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Abstract An impact between a high-speed liquid and a solid body leading
to cratering during the impact is considered. The problem formulation is pre-
sented within the framework of a self-similar velocity potential flow for a liquid
wedge impacting the solid wall. A linear constitutive relation is adopted which
links the speed of cratering with the pressure and shear stresses. The solu-
tion procedure is based on the integral hodograph method. It converts the
boundary-value problem for the complex potential in the fluid domain into a
system of integral equations which are solved using the method of successive
approximations. The obtained solution is used to investigate the cratering me-
chanics during the impact. The results are presented in terms of the interface
shape, the free surface shape, streamline patterns, and pressure distribution
along the interface.

Keywords Liquid/solid impact · Erodible body · Self-similar flows · Integral
hodograph method.

1 Introduction

Liquid/structure impact is a widely observed natural phenomenon. While high
speed liquid impacts can cause many adverse effects such as structural dam-
age or failure, these processes are also widely used in many engineering fields.
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Jet-cutting and grinding, hydraulic coal mining, jet cleaning, rock drilling and
surface penetrating through a shaped charge are some examples of applica-
tions. A common feature in these is the interface deformation, or body cra-
tering during the liquid impact. This feature may also appear in raindrops on
soil or granular materials, raindrops alighting onto an ice sheet which may be
accompanied by processes of melting or solidification and cavitation erosion
caused by high-speed jets generated at the final stage of vapour bubble col-
lapse. A mathematical model to account for this impact phenomena associated
with the deformation of the interface needs to be developed.

Mathematical modelling of liquid impact processes is a challenging prob-
lem due to rapid changes of the free-surface shape and liquid velocity in some
local areas. One way to solve this kind of problem is based on applying the
technique of matched asymptotic expansions (Howison, Ockendon & Wilson
[1], Howison, Ockendon & Oliver [2,3], Korobkin [4], Oliver[5]). This is prin-
cipally for the fully transient flow. In many cases, especially the initial stage
and in some local areas during the impact, the flow may be treated as self-
similar. Mathematically this means that the spatial and temporal variables
can be combined into new ones and the problem no longer depends on time
explicitly in the new system. There is a large body of work on the self-similar
impact problems [6–9]. In these studies, however, the bodies are rigid whether
their shapes are given or prescribed.

High speed jet/solid impacts accompanied by the penetration of liquid into
a solid body or evacuation of the body material have received much attention in
connection with shaped charge devices widely used in industrial applications.
The jet created by the very rapid plasticization of a liner in a shaped charge
device makes the impact pressure so high that it exceeds the yield stress of the
solid material. It plasticizes the materials and craters the body. An advanced
elastic-plastic free boundary model that takes into account the residual stresses
produced by the moving plasticized region of the target has been presented by
Novokshanov & Ockendon [10]. They considered the target as a solid which
was initially an unstressed and isotropic elastic material of infinite extent. The
jet impact was modelled by a localized high pressure applied to the target.
For shaped charge devices, the pressure in the jet may be so high that the
plasticized region is much larger than the radius of the jet. The flows in both
the jet and plasticized region of the target are mainly driven by pressure
gradient rather than shear force and they behave like that of an ideal fluid.
Therefore, it has been commonly accepted that such a problem can be modelled
based on the theory for an ideal fluid, as in Birkhoff et al. (1948) [11].

Other examples associated with cratering are water-jet cutting of metals,
soft and porous materials. In these cases the stress caused by the jet only
slightly exceeds the yield stress of the target, and the thickness of the plasti-
cized material is relatively small. Therefore, the shape of the crater affects the
flow configuration and, consequently, the stress on the target. The problem is
coupled through the fluid/structure interaction, and the rate of penetration
will be affected by this coupling. Experimental investigation of this type of
penetration was undertaken by Uth & Deshpande [12]. They observed that
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deformation of the target interface caused backflow of the jet, which then
increased the force exerted on the target and thereby the penetration rate.

For some porous materials, the rate of material evacuation caused by im-
pact may also depend on the exposure time of the material to liquid. When
the stagnation pressure of the jet is greater than the threshold pressure of the
material, the material grains will become spalled. This means that when one
layer of grains has been moved away the process starts from the beginning
with a new layer [13].

In the present study we consider the case in which the solid material is
eroded by the liquid impact. This may occur when the stress caused by the
fluid pressure is beyond the yield stress of the material, or the interface during
the impact may undergo melting or solidification. The plasticized or frag-
mented region of the solid is assumed to be much smaller than the crater
region and the evacuated material is considered not to have a major effect on
the flow. The latter assumption may not be valid in the region of high-speed
tip jets evacuating the material however, from the previous studies of water
impact flows [7], it has been found that the tip jets have only minor effects on
the main flow. This has led to some theoretical approaches ignoring the tip
jets, such as in the Wagner theory of water impacts.

