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ABSTRACT 21 

Sediment cores from five lakes across the Tibetan Plateau were used as natural 22 

archives to study the time trends of polycyclic aromatic hydrocarbons (PAHs). The 23 

depositional flux of PAHs generally showed an increasing trend from the deeper 24 

layers towards the upper layer sediments. The fluxes of PAHs were low with little 25 

variability before the 1950s, and then gradually increased to the late 1980s, with a 26 

faster increasing rate after the 1990s. This temporal pattern is clearly different 27 

compared with those remote lakes across the European mountains when PAHs started 28 

to decrease during the period 1960s-1980s. The difference of the temporal trend was 29 

attributed to differences in the economic development stages and energy structure 30 

between these regions. PAHs are dominated by the lighter 2&3-ring homologues with 31 

the averaged percentage over 87%, while it is notable that the percentage of heavier 32 

4-6 ring PAHs generally increased in recent years, which suggests the contribution of 33 

local high-temperature combustion sources becoming more predominant. 34 

Capsule: 35 

Increasing contributions from local sources to PAHs in the Tibetan Plateau 36 

environment as evidenced from sedimentary records. 37 

Keywords: Long-range atmospheric transport (LRAT), Sediment, Historical trend, 38 

PAHs 39 

40 
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Introduction 41 

The Tibetan Plateau (TP) stretches nearly 1,000 km north-to-south and 2,500 km 42 

east-to-west in east-central Asia, with the average elevation exceeding 4,500 m. 43 

Similar to the polar regions, most parts of the TP are remote and inaccessible, which 44 

has led to the presumption of its pristine status. However, the TP is located at low 45 

latitude, and surrounded by the rapidly industrializing countries of South and 46 

Southeast Asia. Semi-volatile persistent pollutants released from the surrounding 47 

source regions can migrate to TP by long-range atmospheric transport (LRAT). In 48 

addition, fast growth in population, tourism and gross industral activities in localities 49 

within the TP in the past decades may have adversely impacted the environment, 50 

altering its previously pristine interior ecosystem. 51 

The lakes on the Plateau differ from lakes in lowlands. The inputs of chemical 52 

pollutants to alpine lakes are generally predominated by atmospheric deposition away 53 

from direct input (Juttner et al., 1997). Increasingly enhanced global warming in 54 

recent decades has accelerated the melting of glacier and frozen soil at high altitude, 55 

releasing previously trapped chemical pollutants which may consequently be flushed 56 

into alpine lakes (Bogdal et al., 2009). In addition, the post-depositional sediment 57 

mixing in deep alpine lakes is relatively limited (Fernandez et al., 2000). The 58 

sediments in such lakes are regarded as sentinel indicators of atmospheric pollution 59 

due to the lack of local pollution sources (Rose and Rippey 2002; Bettinetti et al., 60 

2011). 61 
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Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous contaminants. The 62 

population growth and industrialization in surrounding areas of the TP have also 63 

inevitably increased the releases of PAHs from various combustion processes. The 64 

depositional chronology of these chemicals as recorded in relatively undisturbed 65 

sediments of alpine lakes in the TP can be used as geochemical markers of economic 66 

and social development impacts (Han et al., 2015). Yang et al. (2010) reconstructed 67 

mercury pollution using lake sediments from the TP. Cheng et al. (2014) reported time 68 

trends of OCP pollution by analyzing sediments from three lakes in the central TP. 69 

Wang et al. (2010) and Han et al. (2015) reconstructed PAH pollution in Lake Qinghai 70 

of the northern TP. These studies documented that sediment of the TP could archive 71 

important environmental information about past anthropogenic influence. However, 72 

the sedimentary PAH data across the TP, especially in the southern and central TP is 73 

so far very limited. 74 

The basic hypotheses of the present study are that sediment contamination of 75 

lakes in the TP is associated with the industrialization and human activities of major 76 

