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A marked atmospheric CO2 decline occurred ~70,000 years ago when Earth's climate 32 

descended into the last ice age 1,2, but its underlying causes remain enigmatic. We present 33 

the first quantification of changes in the carbon inventory of the deep Atlantic Ocean (>~3 34 

km) during this time interval, based on deep water carbonate ion concentration ([CO3
2-]) 35 

reconstructions for multiple sediment cores. A widespread [CO3
2-] decline of ~25 mol/kg 36 

implies that the deep Atlantic carbon inventory increased by at least ~50 Gigatonnes, 37 

compared to the concomitant ~60 Gigatonnes carbon loss from the atmosphere 1,2. Based 38 

on proxy observations and modeling 3, we infer that this carbon sequestration coincided 39 

with a shoaling of Atlantic meridional overturning circulation. Our evidence suggests that 40 

Atlantic Ocean circulation changes played an important role in atmospheric CO2 41 

reductions at the onset of the last glacial by increasing the carbon storage in the deep 42 

Atlantic.  43 

 44 

 45 

 Ice core records show a tight correlation between changes in atmospheric CO2 and 46 

Antarctic temperature, suggesting an important role of atmospheric CO2 fluctuations in affecting 47 

Earth's climate on orbital and millennial timescales 1,2. During the last glacial cycle, a major 48 

climate change occurred at the Marine Isotope Stage (MIS) 5-4 transition around 70 thousand 49 

years ago (ka), manifested by a significant global cooling, a substantial build-up of polar ice 50 

sheets, and profound ocean circulation changes 2,4-7. The atmospheric CO2 decline across this 51 

transition accounts for about one third of the entire atmospheric CO2 drawdown between full 52 

interglacial and glacial conditions 1,2. Although the deep ocean is the widely suspected culprit for 53 

lowering glacial atmospheric CO2 8,9 probably through biogeochemical and physical processes 54 
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3,6,10,11, convincing evidence for carbon sequestration in the deep ocean is limited, and the role of 55 

ocean circulation changes in enhanced deep-sea carbon storage remains elusive 3,6. Here, we 56 

present a first quantification of carbon budget change in the deep Atlantic Ocean and investigate 57 

its relationship with changes in Atlantic Meridional Overturning Circulation (AMOC) across the 58 

MIS 5-4 transition.  59 

 60 

 Seawater carbonate ion concentration ([CO3
2-]) is primarily governed by dissolved 61 

inorganic carbon (DIC) and alkalinity (ALK) (Fig. 1), and variations in other environmental 62 

parameters such as temperature and salinity only play a minor role 12,13. Changes () in [CO3
2-], 63 

DIC and ALK can be approximated by 64 

 ]CO[ 2
3
  ≈ k × (ALK − DIC)    (1) 65 

where k = 0.59 ± 0.01 (1used throughout) (Supplementary Fig. 1, 2). Therefore, with sound 66 

knowledge about ALK, reconstructions of deep water  ]CO[ 2
3
  would allow an estimate of DIC, the 67 

term that ultimately determines the carbon budget change of the investigated ocean reservoir. 68 

Equation (1) successfully predicts seawater DIC in the modern deep Atlantic Ocean 14 (Fig. 1b). 69 

 70 

 We present deep water [CO3
2-] from ~90 to 50 ka for 10 sediment cores (6 new and 4 71 

from 15,16) retrieved from a wide geographic and depth range in the Atlantic Ocean (Fig. 1). Deep 72 

water [CO3
2-] are reconstructed using B/Ca in epifaunal benthic foraminifer Cibicidoides 73 

wuellerstorfi, with an uncertainty of ±5 mol/kg for [CO3
2-] based on a core-top calibration 17 74 

(Supplementary Fig. 3). The sediment-core age models are constructed by tuning all benthic 75 

18O records to a single target curve, namely the LR04 global 18O stack 18 (Supplementary Fig. 76 

4-6 and Table 1-3). The age ranges for MIS 5a (85-75 ka) and MIS 4 (59-69 ka) are based on 77 
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light (<~3.3‰) and heavy (>~3.8‰) values in benthic 18O, respectively. Detailed information 78 

on materials and methods is described in the Supplementary Information. 79 

 80 

 Fig. 2 shows that C. wuellerstorfi B/Ca in all 10 cores decreased from MIS 5a to MIS 4. 81 

Relative to mean MIS 5a values, deviations of B/Ca (B/Ca) during MIS 4 are -20±5 mol/mol 82 

(n=35) in 7 cores from the eastern basin and -42±11 mol/mol (n=21) in 3 cores (EW9209-2JPC, 83 

