1	Geometrid	moth a	ssemblages	reflect h	igh conser	vation	value of	naturall	v
1	Geometria	moun a	ssemblages	Tenect II	ign consei	vation	value of	natui an	y

2 regenerated secondary forests in temperate China

- Yi Zou^{1,2}, Weiguo Sang^{3,4*}, Eleanor Warren-Thomas^{1,5}, Jan Christoph Axmacher^{1*}
 ¹ UCL Department of Geography, University College London, London, UK
- 6 ² Centre for Crop Systems Analysis, Wageningen University, Wageningen, The
- 7 Netherlands
- ⁸ ³ College of Life and Environmental Science, Minzu University of China, Beijing,
- 9 China
- ⁴ The State Key Laboratory of Vegetation and Environmental Change, Institute of
- 11 Botany, Chinese Academy of Sciences, Beijing, China,
- ⁵ School of Environmental Sciences, University of East Anglia, Norwich, NR4 7TJ,

13 UK

- 14
- 15 * Correspondence: Weiguo Sang (bjs@ibcas.ac.cn); or Jan C. Axmacher

16	(jan.axmacher@web.de))
----	-----------------------	---

1 Abstract

2	The widespread destruction of mature forests in China has led to massive ecological
3	degradation, counteracted in recent decades by substantial efforts to promote forest
4	plantations and protect secondary forest ecosystems. The value of the resulting forests
5	for biodiversity conservation is widely unknown, particularly in relation to highly
6	diverse invertebrate taxa that fulfil important ecosystem services. We aimed to
7	address this knowledge gap, establishing the conservation value of secondary forests
8	on Dongling Mountain, North China based on the diversity of geometrid moths – a
9	species-rich family of nocturnal pollinators that also influences plant assemblages
10	through caterpillar herbivory. Results showed that secondary forests harboured similar
11	geometrid moth assemblage species richness and phylogenetic diversity but distinct
11	species composition to assemblages in one of China's last remaining mature temperate
12	species composition to assemblages in one of China's last remaining mature temperate
12 13	species composition to assemblages in one of China's last remaining mature temperate forests in the Changbaishan Nature Reserve. Species overlap between these sites was
12 13 14	species composition to assemblages in one of China's last remaining mature temperate forests in the Changbaishan Nature Reserve. Species overlap between these sites was about 30%, and species did not form separate phylogenetic clusters according to site.
12 13 14 15	species composition to assemblages in one of China's last remaining mature temperate forests in the Changbaishan Nature Reserve. Species overlap between these sites was about 30%, and species did not form separate phylogenetic clusters according to site. Species assemblages at Dongling Mountain were strongly differentiated according to
12 13 14 15 16	species composition to assemblages in one of China's last remaining mature temperate forests in the Changbaishan Nature Reserve. Species overlap between these sites was about 30%, and species did not form separate phylogenetic clusters according to site. Species assemblages at Dongling Mountain were strongly differentiated according to forest type; a pattern not found at Changbaishan. Our results indicate that protected
12 13 14 15 16 17	species composition to assemblages in one of China's last remaining mature temperate forests in the Changbaishan Nature Reserve. Species overlap between these sites was about 30%, and species did not form separate phylogenetic clusters according to site. Species assemblages at Dongling Mountain were strongly differentiated according to forest type; a pattern not found at Changbaishan. Our results indicate that protected naturally regenerated secondary forests in northern China provide suitable habitats for

21 Keywords

1 Phylogenetic diversity; Lepidoptera; mature forest; Donglingshan; Changbaishan

2 **1. Introduction**

3	Widespread deforestation across China has led to dramatic biodiversity losses since
4	the 1950s. These triggered severe population declines and local extinctions in more
5	than 200 plant species, and in over half of the country's large mammals (see Zhang et
6	al., 2000). In response to the widespread ecological degradation associated with this
7	deforestation, the Chinese government established a variety of ecological protection
8	programmes such as Nature Forest Protection Programme, Nature Reserve
9	Development Programme and Desertification Reduction Programme. These
10	programmes were aimed at both the protection of the last remaining mature forests
11	and regenerating secondary forests, and at triggering re- and afforestation activities on
12	a globally unprecedented scale (Wang et al., 2007; Chinese State Forestry Bureau,
13	2011). These activities were chiefly focussed on erosion control, lacking clear
14	objectives for biodiversity conservation and for the provision of associated ecosystem
15	services (Cao et al., 2010; Ma et al., 2013; Ran et al., 2013). It is generally assumed
16	that the recent net increasing in China's forest cover has had little positive impact on
17	biodiversity in forest ecosystems (Lü et al., 2011), but very little evidence has been
18	gathered about the actual conservation value of China's secondary and plantation
19	forests.

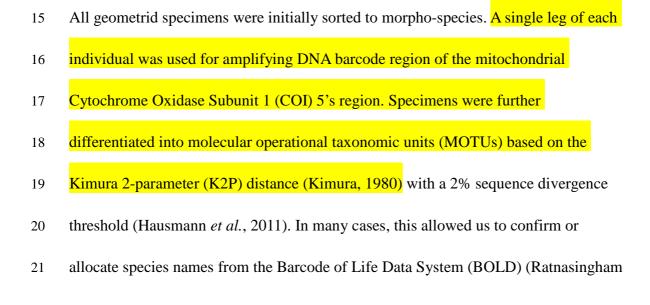
Mature forests are crucial for global biodiversity conservation, as they harbour a
unique and often highly specialized fauna and flora (Gibson *et al.*, 2011; Ruiz-Benito

1	et al., 2012; Adams and Fiedler, 2015). At the same time, the potential of both
2	plantation and secondary forests to contribute towards ecosystem service provision
3	and conservation of diverse species assemblages is being increasingly recognized
4	(Brockerhoff et al., 2008; Chazdon et al., 2009; Bremer and Farley, 2010; Martin and
5	Blackburn, 2014; Zou et al., 2015). Comparative assessment of biological
6	assemblages between mature and secondary forests can help to establish the relative
7	importance of the latter for biodiversity conservation and ecosystem functioning
8	across wider scale landscapes. Assessment in number of species for target taxa can
9	give us a direct view of biodiversity value, whereas the assessment of species
10	composition changes can indicate the sensitivity of these target taxa to the change of
11	environmental conditions and can provide information of historical factors (Condit et
12	al., 2002; McKnight et al., 2007).
13	Species-rich taxa that fulfill important roles in forest ecosystems are logical target
13 14	Species-rich taxa that fulfill important roles in forest ecosystems are logical target taxa for assessments of biodiversity conservation for mature and secondary forests.
14	taxa for assessments of biodiversity conservation for mature and secondary forests.
14 15	taxa for assessments of biodiversity conservation for mature and secondary forests. Geometrid moths (Lepidoptera: Geometridae) represent one such taxonomic group.
14 15 16	taxa for assessments of biodiversity conservation for mature and secondary forests. Geometrid moths (Lepidoptera: Geometridae) represent one such taxonomic group. With more than 35,000 described species (McLeod <i>et al.</i> , 2009), geometrids are one
14 15 16 17	taxa for assessments of biodiversity conservation for mature and secondary forests. Geometrid moths (Lepidoptera: Geometridae) represent one such taxonomic group. With more than 35,000 described species (McLeod <i>et al.</i> , 2009), geometrids are one of the most diverse monophyletic insect families. They provide a number of key
14 15 16 17 18	taxa for assessments of biodiversity conservation for mature and secondary forests. Geometrid moths (Lepidoptera: Geometridae) represent one such taxonomic group. With more than 35,000 described species (McLeod <i>et al.</i> , 2009), geometrids are one of the most diverse monophyletic insect families. They provide a number of key ecosystem services, as an important pollinator group that can also contribute towards
14 15 16 17 18 19	taxa for assessments of biodiversity conservation for mature and secondary forests. Geometrid moths (Lepidoptera: Geometridae) represent one such taxonomic group. With more than 35,000 described species (McLeod <i>et al.</i> , 2009), geometrids are one of the most diverse monophyletic insect families. They provide a number of key ecosystem services, as an important pollinator group that can also contribute towards weed control, since caterpillar herbivory influences the composition and competitive
14 15 16 17 18 19 20	taxa for assessments of biodiversity conservation for mature and secondary forests. Geometrid moths (Lepidoptera: Geometridae) represent one such taxonomic group. With more than 35,000 described species (McLeod <i>et al.</i> , 2009), geometrids are one of the most diverse monophyletic insect families. They provide a number of key ecosystem services, as an important pollinator group that can also contribute towards weed control, since caterpillar herbivory influences the composition and competitive balance in the vegetation (Scoble, 1999; Palmer <i>et al.</i> , 2007; Grenis <i>et al.</i> , 2015;