Asian countries, and that over the past three decades, the rapid economic development 77 

and population growth within the TP have contributed to the overall burden of 78 

pollutants in the environment. In this study, a total of 157 samples from five sediment 79 

cores were analyzed for PAHs. The objectives were to reveal the spatial patterns along 80 

a southwest-to-northeast transect across TP, reconstruct the deposition history, and 81 

gain insights on sources of the PAHs in the sediments. 82 
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1. Materials and methods 83 

1.1.  Study Area and Sampling 84 

Five lakes were selected across a southwest-to-northeast transect: Peiku Co, Nam Co, 85 

Cuo E, Cuo Na and Keluke Lake (Fig. 1). All the lakes are remote and far from urban 86 

or agricultural pollution sources and are covered annually with ice for at least several 87 

months. All the studied lakes are freshwater except for Cuo E, which is brackish with 88 

salinity of 892 mg/L in Cl- (Lami et al. 2010). Keluke is a closed basin in the 89 

semi-arid, grassland-steppe climate zones in the northeast TP with no river flowing in 90 

or out of the lake. Nam Co and Peiku Co lakes have glaciers in their catchments 91 

(Lami et al. 2010). Peiku Co is a typical tectonic lake caused by the uplift of 92 

Himalayan Mountains at the southern edge of the TP, and precipitation as well as 93 

glacier melt water is the main water supply (Nie et al., 2013). The latitude, longitude, 94 

and altitude of the lakes as well as the surface areas and depths are given in Table 1. 95 

    Sediment cores were collected in August 2006 and 2007. A HTH gravity corer 96 

with an 8.5 cm inner diameter polycarbonate tube was used to collect sediment cores 97 

at adjacent locations within 3 meters of each other in each lake. Cores were collected 98 

from the deepest part of the lakes, except the two from Nam Co and Peiku Co, where 99 

they were taken from the shallower sub-basins. One core from each site was assigned 100 

for organic pollutants analyses in this study. The length of the cores ranged from 24 to 101 

43 cm (Table 1). The core was sectioned onsite at intervals of 0.5 cm using a stainless 102 

steel cutter. All samples were packed in aluminum foil and were stored at 4°C in a car 103 
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refrigerator during transportation, and then they were kept frozen at -20°C in the 104 

laboratory. 105 

1.2.  Sediment Characterization 106 

The samples were analyzed for water content and wet bulk density, from which the 107 

porosity and dry bulk density were calculated. Organic matter (OM) content of each 108 

section was determined gravimetrically by loss on ignition (LOI) at 550°C for 4 h. 109 

A sediment core from each lake was analyzed for 210Pb, 226Ra, 137Cs and 241Am 110 

by direct measuring radioactivity using γ-ray spectroscopy in the Environmental 111 

Radiometric Facility at University College London, using an ORTEC HP Ge GWL 112 

series well-type coaxial low background intrinsic germanium detector. The detailed 113 

radiometric dating method is described in the previous work (Yang et al., 2010). 114 

Sediment ages and mass sedimentation rates (MSR) were calculated using constant 115 

rate of supply (CRS) model. The sediment focusing factor (FF), which was needed to 116 

evaluate the post-depositional horizontal movement of the sediment particles, was 117 

calculated as the ratio of the unsupported 210Pb inventory in the sediments in the 118 

coring location to that expected from the regional atmospheric input (Yang et al., 2010) 119 

and the results are included in Table 1. 120 

1.3.  Chemical Analysis 121 

A PAH mixture standard, a surrogate mixture standard, and the internal standard 122 

2-fluorobiphenyl were purchased from Accustandard (New Haven, CT). The PAH 123 

mixture standard contained 16 individual compounds including naphthalene (NAP), 124 
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acenaphthylene (ACY), acenaphthene (ACP), fluorene (FLR), phenanthrene (PHE), 125 

anthracene (ANT), fluoranthene (FLT), pyrene (PYR), benz[a]anthracene (BaA), 126 

chrysene (CHR), benz[b]fluoranthene (BbF), benz[k]fluoranthene (BkF), 127 

benz[a]pyrene (BaP), indeno[1,2,3-cd]pyrene (IcdP), dibenzo[a,h]anthracene (DahA), 128 

and benzo[ghi]perylene(BghiP). The surrogate mixture standard had five deuterated 129 