The impacting flow interacts with the moving solid interface whose shape
needs to be determined by the coupled fluid/cratering mechanics. The im-
pacting liquid is in the form of a wedge. Its limiting case with zero inner angle
and finite incoming flow rate becomes a rectangular jet. Specifically, we use a
two dimensional self-similar velocity potential flow theory for the problem. The
integral hodograph method [8,14] is adopted. It enables the original boundary-
value problem for the complex potential in the fluid domain to be converted
into a system of integro-differential equations along the straight lines. The
method has been successfully used in a variety of impact problems [8,15,16].
However, the present problem has some new challenges. Both the crater shape
and the pressure on its surface are unknown. They have to be determined as a
part of the solution from additional physical considerations governing the
cratering. Corresponding changes in the integro-differential equations and so-
lutions have to be made. In the following section the mathematical formulation
of the problem and the solution procedure are first described. The numerical
results are provided in Section 3 where various case studies corresponding to
linear constitutive relation between the speed of cratering and the pressure
and shear stresses are undertaken. Their analyses and physical implications
are based on the streamline patterns, pressure distribution, free surface and
interface shapes.
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2 Formulation of the problem and the solution procedure

2.1 Hydrodynamic model for the solid cratering.

There has been a substantial amount of work using various relationships for
the stress and penetration rate. Here, we consider a case in which the following
constitutive relation linking, linearly, the cratering velocity V ∗ normal to the
interface with both the normal pressure P and the shear stresses τ is used:

V ∗ = −RpP −Rτ |τ |, (1)

where Rp and Rτ are the material-dependent constants. We assume that τ is
mainly due to Reynolds shear stress and adopt the simplest turbulence model
for its link with the velocity [17]:

τ = λ′ρV 2
s , (2)

where Vs is the tangential velocity of the liquid, λ′ is an empirical factor and ρ
is the fluid density. By substituting Eq.(2) into Eq.(1) and dividing the result
by ρV 2, where V is the speed of the incoming liquid, we can represent the
constitutive relation in the non-dimensional form

v∗ = −rpcp − rτv
2
s , (3)

where rp = 0.5RpρV , cp = (P − Pa)/(0.5ρV
2) is the pressure coefficient,

rτ = Rτλ
′ρV , vs = Vs/V and Pa is the atmospheric pressure. In order to de-

termine the cratering velocity and the shape of the interface, the solution of the
hydrodynamic problem needs to be found. The coefficients rp and rτ are taken
as zero if the stress caused by liquid impact is less than the yield stress or the
threshold shear stress of the material, respectively. For the larger stress, the
melting of the material may be assumed to mainly depend on fluid/cratering
interaction, and the stress on the interface is near the yield stress of the mate-
rial. The cratering caused by the shear stress may also depend on a smoothness
of the interface, porosity and time of the exposure, etc. In these cases a more
sophisticated model than that given by Eq. (3) should be applied. However, it
will not affect the procedure of the solution presented below.

2.2 Formulation of the problem for liquid wedge impact on an erodible wall.

A symmetric liquid wedge of half-angle α is chosen as the incoming liquid to
hit an erodible wall. The liquid is assumed to be inviscid and incompressible,
the flow to be irrotational, and the incoming velocity of the liquid wedge to
the body is constant. The gravity and surface tension effects are ignored as
well as the wall material evacuated by the liquid. With these assumptions,
the flow can be described by the velocity potential in the frame of reference
attached to point A on the moving interface. Point A′ is the initial contact
of the liquid wedge tip and the body surface. As there is no length scale,
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Fig. 1 Sketch of the cratering of the solid due to a liquid impact: the dotted line shows
the liquid wedge at the time of impact; the dot-dashed line and arrows indicate the velocity
profile of the cratering: (a) physical plane and (b) ζ−plane.

the interface deformation and the whole flow are self-similar. A sketch of the
problem is shown in figure 1. The Cartesian coordinate system XY with origin
at point A is defined with X axis in the direction of initially flat body surface
and Y axis along the symmetry line of the flow. The incoming liquid velocity
V relative to point A is along the Y -axis, as shown in figure 1a. At point D
the flow detaches from the body and a splash jet with the tip angle µ may be
formed. The fluid particle at point A′ at t = 0 will move to the jet tip O after
the impact. AD is the interface which may form an angle α < π/2 with the
Y -axis at point A.

