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Abstract

In this paper, we introduce a new procedure for the estimation in the nonlinear functional regression
model where the explanatory variable takes values in an abstract function space and the residual
process is autocorrelated. Moreover, we consider the case where the response variable takes its
values in Rd, d ≥ 1. The procedure consists in a pre-whitening transformation of the dependent
variable based on the estimated autocorrelation. We establish both consistency and asymptotic
normality of the regression function estimate. For kernel methods encountered in the literature,
the correlation structure is commonly ignored (the so-called “working independence estimator”);
we show here that there is a strong benefit in taking into account the autocorrelation in the error
process. We also find that the improvement in efficiency can be large in our functional setting,
up to 25% in the presence of high autocorrelation levels. We discover that the additional step
of iterating the fitting process actually deteriorates the estimation. We illustrate the skills of the
methods on simulations as well as on application on ozone levels over the US.

Keywords: Autoregressive process, Functional data, Kernel regression, Pre-whitening, Time
Series

1. Introduction1

The use of functional random variables is spreading in statistical analyses due to the availability2

of high frequency data and of new mathematical strategies to deal with such statistical objects. The3

field is known as Functional Data Analysis (FDA). Applications of FDA are growing across fields4

as diverse as energy studies (Antoniadis et al., 2014), linguistics (Aston et al., 2010), atmospheric5

chemistry (Park et al., 2013), and human vision (Ogden and Greene, 2010). The functional variables6

are mainly curves, but surfaces and manifolds are nowadays considered (e.g. Guillas and Lai, 2010;7

Sangalli et al., 2013). For an introduction to this field as well as illustrations and applications, see8
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Ramsay and Silverman (2005). Besides, Ferraty and Vieu (2006) present nonparametric methods,9

suited to such functional regression, with a more mathematical flavor. More recently, Cuevas (2014)10

provides an updated survey of the state of the art in FDA theory.11

Among the nonparametric functional regression methods, the kernel estimator is often used to12

estimate the regression operator. It yields almost sure consistency in the case of an independent13

sample (Ferraty and Vieu, 2002) or an α−mixing sample (Ferraty et al., 2002a,b), but also asymp-14

totic normality in the independent case (Ferraty et al., 2007) with exact computation of all the15

constants for its precise use in practice. Masry (2005) established the asymptotic normality of the16

nonparametric regression estimator for strongly mixing processes albeit with abstract expressions17

of the constants so this is more challenging to use in practice. Delsol (2007, 2009) generalized the18

results of Ferraty et al. (2007) to the case of an α-mixing dataset.19

In this paper, we consider the regression of a multivariate random variable onto a functional20

random variable. The estimation of the regression function is tackled by means of a nonparametric21

kernel approach. The existing kernel regression estimators dealing with functional explanatory22

variables are for scalar response; we have not found existing research on functional nonparametric23

modeling for multivariate response. With multivariate explanatory variables and a multivariate24

response, Xiang et al. (2013) proposed a kernel estimate of the regression function. Our regression25

model below is an extension of (Xiang et al., 2013):26

Yt = m(Xt) + ut, t = 1, . . . , T, (1)

where Yt = (Yt,1, . . . , Yt,d)
′ ∈ Rd, m(Xt) = (m1(Xt), . . . ,md(Xt))

′, the explanatory vari-27

able is functional (that is, Xt takes values in some possibly infinite-dimensional space), ut =28

(ut,1, . . . , ut,d)
′. Moreover, the stationary residual process ut is autocorrelated and independent of29

Xt. We do not necessarily assume that (Xt,Yt)t is strictly stationary, second order stationarity30

suffices.31

Although, for the kernel methods proposed in the literature, it is generally better to ignore the cor-32

relation structure entirely (the so-called “working independence estimator”, e.g. Ruckstuhl et al.33

(2000), Lin and Carroll (2000)), we show here that taking into account the autocorrelation of the34

error process helps improve the estimation of the regression function.35

We extend the kernel-based procedure proposed by Xiao et al. (2003) for estimating m(x) in the36

time series regression model for multivariate explanatory variables x to a functional setting. Xiao37

et al. (2003) showed that their procedure is more efficient than the conventional local polynomial38

method. The main idea is to transform the original regression model, so that this transformed39

regression has a residual term that is uncorrelated. This transformation depends on the func-40

tion m(·) and on the parameters of the autoregressive representation of u, since the regression41

function is nonlinear. The error correlation structure is assumed to have an autoregressive repre-42

sentation. Firstly, the parameters of the autoregressive representation are estimated. In a second43
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step, a transformation Ŷt of the dependent variable Yt is constructed by plugging in the estimated44

autocorrelation parameter. Finally, the estimation of m is carried out on this filtered series Ŷt.45

The remainder of the paper is organized as follows. In Section 2, we introduce the estimation46

method as well as the assumptions. We then provide asymptotic results for the estimator proposed.47

Section 3 is devoted to a simulation case study and an illustration of our method for ozone levels48

over the US. The conclusion is done in Section 4 while the proofs are given in the Appendix.49

2. Assumptions and main results50

Suppose that we have a sample {(X1,Y1), . . . , (XT ,YT )}, where Xt, t = 1, . . . , T , is a random51

variable taking its values in a semi-metric space (C, d) of infinite dimension and Yt ∈ Rd is the52

response from the nonparametric regression (1). We assume that the residual process ut ∈ Rd is53

stationary, has mean 0 with cross-covariance (auto-covariance in the univariate case) γu and has54

the following invertible linear process representation (with bounded coefficients):55

ut =

∞∑
k=0

Ψket−k = Ψ(L)et (2)

where Ψ0 = I (identity matrix), Ψ(L) =
∑∞

k=0 ΨkL
k is a d × d matrix in the lag operator L56

(Lk(et) = et−k), the (i, j)th element of Ψ(L) is ψij(L) =
∑∞

k=0 cij(k)Lk, the et ∈ Rd form a white57

noise process with mean E(et) = 0, E(ete
′
t) = Σe is a positive definite matrix, E(etet+k) = 0 for58

k 6= 0 and E[|et,j |] <∞, ∀j = 1, . . . , d.59

Let Ψ(L)−1 = Π(L) = I −
∑∞

k=1 ΠkL
k with Π0 = I, or as done for Ψ let the (i, j)th element of60

Π(L) be πij(L) =
∑∞

k=0 aij(k)Lk. So we have, the infinite autoregressive representation61

Π(L)ut = et. (3)

Note that stationary, causal and invertible vector ARMA processes ut−
∑p

k=1 Φkut−k = et−k−62 ∑q
k=1 Θket−k can be represented as in (2)-(3) if all roots of det{Φ(L)} and det{Θ(L)} are all greater63

than one in absolute value.64

Here, we consider a truncated version of Π(L) at order Q, that is Π(L) = I −
∑Q

k=1 ΠkL
k, where65

the truncation parameter Q is large enough. Applying Π(L) to the regression in Equation (1), we66

obtain Π(L)Yt = Π(L)m(Xt) + et. Then let the regression model Yt = m(Xt) + et, with Yt =67

Yt −
∑Q

k=1 ΠkL
k(Yt −m(Xt)), so the error term in this transformed model is now uncorrelated.68