PAHs including naphthalene-d8 (NAP-d8), acenaphthene-d10 (ACP-d10), 130 

phenanthrene-d10 (PHE-d10), chrysene-d12 (CHR-d12) and perylene-d12 (PER-d12). 131 

The solvents n-hexane and dichloromethane used for extraction and cleanup 132 

were ultra residue-analytical grade and were purchased from Fisher Scientific 133 

(Andover, USA). Alumina (100-200 mesh, Sigma-Aldrich, USA) and Silica gel 134 

(100-200 mesh, Qingdao Marine Chemical, China) were baked at 550°C for 12 hrs 135 

and activated at 180°C for 2 hrs. Anhydrous sodium sulfate was baked at 550°C for 4 136 

hrs. Copper powder (200 mesh, Sinopharm Chemical Reagent Co. Ltd, China) was 137 

activated before use. 138 

    Freeze-dried and ground sediment samples (1 g) were spiked with surrogates and 139 

extracted using mixed solvents of hexane and dichloromethane (DCM) (1:1, v/v) by 140 

accelerated solvent extraction (Dionex ASE350, U.S.) at a temperature of 150°C and a 141 

pressure of 1500 psi. Activated copper powder was added to the extract to remove 142 

elemental sulfur. The extracts were concentrated to about 1~2 ml by a rotary 143 

evaporator. The cleanup was conducted using a glass column packed with 6 g 3% 144 

deactivated silica gel, 4 g 2% deactivated alumina and 2-cm-thickness of anhydrous 145 

sodium sulfate from bottom to top. The elution was subsequently conducted using 10 146 

ml of hexane and a 50 ml mixture of dichloromethane and hexane (1:1, v/v). The 147 
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effluent was concentrated to 0.5 ml. Quantitative internal standard (200 ng of 148 

4,4’-difluorobiphenyl) were finally added to the extract before instrumental analysis. 149 

    An Agilent-7890 gas chromatograph (GC) equipped with an HP-5 MS capillary 150 

column (30 m×0.25 mm i.d. ×0.25 um film thickness) was used to separate PAHs 151 

while a mass spectrometer (MS, Agilent 5975) with electron ionization (EI) was used 152 

to analyze PAHs. The oven temperature program was operated as follows: initial 60°C 153 

for 2 min, 6°C /min to 300°C, and held for a final 10 min. The temperature of the 154 

injector was set at 280°C. High-purity helium was used as the carrier gas with a 155 

constant flow of 1 ml/min. The MS detector was operated at 70 eV and the ion source 156 

was set at 300°C. The quadrupole and interface temperatures were 180°C and 300°C, 157 

respectively. The MS detector was operated in selected ion monitoring (SIM) mode. 158 

1.4.  Quality Control 159 

A procedural blank using Na2SO4 in place of sediment was analyzed in each batch of 160 

11 sediment samples. Only trace levels of targets were detected in blanks, and were 161 

subtracted from those in sediment samples. The average recoveries of spiked 162 

surrogates in all analyzed samples (N=157) were 70-136% for the five deuterated 163 

PAHs. The concentrations reported in this paper were corrected by the surrogate 164 

recoveries. One or two segments in each core were analyzed in duplicate, and the 165 

average relative percentage differences (RPDs) were in the range of 5.1-31.1%. The 166 

method detection limit (MDL) was defined as 3:1 signal-to-noise ratio (S/N) and 167 

ranged 0.01-0.41 ng/g dw. The instrument performance was routinely checked using 168 
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quality control standards. 169 

