. [6, 7, 8]), as opposed to proper,
concepts which we define formally in this paper. Improper
processes are sometimes referred to as noncircular processes,
and proper processes as circular processes [4, 9]. A proper
process can be interpreted as a second order process whose
statistics are rotationally invariant when viewed in the com-
plex plane, whereas improper processes are not, and the latter
are seen to be more realistic models for applications [5, Sec-
tion 1.9]. Numerous improper complex-valued stochastic
models have been proposed, e.g. [6, 10, 11, 12, 13], for appli-
cations including climate and seismology, and in this paper
we provide an algorithm for their efficient simulation.
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For efficiently simulating Gaussian processes, the tech-
nique of circulant embedding [14, 15] is receiving increasing
attention. The underlying concept is that the covariance ma-
trix of any regularly sampled stationary process is Toeplitz,
and hence can be embedded into a larger matrix that is cir-
culant. A circulant matrix has the useful property that the
matrix can be diagonalized via Fourier Transforms, such that
Gaussian sequences can be simulated in O(n log n) opera-
tions. This is faster than the alternative method of Cholesky
factorization which requires O(n2) operations, where n is
the length of the desired sequence. The circulant embedding
technique is exact, in that the simulated sequence has statisti-
cal properties that exactly match the model, there are however
instances where exactness is not guaranteed, which has been
the subject of further investigation, see e.g. [16, 17].

The method of circulant embedding was extended to sim-
ulating complex-valued processes in [18]. This procedure is
only applicable to proper processes however. In this paper
we extend the method to improper processes by incorporating
techniques developed in [19] for multivariate processes. This
connection was also recently mentioned in [20], although this
paper is primarily focused on revisiting the problem of sim-
ulating proper processes. The contribution of this paper is to
provide full details of the O(n log2 n) generating algorithm
for improper processes, together with a practical example, and
an empirical evaluation of its performance.

For improper processes modeled in the frequency domain,
an exact simulation algorithm is provided in [21]. Here in
this paper we detail an exact simulation algorithm for im-
proper processes specified in the time domain by their co-
variance structure. The distinction is important, because pro-
cesses specified analytically in one domain cannot in general
be expressed analytically in the other. Therefore converting
from one domain to the other often requires an approxima-
tion, thus losing the exactness of the procedure (see also [19,
Section 3.4]). We also note approximate techniques for sim-
ulating improper processes in [22] using widely-linear filters
[23]. Circulant embedding, on the other hand, can be used
to exactly generate finite sequences from infinite-order non-
Markovian Gaussian processes, as we shall demonstrate in
this paper.



2. PRELIMINARIES

Consider a complex-valued stationary Gaussian process de-
fined by zt = xt + iyt, where t ∈ Z. We assume without loss
of generality, that zt is zero mean, as a non-zero mean can be
added to the simulated sequence a posteriori.

The process zt is fully specified by the autocovariances
and cross covariances of xt and yt respectively, given by

sxx(τ) = E{xt+τxt}
syy(τ) = E{yt+τyt}
sxy(τ) = E{xt+τyt} (1)

for all τ ∈ Z, where E{·} is the expectation operator. We note
that sxx(τ) = sxx(−τ) and syy(τ) = syy(−τ), but in gen-
eral sxy(τ) 6= sxy(−τ). Equivalently, the process zt can be
fully specified by its own autocovariance and complementary
covariance sequence, specified respectively by

szz(τ) = E{zt+τz∗t }
rzz(τ) = E{zt+τzt} (2)

where z∗t denotes the complex conjugate of zt. The sequences
szz(τ) and rzz(τ) are in general complex-valued and have
the properties that szz(τ) = s∗zz(−τ) (Hermitian symmetry)
and rzz(τ) = rzz(−τ) (symmetry). The sequence rzz(τ) is
sometimes also referred to as the relation sequence [8], or the
pseudo-covariance [20]. Complex-valued processes that have
the property that rzz(τ) = 0 for all τ are said to be proper,
and are otherwise said to be improper [5]. In this paper we
focus on the improper case where rzz(τ) 6= 0.