RC16-59, and GeoB1118-3) from the western Atlantic (Fig. 3a-b; Supplementary Table 4). As 84 

discussed previously 17,19, C. wuellerstorfi B/Ca is minimally biased by postmortem dissolution, 85 

and we therefore attribute decreased B/Ca values during MIS 4 to reductions in deep Atlantic 86 

[CO3
2-]. Based on the sensitivity of 1.14 mol/mol per mol/kg specific to C. wuellerstorfi 87 

derived from core tops17, benthic B/Ca suggest 18±6 and 37±12 mol/kg reductions in deep 88 

water [CO3
2-] in the eastern and western basins, respectively (Fig. 3a). Considering data from all 89 

10 cores together, benthic B/Ca decreased by 28±13 mol/mol (n=56), corresponding to 25±13 90 

mol/kg decline in [CO3
2-],  from MIS 5a to MIS 4 (Fig. 3). 91 

 92 

 In contrast to different B/Ca, benthic 13C exhibit similar amplitudes between cores at 93 

~3.5 km water depth from the eastern (MD01-2446 and MD95-2039) and western (EW9209-94 

2JPC and RC16-59) basins in the North Atlantic (Supplementary Fig. 7). One possibility for this 95 

contrast is that source waters ventilating the two basins during MIS 4 had different 13C 96 

endmembers.13C heterogeneity of northern sourced waters has been previously reported for the 97 

Last Glacial Maximum12,20. At present, we attribute the larger B/Ca to a greater ocean circulation 98 

change in the western basin (Supplementary Fig. 8), in which case a higher source water 13C 99 

would be required for the west Atlantic during MIS 4. Future work is needed to explore reasons 100 
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for the inter-basin B/Ca difference, but this uncertainty does not affect the conclusion of this 101 

study. 102 

 103 

 Benthic B/Ca and 18O are negatively correlated in each core (Supplementary Fig. 9-10). 104 

This suggests that the decrease in deep water [CO3
2-] into MIS 4 was associated with deep ocean 105 

cooling and the buildup of continental ice, which are thought to be linked to declining 106 

atmospheric CO2 during the last glacial inception1,2,4,21. The overall pattern of changes in deep 107 

water [CO3
2-], based on a Monte-Carlo-style probabilistic assessment of the combined [CO3

2-] 108 

reconstructions of the 10 studied cores (Supplementary Information), displays a first order 109 

similarity to the evolution of atmospheric CO2, in that both deep Atlantic [CO3
2-] and 110 

atmospheric CO2 decreased from MIS 5a to MIS 4 1,2 (Fig. 3c, d). This provides evidence to 111 

support previous suggestions 11,12,16,22 that changes in deep Atlantic carbonate chemistry must 112 

have played an important role in glacial-interglacial atmospheric CO2 variations.  113 

 114 

 Because our data are from 10 sites that are widely distributed in the Atlantic (water 115 

depth: ~2.9 to 5 km, latitude: 41°S to 41°N) (Fig. 1), we consider that the 25±13 mol/kg 116 

reduction in deep water [CO3
2-] approximates the mean [CO3

2-] variation for the whole deep 117 

Atlantic (>~3 km) from MIS 5a to 4 (Fig. 3a-c). As a cross-check, we use the [CO3
2-]-13C 118 

relationship and the mean deep Atlantic 13C change to infer the mean seawater [CO3
2-] decrease 119 

in the deep Atlantic across the MIS 5a-4 transition (Supplementary Fig. 11-12) . For the 10 cores 120 

studied, deep water [CO3
2-] is significantly correlated with benthic 13C (r2 = 0.50, P < 0.0001), 121 

yielding a slope of 0.0228‰ per mol/kg. A compilation study reveals that benthic 13C 122 

declined by an average of ~0.45‰ from MIS 5a to MIS 4 at numerous sites throughout the deep 123 
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Atlantic Ocean23. If the [CO3
2-]-13C relationship observed at our 10 geographically widely 124 

distributed sites is applicable to other locations in the deep Atlantic, then a 0.45‰ drop in 13C 125 

would suggest a ~20 mol/kg reduction in deep water [CO3
2-], falling within the uncertainty of 126 

25±13 mol/kg calculated based on [CO3
2-] reconstructions for the 10 studied cores (Fig. 3a-c). 127 