For a constant impact velocity of the liquid wedge, the time-dependent
problem in the physical complex plane Z = X + iY can be written in the
stationary, or similarity plane z = x+ iy in terms of the self-similar variables
x = X/(V t), y = Y/(V t). The complex velocity potential W (Z, t) can be
written as

W (Z, t) = V 2tw(z) = V 2t[ϕ(x, y) + iψ(x, y)] (4)

The problem is to determine the function w(z). We choose the first quadrant
of the ζ−plane in figure 1b as the region of the parameter variable ζ to derive
expressions for the complex velocity, dw/dz, and for the derivative of the
complex potential, dw/dζ, both as functions of the variable ζ. Once these
functions are found, the velocity field and the relation between the ζ− plane
and the physical flow region can be determined as follows:

vx − ivy =
dw

dz
(ζ), z(ζ) = zA +

∫ ζ

ζA

dw

dζ ′
/
dw

dz
dζ ′, (5)

where zA = 0 at the chosen origin of point A, and ζA = 1 is the image of zA
in the ζ− plane as shown in figure 1b.
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The theorem about conformal mappings allows us to choose, arbitrarily,
locations of three points in the ζ− plane, which are chosen as O, B (a point
at infinity) and A, as shown in figure 1b. In this plane, the positive part of
the imaginary axis (0 < η < ∞, ξ = 0) corresponds to the main free surface
OB. The interval 0 < ξ < d of the real axis corresponds to the free surface
of the splash jet OD, and the interval d < ξ < 1 corresponds to the wetted
surface AD, and the rest of the positive real axis d < ξ < ∞ corresponds
to the symmetry line AC. In the following formulation, the free surface OD
and the wetted surface AD will be combined together and called interface.
Their shapes will be determined together although the body surface boundary
condition will be imposed on AD and the constant pressure condition will be
imposed on OD.

2.3 Derivation of the complex velocity and the function dw/dζ.

When the body surface is rigid, the normal component of the velocity equals
zero, and therefore the velocity on the body surface is along its tangential
direction. In the present problem the normal component of the velocity is
nonzero due to cratering and can be written as

vn(s) = −v∗(s)− v∗A cos[δi(s)], sD < s < 0, (6)

where v∗A = v∗(sA), and δi(s) is the slope of the interface, and s is the arc
length coordinate with s = 0 at point A and it decreases from point A to point
D. Therefore, the velocity direction on the body surface becomes unknown.

The boundary-value problem for the complex velocity function is formu-
lated in the ζ− plane. At this stage we introduce function β(ξ) = − arg (dw/dz)
along the interface OA, i.e. on the interval 0 < ξ < 1 of the real axis of the
ζ− plane, and function v(η) defined along the positive part of the imaginary
axis of ζ− plane, which is the speed of the liquid along the free surface OB.
With these notations, we have

χ(ξ) = arg(dw/dz) =

{
−β(ξ), 0 < ξ < 1, η = 0,
−π/2, 1 < ξ <∞, η = 0.

(7)

v(η) =

∣∣∣∣dwdz
∣∣∣∣ , 0 < η <∞, ξ = 0. (8)

When we approach point A along the interface OA, the velocity direction
β(ξ) = tan−1(vy/vx)ξ→1−ε, ε → 0, tends to the value π/2 − αA, or coincides
with the direction of the interface. Along the Y−axis β(ξ) = tan−1(vy/vx) =
π/2. Therefore, there is a jump in the function β(ξ) at point ξ = 1, ∆χA =
−αA, when ξ increases from 1− ϵ to 1 + ϵ.

As derived in [8,14], the appropriate solution is given by:

dw

dz
= v∞ exp

 1

π

∞∫
0

dχ

dξ
ln

(
ζ + ξ

ζ − ξ

)
dξ − i

π

∞∫
0

d ln v

dη
ln

(
ζ − iη

ζ + iη

)
dη + iχ∞

 ,
(9)
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where v∞ = v(η)η→∞, χ∞ = χ(ξ)ξ→∞. Using Eq.(7), Eq.(9) becomes

dw

dz
= v0

(
1− ζ

1 + ζ

)αA
π

× exp

 1∫
0

dβ

dξ
ln

(
ξ − ζ

ξ + ζ

)
dξ − i

π

∞∫
0

d ln v

dη
ln

(
iη − ζ

iη + ζ

)
dη − iβ0

 .(10)
where v0 = v(0) and β0 = β(0) are the speed and direction at point O.
The functions β(ξ) and v(η) will be determined later from the kinematic and
dynamic boundary conditions.

In order to obtain expression for the derivative of the complex potential,
dw/dζ, it is useful to introduce the unit vectors n and τ on the fluid boundary,
which are normal and tangential to the surface, respectively. The former is
directed outward from the liquid region, and while one moves in the τ direction
along the boundary, the arc length coordinate s increases and the liquid region
is on the left hand side (see figure 1a). With these notations, we have

dw = (vs + ivn)ds, (11)

where vs and vn are the tangential and normal velocity components on the
surface, respectively. Let θ(η) = tan−1(vn/vs) and γ(ξ) = tan−1(vn/vs) de-
note the angles between the velocity vector with τ on the flow boundary. The
function θ(η) is defined along the positive part of the imaginary axis of the
ζ-plane, which corresponds to the free surface OB in the similarity plane,
while γ(ξ) is on the positive part of the real axis corresponding to the inter-
face and the symmetry line. Eq.(11) allows us to determine the argument of
the derivative of the complex potential, ϑ = arg(dw/dζ), using the relation
dw/dζ = (dw/ds)(ds/dζ):

ϑ(ζ) = arg

(
dw

dζ

)
= arg

(
dw

ds

)
+arg

(
ds

dζ

)
=

{
γ(ξ), 0 < ξ < 1, η = 0,
θ(η) + π/2, ξ = 0, 0 < η <∞.