1.5.  Estimation of Chemical Flux 170 

Flux stands for the accumulation rate of the chemical analyte. Since concentration 171 

may be strongly affected by dilution of detrital matter and water content, flux has 172 

been considered as a more meaningful way to assess pollutant inputs than 173 

concentration (Elmquist et al., 2007). The flux was estimated by the following 174 

equation: 175 

Fluxi (μg/m2/yr) = Ci×MSR×10/FF 176 

where Ci is the dry-weight-based concentration in sediment core segment i (ng/g dw), 177 

MSR is mass sedimentation rate (g/cm2/yr), FF is the focusing factor(dimensionless), 178 

reflecting the post-depositional horizontal movement of sediment particles on the lake 179 

bottom due to turbulence. The FF value was calculated as the ratio of unsupported 180 

210Pb accumulation in a core to that atmospheric 210Pb deposition flux in lake basin 181 

soil. Detailed information was described by Yang et al., (2010). 182 

2. Results and discussion 183 

2.1.  Concentrations 184 

The concentrations of total PAHs (Σ16PAH) in the sediment cores of the five lakes 185 

ranged from 98-595 ng/g. The Σ16PAH concentration profiles in the cores varied 186 

among lakes (Fig. 2A). The PAH concentrations in this study were compared with 187 
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those sediments from other remote lakes (Table 2). The PAH concentrations were 188 

generally higher than those reported previously for sediments from the Arctic (27-140 189 

ng/g, Σ15PAH excluding benz(a)anthracene) (Jiao et al., 2009), the Antarctic (1.4-205 190 

ng/g) (Klanova et al., 2008) and Rocky Mountains (31-280 ng/g) (Usenko et al., 191 

2007). The average Σ15PAH (176 ng/g, excluding naphthalene) in the sediments of 192 

this study was approximately double that from the southern slope of the Himalayas in 193 

Nepal (68 ± 22 ng/g) (Guzzella et al., 2011). The PAH concentrations in this study 194 

were in the same order of magnitude with those reported in sediment from the Andes 195 

mountains (32-862 ng/g) (Barra et al., 2006) but 1~2 orders of magnitude lower than 196 

those in sediments from European mountains (Rose and Rippey 2002; van Drooge et 197 

al. 2011). The elevated concentrations in the TP might be due to its proximity to 198 

possible source regions. The lakes in this study, especially in the southern and central 199 

areas, are located at altitude over 4500 m a.s.l. and are likely to be in the free 200 

troposphere. Deposited PAHs at these altitudes is likely to be derived from LRAT 201 

sources, most probably from Indian subcontinent and China inland areas. Precipitation 202 

on the TP is strongly controlled by the Asian monsoon system (Pant et al., 1997). 203 

Studies have documented that the transport and fate of contaminants to TP are likely 204 

to be significantly influenced by regional monsoon systems (Yang et al., 2008; Wang 205 

et al., 2008; Yang et al., 2010). 206 

The 16 PAHs were grouped into 2&3-rings (NAP, ACY, ACP, FLR, PHE and 207 

ANT), 4-ring (FLT, PYR, BaA and CHR) and 5&6-rings (BbF, BkF, BaP, IcdP, DahA, 208 

and BghiP). Because high molecular weight PAHs are mostly generated from high 209 
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temperature combustion, such as in coke ovens and diesel engines (Mai et al., 2003), 210 

the sum of the 5 and 6-ring PAHs Σ7PAH (BaA, CHR, BbF, BkF, BaP, IcdP and DahA) 211 

is a good indicator in reflecting the impacts of industrial and traffic emissions. In this 212 

study, the increasing trends of Σ7PAH are even clearer than Σ16PAH in all studied 213 

lakes (Fig. 2B). Therefore, the Σ7PAH can be a more appropriate parameter to reflect 214 

the anthropologic impacts by human activities on the TP. 215 

2.2. Deposition flux and historical trends 216 

Differing with concentration profiles in cores, fluxes calculated by considering 217 

variation in sedimentation rate, show a general increasing trend from the deeper layers 218 

towards the upper layer sediments (Fig. 2). The PAH fluxes were low with little 219 

variability before the 1950s, and then gradually increased from the 1950s to the late 220 