The matrix of coefficients {Ψk}∞k=0 and the regression function m(·) are unknown, except for the69

fact that m(·) is a smooth function. If Yt were known then a nonparametric kernel regression of Yt70

on Xt would be more efficient than the conventional kernel estimation. In this work, we employ a71

Nadaraya-Watson estimator as introduced in Ferraty and Vieu (2004), Masry (2005), Dabo-Niang72

and Rhomari (2009) where for any sample {Vt, Xt}, the estimation of the regression of Vt ∈ R onto73

Xt ∈ (C, d(·, ·)) is74
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∑T
t=1 VtK

(
d(x,Xt)

h

)
∑T

s=1K
(
d(x,Xs)

h

) , x ∈ C

where K(·) is a function over [0,+∞[ called kernel, h > 0 is the bandwidth parameter and d(·, ·)75

is a semi-metric. For x ∈ C fixed, let m̂j(x) be the corresponding estimator with Vt = Yt,j and let76

mj(x) be the corresponding estimator when Vt = Y t,j . Let K0 and K1 be two kernels over [0; +∞[,77

h0 and h1 the two corresponding bandwidths. Consider the estimator m(x) = (m1(x), . . . ,md(x))′78

where79

mj(x) =

1

TE
[
K0

(
d(x,X1)
h0

)] T∑
t=1

Y t,jK0

(
d(x,Xt)

h0

)
1

TE
[
K0

(
d(x,X1)
h0

)] T∑
s=1

K0

(
d(x,Xs)

h0

) =
m2,j(x)

m1(x)
, j = 1, . . . , d

In practice, the matrix of coefficients {Πk}Qk=1 is unknown and therefore Yt is not computable,80

so the regression Yt = m(Xt) + et and m(x) are unworkable. A feasible estimator is obtained81

by replacing Yt by its approximation based on estimates of {Πk}Qk=1. The proposed estimation82

procedure extends Xiao et al. (2003).83

1. For j = 1, . . . , d: obtain a preliminary consistent estimate of m by the regression of Yt on Xt84

with corresponding kernel K0 and bandwidth h0 assuming i.i.d. errors. Denote the preliminary85

estimate as m̂(Xt) and calculate the estimated residuals ût = Yt−m̂(Xt), ût = (ut,1, . . . , ut,d)
′,86

ût,j = Yt,j − m̂j(Xt).87

2. Conduct an estimation of the V AR(Q) matrix coefficients in the autoregression of ût: ût =88

Π̂1ût−1 + · · ·+ Π̂Qût−Q + et, where et = (et,1, . . . , et,d)
′ is a vector of i.i.d. noise.89

3. Construct an approximation of Yt, t = 2, . . . , T that is Ŷt = Yt− Π̂1 (Yt−1 − m̂(Xt−1))−· · ·−90

Π̂Q (Yt−Q − m̂(Xt−Q)). The proposed estimator of m(x) is then obtained from the regression91

of Ŷt on Xt with corresponding kernel K1 and bandwidth h1, resulting in the estimator m̃(x) =92

(m̃1(x), . . . , m̃d(x))′:93

m̃j(x) =

1

TE
[
K1

(
d(x,X1)
h1

)] T∑
t=2

Ŷ t,jK1

(
d(x,X1)

h1

)
1

TE
[
K1

(
d(x,X1)
h1

)] T∑
s=2

K1

(
d(x,Xs)

h1

)

For simplicity, let Q = 1 in the following. The proofs and results remain similar in the general94

case Q > 1. Note that one can iterate this process, in case the initial estimate of the autocorrelation95
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is not accurate enough as the bias in this estimate will propagate to the filtered series and hence96

to the estimation of m(x). In our numerical studies, we present both the initial estimate and the97

estimate based on an additional iteration of the steps above.98

Let us now explain in details the theoretical set-up that enables us to prove the asymptotic99

results in our paper. We first assume that the error process {ut} is independent of the process {Xt}100

and that E[et|Xt] = 0. We consider that the processes {Xt,Yt} are α-mixing, the most general101

case of weakly dependent variables. Let Fba be the σ-algebra of events generated by the random102

variables {Xt, Yt}bt=a and set (Rosenblatt (1956))103

sup
A∈F0

−∞,B∈F∞k
|P(A ∩B)− P(A)P(B)| = α(k) −→

k→∞
0.

Let | · | denote the L1−norm when it is applied to a vector; |y| =
∑d

j=1 |yj |, y = (y1, . . . , yd)
′

104

and the usual matrix norm when applied to a matrix.105

Our assumptions are listed below:106

H1 (Smoothness)107

(1) mj(·) is a bounded Lipschitz function: |mj(u)−mj(v)| ≤ c3d(u, v)β for all u, v ∈ (C, d)108

for some β > 0.109

(2) Let G2(u) = V ar[Yt|Xt = u], u ∈ (C, d), the variance matrix of Yt given Xt = u.110

G2(u) is independent of t and is continuous in some neighborhood of x111

sup
{u:d(x,u)≤h}

|G2(u)−G2(x)| = o(1) as h→ 0

Assume E|Yt|ν <∞ and E[|et|ν ] <∞, for some ν > 2. Assume112

Gν(u) = E[|Yt −m(x)|ν |Xt = u], u ∈ (C, d)

is continuous in some neighborhood of x.113

(3) Define114

G(u, v;x) = E[(Yt −m(x))(Ys −m(x))|Xt = u,Xs = v], t 6= s and u, v ∈ (C, d)

Assume that G(u, v;x) does not depend on t, s and is continuous in some neighborhood115

of (x, x).116

H2 (Kernel) The kernelsKi, i = 0 or 1, are symmetric nonnegative bounded kernels with compact117

support [0, 1] satisfying118

(1)
∫
Ki(u)du = 1 and c1,i1[0,1] < Ki < c2,i1[0,1], c1,i and c2,i are two finite constants.119
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(2) For j = 1, 2, we have Ij(h)→ Cj as h→ 0, for some positive constant Cj , with120

Ij(h) =
1

φ(h)/h

∫ 1

0
Kj
i (u)φ′(hv)dv where φ(·) is defined below.

Let B(x, h) be a ball centered at x ∈ (C, d) with radius h and let fk, k = 1, 2 and 3, be121

finite nonnegative functionals. Finally, we introduce the following notations, where F tx(h)122

corresponds to the well-known notion of small ball probabilities (see e.g. Dabo-Niang (2004),123

Ferraty and Vieu (2006)):124

F tx(h) = P[Xt ∈ B(x, h)] := P[d(Xt, x) ≤ h]

F s,tx,x(h) = P[(Xt, Xs) ∈ B(x, h)× B(x, h)] := P[d(Xt, x) ≤ h, d(Xs, x) ≤ h]

F s,tx,y(h) = P[(Xt, Xs) ∈ B(x, h)× B(y, h)] := P[d(Xt, x) ≤ h, d(Xs, y) ≤ h]

H3 (Distributions)125

(1) F tx(h) = φ(h)f1(x) as h → 0, where φ(0) = 0 and φ(h) is absolutely continuous in a126

neighborhood of the origin and f1(Xt) is uniformly bounded and bounded away from127

zero.128

(2) supt6=s F
s,t
x,x(h) ≤ ψ1(h)f2(x) as h → 0, where ψ1(h) → 0 as h → 0 and f2(Xt) < ∞ is129

uniformly bounded and bounded away from zero.130

Assume that the ratio ψ1(h)/φ2(h) is bounded. It is also supposed that ∃ζ1 ∈ (0, 1),131