1	Changes in forest geometrid diversity and assemblage structure can be expected to
2	directly impact the ecosystem functioning of forest ecosystems at multiple trophic
3	levels, with wide implications for ecosystem service provisions.
4	From an evolutionary perspective, phylogenetic analysis of species assemblages
5	allows us to have an insights view in terms of evolutionary pathways and ecological
6	traits. For example, species losses from species-poor, phylogenetically highly distinct
7	clades are considered more detrimental than losses from species-rich, closely related
8	clades (Mace et al., 2003; Mouquet et al., 2012). Phylogenetic diversity therefore
9	reflects evolutionary information and can be used as a proxy for functional diversity
10	(Winter <i>et al.</i> , 2013). DNA barcoding-based phylogenetic analysis is increasingly
11	promoted as a complementary approach to more traditional species richness and
12	composition-focussed measures of conservation value (Lahaye et al., 2008; Smith and
13	Fisher, 2009; Liu et al., 2015). DNA barcoding method has been applied for
14	geometrid moths in quite a few studies (Hausmann et al., 2011; Sihvonen et al., 2011;
15	Strutzenberger <i>et al.</i> , 2011; Brehm <i>et al.</i> , 2013; Brehm <i>et al.</i> , 2016; Zou <i>et al.</i> , 2016).
16	In this study, we compare and contrast the species richness, species composition and
17	phylogenetic diversity of geometrid assemblages in two forest regions of northern
18	China that experience similar climatic conditions. The first, on Dongling Mountain
19	(DLM), comprises a mosaic of naturally regenerated secondary forests and forest
20	plantations. The second region is located in the Changbaishan Nature Reserve (CNR)
21	at a distance of 1100km from DLM. This reserve contains one of the largest

1	remaining mature forests in temperate China. Due to historical clearance of the forest
2	cover at DLM, forest specialist species are assumed to have been widely replaced by
3	generalists in the regenerating secondary forests (Warren-Thomas et al., 2014). We
4	hypothesised that this would lead to a depleted, homogenous geometrid moth
5	assemblage in these secondary forests when compared to assemblages at CNR. In
6	addition, we also hypothesised that the widely undisturbed forest cover at the CNR
7	would support more phylogenetically distinct moth assemblages and hence has a
8	higher phylogenetic diversity, as a wider variety of historically consistently available
9	niches in these forests should have allowed them to preserve assemblages containing
10	more moth species with unique ecological traits. In combination, CNR was therefore
11	assumed to have a higher conservation value, both in terms of species richness,
12	species composition and phylogenetic diversity, compared to the secondary forests at
13	DLM that have established following the near-complete clearance of forest vegetation
14	at this region. In order to achieve the above goals, we compared DLM and CNR in (1)
15	number of genera rarefied to minimum sample size for a plot, which can be used as a
16	proxy of diversity (Brehm et al., 2013), (2) Chao1 expected species richness, (3)
17	Shannon diversity, (4) extrapolated expected species richness, (5) species turnover
18	pattern, (6) phylogenetic diversity rarefied to minimum shared number of species and

19 (7) nearest-taxon index (NTI).


2. Methods

2.1 Study areas and insect sampling

2	Our study was conducted in two geographically distinct, forested regions in northern
3	China (Fig. 1). The first study region, Dongling Mountain (DLM; 39°58' N, 115°26'
4	E), is located on the boundary between Beijing and Hebei Provinces in China.
5	Originally covered by oak (Quercus wutaishanica Mayr, 1906) - dominated forests,
6	the region was completely deforested before the 1950s. Large areas were
7	subsequently recolonised by a mosaic of oak-dominated, birch (Betula platyphylla
8	Sukaczev, 1911 and B. dahurica Pall, 1776) -dominated and mixed-broadleaved
9	forests. We established 12 sampling plots at altitudes between 1100m and 1400m in
10	this region, with four plots each located in the three aforementioned secondary forest
11	types. The second study region is located within the Changbaishan Nature Reserve
12	(CNR; $41^{\circ}41' - 42^{\circ}51'$ N, $127^{\circ}43' - 128^{\circ}16'$ E) in Jilin Province near the boundary to
13	North Korea. CNR harbours one of the largest remaining mature temperate forest
14	ecosystems in northern China. At CNR, we established 11 sampling plots at elevations
15	between 700m and 1100m within a mixed coniferous and broadleaved forest zone.
16	While plots at CNR were located at lower elevations than DLM plots, their location
17	further north means that both forest ecosystems experience very similar climatic
18	conditions (Zou et al., 2015). The annual mean temperature at 1100 m in DLM was
19	4.8°C, while the average annual precipitation reached 612 mm (Sang, 2004). In
20	comparison, the average annual temperature recorded at 712m in CNR was 3.4°C,
21	with an average annual precipitation of 654 mm (Sang and Bai, 2009).

1	Geometrid moths were sampled using automatic light traps, similar in design to Heath
2	light traps (Heath, 1965). These traps comprised a 12V, 20W mercury UV light tube
3	of 60cm length surrounded by three clear plastic vanes, mounted on top of the
4	sampling box. Sampling was carried out at each plot once a month between 19:30 and
5	22:30 hrs (the activity peak of geometrid moths). Although some late-night-active
6	species may have been missed by closing the traps at 22:30, this should have a limited
7	influence on our comparative results among sites, as trap closure times were
8	consistent at all sampling localities at the same time. No sampling was conducted five
9	days before and after the full moon to minimize the effects of a strong moonlight on
10	moth activity (Yela and Holyoak, 1997). One trap was deployed in each sampling plot.
11	Sampling was conducted from June to August 2011 at DLM, and in July and August
12	2011 and June 2012 at CNR. Three sampling nights were completed in each plot,
13	giving a total of 36 sampling nights at DLM and 33 sampling nights at CNR.

2.2 Data analysis

1	and Hebert, 2007). MOTU information for three easily identifiable species was
2	excluded from barcoding, with their barcode information subsequently obtained from
3	BOLD. We were unable to obtain phylogenetic data for one species, Horisme
4	radicaria de La Harpe, 1855, which was represented by a single individual in our
5	samples. A final 182 MOTUs species were identified (a detailed information of
6	specimen and barcoding data are publicly accessible in BOLD under XXX). These
7	182 sequences were used for the calculating the maximum likelihood of phylogenetic
8	tree based on K2P distance.
9	Rarefied number of genera for each sampling plot was calculated based on the minim
10	sampling size of 29 individuals. The expected species richness of the two study
11	regions was estimated based on the MOTUs using the Chao 1 richness estimator
12	(Chao, 1984) and rarefaction-extrapolation methods (Colwell et al., 2012). We
13	calculated the species richness for an extrapolated sample size of 4000 individuals.
14	This figure represents four times the smallest sample size we recorded (DLM, pooled
15	across all plots). In addition, the Shannon (exponential) diversity index for each
16	sampling plots was calculated (Jost, 2006). Species turnover patterns within each
17	forest region were analysed based on a Euclidean distance matrix for individual
18	sampling plots. This matrix was visualized using Non-metric Multidimensional
19	Scaling (NMDS) ordination plots.
20	Species' phylogenetic diversity (PD) was calculated as the sum of the overall

21 phylogenetic branch length for all species recorded at any one plot, based on Faith's

1	index (Faith, 1992). As total phylogenetic branch length increased linearly with the
2	increase in recorded species (Pearson correlation, r=0.99, p<0.001), a rarefied PD was
3	used to compare the standardized difference in phylogenetic diversity between plots.
4	This rarefaction was based on the smallest species number recorded at any sampling
5	plot (n=16 species). NTI values were opposite values of standardized effect size of
6	mean nearest taxon distances (Webb et al., 2002), which were calculated based on the
7	null model across all taxa included in distance matrix. Calculation had 1000 runs of
8	randomization.
9	All calculations and statistics were conducted in R (R Core Team, 2014), using the
10	packages "vegan" (Oksanen <i>et al.</i> , 2012) to calculate Chao1, Shannon diversity,
11	rarefied number of genera and species turnover pattern, "iNEXT" (Chao et al., 2014;
12	Hsieh et al., 2014) to calculate extrapolated species richness, "ape" (Paradis et al.,
13	2004) to calculate K2P distance, "phangorn" (Schliep, 2011) to calculate the
14	maximum likelihood phylogenetic tree and "Picante" (Kembel et al., 2010) to
15	calculate PD and NTI.
16	3. Results
17	A total of 3932 individuals representing 183 species (182 MOTUs and one without
18	phylogenetic information) were sampled at the 23 plots. Of these, 1,017 specimens
19	were collected at DLM and 2915 at CNR (see full species list in the Appendix). A