1980s, and the increase appears to have accelerated from the 1990s. This temporal 221 

pattern is clearly different from those found in remote mountain lakes across Europe, 222 

where the pyrolytic PAHs peaked in the 1960s-1980s (Fernandez et al., 2000). The 223 

period (from the 1960s to the 1980s) during which PAHs started to decrease in the 224 

developed countries is when PAH emissions started to increase rapidly in the 225 

surroundings of the TP, as observed in the present study. The difference of the 226 

temporal trend was attributed to differences in the economic development stages and 227 

energy structure between the early industrialized and newly industrialized countries. 228 

Nevertheless, the vertical profile of PAH flux is somewhat different among 229 

individual lakes. The temporal resolution of Peiku Co is relatively poor due to its low 230 
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sedimentation rate; but on the other hand, this allows observing a temporal trend of 231 

accumulation covering more than 200 yrs. In addition, it is notable that temporal 232 

profile in Nam Co seems relatively stable since 1950 until post-2000, differing with 233 

other studied lakes (Fig. 2). The Nam Co Core was taken in a bay in the southeast of 234 

the lake and un-decomposed algal gel appeared above ca. 20 cm (Fig. S1). The 235 

abundance of the algae increased significantly upwards to the sediment surface 236 

(organic matter content from 14.7% at 20 cm to 27.4% in the surface). Correlation 237 

analysis between Σ16PAH concentration and organic matter content showed 238 

significantly negative correlation (correlation coefficient R = -0.593, P=0.012), 239 

indicating the possible dilution role of algae on PAH concentrations in sediment, 240 

which was also confirmed by Yang et al (2010) that mercury concentration was 241 

diluted by algae in Nam Co Lake. Differences between these sites may be attribute to 242 

the locations of lakes of the plateau with different meteorological conditions and 243 

proximity to sources. 244 

Implications for Sources 245 

Fig. 3 clearly shows that the low molecular weight PAHs (2-3 rings) are dominant in 246 

the sediments of the TP with an average percentage over 87%. This is considerably 247 

different from the patterns in source regions of the South China Sea (Liu et al., 2012) 248 

where high molecular weight PAHs dominate. The lighter PAHs are more easily 249 

transported to the remote TP through LRAT, which might be an explanation to the 250 

dominance of low molecular weight PAHs (Tao et al., 2011; Yang et al., 2013). In 251 



13 
 

addition, biomass burning, which is commonly used heating source in the TP, 252 

produces more lighter PAHs. In contrast to this, within more developed regions, 253 

industrial and traffic related combustion emits higher proportions of heavier PAHs 254 

(Bhatt and Sachan, 2004). 255 

Temporal variations in PAH compositions have been used as an indicator of a 256 

shift in PAH sources (Liu et al., 2012a). The percentage of heavier PAHs (4-6 rings) 257 

increased in recent years in most of the lakes of this work (Fig. 3). In particular, the 258 

fractions of 5-ring BbF, which is a known product of high-temperature combustion 259 

(Mai et al., 2003), and 6-ring IcdP and BghiP, which are tracers of vehicle exhaust 260 

(Harrison et al. 1996), have increased 2.0 and 3.5 fold, respectively, since the year 261 

1990 in Cuo Na lake (Fig. 4A). The concentration profiles show similarly increasing 262 

trends with fluxes (Fig. S2). These observations suggest the increasing contribution of 263 

local, high-temperature combustion sources in the past decade, when Tibet has 264 

experienced exponential growths in population, tourism, and gross industrial activities 265 

(Fig. 4B). The remarkable increase of IcdP and BghiP concentrations (tracers of 266 

vehicle exhaust) in Cuo Na Lake possibly resulting from the rapid increasing 267 

emissions by traffic and transportation in recent years due to its relatively close to the 268 