0 < Fx,x(h) = O(φ(h)1+ζ1).132

(3) supt6=s F
s,t
x,y(h) ≤ ψ2(h)f3(x, y) as h→ 0, where ψ2(h)→ 0 as h→ 0 and f3(Xt, Xs) <∞133

is uniformly bounded and bounded away from zero.134

Assume that the ratio ψ2(h)/φ2(h) is bounded.135

H4 (Mixing)
∞∑
l=1

lδ[α(l)]1−2/ν <∞136

for some ν > 2 and δ > 1− 2/ν. Note that ν is the order of the moment in H1(2).137

H5 Let hi → 0, h0/h1 → 0 and log T
T 1/2φ(h0)

→ 0 as T → ∞. Let {vT } be a sequence of positive138

integers satisfying vT → ∞ such that vT = o((Tφ(h0))1/2) and (T/φ(h0))1/2α(vT ) → 0,139

Th2β
0 → 0 as T →∞.140

Remark 1.141

- Hypothesis H1(1) is a mild smoothness assumption for kernel functions in nonparametric es-142

timation whereas hypotheses H1(2) and H1(3) are continuity assumptions on certain second-143

order moments.144
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- Hypothesis H2(1) on the kernel is standard. From hypothesis H2(2), if the kernel Ki satisfies145

0 < c1 ≤ Ki(t) ≤ c2 <∞, then c1 ≤ Ij(h) ≤ c2. In fact, this assumption yields an expression146

of the asymptotic variance (rather than upper and lower bounds).147

- Hypotheses of type H3 were proposed in Masry (2005) and have been motivated by the work of148

Gasser et al. (1998). These hypotheses are linked to the volume of an n-ball. When X ∈ Rd,149

f1(x) refers to the probability density of the random variable X and φ(h) is the volume of the150

unit ball in Rd. Assumptions H3(2) and H3(3) concern the behavior of joint distribution.151

- Hypothesis H4 is a standard assumption on the decay of the strongly mixing coefficient α(l)152

and hypothesis H5 concerns the rate of the decay of the mixing coefficient.153

Let ∆
(i)
t (x) = Ki

(
d(x,Xt)

hi

)
, Z

(i)
t (x) = [Yt − m̃(x)]∆

(i)
t (x) − E

[
(Yt − m̃(x))∆

(i)
t (x)

]
, for154

i = 0, 1 (see below). In the following,
d−→ denotes the convergence in distribution. The following155

theorem gives the asymptotic normality of the estimator m̃(x) based on the transformation of the156

dependent variable.157

Theorem 1. Under assumptions H1-H5, we have

(Tφ(h1))1/2[m̃(x)−m(x)−BT (x)]
d−→ Nd(0,Σx)

with BT (x) = E[m̃(x)]−m(x), Σx = C2G2(x)
C2

1f1(x)
= limT→∞

φ(h1)V ar(Z
(1)
T (x))

E2(∆
(1)
1 (x))

is the (d× d) asymptotic158

covariance matrix, x ∈ (C, d) whenever f1(x) > 0.159

The following theorem gives a consistency result of the estimator m̃(x).160

Theorem 2. Under assumptions H1-H5,161

lim
T→∞

m̃(x) = m(x) in probability.

Remark 2. One can establish a convergence in probability of m̃(x) with rate (for instance assum-162

ing for simplicity the boundedness of the response, even though the bound can be arbitrarily large)163

and state that:164

|m̃(x)−m(x)| = Op(h
β
0 ) + op

(√
1

Tφ(h1)

)
under conditions of Theorem 2.165

The proofs of these theorems are postponed in the Appendix section.166

3. Numerical results167

3.1. Simulation study168

We investigate the proposed estimator on simulated data, considering first the univariate case169

(d = 1). The functional observations Xt (with t = 1, . . . , T ) are defined by Xt(w) = 1 + 10e0,t +170
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3e1,tw
2 + 4e2,t(1 − w)3, w ∈ [0, 1] where e0,t, e1,t and e2,t are i.i.d. N (0, 1). We take m(Xt(w)) =171 √

|0.5
∫ 1

0 Xt(w)dw|. The error process ut is an AR(1) process, that is ut = εt + ρεt−1 where εt172

are i.i.d. N (0, σ = 1). Various values of ρ are considered. The number of replications is 200.173

We report the relative efficiency (denoted as RE) calculated as the ratio of squared errors. Table174

1 describes summary statistics of the relative efficiency for T = 200 whereas Table 2 gives the175

average of the relative efficiency for different values of T . RE1 reports the relative efficiency of176

the proposed efficient estimator m̃(x) over the conventional estimator m̂(x), and RE2 concerns177

the relative efficiency of the iterated estimator, over m̂(x). We did not implement the efficient178

estimator of Xiao et al. (2003) as we only consider here for simplicity the case of one lag, but179

the efficient estimator could be used in our context with larger lags than one. Instead here we180

report results about the iterated estimates. The semi-metric d(·, ·) for computing proximities181

between curves Xt plays a major role and depends on the specified statistical problem and dataset.182

After trying some semi-metrics which can select most of the pertinent information of the curves,183

we choose d(·, ·) inside the family of principal component semi-metrics (see Ferraty and Vieu184

(2006)) which is defined by dPCAq (Xt, X) =
√∑q

k=1

(∫
[Xt(w)−X(w)]vk(w)dw

)2
where v1, v2, . . .185

are the orthonormal eigenfunctions of the covariance operator and q is a tuning parameter. We186

have considered different values for this parameter q and the value of 1 is better suited to this187

simulation study. This number of principal components allows to explain around 98% of variation188

of the curves. This choice for the semi-metric based on principal components is well adapted to189

the considered polynomial functions X we deal with and for which it is important to take into190

account large variations of the data. Regarding the implementation of the estimators, we use the191

quadratic kernel (Epanechnikov) (defined by K(x) = 3
4

(
1− x2

)
1[−1;+1](x)). Another choice to192

make is the bandwidth parameters. It is well known that the performance of the kernel estimate193

depends on the choice of the window parameter. The bound in Remark 2 allows us to choose the194

window parameters that minimize this bound. This choice of the bandwidths leads to be optimal195

in the finite dimensional case. In practice, a useful bandwidth choice method is cross-validation as196

follows. For instance, cross-validation ideas are encountered in the finite dimensional setting (e.g.197

Hardle and Marron (1985), Hart and Vieu (1990)) as well as on the infinite dimensional one (e.g.198

Rachdi and Vieu (2007), Benhenni et al. (2007)).199

1. We consider the preliminary estimate m̂ of m by the regression of Yt on Xt with quadratic kernel200

K, the semi-metric dPCA1 and data driven bandwidth hopt0 assuming i.i.d. errors (see Ferraty201

and Vieu (2006) for more details):202

hopt0 = argmin
h

T∑
t=1

(Yt − m̂−t(Xt))
2

where203
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m̂−t(x) =

T∑
u=1,u6=t

YuK

(
d(x,Xu)

h0

)
∑T

s=1,s 6=tK
(
d(x,Xs)
h0

)
We calculate the estimated residuals ût = Yt − m̂(Xt).204

2. We conduct an estimation of the AR(1) coefficients in the autoregression of ût: ût = â1ût−1 +η,205

as in Section 2. We construct Ŷ t = Yt−â1 (Yt−1 − m̂(Xt−1)), t = 2, . . . , T and the estimate m̃(x)206

from the regression of Ŷ t on Xt with quadratic kernel K, the semi-metric dPCA1 and optimal207

data driven bandwidth hopt1 in the same way as above, replacing m̂(x) by m̃(x) resulting in:208

hopt1 = argmin
h

T∑
t=2

(Yt − m̃−t(Xt))
2.

