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Abstract—In recent works, sparse models and convex optimization
techniques have been applied to radio-interferometric (R} imaging
showing the potential to outperform state-of-the-art imagng algorithms
in the field. In this talk, | will review our latest contributi ons in RI
imaging, which leverage the versatility of convex optimizéon to both
handle realistic continuous visibilities and offer a highy parallelizable
structure paving the way to high-dimensional data scalabity. Firstly,
I will review our recently proposed average sparsity appro@h, SARA,
which relies on the observation that natural images exhibistrong average
sparsity over multiple coherent bases. Secondly, | will disuss efficient
implementations of SARA, and sparse regularization problens in general,
for large-scale imaging problems in a new toolbox dubbed PURY.

Heriot-Waiveusity, Edinburgh EH14 4AS, UK.
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where eachy; is modelled agy; = ®;« + n; andn; denotes the
noise vector. With this partition the optimization problém(]) can
be reformulated as

min |WW'Z||, subject to|jy; — ®;&|2 < e, i=1,..., R, (3)
ieRf

where each; is an appropriate bound for thle norm of n;.
In [4] we propose a general algorithmic framework based @n th

The advent of next-generation radio telescopes, such asee Simultaneous-direction method of multipliers (SDMM) toeo (3).
LOw Frequency ARray (LOFAR), the recently upgraded Karl GThe proposed framework offers a parallel implementationcstre
Jansky Very Large Array (VLA) and the future Square Kilonmetethat decomposes the original problem into several smallpleim
Array (SKA), has posed several challenges for image repaction ~ problems, hence allowing implementation in multicore &edtures
and the design of data processing systems [1]. The new tglesc Or in computer clusters, or on graphics processing unitses&h

will achieve much higher dynamic range than current insemis at
a higher angular resolution. Also, these telescopes wijueie a
massive amount of data, thus posing large-scale inverdgegms in
the perspective of image reconstruction. These challehges trig-
gered an intense research in the community to reformulateyiimy
and calibration techniques for radio interferometry (RI).

The RI measurement equation can be discretizeg asdx + n,
wherey € CM denotes the vector of measured visibilities,
CM*N is a discretization of the measurement operatorang C*

implementations provide both flexibility in memory requirents
and a significant gain in terms of speed, thus enabling sitalab
ity to large-scale problems. A beta version of an SDMM-based
imaging software written in C and dubbed PURIFY was released
that handles various sparsity priors, including SARA, thusviding

a new powerful framework for Rl imaging (toolbox available a
http://basp-group.github.io/purify/). Even though thista version of
PURIFY is not parallelized yet, we discuss in detail the aotdi-
nary parallel and distributed optimization potential of M to be

represents the observation noise. [ [2] we propose an 'n‘gagi@XD'Oited in future versions. We also discuss other possiesearch
algorithm dubbed sparsity averaging reweighted analySisR@) avenues for big data scalability. One possibility is to ipovate
based on average sparsity over multiple bases, showingrisupeideas from stochastic gradient methods into proximal tamjtand
reconstruction qualities relative to state-of-the-argimg methods augmented Lagrangian methods. The key idea is to use onlgatae
in the field. A sparsity dictionary composed of a concatemati Plocky:, or a subset of blocks, at each iteration of the reconstmcti

of ¢ coherent basesy = [V, V,,...
sparsity is promoted through the minimization of an analysiprior,
[Wwiz|o, whereW denotes the adjoint operator ¥f [3].

, W], is used and average BY doing so, the computational complexity per iteration|wik

reduced. Thus, the total processing time of the algoriththalgo be
reduced if the convergence rate of the original problem és@rved.

SARA adopts a reweighted, minimization scheme to promote See for example_[5] and references therein for first themaktesults.

average sparsity through the prifpwz||o. The algorithm replaces

the ¢, norm by a weighted; norm and solves a sequence of weighted

£; problems where the weights are essentially the inversesofatues
of the solution of the previous problernl [2[.][3]. The weighté
problem is defined as:

min [|[WWZ|; subject to|jy — d&[» < e,

ieRf

@)

whereW € R”*” denotes the diagonal matrix with positive weights,

RY denotes the positive orthant RY and¢ is an upper bound on

the /2 norm of the noise, which can be accurately estimated. Hence,

we focus our attention on solving problefd (1) efficientlypesally
for large-scale data problems, i.e. when the number of iigis

is very large (4 > N). In this case, we propose to split the data

vectory and the measurement operator iftdlocks in the following
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