(12)

By analyzing the behaviour of the velocity angle along the whole flow
boundary in figure 2a, we can see the variation of angle ω = arg(vs + ivn).
It is continuous along both the free surface OB (defined as θ(η)) and the
interface OA (defined as γ(ξ)), as shown by solid lines. θ(η) has step changes
or discontinuities at points O, B and C, while the function γ(ξ) is continuous
along the real axis. These step changes are shown by dashed lines in figure 2a.

Now we analyse the functions θ(η) and γ(ξ) along the fluid boundary.
Between points C and A, 1 < ξ < ∞, function γ(ξ) ≡ −π, since vn = 0
and vs < 0. When we move from point A to point O− along the interface,
the function γ(ξ) changes continuously from γA = −π to γ0 = γ(0) at point
O−. When we move in a counter-clockwise direction along an infinitesimal
quarter of the circle centred at the point ζ = 0 in the parameter plane the
corresponding line in the physical plane passes through the tip O of the splash
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Fig. 2 (a) Variation of the velocity angle to the flow boundary, ω = arg(vs+ ivn): the solid
lines for continuous changes while the dashed lines for step changes. (b) The corresponding
variation in the parameter plane. (c) The definition of the angles θ and γ, U is the velocity
vector

jet. The jump in the function ω = arg(vs + ivn) equals ∆ = µ − π as it can
be seen from figure 2a, where µ = θ0 + π − γ0, and θ0 = θ(0). By taking
into account Eq.(12) we can see that the jump in arg(dw/dζ) equals ∆ϑ =
∆+ π/2 = µ− π/2. The corresponding change of the argument arg(ζ) equals
π/2, and so we can expect that function dw/dζ at point O (ζ = 0) has a
singularity of order dw/dζ ζ2∆ϑ/π. When moving from point O to point B
along the imaginary axis of ζ-plane, the function θ(η) changes continuously
from value θ0 to the value θB = θ(η)η→∞.

We can write function ϑ(ζ) as follows

ϑ(ζ) = arg

(
dw

dζ

)
=

−π, 1 < ξ <∞, η = 0,
γ(ξ), 0 < ξ < 1, η = 0,
θ(η) +∆ϑ, ξ = 0, 0 < η <∞.

(13)

The problem is then to find the function dw/dζ in the first quadrant of the
ζ-plane which satisfies the boundary condition Eq. (13). This is a uniform
boundary value problem, or arg(dw/dζ) is given on the entire boundary. As
derived in [8,14], the appropriate solution is given by:

dw

dζ
= K exp

 1

π

0∫
∞

dϑ

dξ
ln
(
ζ2 − ξ2

)
dξ +

1

π

∞∫
0

dϑ

dη
ln
(
ζ2 + η2

)
dη + iϑ∞

 ,
(14)

where K is a real factor, ϑ∞ = ϑ(ζ)|ζ|→∞. By performing the integration
in Eq.(14) over steps where the value ϑ(ζ) is known, we finally obtain the
expression for the derivative of the complex potential in the ζ-plane as

dw

dζ
= Kζ2µ/π−1 exp

 1

π

1∫
0

dγ

dξ
ln
(
ξ2 − ζ2

)
dξ +

1

π

∞∫
0

dθ

dη
ln
(
ζ2 + η2

)
dη

 .
(15)
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Integration of Eq.(15) in the ζ-plane allows us to obtain the function w(ζ)
which conformally maps the first quadrant of the ζ-plane onto the correspond-
ing region in the complex potential plane:

w(ζ) = K

ζ∫
1

ζ2µ/π−1 exp

 1

π

1∫
0

dγ

dξ
ln
(
ξ2 − ζ2

)
dξ +

1

π

∞∫
0

dθ

dη
ln
(
ζ2 + η2

)
dη

 dζ ′,
(16)

where the complex potential at point A (ζ = 1) is taken as zero without loss
of generality.

Dividing Eq. (15) by Eq. (9), we can obtain the derivative of the mapping
function

dz

dζ
=
K

v0
ζ2µ/π−1 exp

 1

π

1∫
0

dγ

dξ
ln
(
ξ2 − ζ2

)
dξ +

1

π

∞∫
0

dθ

dη
ln
(
η2 + ζ2

)
dη

− 1

π

1∫
0

dβ

dξ
ln

(
ξ − ζ

ξ + ζ

)
dξ +

i

π

∞∫
0

d ln v

dη
ln

(
η − ζ

η + ζ

)
dη + i(β0 + γ0)

 (17)

The integration of this equation yields the mapping function z = z(ζ) relating
the ζ- and similarity planes.