The easiest way to relate the sequences in (1) and (2) is
by starting in the complex representation and then expanding,
such that

szz(τ) = E {(xt+τ + iyt+τ )(xt − iyt)}
= E{xt+τxt}+ E{yt+τyt}

+ i (E{xtyt+τ} − E{xt+τyt})
= sxx(τ) + syy(τ) + i [sxy(−τ)− sxy(τ)] (3)

rzz(τ) = E {(xt+τ + iyt+τ )(xt + iyt)}
= E{xt+τxt} − E{yt+τyt}

+ i (E{xtyt+τ}+ E{xt+τyt})
= sxx(τ)− syy(τ) + i [sxy(−τ) + sxy(τ)] (4)

where for the complex-valued process to be proper we there-
fore require sxx(τ) = syy(τ) and sxy(τ) = −sxy(−τ).

3. THE METHOD

We provide the pseudo-code for the simulation algorithm of
complex-valued improper processes in Algorithm 1. Then
in Sections 3.1–3.3 we detail each line of the algorithm, fol-
lowed by discussions in Section 3.4.

3.1. Converting from complex to bivariate

To generate a complex-valued sequence of length n of a zero-
mean Gaussian process we first specify szz(τ) and rzz(τ) for
τ = 0, . . . , n (in Algorithm 1, line 1). This fully specifies the
properties of the generated sequence as negative lags up to−n
are obtained through the properties szz(τ) = s∗zz(−τ) and
rzz(τ) = rzz(−τ), and lags larger than ±n are not required.
The next step of our approach (in Algorithm 1, lines 2–5)
is to specify the complex-valued process zt in terms of the
autocovariances and cross-covariances of xt and yt, which
can be performed by inverting the relationships in (3) and (4)
yielding

sxx(τ) = <
{

1

2
[szz(τ) + rzz(τ)]

}
(5)

syy(τ) = <
{

1

2
[szz(τ)− rzz(τ)]

}
(6)

sxy(τ) = =
{

1

2
[rzz(τ)− szz(τ)]

}
(7)

sxy(−τ) = =
{

1

2
[szz(τ) + rzz(τ)]

}
, (8)

for τ = 0, . . . , n, where <{·} and ={·} denote the real and
imaginary part respectively. Note that sxx(τ) and syy(τ) are
defined for τ = −n, . . . ,−1 by symmetry, i.e. sxx(τ) =
sxx(−τ) and syy(τ) = syy(−τ).

3.2. Generating the bivariate series

Having specified sxx(τ), syy(τ), and sxy(τ), for τ =
−n, . . . , 0, . . . , n, we proceed to use the method of [19] for
multivariate Gaussian time series, setting the dimension pa-
rameter to p = 2 for bivariate series. We detail this within Al-
gorithm 1, where we have simplified the algorithm provided
in [19] for multivariate processes to bivariate processes.

In Algorithm 1, lines 6–8, the length-2n vectors cxx, cxy,
and cxy, are the top rows of the embedded circulant matri-
ces, where the full matrices do not need to be formulated
(thus reducing storage requirements from 4n2 to 2n). The
Fast Fourier Transform (FFT) of these vectors diagonalizes
the circulant matrices, yielding the respective sequences of
eigenvalues λxx, λyy, and λxy, which are computed in line
9 of Algorithm 1 via the operation

λxx(k) =

2n−1∑
j=0

cxx(k) exp{−i2πj(k − 1)/2n}, (9)

for k = 1, . . . , 2n, and similarly for λyy(k) and λxy(k). Note
that λxx(k) and λyy(k) are real-valued, whereas λxy(k) is in
general complex-valued. As each FFT is of length 2n, the
“powers of two” FFT algorithm can be used when n is set to
be a power of two.



Algorithm 1 Pseudo-code for the simulation algorithm for improper processes
1: INPUTS: szz(τ), rzz(τ), for τ = 0, . . . , n

2: for τ = 0 to n do
3: sxx(τ)← <

{
1
2 [szz(τ) + rzz(τ)]

}
; syy(τ)← <

{
1
2 [szz(τ)− rzz(τ)]

}
4: sxy(τ)← =

{
1
2 [rzz(τ)− szz(τ)]

}
; sxy(−τ)← =

{
1
2 [szz(τ) + rzz(τ)]

}
5: end for
6: cxx ← [sxx(0), sxx(1), . . . , sxx(n− 1), sxx(n), sxx(n− 1), . . . , sxx(1)]

7: cyy ← [syy(0), syy(1), . . . , syy(n− 1), syy(n), syy(n− 1), . . . , syy(1)]