Qinghai-Tibet highway and Qinghai-Tibet Railway. The variation of PAH pattern in 269 

sediment is an evidence that the rapid social economical changes in Tibet have 270 

impacted its previously pristine ecosystem. These concerns have been raised from 271 

other studies (Wang et al., 2010; Yang et al., 2010; Cong et al., 2013). 272 
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Diagnostic concentration fractions of PAH isomers, such as ANT/(ANT+PHE), 273 

BaA/(BaA+CHR), FLT/(FLT+PYR) and IcdP/(IcdP+BghiP) are often applied for 274 

source identification purposes (Yunker et al., 2002; Liu et al., 2012b). ANT and BaA 275 

are believed to be more susceptible to photochemical degradation than their isomers 276 

(Behymer and Hites 1988; Zhang et al., 2005; Liu et al., 2012b). However, the 277 

FLT/PYR and IcdP/BghiP isomer pairs were diluted and degraded at analogous rates, 278 

so the ratios of FLT/(FLT+PYR) and IcdP/(IcdP+BghiP) might be more suitable for 279 

defining sources of PAHs in remote areas like TP. In this study, most of the measured 280 

ratios of IcdP/(IcdP+BghiP) and FLT/(FLT+PYR) were greater than 0.2 and 0.4, 281 

respectively (Fig. 5). According to the source classification by Yunker et al. (2002), 282 

the sources of PAHs in the sediments are mainly from grass, biomass & coal 283 

combustion. The vertical patterns of the investigated congeners were relatively 284 

consistent and without any general trends throughout the whole length of the cores, 285 

apart from the decrease in the ratios of IcdP/(IcdP+BghiP) in the superficial segments 286 

of Cuo Na Lake (Fig. S3). 287 

3. Conclusion 288 

In this study, five sediment cores across the TP were analysed for PAHs with the 289 

objective examining their time trends. The depositional flux of PAHs generally 290 

showed an increasing trend from the deeper layers towards the upper layer sediments, 291 

with a faster increasing rate after the 1990s, which were apparently different from 292 

those reported in European mountains. The dominant of lighter PAHs indicates they 293 
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are mainly from grass, biomass & coal combustion and/or from LRAT. Particular 294 

concern is the recent shift in PAH sources. The percentage of heavier PAH (4-6 rings) 295 

increased rapidly in the past two decades suggest increasing contribution of local, 296 

high-temperature combustion sources in the TP. 297 
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Table 1. Lake characteristics, geographic coordinates and focusing factor (FF) in the studied lakes. 

Lakes Latitude 

(N) 

Longitude 

(E) 

Lake 

Altitude 

(m) 

Lake 

Area a 

(km2) 

Salinity b 

(Cl- mg/L) 

Core 

length 

(cm) 

Core 

water 

depth 

(m) 

Focusing 

Factor c 

Keluke 37°17.165′ 96°52.922′ 2813 57 fresh(116.5) 25.0 8.3 0.72 

Cuo Na 32°02.921′ 91°30.805′ 4617 182 fresh(8.98) 43.0 12.4 5.97 

Cuo E 31°25.221′ 91°29.087′ 4531 61 brackish(892) 29.5 8.4 6.26 

Nam Co 30°46.203′ 90°55.715′ 4630 1982 fresh(166) 42.0 21.6 1.58 

Peiku Co 28°48.726′ 85°31.015′ 4595 284 fresh(103) 24.5 16.3 0.17 
a: (Xiang and Zheng, 1989); b: (Lami et al., 2010); c: (Yang et al., 2010). 
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Table 2 Comparison of PAH concentrations (ng/g dw) in sediments from remote lakes. 
Location Sampling  

year 

Sediment 

type 

Concentration No. of 

congenera 

Reference 

Mountain lakes, across TP 2006-07 core 98-594 ∑16PAH b This study 

Qinhai Lake, northern TP 2006 core 11-279 ∑15PAHc (Wang et al., 2010) 

Southern Himalaya lakes, Nepal 2007 surface 68 ±22 ∑15PAHc (Guzzella et al., 2011) 

Andean mountain lakes, Chile 2002 core 32-862 ∑16PAH (Barra et al., 2006) 