The pressure coefficient based on the ambient pressure, Pa, can be ex-
pressed through the pressure coefficient based on the pressure at the stagnation
point PA as follows

cp =
2(P − Pa)

ρV 2
=

2(P − PA)

ρV 2
− 2(Pa − PA)

ρV 2
= c∗p − c∗pO, (18)

where

c∗p(ξ) = ℜ
(
−2w(ζ) + 2z(ζ)

dw

dz
(ζ)

)
ζ=ξ

−
∣∣∣∣dwdz (ζ)

∣∣∣∣2
ζ=ξ

, (19)

are obtained from Bernoulli’s equation by choosing point A as the reference
point, where wA = 0, and taking the advantage of the self-similarity of the
flow [16]. Here, we use that the pressure at point O is equal to the ambient
pressure.

The governing equations Eqs. (10) and (15) - (17) contain the unknown
parameter K and the functions γ(ξ), β(ξ), θ(ξ) and v(η), all to be determined
from physical considerations, as well as the dynamic and kinematic boundary
conditions. The tip of the liquid wedge will depart from point A to point
O. We notice that when the flow is self-similar the velocity at point O is
constant. Thus, the position of point O is determined by the velocity of the
tip jet relative point A, ZO = V tzO = V0te

iβ0 = V tv0e
iβ0 . The same argument

was used Semenov, Wu & Oliver [16] for the liquid/liquid impact. Thus, the
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distance between points A and O in the similarity plane equals v0, which can
be used to determine the parameter K:

K

∣∣∣∣∣
∫ 1

0

1

K

dz

dζ

∣∣∣∣
ζ=ξ

dξ

∣∣∣∣∣ = v0, (20)

where the integrand is determined from Eq. (17).

2.4 Determination of the functions θ(η) and v(η) from boundary conditions
on the free surface OB.

The dynamic and kinematic boundary conditions on the free surface OB for
an arbitrary self-similar flow can be obtained in the following form [8]

dθ

ds
=
v + s cos θ

s sin θ

d ln v

ds
, (21)

1

tan θ

d ln v

ds
=

d

ds

[
arg

(
dw

dz

)]
. (22)

Multiplying both sides of Eq.(21) and Eq.(22) by ds/dη we obtain the following
differential equation for the function θ(η):

dθ

dη
=
v + s cos θ

s sin θ

d ln v

dη
, (23)

where s = s(η) is obtained from integration of the expression −|dz/dζ|ζ=iη

along the imaginary axis of the parameter plane. Determining the argument
of the complex velocity from Eq.(6) and substituting the result into Eq.(18),
the following integral equation for the function d(ln v)/dη is obtained:

− 1

tan θ

d ln v

dη
+

1

π

∞∫
0

d ln v

dη′
2η′

η′2 − η2
dη′ =

2α

π

1

1 + η2
+

1

π

∞∫
0

dβ

dξ

2ξ

ξ2 + η2
dξ. (24)

2.5 Determination of functions γ(ξ) and β(ξ) from the kinematic boundary
condition on the interface OA.

The normal component of the velocity on the interface, vn, is determined by
the constitute relation, Eq. (3), on part AD of the interface. On OD vn is
determined from the condition P = Pa as OD in reality is a free surface and is
incorporated into the interface merely for the convenience of the mathematical
formulation and procedure. Here, we may obtain an equation relating the
velocity to the slope of the interface, given by the function δi(s), through
exploiting the fact that the interface Zi = Zi(S) = Xi(S) + iYi(S) in the
physical plan is an expanding self-similar surface. By using the self-similar
variable z = Z/(V t) we can write Zi(S) = V tzi(s), and the slope of the
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interface δi(S) = δi(s) = arg(dzi/ds). With notation in Eq.(11) and using
ds/dt|S = −s/t, we have

dW = V 2t(vs + ivn)ds =
dZi

dt
dZ =

dZi

dt
V t
dzi
ds
ds = V 2t(zi − e−iδis)eiδids,

(25)
from which the normal component of the velocity of the interface is obtained
as

vn(s) = ℑ
(
zi(s)e

iδi(s)
)
, (26)

where overbar denotes a complex conjugate.
The tangential component of the velocity on the interface OA can be de-

termined from the real part of Eq. (11)

vs = ℜ
(
dw

ds

)
= ℜ

(
dw

dz

dz

ds

)
= ℜ

(
dw

dz

∣∣∣∣
ζ=ξ

eiδi[s(ξ)]

)
. (27)

By using Eqs.(26), (27), and the definition of the function γ(ξ) we can obtain

γ(ξ) = tan−1

(
ℑ{zi[s(ξ)]eiδi[s(ξ)]}

ℜ{dw/dz|ζ=ξ e
iδi[s(ξ)]}

)
(28)

Taking the argument of Eq.(17), the angle δi can be expressed δi = β + γ.
From this relation, we can obtain equation for the velocity direction

β(ξ) = δi[s(ξ)]− γ(ξ). (29)

If δi(s) determining the shape of the interface AO is a known function, then
the Eq. (29) closes the system of integral equations Eqs. (23 ),(24),(28) for the
unknown functions θ(η), v(η), γ(ξ) and β(ξ).