8: cxy ← [sxy(0), sxy(−1), . . . , sxy(−(n− 1)), sxy(−n), sxy(n− 1), . . . , sxy(1)]

9: λxx ← FFT(cxx); λyy ← FFT(cyy); λxy ← FFT(cxy)

10: Generate 4 length-2n i.i.d. Gaussian sequences with mean 0 and variance 1/2, denote as: w1, w2, w3, w4

11: for k = 1 to 2n do

12: Σk ← 2

(
1 λxy(k)/

√
λxx(k)λyy(k)

λ∗xy(k)/
√
λxx(k)λyy(k) 1

)
; Ak ← chol(Σk)

13:

[
gx(k)

gy(k)

]
← Ak

[
w1(k) + iw2(k)

w3(k) + iw4(k)

]
;

[
hx(k)

hy(k)

]
← 1√

2n

[
λxx(k)gx(k)

λyy(k)gy(k)

]
14: end for
15: qx ← FFT(hx); qy ← FFT(hy)

16: z1 ← [<{qx(1)}, . . . ,<{qx(n)}] + i[<{qy(1)}, . . . ,<{qy(n)}]
17: z2 ← [={qx(1)}, . . . ,={qx(n)}] + i[={qy(1)}, . . . ,={qy(n)}]
18: RETURN: z1, z2

The next step (Algorithm 1, line 10) is to generate four
length-2n i.i.d Gaussian sequences with mean 0 and vari-
ance 0.5, which we denote as w1, w2, w3, and w4. Then
a length-2n for loop is performed (Algorithm 1, line 11–14)
to correlate the random variables correctly. First, in line 12,
the 2 × 2 matrix Σk is computed using the eigenvalue se-
quences. A remark made in [19] is that if λxx(k) = 0 or
λyy(k) = 0, then the off-diagonals in Σk should be set to 0,
and this does not lose the exactness of the procedure. The
next step is to compute the Cholesky decomposition, denoted
as Ak = chol(Σk). Then in Line 13, the matrix Ak is used
to transform the random Gaussian sequences, w1, w2, w3,
and w4, into two correlated complex-valued length-2n vec-
tors gx and gy. Finally, these are normalized by the eigen-
value sequences, λxx and λyy, yielding the two vectors hx

and hy.
The final step (Algorithm 1, line 15) is to transform back

from the frequency domain to the time domain, by performing
the FFT (as in (9)) on hx and hy. This yields two length-2n
vectors qx and qy.

3.3. Generating the complex-valued series

To generate a complex-valued sequence of length n, with
prescribed autocovariance szz(τ) and complementary covari-
ance rzz(τ), we take the real parts of the first n values of qx

and qy, to form a complex-valued sequence z1, as given in
Algorithm 1, line 16. In addition, we can recover a second
sequence z2 by taking the first n values of the imaginary parts
of qx and qy (Algorithm 1, line 17). Therefore to generate
M length n sequences with the same szz(τ) and rzz(τ), we
only need to run the algorithm dM/2e times.

3.4. Discussion

The exactness of the approach of Algorithm 1 follows directly
from the exactness of the method proposed in [19], together
with the derivation of (3) and (4). Algorithm 1 is executable
in O(n log2 n) operations, as all operations can be computed
in O(n), except for the 5 Fourier transforms in Lines 9 and
15, which can be each computed in O(n log2 n) using the
standard “powers of two” FFT algorithm.

As discussed in [18, 19] and elsewhere, a potentially
problematic aspect of implementing circulant embedding
algorithms is that the eigenvalues λxx and λyy (in Algo-
rithm 1, line 9) are not guaranteed to be nonnegative definite.
Negative eigenvalues occur when the circulant matrices (in
Algorithm 1, line 6–7) are not nonnegative definite, and are
hence invalid covariance matrices. Two ways of dealing with
negative eigenvalues are commonly suggested in the litera-
ture. The first is to over-sample and implement Algorithm 1
with m > n, where certain values of m may yield entirely



nonnegative eigenvalues. The second is to set negative eigen-
values to zero, which renders the methods inexact.

Note that λxy is complex-valued and nonnegative eigen-
values are not required here for the exactness of the proce-
dure. We do however require that the matrix Σk is nonnega-
tive definite for the Cholesky decomposition to be valid. Here,
[19] suggest approximating Σk with a nonnegative definite
matrix found by setting negative eigenvalues of Σk to zero.