 128 

 129 

 Four lines of evidence suggest that the lowered deep water [CO3
2-] during MIS 4 is not 130 

caused by a drop in ALK, but by an increase in DIC in the deep Atlantic. First, when [CO3
2-] 131 

declines, deep water becomes more corrosive and that would enhance water-column and deep-132 

sea CaCO3 dissolution, a process that drives up oceanic ALK 9,12. In the preindustrial Atlantic, 133 

the decreasing [CO3
2-] from North Atlantic Deep Water (NADW) to Antarctic Bottom Water 134 

(AABW) was accompanied by a rise in deep water ALK (Fig. 1d) 14. As shown both in our 135 

studied cores (Fig. 2) and at other locations in the deep Indo-Pacific Oceans (e.g., 24,25), global 136 

deep-sea CaCO3 dissolution dramatically intensified (i.e., the lysocline shoaled) from MIS 5a to 137 

MIS 4, with a likely effect of raising the global ocean ALK inventory 9,12. Second, the ~50 m sea 138 

level drop into MIS 4 4 would have substantially reduced the shelf area for neritic carbonate 139 

deposition, which in turn would have raised the oceanic ALK 26. Third, benthic Ba/Ca ratios, a 140 

proxy used to reflect deep water ALK 27, show no decrease during MIS 4 at four locations in the 141 

Atlantic Ocean (Supplementary Fig. 13). Fourth, model studies show higher ocean ALK in 142 

glacials than in interglacials 11,28 (Supplementary Information).  143 

 144 

 We first assume no change in ALK (i.e., ALK = 0) to quantify the magnitude of deep 145 

water DIC increase (Fig. 3b; Supplementary Information), and subsequently evaluate how this 146 
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assumption affects the conclusions. Based on Equation (1), a 25±13 mol/kg decline in deep 147 

water [CO3
2-] translates into a 42±22 mol/kg increase in DIC. Using a mass of 10.1×1019 kg for 148 

waters below 3 km in the Atlantic, we calculate that a total amount of 51±27 Gt (1 Gt = 1×1015 149 

g) extra carbon was sequestered in the deep Atlantic during the transition from MIS 5a to 4 (Fig. 150 

3c). During this period, atmospheric CO2 declined by 28±11 ppm (MIS 5a: 237±8 ppm; MIS 4: 151 

208±8 ppm), corresponding to a loss of 60±23 Gt carbon from the atmosphere 1,2 (Fig. 3d). 152 

Therefore, the carbon stock increase in the deep Atlantic, in quantity, is equivalent to ~86±56% 153 

of the contemporary atmospheric CO2 drawdown across the MIS 5a-4 transition.  154 

 155 

 Note that the deep Atlantic carbon budget change calculated above represents a 156 

conservative estimate. CO2 sequestration in the deep ocean across MIS 5a-4 would inevitably 157 

raise deep water acidity, lower seawater [CO3
2-], and consequently intensify deep-sea CaCO3 158 

dissolution (Fig. 2). This so called deep-sea carbonate compensation (Supplementary 159 

Information) serves as a negative feedback to restore the global deep water [CO3
2-] to the initial 160 

level, on a time scale of ~5-7,000 years, via raising the whole ocean ALK until the global ocean 161 

ALK input (from mainly continental weathering) reaches a new steady state with ALK output 162 

(by shelf and deep-sea carbonate burials) 9,12,19,29-31. The effect of carbonate compensation may 163 

be manifested by partial reversals of [CO3
2-] in MD01-2446, EW9209-2JPC, and RC16-59 (Fig. 164 

2). However, none of the studied [CO3
2-] records returned to the MIS 5a levels within the 165 

~10,000 year duration of MIS 4. In numerical models, deep Atlantic [CO3
2-] remains low for 166 

~8,000 years after a weakening or shutdown of NADW (Supplementary Fig. 15, 19). The 167 

sustained low [CO3
2-] during MIS 4 suggests that processes within the Atlantic must impose a 168 

stronger control on the deep water acidity than the opposing effect from a global ocean ALK 169 
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rise. Without a global ALK increase due to carbonate compensation, a much larger [CO3
2-] 170 

decrease would be expected in the deep Atlantic. Given a reconstructed deep water [CO3
2-] 171 

reduction, Equation (1) suggests that for every unit increase in ALK the DIC increase would be 172 

one unit higher than the number calculated assuming ALK = 0. This is demonstrated by 173 

distributions of carbon species in today's Atlantic Ocean (Fig. 1) 14: to account for the ~40 174 

mol/kg [CO3
2-] reduction between NADW ([CO3

2-]= ~120 mol/kg) and AABW ([CO3
2-] = 175 

~80 mol/kg), Equation (1) would predict a 
NADWAABWDIC 

 of ~68 mol/kg if no change in ALK, 176 

which is ~38% smaller than the observed DIC change (Fig. 1c). The difference is caused by a 177 