High Tatras, Eastern Europe 2001 surface 1800-30000 ∑15PAHd (van Drooge et al., 2011) 

Remote lake, north-west Scotland 1996 core 626-1719 ∑16PAH (Rose and Rippey, 2002) 

Rocky Mountain, North America 2003 core 31-280 ∑16PAH (Usenko et al., 2007) 

Ny-Alesund lakes, Norway Arctic 2005 surface 27-140 ∑15PAHe (Jiao et al., 2009) 

James Ross Island, Anarctic 2005 surface 1.4-205 ∑16PAH (Klanova et al., 2008) 
a: The PAH levels selected for comparison were chosen from the studies having similar compound groupings; b: 
sum of 16 US EPA priority PAHs; c: 16 US EPA PAHs excluding naphthalene; d: 16 US EPA PAHs excluding 
naphthalene, acenaphthene and acenaphthylene plus perylene and benzo(e)pyrene; e: 16 US EPA PAHs excluding 
benza(a)anthracene. 
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Figure legends: 
 
Figure 1 Map showing locations of the lakes cored for this study. 

Figure 2 Temporal trends of concentrations (blue diamond) and depositional fluxes (red circle) 
for Σ16PAH (A) and Σ7PAH (B) in dated sediment cores of the Tibetan Plateau. 

Figure 3  Relative percentage of PAHs against deposition year in lake sediments. 2&3-ring (NAP, 
ACY, ACP, FLR, PHE and ANT), 4-ring (FLT, PYR, BaA and CHR) and 5&6-ring 
(BbF, BkF, BaP, IcdP, DahA and BghiP). 

 

Figure 4  Deposition fluxes of selected PAHs in Lake Cuo Na (A) and population and economic 
development data of Tibet* (B). *Data from NBSC. China Statistical Yearbook 
1949-2008; China Statistics Press, Beijing. 

 
Figure 5  Bivariate plot of PAH diagnostic ratios in lake sediments. 

PAH sources identification by Yunker et al., (2002): FLT/(FLT+PYR) < 0.4: petroleum, 
0.4 < FLT/(FLT+PYR) < 0.5: petroleum combustion, FLT/(FLT+PYR) > 0.5: grass, 
wood and coal combustion; IcdP/(IcdP+BghiP) < 0.2: petroleum, 0.2 
<IcdP/(IcdP+BghiP) < 0.5: petroleum combustion, IcdP/(IcdP+BghiP) > 0.5: grass, 
wood and coal combustion. 
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Fig. 1 Map showing location of the lakes cored for this study. 
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Fig.2 Temporal trends of concentrations (blue diamond) and depositional fluxes (red circle) for 

Σ16PAH (A) and Σ7PAH (B) in dated sediment cores of the Tibetan Plateau. 
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Fig. 3 Relative percentage of grouped PAHs against deposition year in lake sediments. 2&3-ring 

(NAP, ACY, ACP, FLR, PHE and ANT), 4-ring (FLT, PYR, BaA and CHR) and 
5&6-ring (BbF, BkF, BaP, IcdP, DahA and BghiP). 
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Fig.4 Deposition fluxes of selected PAHs in Lake Cuo Na (A) and population and economic 

development data of Tibet* (B). *Data from NBSC. China Statistical Yearbook 1949-2008; 
China Statistics Press, Beijing. 
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Fig. 5 Bivariate plot of PAH diagnostic ratios in lake sediments. 
PAH sources identification by Yunker et al., (2002): FLT/(FLT+PYR) < 0.4: petroleum, 0.4 < 
FLT/(FLT+PYR) < 0.5: petroleum combustion, FLT/(FLT+PYR) > 0.5: grass, wood and coal 
combustion; IcdP/(IcdP+BghiP) < 0.2: petroleum, 0.2 <IcdP/(IcdP+BghiP) < 0.5: petroleum 
combustion, IcdP/(IcdP+BghiP) > 0.5: grass, wood and coal combustion. 
 