2.6 The shape of the interface.

By equating the right hand side of Eqs. (6) and (26), we obtain the following
equation for the function δi(s)

ℑ
(
zi(s)e

iδi(s)
)
= −v∗(s)− v∗A cos[δi(s)]. (30)

The slope of the interface has angle δi(sA) = αA −π at point A (see figure
1a) which is unknown and it can be determined from the following physical
considerations. A smooth concave shape of the interface occurs if the cratering
velocity v∗(s) decreases smoothly from point A to point O, or dv∗/ds ≥ 0.
Then, due to the flow symmetry, it follows αA = π/2. If the function v∗(s)
increases from point A, or dv∗/ds ≤ 0 , the shape of the interface becomes
convex. A convex interface expanding in self-similar way is not practical, as it
would lead to the self-crossing of Zi(S, t) in the physical plane Z. However, for
0 < αA < π/2 a concave shape of the interface may exist. Point D moves with



12 Y.A. Semenov, G.X. Wu

the speed vD = v∗(sD)/ sin[δi(sD)] which is the velocity of lateral expansion.
Therefore, the angle αA < π/2 should satisfy the following condition

xD sin δD = v∗(sD), (31)

where xD = XD/(V t) is the x-coordinate of the point D in the similarity
plane.

2.7 Determination of the shape of the free surface OD.

On the free surface OD, which is treated as the part of the interface in the
present formulation, the pressure is equal to the ambient pressure. This is
the condition enabling us to determine δi(s) on the interval sO < s < sD,
corresponding to the interval 0 < ξ < d on the real axis of the ζ- plane (see
figure 1b). First, we determine the new speed by using Bernoulli’s equation in
Eq. (19), taking into account that the pressure coefficient equal to c∗pO = c∗p(0)
on this part of the interface. Thus, from Eq. (19), we have,

vi(ξ) =

∣∣∣∣dwdz
∣∣∣∣ =

√
2ℜ
(
−w(ζ) + z(ζ)

dw

dz
(ζ)

)
ζ=ξ

− c∗pO, 0 < ξ < d. (32)

Here, the parameter d is determined from d = s−1(sD), the inverse function
of s = s(ξ). At the second step we seek the new velocity direction along OD.
By taking the magnitude of Eq.(10) and equating it to vi(ξ), we obtain the
following integral equation for the new approximation of the function dβ/dξ,

d∫
0

dβ

dξ′
ln

∣∣∣∣ξ′ − ξ

ξ′ + ξ

∣∣∣∣ dξ′ = ln

[
π
vi(ξ)

v0

(
1 + ξ

1− ξ

)αA/π
]

(33)

−
∞∫
0

d ln v

dη
tan−1

(
ξ

η

)
dη −

1∫
d

dβ

dξ′
ln

∣∣∣∣ξ′ − ξ

ξ′ + ξ

∣∣∣∣ dξ′.
From the solution of this equation, we obtain

β(ξ) = βD +

∫ ξ

d

dβ

dξ′
dξ′, 0 < ξ < d. (34)

where βD = β(d) is known from the solution on the body surface AD in the
previous subsection. Then, the slope of the free surface OD, corresponding to
the interval 0 < ξ < d is obtained using the relation δi(ξ) = βi(ξ) + γi(ξ),
where the function γ(ξ) is determined by Eq.(29).

The numerical solution of the system of equations, which is strongly non-
linear, is based on the procedure of successive approximations. The relaxation
coefficients used in the iterations are chosen as 1/5 for the functions β(ξ) and
γ(ξ) and as from 0.001 to 0.1 for the function θ(η), depending on the value of
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angle µ. It starts with β(ξ) ≡ β0, γ(ξ) ≡ −π, δi(s) ≡ −π + β0, vn(ξ) ≡ 0 on
interface OA and θ ≡ α, v(η) ≡ 1 on free surface OB, as initial values.

From Eq. (20), K is obtained with using Eqs.(10), (15) and (16), respec-
tively to obtain dw/dζ and w(ζ), while Eq(17) is used to obtain dz/dζ. New
approximation of the functions γ(ξ) and β(ξ) are then determined from Eq.(28)
and Eq.(29), respectively, and the shape of the interface δi(s) is determined
from Eq.(30). The functions θ(η) and v(η) are determined from Eq. (23) and
Eq.(24), respectively, which give the free surface shape OB. The iteration re-
turns to Eq.(20) and the process is repeated until the convergence has been
achieved.