The results in Table 1 show that there is great variability in the improvements across replica-209

tions. The inter-quartile ranges of the relative efficiencies are nevertheless tight: typically within210

0.1 − 0.2, except when the improvements are large (e.g. for ρ = 0.9). The mean improvements211

for the estimator is always smaller than 1 (i.e. showing a positive impact of our method) except212

when ρ ≤ 0.1, a very small level of autocorrelation, where the values are 1.004 and 1.007, still very213

close to 1. The iterated estimator is much less efficient than the initial estimator. It seems that214

the additional steps are adding several layers of noise in the procedure and therefore degrade the215

estimation. Table 2 allows us to see the effect of sample size on the mean relative efficiency. It216

seems that such benefit is stronger whenever the autocorrelation is higher (as expected to be able to217

capture it properly). Moreover, for ρ = 0.9, 0.6 and 0.25, three iterations have been implemented218

and the relative efficiency is still worst than at the first iteration and worst than at the second219

iteration. The results concerning these three iterations are given in Table 3.220

Table 1: Elementary statistics of the relative efficiency for 2 iterations with T = 200
ρ RE Min Q1 Med Mean Q3 Max

0.99 1 0.110 0.917 0.978 0.904 0.998 1.128

2 0.116 0.928 0.982 0.941 1.033 1.564

0.95 1 0.068 0.702 0.883 0.813 0.966 1.111

2 0.132 0.781 0.948 0.915 1.061 1.798

0.90 1 0.116 0.551 0.776 0.732 0.925 1.596

2 0.120 0.737 0.897 0.925 1.093 2.766

0.80 1 0.251 0.669 0.782 0.797 0.941 1.568

2 0.303 0.814 0.989 1.037 1.219 2.950

0.60 1 0.242 0.734 0.871 0.884 1.010 1.929

2 0.271 0.921 1.080 1.144 1.277 3.270

0.50 1 0.393 0.804 0.909 0.921 1.049 1.463

2 0.396 0.967 1.092 1.127 1.243 2.209

0.25 1 0.666 0.943 1.002 0.997 1.044 1.620

2 0.580 0.971 1.037 1.055 1.113 1.777

0.10 1 0.822 0.977 1.001 1.007 1.028 1.436

2 0.791 0.981 1.010 1.029 1.063 1.459

0.00 1 0.469 0.982 0.998 1.004 1.025 1.421

2 0.466 0.972 1.004 1.008 1.033 1.555
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Table 2: Mean of the relative efficiency for T = 100, 200 and 500 considering 2 iterations
T 100 200 500

ρ RE1 RE2 RE1 RE2 RE1 RE2

0.99 0.921 0.969 0.904 0.941 0.853 0.867

0.95 0.845 0.950 0.813 0.915 0.768 0.971

0.90 0.825 1.015 0.732 0.925 0.733 0.897

0.80 0.851 1.080 0.797 1.037 0.763 1.009

0.60 0.908 1.410 0.884 1.144 0.872 1.115

0.50 0.969 1.204 0.921 1.127 0.925 1.138

0.25 0.997 1.056 0.997 1.055 0.998 1.071

0.10 1.013 1.034 1.007 1.029 1.001 1.021

0.00 1.024 1.030 1.004 1.008 1.009 1.013

Table 3: Elementary statistics of the relative efficiency for 3 iterations with T = 200
ρ RE Min Q1 Med Mean Q3 Max

0.90 1 0.116 0.551 0.777 0.731 0.924 1.590

2 0.119 0.736 0.897 0.925 1.095 2.793

3 0.151 0.755 0.967 1.005 1.212 2.708

0.60 1 0.241 0.736 0.873 0.884 1.010 1.929

2 0.271 0.921 1.079 1.145 1.277 3.264

3 0.536 0.997 1.182 1.233 1.390 4.019

0.25 1 0.666 0.943 1.001 0.996 1.042 1.619

2 0.581 0.971 1.037 1.054 1.114 1.767

3 0.591 0.980 1.049 1.074 1.135 1.697

The efficiencies for functional data seem better than for univariate time series (Xiao et al.221

(2003)), although Xiao et al. (2003) considered an ARMA(1,1) case - and an AR(2) pre-whitening222

- in their simulations that is more challenging (but in dimension one, not in infinite dimension223

as here). Indeed in Xiao et al. (2003), the relative improvement was never below 0.85. Here,224

we can reach average reductions below 0.75 for high correlation and long enough time series to225

capture this high level of correlation accurately. According to Ferraty and Vieu (2006), the curse226

of dimensionality, a well-known concept in nonparametric inference, does not affect functional data227

with high correlation. This, combined with an appropriate choice of the semi-metric, can explain228

the fact that the efficiencies seem better in functional context than univariate one. One illustration229

is given in Figure 1: for one replication, considering T = 200 and a value of ρ = 0.9. The black curve230

displays the true function m(Xt), the blue curve corresponds to the standard kernel estimation231

whereas the red and green curves correspond to the proposed estimator with one or two iterations232

respectively. Note that in this case the common estimate of the curve is far from the true curve.233

On the contrary, the curves obtained considering our methodology not only have the same shape as234

the true curve but are very close to the truth. In this case, the information of the autocorrelation235

function of the error process clearly improves the quality of the regression estimation. However,236

when the autoregressive parameter is small, as expected, our methodology does not improve the237

results obtained through the standard kernel procedure that does not account for correlation in the238

errors. For example, Figure 2 shows the curves obtained considering ρ = 0.25 for one replication.239

We cannot see large differences between the displayed curves. The three estimation curves are240

close to the curve representing the true function.There is asymmetry in our regression fit, as we241

can notice for instance that extremely low values are not well captured overall but the largest values242

10



of the response are, and much more so by our method, especially in the case of high autocorrelation243

as shown in Figure 2 compare to Figure 1.244
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Figure 1: Estimates for T = 200 and ρ = 0.9. Black curve: true function m(Xt), blue curve: standard kernel
estimation, red and green curves: proposed estimator with one or two iterations respectively.
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Figure 2: Estimates for T = 200 and ρ = 0.25. Black curve: true function m(Xt), blue curve: standard kernel
estimation, red and green curves: proposed estimator with one or two iterations respectively.