- 20 similar number of species was recorded in the two regions: 107 species on DLM
- 21 versus 113 species at the CNR. Species dominance between two areas in terms of the

number of common (i.e. accounting for $\geq 0.5\%$ of the total regional sample) and rare
species (<0.5% of the total sample) were extremely similar: 38 (33.6% in number of
observed species) and 40 (37.4%) common species for CNR and DLN, and 75 (66.4%)
and 67 (62.6%) rare species encountered at the two regions (Fig. 2). DLM and CNR
shared 37 species in total, leaving 70 and 76 unique species, respectively at the two
regions. Of the 37 species occurring in both regions, only six were commonly
observed at both DLM and CNR, while 13 species were rare in both regions (Fig. 2).
A total of 178 species were identified to genus level that belonged to 106 genera, of
which DLM had 73 genera and CNR had 77 genera. Rarefying to minimum sample
size of all plots (m=29), DLM had an average of 16.3 (SE of 0.7) genera that was
higher than CNR (mean and SE of 13.5 ± 0.4 , ANOVA, <i>P</i> =0.003).
Values for Chao 1 indicated that there was no significant difference in the estimated
Values for Chao I indicated that there was no significant difference in the estimated species richness between DLM (124 ± 8.1 species with 95% CI) and CNR (121 ± 4.8
species richness between DLM (124 ± 8.1 species with 95% CI) and CNR (121 ± 4.8
species richness between DLM (124 \pm 8.1 species with 95% CI) and CNR (121 \pm 4.8 species with 95% CI), while also indicating a high sampling completeness for both
species richness between DLM (124±8.1 species with 95% CI) and CNR (121±4.8 species with 95% CI), while also indicating a high sampling completeness for both regions (86.3% for DLM and 93.4% for CNR). In addition, no significant difference
species richness between DLM (124±8.1 species with 95% CI) and CNR (121±4.8 species with 95% CI), while also indicating a high sampling completeness for both regions (86.3% for DLM and 93.4% for CNR). In addition, no significant difference was observed for the Shannon diversity index (mean and SE for DLM=21.1±1.9;
species richness between DLM (124 \pm 8.1 species with 95% CI) and CNR (121 \pm 4.8 species with 95% CI), while also indicating a high sampling completeness for both regions (86.3% for DLM and 93.4% for CNR). In addition, no significant difference was observed for the Shannon diversity index (mean and SE for DLM=21.1 \pm 1.9; CNR=19.9 \pm 1.4; ANOVA, <i>P</i> =0.62). These numbers were also closely aligned with the

21 NMDS ordination plots confirmed distinct differences in assemblage composition

1	between DLM and CNR (Fig. 4). Assemblage composition was much more
2	heterogeneous among plots within the DLM region than at CNR. Substantial
3	differentiation was observed at DLM both within forest types (i.e. among plots) and
4	between birch forests and the other two forest types (Fig. 4).
5	Phylogenetic lineages did not cluster separately between the two regions (Fig. 5). The
6	rarefied phylogenetic branch length based on the lowest recorded species number
7	(n=16) at DLM (mean and SE of 0.925 \pm 0.011) and CNR (mean and SE of 0.919 \pm
8	0.008) was again not significantly different between the two regions (ANOVA,
9	$P=0.70$). NTI value for DLM (mean and SE of 1.05 \pm 0.29) and CNR (mean and SE

10 of 0.68 ± 0.36) were again no difference (ANOVA, *P*=0.43).

11 **4. Discussion**

- 12 Our study has following findings: (1) the naturally generated secondary forest (DLM)
- 13 harboured similar species richness and phylogenetic diversity with one of China's last
- 14 remaining mature temperate forests (CNR); (2) these two forest types had distinctive
- 15 species compositions; (3) species assemblages at DLM were strongly differentiated
- 16 according to forest type, but not at CNR; (4) species from these two forest types did
- 17 not form separate phylogenetic clusters

18 **4.1 Species richness and composition**

- 19 The species richness recorded in our study (107 species from 1017 individuals at
- 20 DLM and 113 species from 2915 individuals at CNR) is very similar to other

1	inventories of geometrid moths in temperate regions across China, with 75 species
2	(1000 individuals) recorded at Ziwu mountain in Gansu province (Jiang and Zhang,
3	2001), 110 species (14,692 individuals) from a wide mix of agricultural and forest
4	habitats between Beijing and the Bashang plateau located in Hebei province between
5	our two study areas (Axmacher et al., 2011), and with 97 species (2,092 individuals)
6	previously reported from Changbai Mountain (Liu et al., 2007). Our findings are also
7	well aligned to the species richness recorded in other temperate regions across the
8	world, with 103 species (1,992 individuals) sampled in the northern Swiss Alps (Beck
9	et al., 2010) and 123 species (13,324 individuals) in Central Queensland (Mackey,
10	2006). A substantially higher species richness of 308 species was recorded in forests
11	of the Jirisan National Park in South Korea by Choi and An (2013). This substantially
12	higher richness may be strongly attributable to the much larger sampling effort used
13	in that study spanning 7 years' long-term monitoring encompassing a total of 244 trap
14	nights that yielded a very substantial sample size of 11,030 individuals.
15	The similarity in species richness between secondary and mature forest regions
16	contradicts our first hypothesis, and is a first indication of the similar value relating to
17	geometrid moth diversity and the provision of associated ecosystem services of these
18	forests. A very similar species richness in secondary and mature forests has previously
19	been observed in studies covering a wide range of different taxa, for example large
20	tropical mammals (Barlow et al., 2007), as well as temperate ant (Maeto and Sato,
21	2004) and click beetle (Ohsawa, 2004) assemblages. It also corresponds with the
22	diversity in the undergrowth vegetation in our study area that again showed very

1 similar species richness in the two study regions (Zou *et al.*, 2015).

2	The similarity despite the very different histories of the two forest regions could be
3	linked to a number of different phenomena. The destruction of primary forests in the
4	DLM region before the 1950s and the resulting current cover of DLM in secondary
5	forests suggests that generalist species may contribute a large proportion of the
6	observed species richness. This could be argued to limit the conservation value of
7	these assemblages with view of commonly rare specialist species, although habitat
8	generalists may provide important ecosystem functions as pollinators across the
9	landscape more effectively than strict forest specialists (Aizen et al., 2002).
10	Nonetheless, the observed heterogeneity of DLM geometrid assemblages at the local
11	scale and the partial differentiation of communities according to forest type suggests
12	that generalists do not dominate these assemblages, and that there is habitat specificity
13	among the geometrid species at DLM. Generalist-dominated communities would be
14	expected to show a much more homogeneous distribution across both site individual
15	plots, and different forest types. It therefore appears that forest specialists do not only
16	form important components of forest moth assemblages at the landscape scale, but are
17	differentiated at smaller scales according to differing microclimatic conditions and
18	plant species compositions in the three forest types included in our DLM
19	investigations, with similar patterns also observed in carabid beetles at our study area
20	(Warren-Thomas et al., 2014).

21 Moth diversity in secondary forests could also be related to the Intermediate

1	Disturbance Hypothesis (Grime, 1973; Connell, 1978), with secondary forests
2	representing a recovering, previously heavily disturbed environment. Secondary
3	forest habitats have had several decades to recover and to be colonized by a wide
4	range of species from surrounding remnant forest or bushland pockets. Habitat
5	mosaics during intermediate succession stage from forest regeneration can increase
6	available niches and result in higher specie diversity than forest at either early or late
7	succession stage (Li et al., 2004; Hilt and Fiedler, 2005). This theory would predict a
8	lower diversity at the stable and mature forest sites in CNR, which was true in terms
9	of rarefied number of genera, but not for number of species. Investigations into
10	diversity patterns of geometrid moths along altitudinal gradients have commonly
11	confirmed the paramount importance of climatic factors on species richness (Brehm et
12	al., 2003; Axmacher et al., 2004; Beck and Chey, 2008; Axmacher et al., 2009; Beck
13	and Kitching, 2009). Although sampling plots in CNR located slightly higher latitude
14	than DLM, the lower altitude compensates the latitudinal difference in terms of
15	climatic difference, and hence resulted in similar climatic conditions for our two study
16	sites. The similarity in diversity levels between our two study sites could be explained
17	by similarities in climatic conditions at the two forest ecosystems.
10	One strong difference in diversity patterns between the two forests relates to the
18	
19	heterogeneity of assemblages among plots. In contrast to the clearly
20	differentiated forest types occurring at DLM, habitat heterogeneity at CNR is
21	encountered at much smaller spatial scales. The mixed conifer and broadleaf
22	forest at CNR contains highly variable, spatially finely grained mixtures of tree,

1	shrub and undergrowth species, and forest age-classes. This in turn supports the
2	presence of a relatively homogenous, but highly species-rich moth assemblage
3	throughout this forest, with any habitat-specific differentiation occurring below
4	the spatial resolution generated by our light traps. The main differentiation
5	among plots observed at CNR in the ordination analysis is associated with a shift
6	in elevation, and associated shifts in tree species dominance. The three highest
7	plots that harboured a slightly different moth assemblage to the remaining plots
8	on Changbai Mountain were also strongly dominated by Korean Pine (Pinus
9	koraiensis Siebold & Zucc, 1842). Since many geometrid moth species show a
10	palaearctic distribution patterns, ~30% overlap in species between study regions
11	appears to be low (Xue and Zhu, 1999; Han and Xue, 2011). It was furthermore
12	surprising that species shared between the two regions were mainly species that were
13	rare at both sites, while the composition of the group of dominant species differed
14	distinctly between the two regions. It can be speculated that the rare shared species
15	are host plant specialists, relying on plant species that occur in low abundances in
16	both areas. Only six of the shared moth species were common at both sites; these
17	included host-plant generalists such as Angerona prunaria Linnaeus, 1758
18	(Ennominae), a highly polyphagous species feeding on members of the Betulaceae,
19	Ericaceae, Ranunculaceae, Pinaceae, Caprifoliaceae, Fagaceae, Ericaceae and
20	Rosaceae (Robinson et al., 2010). It could be assumed that these common shared
21	species have survived the devastation of forests at DLM somewhere within the wider
22	region, quickly colonising the emerging secondary forest ecosystems. In addition, the