3 Numerical results

3.1 Numerical approach.

The numerical approach employed in the present study is based on the method
of successive approximations, which is similar to that used by Semenov & Wu
[15], for solving self-similar impacts between an impermeable solid body and
a liquid wedge. Let us consider two sets of points distributed along the part
of the real axis, 0 < ξj < 1, j = 1 . . .M , and the imaginary axis, 0 < ηj < ηN ,
j = 1 . . . N , where ηN is sufficiently large. The integrals within each segment in
the system of equations are evaluated explicitly, using the linear interpolation
for the functions γ(ξ), β(ξ), θ(η) and v(η), on the intervals (ξj−1, ξj) and
(ηj−1, ηj), respectively. The results contain the unknowns coefficients ∆γj =
γj − γj−1, ∆βj = βj − βj−1, ∆θj = θi − θj−1 and ln(vj/vj−1), which are
determined from the system of equations Eqs. (23), (24), (28), (29).

3.2 Impact between a liquid wedge and a cavity expanding into a solid wall.

We first consider a case in which the shape of the interface evolves in a pre-
scribed way in the form of an expanding circular cavity. If the radius R of the
circle expands in the manner of R = V ∗t, its slope as a function of spatial
coordinate s can be given as

δ(s) = −π + s/r, sD < s < O. (35)

where r = V ∗/V = v∗ is the dimensionless radius of the cavity in the similarity
plane, and s is the arc length coordinate along the interface ADO, from s = 0
at point A to the sD = −πr/2 at point D if the fluid departs from the cavity.
When the arc length AD, −sD < πr/2, O and D will merge and will be inside
the cavity. Otherwise the OD part of the interface in figure 1a is outside the
cavity, and is part of the free surface in reality.

In figure 3 are shown the streamline patterns, free surfaces (solid lines),
and the pressure distribution for the solid wall with cavity expanding with
different velocities. In figure 3a with v∗ = 1.023, the arc length −sD < πr/2
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Fig. 3 Streamline patterns, free surfaces (solid lines), and the pressure distribution (dashed
lines) for water impact between a liquid wedge of half-angle α = 10◦ and the solid wall
with circular cavity expanding with radial velocity (a) v∗ = 1.023, (b) v∗ = 0.5789, (c)
v∗ = 0.4207, (d) v∗ = 0.4191, (e) v∗ = 0.3814 and (h) v∗ = 0.
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and there is no flow detachment. The maximal pressure coefficient is about
cp ≈ 1.5 and it is located at the stagnation point, or the relative velocity to
the fluid particle at the point is zero, in the cavity. For the smaller velocity
of expansion, v∗ = 0.5789, shown in figure 3b, the liquid departs from the
cavity surface and moves in the direction almost opposite to the incoming
flow, and a splash jet is formed. Near the point of detachment on the cavity,
the liquid layer is also very thin and it is virtually the extension of the splash
jet. The pressure in this part of the cavity drops to zero rapidly. Due to the
motion inertial, the splash jet keeps its direction of the slope of the cavity,
from which it has departed. The pressure coefficient on the rest of the cavity,
which takes about one third of the body surface, remains almost constant
cp ≈ cp max ≈ 1.67. For the velocity of the cavity expansion v∗ = 0.4207 in
figure 3c the splash jet does not extend into the cavity surface. The pressure
inside has very small variation but it drops very fast from its maximal value
cp max ≈ 2.0 to zero near the point of detachment. The splash jet deviates
from the vertical direction towards the main wall surface. A small reduction of
the velocity of expansion from v∗ = 0.4207 in figure 8c to v∗ = 0.4191 in figure
3d substantially increases the deviation of the splash jet while the pressure
changes very little. When the location of the pressure peak approaches ever
closer to the cavity edge and as the jet no longer extends into the cavity surface,
it is expected there is higher pressure zone inside the liquid near the cavity
edge, which pushes the splash jet to bend towards the wall. Further decrease
of the cavity to the value v∗ = 0.3814 leads to the intersection of the splash
jet and the wall. In this case, the liquid is assumed to be fully attached to
the body and the free surface boundary condition on the upper surface of the
jet is replaced by the kinematic condition of the body surface. The maximal
pressure coefficient remains about the same, cp max ≈ 2.0 as it is seen from
figure 3e. In the limiting case v∗ = 0 shown in figure 3f , cavity disappears and
it corresponds to the impact of the liquid wedge and the non-erodible rigid
wall.

3.3 Impact by a liquid wedge on an erodible solid wall

In reality, the cratering is quite a complicated physical process involving nor-
mal and tangential stresses as well as the material properties. In the idealized
case in Eq.(1) only the hydrodynamic pressure and the shear stress are in-
cluded in the constitutive relation in a particular manner. In order to study
their effects separately, we will investigate two limiting cases of Eq.(3). The
first corresponds to rτ = 0, rp ̸= 0 and the second to rτ ̸= 0, rp = 0.