Some results are also obtained in environments with various levels of noise. Different values245

of the parameter σ from εt ∼ N (0, σ) have been tested. More precisely, different values of the246

signal-to-noise ratio (snr) have been considered where snr is defined as V ar(m(Xt))/σ
2. The247

applied values are snr = 1, 0.75, 0.5, 0.25 and 0.05. The obtained results are displayed in Table 4.248

We notice that when σ is higher, the relative efficiency is worse but for high autocorrelation our249

method still provides some improvements. For example, considering ρ = 0.9, the averaged RE1 is250

0.722 (resp. 0.748) with σ = 0.77 (resp. σ = 3.42).251

We now present a challenging simulation in order to explore the robustness of our method in a252
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Table 4: Elementary statistics of the relative efficiency for T = 200 for different levels of signal-to-noise ratio
considering 2 iterations

snr RE ρ σ Min Q1 Med Mean Q3 Max ρ σ Min Q1 Med Mean Q3 Max

1.00 1 0.99 0.76 0.124 0.899 0.976 0.896 0.998 1.156 0.50 0.75 0.408 0.832 0.926 0.931 1.045 1.357

2 0.156 0.921 0.981 0.938 1.032 1.608 0.494 0.990 1.122 1.175 1.310 3.215

0.75 1 0.87 0.116 0.905 0.977 0.899 0.998 1.156 0.87 0.398 0.821 0.921 0.929 1.046 1.499

2 0.130 0.923 0.981 0.939 1.032 1.608 0.428 0.987 1.115 1.158 1.272 3.215

0.50 1 1.07 0.105 0.914 0.979 0.902 0.998 1.156 1.06 0.398 0.820 0.920 0.925 1.046 1.499

2 0.105 0.926 0.983 0.940 1.032 1.608 0.362 0.975 1.108 1.144 1.259 3.215

0.25 1 1.51 0.091 0.921 0.981 0.907 0.100 1.156 1.50 0.329 0.813 0.920 0.925 1.047 1.707

2 0.080 0.930 0.984 0.943 1.033 1.608 0.297 0.957 1.095 1.133 1.248 3.215

0.05 1 3.38 0.072 0.929 0.983 0.915 1.002 1.168 3.35 0.225 0.799 0.919 0.924 1.047 2.284

2 0.053 0.930 0.985 0.949 1.034 1.826 0.297 0.938 1.081 1.119 1.244 3.504

1.00 1 0.95 0.82 0.073 0.699 0.869 0.809 0.967 1.222 0.25 0.83 0.716 0.950 1.002 0.995 1.042 1.538

2 0.165 0.770 0.952 0.925 1.073 1.700 0.482 0.974 1.041 1.066 1.134 1.811

0.75 1 0.94 0.069 0.697 0.873 0.809 0.965 1.222 0.96 0.716 0.946 1.001 0.994 1.042 1.582

2 0.141 0.766 0.950 0.920 1.071 1.756 0.482 0.973 1.037 1.064 1.132 1.945

0.50 1 1.15 0.056 0.704 0.873 0.811 0.967 1.222 1.18 0.716 0.947 1.001 0.995 1.041 1.651

2 0.117 0.776 0.949 0.917 1.067 1.828 0.482 0.971 1.033 1.057 1.122 1.945

0.25 1 1.63 0.047 0.713 0.886 0.815 0.972 1.222 1.67 0.472 0.946 1.000 0.997 1.043 2.070

2 0.093 0.769 0.949 0.915 1.069 1.828 0.482 0.968 1.033 1.052 1.121 1.945

0.05 1 3.65 0.038 0.734 0.908 0.829 0.982 1.946 3.73 0.232 0.942 0.999 1.002 1.046 2.452

2 0.031 0.779 0.954 0.922 1.074 2.339 0.315 0.962 1.029 1.051 1.117 2.528

1.00 1 0.90 0.77 0.124 0.528 0.753 0.722 0.912 1.526 0.10 0.73 0.828 0.984 1.003 1.011 1.027 1.894

2 0.146 0.768 0.927 0.966 1.129 3.603 0.787 0.985 1.011 1.036 1.067 1.927

0.75 1 0.88 0.122 0.534 0.760 0.723 0.913 1.571 0.84 0.756 0.981 1.003 1.009 1.027 1.894

2 0.129 0.760 0.907 0.950 1.117 3.603 0.752 0.983 1.012 1.036 1.065 1.927

0.50 1 1.08 0.109 0.546 0.764 0.726 0.921 1.611 1.03 0.755 0.980 1.003 1.009 1.028 1.894

2 0.123 0.753 0.899 0.937 1.100 3.603 0.752 0.983 1.011 1.035 1.065 1.927

0.25 1 1.53 0.091 0.550 0.772 0.733 0.928 1.611 1.46 0.755 0.977 1.002 1.008 1.029 1.894

2 0.105 0.737 0.895 0.923 1.091 3.603 0.653 0.981 1.010 1.033 1.062 1.927

0.05 1 3.42 0.067 0.565 0.796 0.748 0.945 1.940 3.26 0.167 0.975 1.002 1.008 1.029 1.936

2 0.105 0.737 0.898 0.920 1.094 3.603 0.599 0.979 1.010 1.032 1.063 2.135

1.00 1 0.80 0.79 0.223 0.665 0.818 0.807 0.961 1.536 0.00 0.82 0.362 0.985 0.999 1.000 1.019 1.262

2 0.301 0.863 1.045 1.109 1.299 3.989 0.356 0.976 1.004 1.008 1.030 1.400

0.75 1 0.92 0.223 0.663 0.802 0.802 0.952 1.560 0.94 0.362 0.985 0.998 1.000 1.020 1.389

2 0.292 0.846 1.025 1.079 1.267 3.989 0.356 0.973 1.003 1.008 1.031 1.523

0.50 1 1.12 0.223 0.663 0.797 0.801 0.948 1.566 1.16 0.362 0.983 0.998 1.000 1.019 1.389

2 0.283 0.833 1.009 1.055 1.245 3.989 0.356 0.972 1.002 1.006 1.031 1.523

0.25 1 1.59 0.221 0.658 0.794 0.797 0.945 1.606 1.64 0.362 0.979 0.998 1.000 1.019 1.559

2 0.283 0.802 0.990 1.034 1.219 3.989 0.356 0.972 1.002 1.006 1.032 1.523

0.05 1 3.55 0.189 0.662 0.813 0.806 0.958 1.828 3.66 0.362 0.978 0.998 1.003 1.022 2.777

2 0.183 0.796 0.981 1.028 1.196 3.989 0.356 0.972 1.002 1.006 1.035 1.648

1.00 1 0.60 0.76 0.270 0.760 0.874 0.893 1.013 2.236

2 0.352 0.981 1.104 1.197 1.306 3.436

0.75 1 0.88 0.250 0.757 0.876 0.889 1.011 2.236

2 0.296 0.959 1.100 1.177 1.296 3.436

0.50 1 1.08 0.250 0.753 0.879 0.892 1.013 2.236

2 0.296 0.941 1.091 1.164 1.285 3.436

0.25 1 1.53 0.250 0.743 0.875 0.892 1.015 2.236

2 0.296 0.926 1.074 1.147 1.265 3.571

0.05 1 3.41 0.246 0.741 0.875 0.898 1.019 3.087

2 0.276 0.906 1.062 1.137 1.256 5.764

more complex setting. The set-up is multivariate with bidimensional response (Y1, Y2). First, the253

functions Xt are still stationary (to satisfy the assumptions) but are now considered dependent.254

Their dependence is introduced as an extension of the simple simulations with similar functional255

observations as before: the Xt (with t = 1, . . . , T ) are defined by Xt(w) = 1 + 10e0,t + 3e1,tw
2 +256