~40 mol/kg ALK increase from NADW to AABW (Fig. 1d). Had the pre-industrial  ]CO[ 2
3
 :DIC 178 

ratio of -0.37 been applied, which empirically includes the ALK changes (Fig. 3c), then our 179 

calculated deep Atlantic carbon storage increase would be amplified by a factor of 1.6, and the 180 

quantity of carbon sequestration in the deep Atlantic would be comparable within uncertainty to 181 

the entire atmospheric CO2 decline from MIS 5a to MIS 4. Additionally, consideration of larger 182 

B/Ca in the western Atlantic, which is currently under sampled (Fig. 3a), would potentially raise 183 

the estimate of carbon sequestration in the deep Atlantic. 184 

 185 

 Enhanced carbon storage in the deep Atlantic during MIS 4 may have resulted from 186 

synergistic physical and biogeochemical processes  
9,11. Regarding physical processes, sediment 187 

neodymium isotopes (Nd; an ocean circulation proxy) imply an increased contribution of CO2-188 

rich southern-sourced abyssal waters (Fig. 1) in the deep Atlantic at the MIS 5a-4 transition 3,32. 189 

During MIS 4, the NADW-AABW boundary probably shoaled to ~2-3 km water depth, and was 190 

located above major topographic ridges and seamounts 6,32. Such a rearrangement of the AMOC 191 

would weaken diapycnal mixing between water masses, enhance water column stratification, and 192 
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thereby facilitate the retention of sequestered carbon in the deep ocean 5,33. In core TNO57-21, a 193 

sharp ~1 unit increase in Nd at ~70 ka 3 exactly coincided with a rapid ~12 mol/kg decline in 194 

deep water [CO3
2-] inferred from benthic B/Ca (Fig. 4). Because seawater [CO3

2-] is primarily 195 

determined by DIC and ALK, both of which place direct constraints on the oceanic carbon cycle 196 

9,11,29,31, synchronous changes in Nd and B/Ca indicate a tight coupling between AMOC and 197 

carbon cycling in the deep Atlantic during the last glaciation. The earlier ~0.5‰ decrease in 198 

benthic foraminiferal 13C (Fig. 4b) 34, which was previously used to infer global carbon budget 199 

change leading an AMOC reorganization 3, might be caused by air-sea isotopic exchange effects 200 

35. The coupling of AMOC and carbon cycling is corroborated by results from two Earth system 201 

models of intermediate complexity: halving the NADW formation leads to 10-30 mol/kg 202 

reductions in [CO3
2-] below ~3 km in the deep Atlantic without causing anoxia in the deep ocean 203 

(Supplementary Fig. 22-23). Regarding the biogeochemistry, the decreased deep Atlantic [CO3
2-] 204 

during MIS 4 is consistent with a more efficient biological pump in the glacial Southern Ocean 205 

perhaps stimulated by increased iron availability 10 and a greater water column remineralization 206 

due to stagnant AMOC 6,7,32, both of which would increase sequestration of respiratory DIC into 207 

the ocean interior and decrease atmospheric CO2 9,11,36.  208 

 209 

 Our calculations highlight that, despite its relatively modest proportion (~30%) of the 210 

global deep ocean volume, the deep Atlantic sequestered a substantial amount of carbon during 211 

the onset of the last glaciation around 70 ka, especially when concomitant ALK increase is taken 212 

into account. The sequestered amount is quantitatively comparable to the contemporary carbon 213 

loss from the atmosphere. We also find that this large carbon sequestration was tightly coupled 214 

with AMOC changes. The movements of carbon between reservoirs in the atmosphere - land 215 
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biosphere - ocean system are intricately linked, and future studies should aim to quantify the 216 

contributions from individual sources to the increased carbon storage in the deep ocean during 217 

glaciations. 218 

 219 

 220 
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Figure 1 | Atlantic Ocean carbonate chemistry and sediment cores. a, Locations of the 324 

studied sediment cores (circles) against meridional distributions of preindustrial DIC (color 325 

shading, mol/kg) and [CO3
2-] (contours, mol/kg) in the Atlantic Ocean. a = MD95-2039 326 

(40.6°N, 10.3°W, 3,381 m), b = MD01-2446 (39°N, 12.6°W, 3,576 m), c = EW9209-2JPC 327 

(5.6°N, 44.5°W, 3,528 m), d = RC16-59 (4.0°N, 43.0°W, 3,520 m), e = GEOB1115-3 (3.56°S, 328 
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12.56°W, 2,945 m), f = GEOB1117-2 (3.81°S, 14.89°W, 3,984 m), g = GEOB1118-3 (3.56°S, 329 