For the first case we may note that cp = 0 at point D, and Eq.(3) therefore
gives v∗ = 0, or the cratering velocity is also zero at the edge of the crater. In
this case the crater edge should remain at the origin, that results in
a closed cavity. Such a mathematical solution does not reflect the physics.
Therefore, we introduce a minimal velocity v∗min for the present case rτ = 0.
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Then, the cratering velocity can be represented in the form

v∗(s) = max

[
v∗A
cp(s)

cpA
, v∗min

]
. (36)

where v∗A = rpcpA. The interface and other flow parameters for impact between
a liquid wedge of α = 10◦ and an cratering wall, based on Eq.(36) are shown
in figure 4 at different ratios of v∗min/v

∗
A. In all these cases the pressure is

nearly constant in a region near the impact centre, which corresponds to nearly
constant cratering velocity or a nearly circular shape of the body surface. The
pressure drops rapidly near the crater edge, where the condition v∗(s) ≥ v∗min is
applied. When a smaller v∗min is chosen, the x coordinate of D will be obviously
smaller and crater will have a smaller opening. As the fluid departs from the
solid surface at point D along its tangential direction, the formed jet will bend
towards the incoming liquid wedge, as can be seen in figures 4b, c , and the
jet may overlap with the main flow to cause a secondary impact. The
overlapping is ignored in the present study. More detailed discussions and the
reasons can be found in Semenov, Wu & Oliver [16].

We now consider the case with rτ ̸= 0 and rp = 0 in Eq.(3). From Eqs.(2)
and (3) it follows that both shear stress and the speed of cratering at the stag-
nation point A are equal to zero, since vs(0) = 0 due to symmetry. Therefore,
the position of point A remains at the original place A′ during the impact
process. As the interface expands with the normal velocity, which is expected
to be positive, its shape near point A is concave.

In figure 5 are shown the results for impact of a liquid wedge of α = 30◦ and
the wall at different coefficient rτ . For a relatively small value of the coefficient
rτ shown in figure 5a only small amount of the material is removed. However,
even for small value of rτ some hollow appears which causes the detachment of
the liquid from the body surface and formation of the splash jet. For the case
of rτ = 0.5 shown in figure 5b the size of the crater in the x-direction becomes
smaller, while the crater depth, the length of the splash jet and the angle
between the wall and the splash jet become larger. The corner at the point
A becomes sharper as the coefficient rτ increases. This affects the pressure
coefficient at the origin, which becomes smaller. The length and angle of the
detached splash jet to the wall in figures 5(b−d) is only slightly increased. For
all the cases in figure 5 near the root of the splash jet the pressure coefficient
drops rapidly. Therefore, there is no force which pushes the splash jet bending
towards the wall, as it is in figure 3e.

4 Concluding remarks

We have developed a method which generalizes previous studies on liquid/solid
impact and accounts for certain essential features associated with cratering of
a solid body. The focus is on those configurations where the flow can be
treated as self-similar, which can be realistic at earlier stages of the impact.
The mathematical approach is based on the integral hodograph method, which
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Fig. 4 Impact between a liquid wedge of half-angle α = 10◦ and an initially flat solid wall
based on Eq.(36) with v∗A = 0.6 (a) v∗min/v

∗
A = 0.9, (b) v∗min/v

∗
A = 0.8, (c) v∗min/v

∗
A = 0.7.

The interface between the wall side and thick line correspond to v∗(s) = v∗min.
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Fig. 5 Impact between a liquid wedge half-angle α = 30◦ and an initially flat solid wall (a)
rτ = 0.1, (b) rτ = 0.5, (c) rτ = 1.0, (d) rτ = 1.5. Streamlines, free surface and the interface
(solid lines), and the pressure distribution (dashed lines).

enables the original problem in a physical domain to be reduced to a system
of integro-differential equations along the straight lines in the ζ-plane. These
equations are solved numerically through the method of successive approx-
imations. The following two case studies have been undertaken: (i) impact
between a liquid wedge and an expanding crater in the solid wall; and (ii) im-
pact between a liquid wedge and a cratering wall under the constitute relation
of cratering including both the normal and shear stresses acting on the wetted
body surface.

The study on liquid impact on a body with the prescribed expanding cavity
has revealed two possible flow regimes depending on the rate of the crater
expansion. For a liquid wedge of half-angle αA = 10◦ and the relative speed
of expansion around 0.4 < V ∗/V , the pressure drops inside the crater from its
maximum to zero. This results in a splash jet, which is fully detached from
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the body and is directed almost opposite to the main incoming flow. For ratio
V ∗/V < 0.4, the upper surface of the splash jet touches the wall and the
fully attached model is then assumed. The pressure maxima may then occur
outside the crater on the body surface.

Two special cases of cratering have been considered. In the first case the
constitutive relation links the rate of cratering and the normal pressure lin-
early, subject to a prescribed minimal normal velocity of cratering. In this
case the shape of the crater is close to a quarter-circle, and in the
crater the pressure distribution is approximately constant, and an
almost straight line where the prescribed minimal velocity v∗min is applied.
In the second case, the constitutive relation links the cratering speed to the
shear stress on the wetted body surface linearly. The shape of the crater forms
a concave hollow with an acute angle at the stagnation point. In contrast to
the first case, this constitute relation leads to a larger speed of cratering near
the edge of the crater where the speed of the liquid and the shear stress reach
their maximum values.
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