4e2,t(1 − w)3, w ∈ [0, 1] where e0,t and e1,t are i.i.d. N (0, 1), but now e2,t is an autoregressive257

process e2,t = 0.9e2,t + ε
(2)
t−1 where ε

(2)
t are i.i.d. N (0, 1). The two response functions are also more258

complex, with a sinusoid integrated against the functional explanatory variable to provide further259
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nonlinear effects. We now take260

m1(Xt(w)) = m2(Xt(w)) = 2

√∣∣∣∣2∫ 1

0
Xt(w)sin(πw)dw

∣∣∣∣.
The error process ut is a V AR(1) process, that is ut: ut = Π1ut−1 + et, where et are i.i.d.261

N (0,Σ):262

Π1 =

(
a −0.3

0.1 a/2

)
Σ =

(
b 0.8

0.8 b/4

)
Various values of a and b are considered. The number of replications is 100. Table 5 presents263

the relative efficiencies with respect to a and b. The results show that the relative improvement can264

be as large as in the univariate case for more complex functions (and now including dependence265

in the explanatory variables). The case of a low autocorrelation level (0.25) demonstrates that266

the method still provides good results, equivalent to not taking into account the autocorrelation.267

When the autocorrelation is larger (e.g. 0.8-0.95), the results are typically best, as in the univariate268

case. For very high autocorrelation levels (e.g. 0.99), the relative efficiencies deteriorate slightly,269

due to the length of the series, as in the univariate case. The noise level seems to have a positive270

effect from 2 till 16 and then can possibly damage the efficiencies, especially for m1. Indeed, the271

noise needs to be large enough for the autocorrelation structure to be identified, and thus benefit272

the estimation, but not too high when it starts harming the estimation procedure. Nevertheless,273

even with a noise level 2-3 times higher than the optimal one, the efficiencies are relatively close274

to the optimal ones. Overall, the range of noise levels is large (from 1 to 24 times more), and the275

method shows resilience across the range.276

3.2. Real data application277

Here, we illustrate our methodology for the ozone concentration forecasting problem and com-278

pare our predictions with the ones obtained using the classical kernel regression model for functional279

data. The goal is to forecast ground-level ozone concentrations using observations from monitoring280

stations within the south-eastern US region, over a span of 3 months in the summer of 2005. These281

forecasts may contribute to better public health: for example, hourly forecasts made one day ahead282

of this harmful pollutant allow people avoid outdoor activities likely to damage their health.283

We are given the ozone concentration for different stations for every hour from June 2 to August284

31, 2005 (that is 91 days). Since some of the stations had missing values, we use linear interpolation285

to estimate the missing values. We are interested in 1-day ahead ozone forecasting (specifically, r-286

hours ahead ozone forecasting, for r = 1, . . . , 24 that is, from 12am to 11pm). We have implemented287

the univariate and multivariate versions of our procedure, e.g. modeling the error term with an288

AR(1) and with a V AR(1). We denote the ozone concentration at time t by Z(t) where t refers289

to the day and the hour of observation. We suppose that Z(t) is observed for t ∈ [1; 2160) (24290
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Table 5: Mean of relative efficiencies, bivariate model, 100 replications

m1

HH
HHa

b
2 4 16 32 48

0.25 1.00 0.99 1.00 0.99 0.97

0.80 0.90 0.84 0.77 0.83 0.76

0.90 0.83 0.79 0.74 0.78 0.79

0.95 0.83 0.76 0.71 0.77 0.75

0.99 0.82 0.78 0.77 0.79 0.77

m2

HHHHa
b

2 4 16 32 48

0.25 0.99 0.98 0.93 0.88 0.89

0.80 0.94 0.89 0.79 0.75 0.73

0.90 0.91 0.84 0.73 0.73 0.68

0.95 0.88 0.81 0.69 0.69 0.72

0.99 0.86 0.82 0.74 0.75 0.74

hours × 90 days) and we are interested in predicting Z(2160 + r) for r = 1, 2, . . . , 24. In order to291

apply the functional methodology, we cut the original time series into a set of daily functional data.292

Here, we have decided to predict future ozone concentration by using the concentration data for293

the whole last day (24 hours). In order to illustrate our purpose, we will not use the 91th day and294

we will predict it by means of the data corresponding to the 90 previous ones. Then, as presented295

in Ferraty and Vieu (2006), for fixed r, the data will be reorganized into a functional explanatory296

sample {Xi, i = 1, . . . , 89} which will be loaded in the following 89× 24 matrix:

Z(1) Z(2) · · · Z(24)
Z(25) Z(26) · · · Z(48)

...
Z(2113) Z(2114) · · · Z(2136)

297

and (for the univariate modeling) a response real sample {Y (r)
i , i = 1, . . . , 89}, which will be loaded298

in the following 89-dimensional vector:

Z(24 + r) Z(48 + r) · · · Z(2136 + r)

299

For a fixed horizon r, we will predict the value of Z(2160 + r). In the following, the predictions300

have been achieved for any value of r = 1, 2, . . . , 24. Note that in our procedure several parameters301

need to be selected. For the kernel, we use the quadratic one. Cross-validation methods, expressed302

in terms of k-nearest neighbours, are used for (local) smoothing parameter selection, see Chapter 7303

in Ferraty and Vieu (2006). Moreover, we use a semi-metric based on the first functional principal304

components of the data curves. For each considered situation, as in the previous simulation study,305

we have tested different values for the tuning parameter q. The following reported results come306
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from a suitable choice of q, different according to the case. Finally, we proceed in the following307

way:308

1. Select the horizon prediction r and organize the data as explained previously;309

2. Predict Y
(r)

90 , at fixed horizon r, by the classical kernel regression approach with a local choice310

of the number k of neighbors:311

Ŷ
(r)

90 = r̂(X90) =

∑89
i=1 Y

(r)
i K

(
d(Xi,X90)
hkopt(Xi0 )

)
∑89

i=1K

(
d(Xi,X90)
hkopt(Xi0 )

)
where i0 = arg min

i=1,...,89
d(X90, Xi) and hkopt(Xi0 ) is the bandwidth corresponding to the optimal312

number of neighbors at Xi0 obtained by313

kopt(Xi0) = arg min
k

∣∣∣∣∣∣∣∣Yi0 −
∑n

i=1,i 6=i0 YiK

(
d(Xi,Xi0 )

hk(Xi0 )

)
∑n

i=1,i 6=i0 K

(
d(Xi,Xi0 )

hk(Xi0 )

)
∣∣∣∣∣∣∣∣

3. At step 2., during the learning step, the 89 response variables are estimated, denoted Ŷt,314

t = 1, . . . , 89. Then, we construct the residual terms {ût}, where for t = 1, . . . , 89, ût = Yt−Ŷt.315

We estimate the AR(1) coefficient, a1, in the autoregression of ût.316

4. Construct Ŷ t, t = 2, . . . , 89, as explained in Section 2, as an alternative to Step 2.317

Ỹ
(r)

90 = r̃(X90) =

∑89
i=2 Ŷ

(r)

i K

(
d(Xi,X90)
hkopt(Xi0 )

)
∑89

i=2K

(
d(Xi,X90)
hkopt(Xi0 )

)
We apply the previous procedure on Station 20 to predict ozone on August 31st, the 91st318

day. The series of observations are represented in the left panel of Figure 3. On the right panel319

of this figure, the daily curves are plotted in grey and the black curve represents the curve we320

want to forecast. The results obtained at Step 2. (by the classical kernel method) are displayed321

in blue whereas those of Step 4. considering an AR(1) (from our procedure presented in Section322