1	distinctive difference in dominant species between DLM and CNR may refer to the
2	distinctiveness in some key biotic factor such as different species composition in
3	vascular plants (Zou et al., 2015) – since two regions have similar climatic factors –
4	which may indicate two regions have different stress in biodiversity conservation.
5	4.2 Phylogenetic signals
6	The similar inter-regional phylogenetic diversity of DLM and CNR mirrored the
7	species richness patterns in two regions. This is in coherence with earlier studies that
8	had demonstrated the comparability of these two regions in terms of diversity and
9	associated ecosystem functions and traits (Cadotte et al., 2008; Mouquet et al., 2012).
10	Positive NTI values indicate a slightly phylogenetic clustering trend (Webb et al.,
11	2002) for both regions.
12	It must be noted that our phylogenetic tree is a COI tree that has some some
13	phylogenetic signal, but not a phylogeny. As our tree is far from perfect in comparison
14	with phylogeny of geometrids by e.g. Sihvonen <i>et al.</i> (2011). For example, species
15	from subfamily Geometrinae showed scattered clade and nested within Ennominae
16	and Sterrhinae, whereas Geometrinae formed a distinctive clade in Sihvonen <i>et al.</i>
17	(2011)'s study. In addition, our tree showed that one Larentiinae species (genus
18	Docirava) was also nested within Ennominae, two Eilicrinia spp. were nested within
19	Lomographa spp., and Anticypella diffusaria Leech, 1897 was in Hypomecis spp.
20	These unexpected nesting trends may result from unrepresentative information of the

21 tree for true phylogenetic signals. The tree also showed that some species were far

1	away from the same genus, such as <i>Eustroma aerosa</i> Butler, 1878, <i>Hypomecis</i> sp2
2	and <i>Cabera</i> sp2. These might due to misidentification or again the unrepresentative
3	phylogenetic information of the tree. Furthermore, the tree showed a few paraphyletic
4	cases from different genera, for example, Hemistola tenuilinea Alpheraky, 1897 and
5	Comostola subtiliaria Bremer, 1864, Abraxas grossulariata Linnaeus, 1758 and
6	Ourapteryx similaria Matsumura, 1910, Phthonandria emaria Bremer, 1864 and
7	Angerona prunaria Linnaeus, 1758, and Horisme tersata Denis & Schiffermüller,
8	1775 and Eupithecia spp. Paraphyletic case <i>H. tenuilinea</i> and <i>C. subtiliaria</i> might be
9	true as certain species from <i>Hemistola</i> was reported that transferred to <i>Comostola</i>
10	(Han and Xue, 2009). These two genera were also phylogenetic close in Sihvonen <i>et</i>
11	al. (2011)'s tree. As some of <i>Horisme</i> spp. were reported close to <i>Eupithecia</i> spp.
12	(Mironov and Galsworthy, 2012), paraphyletic case of these two genera might also be
13	true. The rest paraphyletic cases might result from lacking phylogenetic signals
14	between two genera or unrepresentative for phylogenetic information of the tree.

15 **4.3 Biodiversity conservation**

Decades of severe ecological degradation across the country have resulted in the near-complete disappearance of China's mature temperate forests, with strong implications for populations of large vertebrate and many forest plant species. Despite the lack of respective data, forest insect assemblages are highly likely to have been heavily impacted by these forest losses. Our investigations suggest that this assumption needs to be treated carefully. It must be noted that the secondary forests

1	we investigated here have chiefly originated from natural regeneration, resulting in a
2	high structural and plant-species diversity (Zou et al., 2015), while substantial
3	proportions of reforested sites across China are covered in tree monocultures, in some
4	cases using non-native species ecologically poorly suited to respective plantation
5	localities (Cao et al., 2010; Cao, 2011). Given the high diversity in both, insect and
6	plant assemblages at DLM, we strongly suggest natural forest regeneration processes,
7	potentially accompanied by the planting of locally native tree species, as a method
8	that should be much more widely used in the ongoing re-establishment of forests
9	across large parts of China. The protection of these naturally generated forest is
10	valuable for biodiversity conservation for localities where no mature forest has been
11	remnant. Such an approach could have far-reaching positive implications for
12	biodiversity conservation, and the future provision of ecosystem services, across
13	China's restored forested landscapes.

15 Acknowledgement

This study was financially supported by the National Natural Science Foundation of
China (31270478, 31470569) and the '111 Program' of the Bureau of China Foreign
Experts and the Ministry of Education (2008-B08044). Eleanor Warren-Thomas was
also supported by a NERC Masters Studentship. We thank Xue Dayong and Han
Hongxiang for their help with geometrid moth sorting and identification, and Axel
Hausmann for the help in the DNA barcoding and identification.

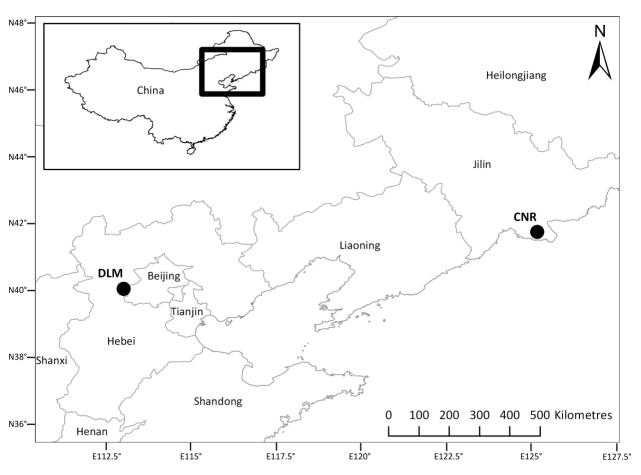
1 References

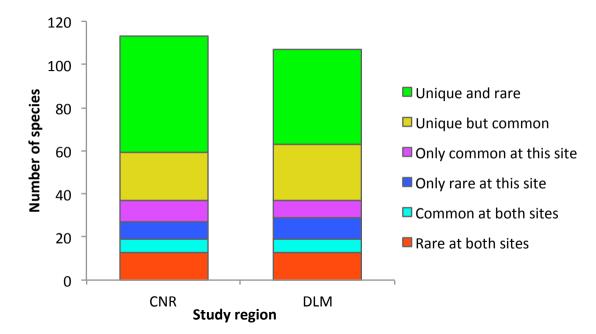
2	Adams, M.O., Fiedler, K., 2015. The value of targeted reforestations for local insect diversity:
3	a case study from the Ecuadorian Andes. Biodivers. Conserv. 24, 1-26.
4	Aizen, M.A., Ashworth, L., Galetto, L., Díaz, S., 2002. Reproductive success in fragmented
5	habitats: do compatibility systems and pollination specialization matter? J. Veg. Sci. 13,
6	885-892.
7	Axmacher, J.C., Brehm, G., Hemp, A., Tünte, H., Lyaruu, H.V.M., Müller-Hohenstein, K.,
8	Fiedler, K., 2009. Determinants of diversity in afrotropical herbivorous insects
9	(Lepidoptera: Geometridae): plant diversity, vegetation structure or abiotic factors? J.
10	Biogeogr. 36, 337-349.
11	Axmacher, J.C., Holtmann, G., Scheuermann, L., Brehm, G., Müller-Hohenstein, K., Fiedler,
12	K., 2004. Diversity of geometrid moths (Lepidoptera: Geometridae) along an
13	Afrotropical elevational rainforest transect. Divers. Distrib. 10, 293-302.
14	Axmacher, J.C., Liu, Y., Wang, C., Li, L., Yu, Z., 2011. Spatial α-diversity patterns of diverse
15	insect taxa in Northern China: Lessons for biodiversity conservation. Biol. Conserv. 144,
16	2362-2368.
17	Barlow, J., Gardner, T.A., Araujo, I.S., Ávila-Pires, T.C., Bonaldo, A.B., Costa, J.E., Esposito,
18	M.C., Ferreira, L.V., Hawes, J., Hernandez, M.I., 2007. Quantifying the biodiversity
19	value of tropical primary, secondary, and plantation forests. Proc. Natl. Acad. Sci. USA
20	104, 18555-18560.
21	Beck, J., Altermatt, F., Hagmann, R., Lang, S., 2010. Seasonality in the altitude-diversity
22	pattern of Alpine moths. Basic Appl. Ecol. 11, 714-722.
23	Beck, J., Chey, V.K., 2008. Explaining the elevational diversity pattern of geometrid moths
24	from Borneo: a test of five hypotheses. J. Biogeogr. 35, 1452-1464.
25	Beck, J., Kitching, I.J., 2009. Drivers of moth species richness on tropical altitudinal
26	gradients: a cross- regional comparison. Global Ecol. Biogeogr. 18, 361-371.
27	Brehm, G., Hebert, P.D.N., Colwell, R.K., Adams, M.O., Bodner, F., Friedemann, K., Mockel,
28	L., Fiedler, K., 2016. Turning Up the Heat on a Hotspot: DNA Barcodes Reveal 80%
29	More Species of Geometrid Moths along an Andean Elevational Gradient. Plos One 11.
30	Brehm, G., Strutzenberger, P., Fiedler, K., 2013. Phylogenetic diversity of geometrid moths
31	decreases with elevation in the tropical Andes. Ecography 36, 1247-1253.
32	Brehm, G., Süssenbach, D., Fiedler, K., 2003. Unique elevational diversity patterns of
33	geometrid moths in an Andean montane rainforest. Ecography 26, 456-466.
34	Bremer, L., Farley, K., 2010. Does plantation forestry restore biodiversity or create green
35	deserts? A synthesis of the effects of land-use transitions on plant species richness.
36	Biodivers. Conserv. 19, 3893-3915.
37	Brockerhoff, E.G., Jactel, H., Parrotta, J.A., Quine, C.P., Sayer, J., 2008. Plantation forests
38	and biodiversity: oxymoron or opportunity? Biodivers. Conserv. 17, 925-951.
39	Cadotte, M.W., Cardinale, B.J., Oakley, T.H., 2008. Evolutionary history and the effect of
40	biodiversity on plant productivity. PNAS 105, 17012-17017.
41	Cao, S., 2011. Impact of China's large-scale ecological restoration program on the
42	environment and society in arid and semiarid areas of China: achievements, problems,