In [19], the authors prove two scenarios in which the
method is guaranteed to be exact, which we briefly discuss
here. First we define the 2× 2 covariance matrix

Rτ =

(
sxx(τ) sxy(τ)
sxy(−τ) syy(τ)

)
for all τ ∈ Z. The first scenario is when the matrices Rτ
are absolutely summable, and the corresponding spectral den-
sity matrix is positive definite. Then the method is exact for
large enough m. The second scenario is in time-reversible
cases, which in the bivariate case simply means that sxy(τ) =
sxy(−τ), then the method is exact for any m ≥ n if the ma-
trices Rτ , ∆Rτ = Rτ −Rτ+1, and ∆2Rτ = Rτ − 2Rτ+1 +
Rτ+2, are nonnegative definite for τ ≥ 0.

At first glance these conditions appear hard to interpret,
but intuition can be developed by looking in the complex do-
main. By examining (5)–(8) we can see that time-reversibility
follows when ={szz(τ)} = 0 for all τ . Then if we also have
that ={rzz(τ)} = 0, it follows that Rτ is diagonal, with en-
tries equal to szz(τ) + rzz(τ) and szz(τ) − rzz(τ). Thus if
we meet the three conditions that

|rzz(τ)| ≤ szz(τ) (10)

|rzz(τ)− rzz(τ + 1)| ≤ szz(τ)− szz(τ + 1) (11)

|rzz(τ)− 2rzz(τ + 1) + rzz(τ + 2)| ≤
szz(τ)− 2szz(τ + 1) + szz(τ + 2) (12)

for τ ≥ 0, then the simulation method is exact. We will revisit
these conditions in our applications section.

4. APPLICATION TO IMPROPER FRACTIONAL
GAUSSIAN NOISE

In this section we test our algorithm on an improper fractional
Gaussian noise (fGn) process. The complex-valued fGn pro-
cess [24] is a stationary Gaussian process which, when regu-
larly sampled at timesteps t ∈ Z, has autocovariance

szz(τ) =
VH
2
A2
(
|τ + 1|2H + |τ − 1|2H − 2|τ |2H

)
(13)

where 0 < H < 1 is known as the Hurst parameter and
controls the roughness or smoothness of the process, with a
higher value leading to a smoother process. The normalizing
parameter VH is set as

VH =
Γ(H)Γ(1−H)

πΓ(2H + 1)
(14)

Fig. 1. The minimum eigenvalue for {λxx,λyy} obtained
over different values of n in line 9 of Algorithm 1 for the
models of (13) and (15) where A = 1 and B = 1/

√
2. Each

line represents a different value of the Hurst parameterH , and
corresponding normalizing constant VH in (14), where the top
line is H = 0.5 and in each subsequent line H increases in
increments of 0.05. The bottom line is H = 0.9999, as the
process is not defined for H = 1, only in the limit as H → 1.

which is required to regulate the behavior of fractional Brow-
nian motion (fBm) [25], where fGn is defined as the incre-
ment process of a regularly sampled fBm.

Setting H = 0.5 recovers a regular Gaussian white noise
process. When H > 0.5, then szz(τ) > 0 and the process
is said to be persistent, as it is positively correlated in time.
Conversely, if H < 0.5 then szz(τ) < 0 and the process is
anti-persistent and negatively correlated in time. fGn with
H > 0.5 is a commonly used long memory model in numer-
ous applications, see e.g. [26].

For our improper process, we propose to model the com-
plementary covariance to follow the same form of szz(τ) such
that

rzz(τ) =
VH
2
B2
(
|τ + 1|2H + |τ − 1|2H − 2|τ |2H

)
(15)

where B2 < A2. It is easy to show that this simple model
is a valid process by either transforming into the frequency
domain and verifying that the spectral matrix is nonnegative
definite [27], or by transforming to a bivariate representation
using (5)–(8).