2) are displayed in red. From this figure, one can observe that our method improves upon the323

results obtained with the classical method, in particular for the second half of the day. In fact, the324

estimated coefficients in the autoregression of ûi are higher for that part of the day, see Table 6. The325

figures of ACFs (autocorrelation functions) and PACFs (partial autocorrelation functions) show326

that there is insignificant autocorrelation in the errors, except from 11am (r = 12) to 16pm (r = 17)327

where an AR(1) would be the best fit. Hence, using our approach for these hours is justified. We328

even use our approach for all the hours of the day since there is only a tiny loss by doing so when329

there is very little autocorrelation. We notice in Figure 3 that the forecasts using our method are330
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much closer to observations over the afternoon (11am till 16am) compared to the i.i.d. regression,331

when the benefit of our approach is indeed maximized. Figure 4 displays autocorrelation and partial332

autocorrelation functions for some horizons r (r = 6, 12, 17 and 21). The bold character in Table333

6 is used to emphasize horizons for which the corresponding autocorrelation function justifies an334

AR(1). In addition, we compute the mean squared errors (MSE) to compare the results obtained335

by the different methods. For Station 20, the MSE from the classical approach is 159.91 whereas336

with our approach it is reduced to 126.3. The corresponding relative efficiency is 0.79. Again we337

note that the fact of taking into account the autocorrelation in the error process allows to improves338

ozone forecasting.339
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Figure 3: Ozone concentrations and predictions considering an AR(1) modeling of the error term at Station 20

Left: all the series. Right: predictions.

Table 6: Station 20: for horizon predictions r, estimated autoregressive coefficients â1

r 1 2 3 4 5 6 7 8 9 10 11 12
â1 −0.06 −0.13 −0.13 −0.14 0.01 0.02 −0.02 0.01 0.12 0.18 0.12 0.30
r 13 14 15 16 17 18 19 20 21 22 23 24
â1 0.33 0.22 0.30 0.27 0.25 0.19 0.18 0.16 0.08 0.12 0.16 0.17

Now, we present results obtained considering the multivariate extension. Instead of fixing the340

horizon r and repeating the procedure for all the horizons to study, we predict all the period in341

one implementation. We construct the 89 vectors Yt in the following way. For t = 1, . . . , 89,342
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Figure 4: Autocorrelation and partial autocorrelation functions (acf and pacf) at Station 20, for r = 6, 12, 17, 21.

Yt = (Yt,1, . . . , Yt,24)′

=
(
Z(24× t+ 1) Z(24× t+ 2) · · · Z(24× t+ 24)

)′
The estimation procedure is similar to the univariate case, the main change appears in the343

error modeling. In this illustration, we estimate the V AR(1) coefficients of ût. We proceed in the344

following way:345

1. For j = 1, . . . , 24, predict Y90,j by the classical kernel regression approach with a local choice346
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of the number k of neighbors:347

Ŷ90,j = r̂(X90) =

∑89
i=1 Yi,jK

(
d(Xi,X90)
hkopt(Xi0 )

)
∑89

i=1K

(
d(Xi,X90)
hkopt(Xi0 )

)
where i0 = arg min

i=1,...,89
d(X90, Xi) and hkopt(Xi0 ) is the bandwidth corresponding to the optimal348

number of neighbors at Xi0 .349

2. At step 1., during the learning step, the 89 vectors are estimated, denoted Ŷt, t = 1, . . . , 89.350

Then, we construct the residual terms {ût}, where for t = 1, . . . , 89, ûi = Yt − Ŷt. We351

estimate the V AR(1) coefficients, Π1, in the autoregression of ût.352

3. Construct Ŷt, t = 2, . . . , 89, as explained in Section 2, as an alternative to Step 1, we have353

Ỹ90,j = r̃(X90) =

∑89
i=2 Ŷ i,jK

(
d(Xi,X90)
hkopt(Xi0 )

)
∑89

i=2K

(
d(Xi,X90)
hkopt(Xi0 )

)
As it is done previously, we apply this multivariate procedure on Station 20 to predict ozone on354

August 31st, the 91st day. On Figure 5, the daily curves are plotted in grey and the black curve355

represents the curve we want to forecast. The results obtained at Step 1 (by the classical kernel356

method) are displayed in blue whereas those of Step 3 considering a V AR(1) (from our procedure357

presented in Section 2) are displayed in red. Note that the results obtained with the classical358

method are similar to the univariate case. From this figure, one can observe that our method359

again improves upon the results obtained with the classical method. The MSE is 85.25 and the360

corresponding relative efficiency is 0.53 which is much better than using the univariate modeling361

of the error term.362

To conclude, the case study shows that using our methodology can improve the ozone con-363

centration predictions obtained with the classical kernel regression estimate. Neighboring stations364

should contain additional information on each other. A joint modeling is possible, as shown in365

Ettinger et al. (2012). Time series of random surfaces at one particular hour of ozone are used in366

that paper to predict a particular hour at one location the day after. It was shown there that this367

approach of borrowing strength across space compares favorably to using the whole series of times368

(i.e. a curve) over the previous day to predict the future values a particular hour at one location369

the day after.370

4. Conclusion371

We have developed a two-stage procedure in order to estimate a nonlinear functional regression372

where the explanatory variable is functional and the residual process is stationary and autocor-373
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MSE FV= 159.91  - MSE VAR1= 85.25  - RE= 0.53
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Figure 5: Ozone concentrations and predictions at Station 20 considering a V AR(1) modeling of the error term

related. We have considered the case where the response variable is valued in Rd, d ≥ 1. This374

constitutes, to our knowledge a first step in the research on functional nonparametric modeling375

with a multivariate response. We have used the information of the autocorrelation function of the376

error process to improve the kernel-based estimation of the regression function. The asymptotic377

normality of our estimator is proved under some conditions. Some numerical results from a simu-378

lation case study and an application on real data illustrate the benefit of using this approach. Our379

methodology improves the standard kernel estimator in presence of highly autocorrelated data.380

Potential improvements relate to the optimal implementation of our method. Indeed, the381

numerical illustrations indicate that there is a “sweet spot” where the number of time points382

provide enough information relative to the autocorrelation level to allow an optimal reduction of the383

prediction error. Another aspect is that for small autocorrelation levels, our approach deteriorates384

slightly the prediction errors compared to the use of independence-based kernel methods. An385

improved method should account for that fact and revert back to the basic independence-based386

kernel methods in these regimes.387

Besides, in the literature on regression estimation with functional predictors, nonparameric388

methods with a Nadaraya-Watson-type estimator are successfully used. However, some authors389

proposed instead to use semi-parametric models which are shown to be interesting alternatives.390

For example, we could deal with functional partial linear model (see e.g. Aneiros-Pérez and Vieu391

(2008), Dabo-Niang and Guillas (2010)), functional index model (see e.g. Chen et al. (2011)),392
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or with functional projection pursuit regression (see e.g. Ferraty et al. (2013)). These kind of393

alternatives to fully non-parametric models are beyond the scope of this work but will be the aim394

of futur investigations. In this further work, our procedure taking into account the autocorrelation395

in the error term could be adapted in the more general framework of functional index models (Chen396

et al. (2011)). More precisely, we could place a linear model inside a link function. We could first397

estimate the parameters of the linear model using least squares methodology. Secondly, the link398

function could be estimated non parametrically including our two-stage procedure.399