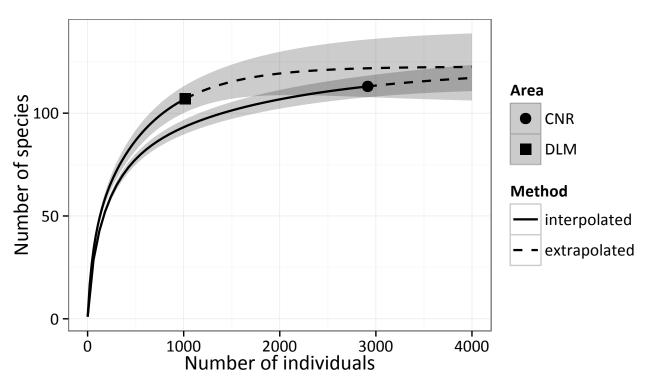
1	synthesis, and applications. Crit. Rev. Environ. Sci. Technol. 41, 317-335.
2	Cao, S., Wang, G., Chen, L., 2010. Questionable value of planting thirsty trees in dry regions.
3	Nature 465, 31-31.
4	Chao, A., 1984. Non-parametric estimation of the number of classes in a population. Scand. J.
5	Stat. 11, 265-270.
6	Chao, A., Gotelli, N., Hsieh, T.C., Sander, E., Ma, K.H., Colwell, R.K., Ellison, A.M., 2014.
7	Rarefaction and extrapolation with Hill numbers: a framework for sampling and
8	estimation in species diversity studies. Ecol. Monogr. 84, 45-67.
9	Chazdon, R.L., Peres, C.A., Dent, D., Sheil, D., Lugo, A.E., Lamb, D., Stork, N.E., Miller,
10	S.E., 2009. The potential for species conservation in tropical secondary forests. Conserv.
11	Biol. 23, 1406-1417.
12	Chinese State Forestry Bureau, 2011. China Forest Resource Report - the Seventh National
13	Forest Resources Inventory. China Forestry Press, Beijing.
14	Choi, S.W., An, J.S., 2013. What we know and do not know about moth diversity from
15	seven-year-monitoring in Mt. Jirisan National Park, South Korea. J. Asia-Pacif. Entomol.
16	16, 401-409.
17	Colwell, R.K., Chao, A., Gotelli, N.J., Lin, S.Y., Mao, C.X., Chazdon, R.L., Longino, J.T.,
18	2012. Models and estimators linking individual-based and sample-based rarefaction,
19	extrapolation and comparison of assemblages. J. Plant Ecol. 5, 3-21.
20	Condit, R., Pitman, N., Leigh Jr, E.G., Chave, J., Terborgh, J., Foster, R.B., Núnez, P., Aguilar,
21	S., Valencia, R., Villa, G., 2002. Beta-diversity in tropical forest trees. Science 295,
22	666-669.
23	Connell, J.H., 1978. Diversity in tropical rain forests and coral reefs. Science 199, 1302-1310.
24	Faith, D.P., 1992. Conservation evaluation and phylogenetic diversity. Biol. Conserv. 61,
25	1-10.
26	Gibson, L., Lee, T.M., Koh, L.P., Brook, B.W., Gardner, T.A., Barlow, J., Peres, C.A.,
27	Bradshaw, C.J.A., Laurance, W.F., Lovejoy, T.E., Sodhi, N.S., 2011. Primary forests are
28	irreplaceable for sustaining tropical biodiversity. Nature 478, 378-381.
29	Grenis, K., Tjossem, B., Murphy, S.M., 2015. Predation of larval Lepidoptera in habitat
30	fragments varies spatially and temporally but is not affected by light pollution. J. Insect
31	Conserv. 19, 559-566.
32	Grime, J.P., 1973. Competitive exclusion in herbaceous vegetation. Nature 242, 344-347.
33	Han, H., Xue, D., 2009. Taxonomic review of Hemistola Warren, 1893 from China, with
34	descriptions of seven new species (Lepidoptera: Geometridae, Geometrinae). Entomol.
35	Sci. 12, 382-410.
36	Han, H., Xue, D., 2011. Fauna Sinica Insecta vol 54: Lepidoptera Geometridae: Geometrinae.
37	Science Press, Beijing.
38	Hausmann, A., Haszprunar, G., Hebert, P.D.N., 2011. DNA barcoding the geometrid fauna of
39	Bavaria (Lepidoptera): successes, surprises, and questions. PLoS ONE 6, e17134.
40	Heath, J., 1965. A genuinely portable MV light trap. Entomologist's Record and Journal of
41	Variation 77, 236-238.
42	Hilt, N., Fiedler, K., 2005. Diversity and composition of Arctiidae moth ensembles along a
43	successional gradient in the Ecuadorian Andes. Divers. Distrib. 11, 387-398.
44	Hsieh, T., Ma, K., Chao, A., 2014. iNEXT: iNterpolation and EXTrapolation for species

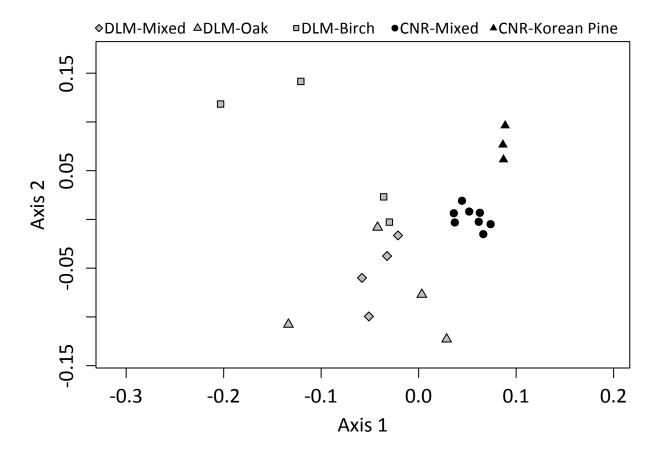
1	diversity. R package version 2.0.
2	Jiang, S., Zhang, X., 2001. Geometrid moth composition and fauna analysisin Ziwu mountain
3	of east Gansu. J. Gansu Sci. 2, 011.
4	Jost, L., 2006. Entropy and diversity. Oikos 113, 363-375.
5	Kembel, S.W., Cowan, P.D., Helmus, M.R., Cornwell, W.K., Morlon, H., Ackerly, D.D.,
6	Blomberg, S.P., Webb, C.O., 2010. Picante: R tools for integrating phylogenies and
7	ecology. Bioinformatics 26, 1463-1464.
8	Kimura, M., 1980. A simple method for estimating evolutionary rates of base substitutions
9	through comparative studies of nucleotide sequences. J. Mol. Evol. 16, 111-120.
10	Lahaye, R., van der Bank, M., Bogarin, D., Warner, J., Pupulin, F., Gigot, G., Maurin, O.,
11	Duthoit, S., Barraclough, T.G., Savolainen, V., 2008. DNA barcoding the floras of
12	biodiversity hotspots. PNAS 105, 2923-2928.
13	Li, J., Loneragan, W.A., Duggin, J.A., Grant, C.D., 2004. Issues affecting the measurement of
14	disturbance response patterns in herbaceous vegetation - A test of the intermediate
15	disturbance hypothesis. Plant Ecol. 172, 11-26.
16	Liu, J., Yan, HF., Newmaster, S.G., Pei, N., Ragupathy, S., Ge, XJ., 2015. The use of DNA
17	barcoding as a tool for the conservation biogeography of subtropical forests in China.
18	Divers. Distrib. 21, 188-199.
19	Liu, S.D., Meng, Q.F., Gao, W.T., 2007. Moth diversity in the northern slope of Changbai
20	Mountain Nature Reserve. J. Northeast Forestry Uni. 35, 51-53.
21	Lü, Y., Fu, B., Wei, W., Yu, X., Sun, R., 2011. Major ecosystems in China: dynamics and
22	challenges for sustainable management. Environ. Manage. 48, 13-27.
23	Ma, H., Lv, Y., Li, H., 2013. Complexity of ecological restoration in China. Ecol. Eng. 52,
24	75-78.
25	Mace, G.M., Gittleman, J.L., Purvis, A., 2003. Preserving the Tree of Life. Science 300,
26	1707-1709.
27	Macgregor, C.J., Pocock, M.J.O., Fox, R., Evans, D.M., 2015. Pollination by nocturnal
28	Lepidoptera, and the effects of light pollution: a review. Ecol. Entomol. 40, 187-198.
29	Mackey, P., 2006. Diversity and Phenology of Geometridae in coastal Central Queensland.
30	Spixiana 29, 208-209.
31	Maeto, K., Sato, S., 2004. Impacts of forestry on ant species richness and composition in
32	warm-temperate forests of Japan. For. Ecol. Manage. 187, 213-223.
33	Martin, T.E., Blackburn, G.A., 2014. Conservation value of secondary forest habitats for
34	endemic birds, a perspective from two widely separated tropical ecosystems. Ecography
35	37, 250-260.
36	McKnight, M.W., White, P.S., McDonald, R.I., Lamoreux, J.F., Sechrest, W., Ridgely, R.S.,
37	Stuart, S.N., 2007. Putting beta-diversity on the map: broad-scale congruence and
38	coincidence in the extremes. PLoS Biol. 5, e272.
39	McLeod, R., Balaban, J., Balaban, J., Moisset, B., Entz, C. 2009. Family Geometridae -
40	Geometrid Moths. BugGuide. < <u>http://bugguide.net/node/view/188</u> >01 January 2016.
41	Mironov, V.G., Galsworthy, A.C., 2012. A generic level review of Eupithecia Curtis and some
42	closely related genera based on the Palaearctic, Nearctic and Oriental fauna (Lepidoptera,
43	Geometridae, Larentiinae). Zootaxa, 46-64.
44	Mouquet, N., Devictor, V., Meynard, C.N., Munoz, F., Bersier, L.F., Chave, J., Couteron, P.,