16.42°W, 4,671 m), h = RC13-228 (22.3°S, 11.2°E, 3,204 m), i = RC13-229 (25.5°S, 11.3°E, 330 

4,191 m), j = TNO57-21 (41.1°S, 7.8°E, 4,981 m), NADW = North Atlantic Deep Water, 331 

AABW = Antarctic Bottom Water. Bottom-right inset shows the transect of hydrographic data 332 

used for mapping by Ocean Data View (http://odv.awi-bremerhaven.de). b, Predicted DIC by 333 

ALK and [CO3
2-] using Equation (1) vs. measured DIC (Supplementary Information). c, DIC vs. 334 

[CO3
2-]. d, ALK vs. [CO3

2-]. In b-d, data are for the deep Atlantic Ocean (water depth: > 2.5 km, 335 

latitude: 70°S- 70°N, longitude: 15°E-65°W, n = 3327), and the red lines represent linear 336 

regressions. The blue line in c shows the DIC trend expected from [CO3
2-] based on Equation (1), 337 

assuming no change in ALK. Hydrographic data are from the GLODAP dataset 14. 338 

 339 

Figure 2 | Reconstructed [CO3
2-] in the deep Atlantic (>~3 km) across the MIS 5-4 340 

transition. a, MD95-2039 (square) and MD01-2446 (circle). b, EW9209-2JPC (square) and 341 

RC16-59 (circle) (ref. 15 and this study). c, GeoB1115-3 (circle)16, GeoB1117-2 (triangle)16 and 342 

GeoB1118-3 (square)16. To facilitate displaying data in the same plot, B/Ca from GeoB1115-3 343 

and GeoB1118-3 are shifted by -20 mol/mol and +40 mol/mol, respectively. The [CO3
2-] scale 344 

is only for core GeoB1117-2. d, RC13-228. e, RC13-229. f, TNO57-21. C. wuellerstorfi B/Ca is 345 

converted to deep water [CO3
2-] using a sensitivity of 1.14 mol/mol per mol/kg 17. Unless 346 

mentioned, all B/Ca are from this study. Age models for cores are based on comparisons of 347 

benthic 18O with the LR04 curve 18 (Supplementary Fig. 4). Vertical orange and cyan shadings 348 

represent MIS 5a and MIS 4, respectively. Grey lines represent sediment carbonate contents 349 

(%CaCO3).  350 
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 351 

Figure 3 | Deep Atlantic carbon budget across the MIS 5-4 transition. a, Histogram and 352 

average values (squares ± 1) of C. wuellerstorfi B/Ca (deviations of individual measurements 353 

from the B/CaMIS 5a mean) for MIS 5a (red) and MIS 4 (green: eastern basin; grey: western basin; 354 

black: all cores). The upper abscissa shows the corresponding change in [CO3
2-],  ]CO[ 2

3
  using a 355 

sensitivity of 1.14 mol/mol per mol/kg 17. b, Temporal evolution of B/Ca and  ]CO[ 2
3
 in 10 356 

cores. The minimum DIC is calculated by Equation (1) assuming no increase in seawater ALK 357 

(Supplementary Information). c, Monte-Carlo-style probabilistic assessment of [CO3
2-] changes 358 

shown in b, with the bold curve showing the probability maximum and the shaded envelope 359 

giving its 95% probability interval (Supplementary Information). The minimum change in total 360 

carbon, ∑carbon, in the deep Atlantic is estimated using a mass of 10.1×1019 kg for the deep 361 

Atlantic Ocean (>~3 km), and its equivalent quantity expressed in terms of changes in 362 

atmospheric CO2 is scaled by 1 ppm atmospheric CO2 = 2.1 GtC. d, Atmospheric CO2 1,2. 363 

 364 

Figure 4 | Temporal evolution of geochemical proxies in core TNO57-21 from the deep 365 

South Atlantic. a, Sediment Nd, an ocean circulation proxy 3. b, Benthic 13C 34, a 366 

geochemical tracer influenced by a combination of processes including ocean circulation, 367 

biogenic remineralization, and air-sea exchange, not all of which are associated with a change in 368 

the deep ocean DIC. c, Benthic B/Ca (this study), a proxy for deep water [CO3
2-] which reflects 369 

changes in DIC and ALK, both of which are tightly linked to the carbon cycle in the ocean. The 370 

high sedimentation rate (~15 cm/kyr) in TNO57-21 through the 65-75 ka interval significantly 371 

minimizes bioturbation influences on geochemical tracers. 372 
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