Finally, our approach could be extended to other time series of functional data. Aue et al.400

(2015) recently provided a dimension reduction technique with functional principal components401

(FPC) analysis that enables the use of vector-valued time series of FPC scores. However, this402

model did not allow of autocorrelation in the residuals that can still be present as we show in403

our ozone application above. A combination of the two approaches and that of Aue et al. (2014),404

that provided fully functional regression models allowing for autocorrelated errors, would have the405

potential to further improve the quality of predictions.406

5. Appendix: Proofs of Theorems407

We use C to signify a generic positive constant whose exact value may vary from case to case.408

409

Lemma 1. Under assumptions H1-H5 (or more precisely H1, H2, H3(1), H3(2), H4, H5)

(Tφ(h0))1/2 [m(x)−m(x)−B∗T (x)]
d−→ Nd(0,Σx)

with Σx = C2G2(x)
C2

1f1(x)
is the (d× d) asymptotic covariance matrix with elements, x ∈ (C, d) whenever410

f1(x) > 0, and B∗T (x) = E[m(x)]−m(x).411

Lemma 1 comes from Theorem 5 in Masry (2005). The functions G2(x), f1(x) and φ(h0) are given412

in assumptions H1 and H3.413

Remark 3. As stated in Masry (2005), if in addition to the assumptions of Lemma 1 we have414

Tφ(h0)h2β
0 → 0 (it is a stronger assumption on the bandwidth parameter) then one can remove the415

bias term from Lemma 1 that is (Tφ(h0))1/2 [m(x)−m(x)]
d−→ Nd(0,Σx).416

5.1. Proof of Lemma 1417

The proof follows work of Masry (2005). We make use of the Cramér-Wold device (see, e.g.
Van der Vaart (1998), p.16), according to which it is sufficient to prove that for all v ∈ Rd, ‖v‖ 6= 0,
we have

(Tφ(h0))1/2 [v′ (m(x)−m(x)−B∗T (x))]
d−→ Nd(0,v′Σxv)
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Note that Yt = m(Xt) + et; v
′ (m(x)−m(x)) = (mv(x)−mv(x)), where

mv(x) =

1

TE
[
K0

(
d(x,X1)
h0

)] T∑
t=1

v′YtK0

(
d(x,Xt)

h0

)
1

TE
[
K0

(
d(x,X1)
h0

)] T∑
s=1

K0

(
d(x,Xs)

h0

) =
m2v(x)

m1(x)
, mv(x) = v′m(x).

Then, we obtain mv(x) = mv(x) +Bv
T (x) + V v

T (x) where Bv
T (x) is the bias term and V v

T (x) is the
variance effect defined by

Bv
T (x) =

E[m2v(x)]−mv(x)E[m1(x)]

E[m1(x)]
V v
T (x) =

Qv
T (x)−Bv

T (x)(m1(x)− E[m1(x)])

m1(x)

with Qv
T (x) = (m2v(x) − E[m2v(x)]) −mv(x)(m1(x) − E[m1(x)]). By the result of Masry (2005),

Bv
T (x) = o(hβ0 ) and using same lines as in the proof of Theorem 5 in Masry (2005), we have

(Tφ(h0))1/2 [v′ (m(x)−m(x)−B∗T (x))]
d−→ Nd(0,v′Σxv).

5.2. Proof of Theorem 1418

We have m̃(x) =

1

TE
[
∆

(1)
1 (x)

]∑T
t=1 Ŷt∆

(1)
t (x)

1

TE
[
∆

(1)
1 (x)

]∑T
t=1 ∆

(1)
t (x)

=
m̃2(x)

m̃1(x)
, m̃2(x) = (m̃1,2(x), . . . , m̃d,2(x))′

where

m̃j,2(x) =
1

TE
[
∆

(1)
1 (x)

] T∑
t=1

Ŷ t,j∆
(1)
t (x), j = 1, . . . , d

m̃1(x) =
1

TE
[
∆

(1)
1 (x)

] T∑
t=1

∆
(1)
t (x)

T∑
t=1

Ŷ t,j∆
(1)
t (x) =

T∑
t=1

Y t,j∆
(1)
t (x)−

T∑
t=1

[
(Π̂1 −Π1)ut−1

]
j

∆
(1)
t (x) +

T∑
t=1

[Π1 (m̂(Xt−1)−m(Xt−1))]j ∆
(1)
t (x)

+

T∑
t=1

[
(Π̂1 −Π1) (m̂(Xt−1)−m(Xt−1))

]
j

∆
(1)
t (x)
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Then m̃j,2(x) = mj,2(x)] − m̃j,21(x) + m̃j,22(x) + m̃j,23(x) with

mj,2(x)] =
1

TE
[
∆

(1)
t (x)

] T∑
t=1

Y t,j∆
(1)
t (x)

m̃j,21(x) =
1

TE
[
∆

(1)
t (x)

] T∑
t=1

[(Π̂1 −Π1)ut−1]j∆
(1)
t (x)

m̃j,22(x) =
1

TE
[
∆

(1)
t (x)

] T∑
t=1

[Π1 (m̂(Xt−1)−m(Xt−1))]j ∆
(1)
t (x)

m̃j,23(x) =
1

TE
[
∆

(1)
t (x)

] T∑
t=1

[
(Π̂1 −Π1) (m̂(Xt−1)−m(Xt−1))

]
j

∆
(1)
t (x)

Note that mj,2(x)] = mj,2(x) and m̃1(x) = m1(x) with K0 and h0 replaced by K1 and h1 re-419

spectively. Since m̃j(x) =
m̃j,2(x)

m̃1(x)
we have m̃(x) = m(x) − QT1 + QT2 + QT3 with QTl =420

(Q1,Tl , . . . , Qd,Tl), with Qj,Tl =
m̃j,2l(x)
m̃1(x) , for l = 1, 2, 3, j = 1, . . . , d. We analyze the asymp-421

totic properties of Qj,Tl , l = 1, 2, 3, in Lemmas 2, 3 and 4, which are key results for proof of this422

theorem since Lemma 1 proves the asymptotic normality of m(x).423

Lemma 2. Under assumptions H1-H5, for j = 1, . . . , d, we have Qj,T1 = op

(√
1

Tφ(h1)

)
.424

Lemma 3. Under assumptions H1-H4, for j = 1, . . . , d, we have Qj,T2 = Op

(
hβ0

)
+op

(√
1

Tφ(h1)

)
.425

Lemma 4. Under assumptions H1-H5, for j = 1, . . . , d, we have Qj,T3 = Op

(
hβ0

)
+op

(√
1

Tφ(h1)

)
.426

The proofs of Lemmas 2, 3 and 4 are given in the supplementary file.427

Proof of Theorem 2428

The proof is similar to that of Theorem 1 since m̃j(x) = mj(x) − Qj,T1 + Qj,T2 + Qj,T3 with429

Qj,Tl =
m̃j,2l(x)
m̃1(x) , for l = 1, 2, 3, j = 1, . . . , d. It then follows directly from Corollary 1 of Masry430

(2005), Lemmas 2, 3 and 4, which are key results for proof of this theorem.431
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