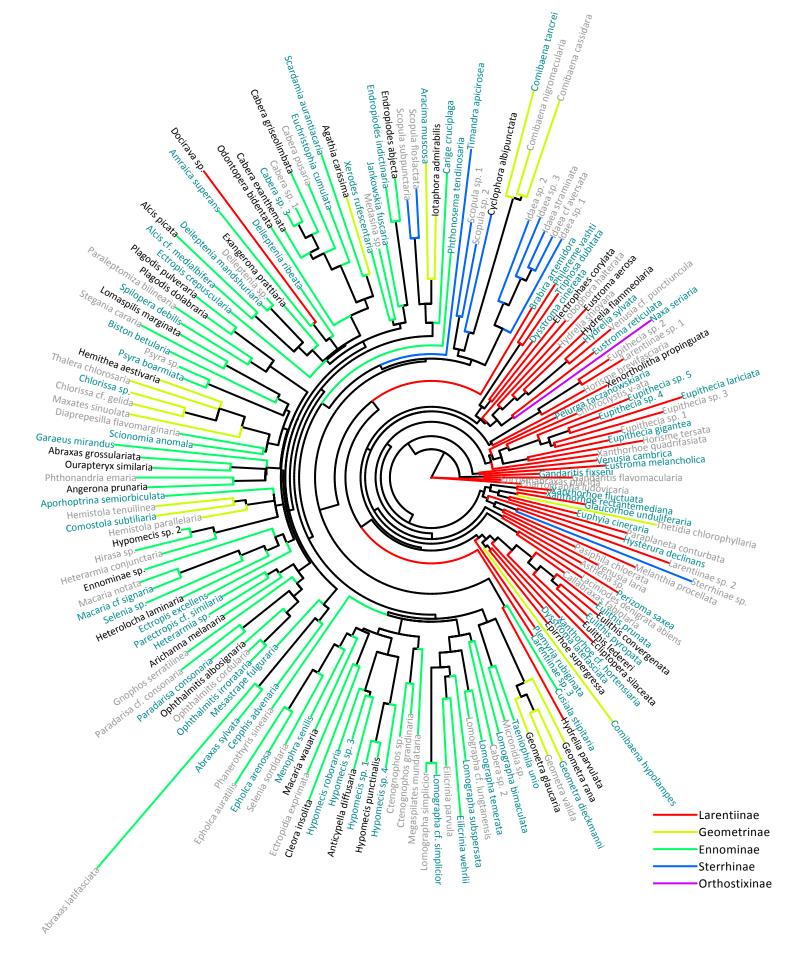
1	Dalecky, A., Fontaine, C., Gravel, D., 2012. Ecophylogenetics: advances and
2	perspectives. Biol. Rev. 87, 769-785.
3	Ohsawa, M., 2004. Comparison of elaterid biodiversity among larch plantations, secondary
4	forests, and primary forests in the central mountainous region in Japan. Ann. Entomol.
5	Soc. Am. 97, 770-774.
6	Oksanen, J., Blanchet, F.G., Kindt, R., Legendre, P., Minchin, P., O'Hara, R., Simpson, G.,
7	Solymos, P., Stevens, M., Wagner, H., 2012. vegan: Community Ecology Package. R
8	package version 2.0-3.
9	Palmer, W.A., Lockett, C.J., Senaratne, K.A.D.W., McLennan, A., 2007. The introduction and
10	release of Chiasmia inconspicua and C. assimilis (Lepidoptera: Geometridae) for the
11	biological control of Acacia nilotica in Australia. Biol. Control 41, 368-378.
12	Paradis, E., Claude, J., Strimmer, K., 2004. APE: analyses of phylogenetics and evolution in
13	R language. Bioinformatics 20, 289-290.
14	R Core Team, 2014. R: A language and environment for statistical computing. In. R
15	Foundation for Statistical Computing, Vienna, Austria.
16	Ran, L., Lu, X., Xu, J., 2013. Effects of vegetation restoration on soil conservation and
17	sediment loads in China: A critical review. Crit. Rev. Environ. Sci. Technol. 43,
18	1384-1415.
19	Ratnasingham, S., Hebert, P.D.N., 2007. bold: The Barcode of Life Data System
20	(http://www.barcodinglife.org). Mol. Ecol. Notes 7, 355-364.
21	Robinson, G.S., Ackery, P.R., Kitching, I.J., Beccaloni, G.W., Hernández, L.M. 2010. HOSTS
22	- A Database of the World's Lepidopteran Hostplants. < <u>http://www.nhm.ac.uk/hosts</u> >01
23	January 2016.
24	Ruiz-Benito, P., Gómez-Aparicio, L., Zavala, M.A., 2012. Large-scale assessment of
25	regeneration and diversity in Mediterranean planted pine forests along ecological
26	gradients. Divers. Distrib. 18, 1092-1106.
27	Sang, W., 2004. Modelling changes of a deciduous broad-leaved forest in warm temperate
28	zone of China. Acta Ecologica Sinica 6, 1194-1198.
29	Sang, W., Bai, F., 2009. Vascular diversity patterns of forest ecosystem before and after a
30	43-year interval under changing climate conditions in the Changbaishan Nature Reserve,
31	northeastern China. Plant Ecol. 201, 115-130.
32	Schliep, K.P., 2011. phangorn: phylogenetic analysis in R. Bioinformatics 27, 592-593.
33	Scoble, M.J., 1999. Geometrid moths of the World - Aatalogue (Lepidoptera: Geometridae).
34	CSIRO Publishing, Collingwood.
35	Sihvonen, P., Mutanen, M., Kaila, L., Brehm, G., Hausmann, A., Staude, H.S., 2011.
36	Comprehensive Molecular Sampling Yields a Robust Phylogeny for Geometrid Moths
37	(Lepidoptera: Geometridae). PLoS ONE 6, e20356.
38	Smith, M.A., Fisher, B.L., 2009. Invasions, DNA barcodes, and rapid biodiversity assessment
39	using ants of Mauritius. Frontiers in Zoology 6.
40	Strutzenberger, P., Brehm, G., Fiedler, K., 2011. DNA barcoding-based species delimitation
41	increases species count of Eois (Geometridae) moths in a well-studied tropical mountain
42	forest by up to 50%. Insect Sci. 18, 349-362.
43	Wang, G., Innes, J.L., Lei, J., Dai, S., Wu, S.W., 2007. China's forestry reforms. Science 318,
44	1556.


1	Warren-Thomas, E., Zou, Y., Dong, L., Yao, X., Yang, M., Zhang, X., Qin, Y., Liu, Y., Sang,
2	W., Axmacher, J.C., 2014. Ground beetle assemblages in Beijing's new mountain forests.
3	For. Ecol. Manage. 334, 369-376.
4	Webb, C.O., Ackerly, D.D., McPeek, M.A., Donoghue, M.J., 2002. Phylogenies and
5	community ecology. Annu. Rev. Ecol. Syst. 33, 475-505.
6	Winter, M., Devictor, V., Schweiger, O., 2013. Phylogenetic diversity and nature conservation:
7	where are we? Trends Ecol. Evol. 28, 199-204.
8	Xue, D., Zhu, H., 1999. Fauna Sinica Insecta vol 15: Lepidoptera Geometridae: Larentiinae.
9	Science Press, Bejing.
10	Yela, J.L., Holyoak, M., 1997. Effects of Moonlight and Meteorological Factors on Light and
11	Bait Trap Catches of Noctuid Moths (Lepidoptera: Noctuidae). Environ. Entomol. 26,
12	1283-1290.
13	Zhang, P., Shao, G., Zhao, G., Le Master, D.C., Parker, G.R., Dunning, J.B., Li, Q., 2000.
14	China's Forest Policy for the 21st Century. Science 288, 2135-2136.
15	Zou, Y., Sang, W., Hausmann, A., Axmacher, J.C., 2016. High phylogenetic diversity is
16	preserved in species-poor high-elevation temperate moth assemblages. Scientific Reports
17	6, 23045.
18	Zou, Y., Sang, W., Wang, S., Warren-Thomas, E., Liu, Y., Yu, Z., Wang, C., Axmacher, J.C.,
19	2015. Diversity patterns of ground beetles and understory vegetation in mature,
20	secondary, and plantation forest regions of temperate northern China. Ecol. Evol. 5,
21	531-542.
22	