It also follows that the conditions in (10)–(12) are satis-
fied by (13) and (15) when H ≥ 0.5. This can be verified by
first observing that szz(τ) is positive, decreasing for τ ≥ 0,
and convex, such that the right hand side of (10)–(12) is pos-
itive for all τ ≥ 0 in each of the three cases. Then as rzz(τ)
is a re-scaled version of szz(τ), the terms on the left hand
side are always a factor of B2/A2 smaller than the right hand
side, and the three inequalities are hence satisfied. Finally,
as ={szz(τ)} = 0 and ={rzz(τ)} = 0, it follows from the
proof of [19] that the circulant embedding procedure of Algo-
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Fig. 2. The thin solid lines are the autocovariance and cross
covariance models of (13) (in blue) and (15) (in red) respec-
tively, for the first 50 lags. We have set the parameters to
H = 0.75, A = 1/

√
VH , and B = A/

√
2. Overlaid (in thick

dashed lines) are the averaged unbiased auto and comple-
mentary covariance estimates for 1000 time series of length
n = 1000, simulated using Algorithm 1.

rithm 1 is guaranteed to be exact for all n with this process.
As an additional verification, in Fig. 1 we plot the minimum
eigenvalue for {λxx,λyy} obtained in Line 9 of Algorithm 1
over different values of H ≥ 0.5 and n (with A = 1 and
B = 1/

√
2), and they are seen to be positive everywhere.

We now simulate regularly sampled discrete sequences
from the model of (13) and (15). As the process is not Marko-
vian to any finite order, and hence cannot be represented as an
autoregressive process of finite order, then we cannot recur-
sively simulate the sequences inO(n) operations, and as such
we turn to our circulant embedding algorithm. We first sim-
ulate 1000 time series each of length n = 1000. We fix the
parameters in (13) and (15) to H = 0.75, A = 1/

√
VH , and

B = A/
√

2, such that the variance is normalized to 1. We
display plots of szz(τ) and rzz(τ) in Fig. 2 along with the av-
erage unbiased estimators of the autocovariance and comple-
mentary covariance for the 1000 simulated time series. The
exactness of the method appears to hold, however to test this
more robustly we repeat the experiment over values of n rang-
ing from 10 to 1000 (in increments of 10). For each value of
n, we simulated 1000 time series and report the root mean
square difference between szz(τ) and its averaged unbiased
estimate ŝzz(τ ;n) (as performed in [18]) given by

RMS(szz(τ);n) =

√√√√ 1

n

n−1∑
τ=0

|ŝzz(τ ;n)− szz(τ)|2. (16)

We similarly computeRMS(rzz(τ);n) with each value of n.
These metrics are displayed in Fig. 3, and are seen to decay as
n increases. Even for small n however, the root mean square
distance is less than 0.02, supporting the statement that for
this process the method is an exact procedure for all n.
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Fig. 3. The blue-solid line is the root mean square difference
of the theoretical and observed autocovariance, calculated us-
ing (16), averaging over 1000 time series simulated using Al-
gorithm 1, with the same parameter values as in Fig. 2. The
analysis is repeated over values of n ranging from 10 to 1000
in increments of 10. The red-dashed line is the same analy-
sis, this time reporting the root mean square difference of the
theoretical and observed complementary covariance.

5. CONCLUSIONS

Improper or noncircular Gaussian processes have been receiv-
ing increasing attention in signal processing [28]. In this pa-
per, an algorithm for generating improper complex-valued se-
quences has been proposed for stationary Gaussian processes
specified in the time domain. This builds on previous methods
for proper processes [18, 20], and with improper processes
modeled in the frequency domain [21]. Our method is a re-
formulation of [19], where we have simplified the approach to
bivariate processes, and then converted into the complex do-
main. We discussed how theoretical conditions under which
exactness is guaranteed extend to the complex representation.
An example of such a model was given, by proposing a sim-
ple improper complex fractional Gaussian noise process, and
simulation evidence supported the exactness of the algorithm.

Circulant embedding simulation methods are only exact
when computed eigenvalues from circulant matrices are non-
negative. As reported in [29] for spatial processes, the issue of
negative eigenvalues appears to grow going from one to two
dimensions (and indeed higher). As an example, we imple-
mented the improper periodic covariance kernel for complex-
valued time series used in [12] for climate modeling, and
found negative eigenvalues were unavoidable with any n. Set-
ting these to zero, the root mean square metric of (16) was
found to be much higher, at around 0.05 for n = 1000. There-
fore, pending more use in practice, the limitations of the sim-
ulation algorithm remain unclear. Important avenues of future
investigation are to find more general conditions under which
exactness does and does not hold, as well as to see if the error
bounds of approximate methods can be controlled theoreti-
cally when exact O(n log n) simulation is not achievable.
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