1 Figures


2 Fig. 1. Map of the study areas (DLM: Dongling Mountain; CNR: Changbaishan


3 Nature Reserve)


- 4 Fig. 2. Number of common (representing $\geq 0.5\%$ of the overall sample) and rare
- 5 (<0.5%) species, differentiated into unique and shared species for Dongling Mountain
- 6 (DLM) and Changbaishan Nature Reserve (CNR)
- 7 Fig. 3. Rarefaction and extrapolation curves for geometrid moths on Dongling
- 8 Mountain (DLM) and in the Changbaishan Nature Reserve (CNR), shaded areas
- 9 represent 95% confidence intervals from bootstrap calculations.
- 10 Fig. 4. Nonmetric Multidimensional Scaling (NMDS, stress=0.12) plot based on
- 11 Euclidean dissimilarities between individual sampling plots for Dongling Mountain
- 12 (DLM) and Changbaishan Nature Reserve (CNR)
- 13 Fig. 5. Maximum likelihood analysis of neighbourhood-joining trees (COI 5' data,
- 14 based on Kimura 2-parameter distance) of geometrid moths; different text colours
- 15 refer to species from different regions, where grey refers to species recorded uniquely
- 16 from Dongling Mountain, cyan refers to species uniquely sampled from
- 17 Changbaishan Nature Reserve and black refer to species sampled from both regions;
- 18 different colours of the edge line refer to species from different subfamilies.

Appendix

Geometridae species list and their abundance in different forest types in Dongling Mountain (DLM) and Changbaishan Nature Reserve (CNR)

Subfamily	Species	DLM Mixed	DLM Oak	DLM Birch	CNR Mixed	CNR Korean Pine
Ennominae	Abraxas grossulariata Linnaeus, 1758	0	0	29	8	3
Ennominae	Abraxas latifasciata Warren, 1894	0	0	12	0	0
Ennominae	Abraxas sylvata Scopoli, 1763	0	0	0	595	21
Ennominae	Alcis cf. medialbifera Inoue, 1972	0	0	0	0	30
Ennominae	Alcis picata Butler, 1881	2	2	16	12	14
Ennominae	Amraica superans Butler, 1878	0	0	0	2	0
Ennominae	Angerona prunaria Linnaeus, 1758	8	2	7	40	7
Ennominae	Anticypella diffusaria Leech, 1897	0	1	1	15	0
Ennominae	<i>Aporhoptrina semiorbiculata</i> Christoph, 1881	0	0	0	1	0
Ennominae	Arichanna melanaria Linnaeus, 1758	0	1	45	0	11
Ennominae	Biston betularia Linnaeus, 1758	0	0	0	1	8
Ennominae	Cabera exanthemata Scopoli, 1763	2	0	1	15	1
Ennominae	Cabera griseolimbata Oberthür, 1879	2	8	5	49	3
Ennominae	Cabera pusaria Linnaeus, 1758	0	0	2	0	0
Ennominae	<i>Cabera</i> sp. 1	2	0	2	0	0
Ennominae	<i>Cabera</i> sp. 2	11	5	6	0	0
Ennominae	Cabera sp. 3	0	0	0	27	0
Ennominae	Carige cruciplaga Walker, 1861	0	0	0	9	0
Ennominae	Cepphis advenaria Hübner, 1790	0	0	0	3	0
Ennominae	Cleora insolita Butler, 1878	0	0	13	11	0
Ennominae	Ctenognophos grandinaria Motschulsky, 1860	1	0	0	0	0
Ennominae	Ctenognophos sp.	11	23	32	0	0
Ennominae	Cusiala stipitaria Oberthür, 1880	0	0	0	1	0
Ennominae	Deileptenia mandshuriaria Bremer, 1864	0	0	0	17	0
Ennominae	Deileptenia ribeata Clerck, 1759	0	0	0	88	5
Ennominae	Deileptenia sp.	0	3	0	0	0
Ennominae	Diaprepesilla flavomarginaria Bremer 1864	0	1	0	0	0
Ennominae	Ectropidia exprimata Walker, 1861	3	2	6	0	0
Ennominae	<i>Ectropis crepuscularia</i> Denis & Schiffermüller, 1775	0	0	0	6	0
Ennominae	Ectropis excellens Butler, 1884	0	0	0	10	0
Ennominae	Eilicrinia parvula Wehrli, 1940	0	1	0	0	0

Ennominae	Eilicrinia wehrlii Djakonov, 1933	0	0	0	2	0
Ennominae	Endropiodes abjecta Butler, 1879	12	2	11	241	0
Ennominae	<i>Endropiodes indictinaria</i> Bremer, 1864	0	0	0	0	1
Ennominae	Ennominae sp.	0	0	3	0	10
Ennominae	Epholca arenosa Butler, 1878	0	0	0	24	0
Ennominae	Epholca auratilis Prout 1934	17	12	17	0	0
Ennominae	<i>Euchristophia cumulata</i> Christoph, 1880	0	0	0	6	4
Ennominae	Exangerona prattiaria Leech, 1891	32	3	6	44	0
Ennominae	Garaeus mirandus Butler, 1881	0	0	0	2	0
Ennominae	Gnophos serratilinea Sterneck, 1928	5	4	4	0	0
Ennominae	Heterarmia conjunctaria Leech, 1897	19	6	27	0	0
Ennominae	Heterarmia sp.	0	0	0	18	5
Ennominae	<i>Heterolocha laminaria</i> Herrich-Schäffer, 1852	1	0	0	24	0
Ennominae	<i>Hirasa</i> sp.	1	1	0	0	0
Ennominae	Hypomecis punctinalis Scopoli, 1763	0	0	1	235	6
Ennominae	<i>Hypomecis roboraria</i> Denis & Schiffermüller, 1775	0	0	0	125	47
Ennominae	Hypomecis sp. 1	0	0	0	12	0
Ennominae	Hypomecis sp. 2	1	0	2	3	0
Ennominae	Hypomecis sp. 3	0	0	0	1	0
Ennominae	Hypomecis sp. 4	0	0	0	15	0
Ennominae	Jankowskia fuscaria Leech, 1891	0	0	0	28	0
Ennominae	Lomaspilis marginata Linnaeus, 1758	0	0	2	3	0
Ennominae	Lomographa bimaculata Fabricius, 1775	0	0	0	99	0
Ennominae	Lomographa cf. lungtanensis Wehrli, 1939	3	7	2	0	0
Ennominae	<i>Lomographa</i> cf. <i>simplicior</i> Butler, 1881	0	0	0	6	0
Ennominae	Lomographa simplicior Butler, 1881	1	1	0	0	0
Ennominae	<i>Lomographa subspersata</i> Wehrli, 1939	0	0	0	7	0
Ennominae	Lomographa temerata Denis & Schiffermüller, 1775	0	0	0	16	0
Ennominae	Macaria cf. signaria Hübner, 1809	0	0	0	1	0
Ennominae	Macaria notata Linnaeus, 1758	0	0	3	0	0
Ennominae	Macaria wauaria Linnaeus, 1758	0	0	1	2	0
Ennominae	<i>Medasina</i> sp.	3	3	6	0	0
Ennominae	Megaspilates mundataria Stoll, 1782	0	1	0	0	0
Ennominae	Menophra senilis Butler, 1878	0	0	0	4	0
Ennominae	Mesastrape fulguraria Walker, 1860	0	0	0	19	1

Ennominae	Micronidia sp.	10	4	6	0	0
Ennominae	Odontopera bidentata Clerck, 1759	1	0	0	15	0
	<i>Ophthalmitis albosignaria</i> Bremer &	-	-	-		Ū.
Ennominae	Grey, 1853	1	0	0	11	0
Ennominae	Ophthalmitis cordularia Swinhoe,	1	0	2	0	0
Emonnae	1893	1	0	2	0	0
Ennominae	<i>Ophthalmitis irrorataria</i> Bremer & Grey, 1853	0	0	0	3	0
Ennominae	<i>Ourapteryx similaria</i> Matsumura, 1910	4	4	10	0	4
Ennominae	Paradarisa cf. consonaria Hübner, 1799	9	4	4	0	0
Ennominae	Paradarisa consonaria Hübner, 1799	0	0	0	12	0
Ennominae	Paraleptomiza bilinearia Leech, 1897	9	3	0	0	0
Ennominae	Parectropis cf. similaria Hufnagel, 1767	0	0	0	99	0
Ennominae	Phanerothyris sinearia Guenée, 1857	96	18	2	0	0
Ennominae	Phthonandria emaria Bremer, 1864	9	3	18	0	0
Ennominae	Phthonosema tendinosaria Bremer, 1864	0	0	0	1	0
Ennominae	Plagodis dolabraria Linnaeus, 1767	1	13	18	14	0
Ennominae	Plagodis pulveraria Linnaeus, 1758	3	2	0	46	0
Ennominae	Psyra boarmiata Graeser, 1892	0	0	0	53	3
Ennominae	<i>Psyra</i> sp.	0	0	2	0	0
Ennominae	<i>Scardamia aurantiacaria</i> Bremer, 1864	0	0	0	1	0
Ennominae	Scionomia anomala Butler, 1881	0	0	0	10	0
Ennominae	Selenia sordidaria Leech, 1897	4	0	2	0	0
Ennominae	Selenia sp.	0	0	0	0	2
Ennominae	Spilopera debilis Butler, 1878	0	0	0	15	3
Ennominae	Stegania cararia Hubner, 1790	1	0	0	0	0
Ennominae	Taeniophila unio Oberthür, 1880	0	0	0	11	0
Ennominae	Xerodes rufescentaria Motschoulsky, 1861	0	0	0	1	0
Geometrinae	Agathia carissima Butler, 1878	0	1	0	4	0
Geometrinae	Aracima muscosa Butler, 1878	0	0	0	1	0
Geometrinae	Chlorissa cf. gelida Butler, 1889	0	0	1	0	0
Geometrinae	Chlorissa sp.	0	0	0	7	0
Geometrinae	Comibaena cassidara Guenée, 1857	1	0	0	0	0
Geometrinae	Comibaena hypolampes Prout,1918	0	0	0	0	4
Coomotrinos	Comibaena nigromacularia	5	Δ	Δ	0	0
Geometrinae	Leech,1897	5	0	0	0	0
Geometrinae	Comibaena tancrei Graeser, 1889	0	0	0	0	2
Geometrinae	Comostola subtiliaria Bremer, 1864	0	0	0	3	1

Geometrinae	Geometra dieckmanni Graeser, 1889	0	0	0	0	1
Geometrinae	Geometra glaucaria Ménétriès, 1859	13	2	4	58	2
Geometrinae	Geometra rana Oberthür, 1916	0	1	0	17	14
Geometrinae	Geometra valida Felder, 1875	2	5	0	0	0
Geometrinae	Hemistola parallelaria Leech,1897	1	0	1	0	0
Geometrinae	Hemistola tenuilinea Alpheraky, 1897	1	0	0	0	0
Geometrinae	Hemithea aestivaria Hübner, 1789	1	1	0	2	0
Geometrinae	Iotaphora admirabilis Oberthür, 1883	2	7	1	2	0
Geometrinae	Maxates sinuolata Inoue, 1989	0	1	0	0	0
Geometrinae	Thalera chlorosaria Graeser, 1890	0	0	1	0	0
	Thetidia chlorophyllaria Hedemann					
Geometrinae	1879	1	1	0	0	0
Larentiinae	Asthena sp.	2	4	8	0	0
Larentiinae	Brabira artemidora Oberthür, 1884	0	0	0	0	2
T	Callabraxas fabiolaria Oberthür,	0	2	0	0	0
Larentiinae	1884	0	2	0	0	0
Lonontiinoo	Chartographa ludovicaria Oberthür,	1	2	0	0	0
Larentiinae	1880	1	2	0	0	0
Larentiinae	Chloroclystis v-ata Haworth, 1809	0	2	0	0	0
Larentiinae	Docirava sp.	2	0	0	3	0
Larentiinae	Dysstroma cinereata Moore, 1867	0	0	0	2	2
Larentiinae	Dysstroma latefasciata Blöcker, 1908	0	0	0	1	0
Larentiinae	<i>Ecliptopera silaceata</i> Denis & Schiffermüller, 1775	0	1	0	42	25
Larentiinae	Electrophaes corylata Thunberg, 1792	3	0	1	3	0
Larentiinae	Epirrhoe supergressa Butler, 1879	4	4	3	14	0
Larentiinae	Eucosmabraxas placida Butler, 1878	1	2	0	0	0
Larentiinae	Eulithis convergenata Bremer, 1864	1	1	2	4	1
Larentiinae	Eulithis ledereri Bremer, 1864	0	0	1	2	0
Larentiinae	Eulithis prunata Linnaeus, 1758	0	0	0	15	0
Larentiinae	Eulithis pyropata Hubner, 1809	0	0	0	11	0
Larentiinae	Euphyia cineraria Butler, 1878	0	0	0	9	1
Larentiinae	Eupithecia gigantea Staudinger, 1897	0	0	0	3	0
Larentiinae	Eupithecia lariciata Freyer, 1841	0	0	0	15	2
Larentiinae	Eupithecia sp. 1	2	1	0	0	0
Larentiinae	Eupithecia sp. 2	1	2	0	0	0
Larentiinae	Eupithecia sp. 3	0	1	0	0	0
Larentiinae	Eupithecia sp. 4	0	0	0	12	1
Larentiinae	Eupithecia sp. 5	0	0	0	2	0
Larentiinae	Eustroma aerosa Butler, 1878	1	2	0	33	13
Larentiinae	Eustroma melancholica Butler, 1878	0	0	0	3	7
Larentiinae	Eustroma reticulata Denis &	0	0	0	4	3
	Schiffermüller, 1775	U	U	U	4	3
Larentiinae	Gandaritis fixseni Bremer, 1864	0	0	0	14	13

Larentiinae	Gandaritis flavomacularia Leech, 1897	1	0	0	0	0
Larentiinae	<i>Glaucorhoe unduliferaria</i> Motschulsky, 1861	0	0	0	17	1
Larentiinae	Horisme brevifasciaria Leech, 1897	7	10	2	0	0
Larentiinae	Horisme radicaria de La Harpe, 1855	0	1	0	0	0
Larentiinae	<i>Horisme tersata</i> Denis & Schiffermüller, 1775	4	1	6	0	0
Larentiinae	<i>Hydrelia flammeolaria</i> Hufnagel, 1767	0	0	2	7	3
Larentiinae	Hydrelia parvulata Staudinger, 1897	2	1	0	1	0
Larentiinae	Hydrelia shioyana Matsumura, 1927	1	4	3	0	0
Larentiinae	<i>Hydrelia sylvata</i> Denis & Schiffermüller, 1775	0	0	0	2	0
Larentiinae	Hysterura declinans Staudinger, 1897	0	0	0	11	3
Larentiinae	Laciniodes denigrata abiens Prout, 1938	0	0	1	0	0
Larentiinae	Larentiinae sp. 1	1	7	0	0	0
Larentiinae	Larentiinae sp. 2	0	2	0	0	0
Larentiinae	Larentiinae sp. 3	0	0	0	5	0
Larentiinae	Lobophora halterata Hufnagel, 1767	0	1	2	0	0
Larentiinae	<i>Melanthia procellata</i> Denis & Schiffermüller, 1775	1	1	0	0	0
Larentiinae	Paraplaneta conturbata Prout, 1938	1	1	0	0	0
Larentiinae	Pasiphila chloerata Mabille, 1870	1	0	0	0	0
Larentiinae	Pelurga taczanowskiaria Oberthür, 1880	0	0	0	1	0
Larentiinae	Perizoma saxea Wileman, 1911	0	0	0	16	22
Larentiinae	Philereme vashti Butler, 1878	0	0	0	1	1
Larentiinae	<i>Plemyria rubiginata</i> Denis & Schiffermüller, 1775	0	0	0	5	0
Larentiinae	Triphosa dubitata Linnaeus, 1758	0	0	0	5	7
Larentiinae	Venusia cambrica Curtis, 1839	0	0	0	3	2
Larentiinae	Venusia cf. punctiuncula Prout, 1938	1	0	1	0	0
Larentiinae	Venusia laria Oberthür, 1893	1	1	2	0	0
Larentiinae	Xanthorhoe cf. hortensiaria Graeser, 1889	0	0	0	20	0
Larentiinae	Xanthorhoe fluctuata Linnaeus, 1758	0	0	0	0	1
Larentiinae	Xanthorhoe quadrifasiata Clerck, 1759	0	2	4	0	0
Larentiinae	Xanthorhoe rectantemediana Wehrli, 1927	0	0	0	6	0
Larentiinae	Xenortholitha propinguata Kollar, 1844	2	0	0	48	2

Orthostixinae	Naxa seriaria Motschulsky, 1866	0	0	0	11	0
Sterrhinae	Cyclophora albipunctata Hufnagel, 1767	2	0	7	1	0
Sterrhinae	Idaea cf aversata Linnaeus, 1758	6	5	9	0	0
Sterrhinae	<i>Idaea</i> sp. 1	1	4	0	0	0
Sterrhinae	<i>Idaea</i> sp. 2	0	1	1	0	0
Sterrhinae	<i>Idaea</i> sp. 3	8	5	0	0	0
Sterrhinae	Idaea straminata Borkhausen, 1794	1	2	0	0	0
Sterrhinae	Scopula floslactata Haworth, 1809	2	1	7	0	0
Sterrhinae	Scopula sp. 1	4	2	2	0	0
Sterrhinae	Scopula sp. 2	0	1	0	0	0
Sterrhinae	Scopula subpunctaria Herrich-Schäffer, 1847	0	0	2	0	0
Sterrhinae	Sterrhinae sp.	2	0	1	0	0
Sterrhinae	Timandra apicirosea Prout, 1935	0	0	0	4	1