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Abstract

Purpose: In this work we present the MASSIVE (Multiple Acquisitions for Standardization of
Structural Imaging Validation and Evaluation) brain dataset of a single healthy subject, which is

intended to facilitate diffusion MRI (dMRI) modeling and methodology development.

Methods: MRI data of one healthy subject (female, 25 y) were acquired on a clinical 3 T system
(Philips Achieva) with an 8-channel head coil. In total, the subject was scanned on 18 different
occasions with a total acquisition time of 22.5 hours. The dMRI data were acquired withanisotropic
resolution of 2.5 mm? and distributed over five shells with b-values up to 4000 s/mm? and two

Cartesian grids with b-values up to 9000 s/mm?.

Results: The final dataset consists of 8000 dMRI volumes, corresponding B, field maps and noise

maps for subsets of the dMRI scans, and ten 3D FLAIR, T,-, and T,-weighted scans. The average

signal-to-noise-ratio (SNR) of the non-diffusion-weighted images was roughly 35.

Conclusion: This unique set of in vivo MRI data will provide a robust framework to evaluate novel
diffusion processing techniques and toreliably compare different approaches for diffusion modeling.
The MASSIVE dataset is made publically available (both unprocessed and processed) on

www.massive-data.org.
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Introduction

Diffusion magnetic resonance imaging (dMRI) is used in a wide range of clinical and scientific
disciplines forits ability toinferinformation about tissue architecture and microstructure invivo (1-
4). Investigating brain tissue characteristics with dMRI, however, remains challengingmainly due to
the presence of numerous artifacts during data acquisition and the high complexity of the diffusion-
weighted (DW) signal for modeling purposes. Consequently, multiple processing steps have to be
performed to be able to extract meaningful and reliable features from dMRI data. A variety of
correction strategies have been developed that address data imperfections (e.g., eddy current
induced distortions, susceptibility based deformations caused by magneticfield inhomogeneities,
noise and physiological artifacts (1,5)) to minimize the presence of confoundsthatcould convolute
data interpretation. In addition,a wide range of dMRI models and reconstruction methods have been
proposed that aim to extract tissue characteristics in a reliable way, including diffusion tensor
imaging (DTI) (6), diffusion kurtosis imaging (DKI) (7), diffusion spectrum imaging (DSI) (8), Q-ball

imaging (QBI) (9), spherical deconvolution (SD) (10-12), CHARMED (13), and NODDI (14).

Notwithstanding recent developmentsin dMRI artifact correction and modeling, optimizing the dMRI
processing pipeline is stillan active area of research. Forexample, there is currently no consensuson
the optimal dMRI model or representation to characterize the DW signal, or onthe optimal sampling
scheme for dMRI reconstruction techniques that use ‘multi-shell” acquisitions (i.e., gradient
directions distributed over multiple b-value shells). Moreover, thesetwoissues may even depend on
each other, i.e., optimal sampling might be different for different models. In parallel, many new
artifact correction strategies are currently being developed (15,16). In this context, a comprehensive
evaluation framework for such novel diffusion processing techniques and fora reliable comparison

between different approaches is highly desired.



Unbiased and reliable evaluations are, however, generally hampered by the lackof a genuine gold-
standard, and there isan urgentneedfora reliable framework that can facilitate the development of
dMRI methodology. Hardware phantoms and simulations are very valuable because of their known
ground truth, but are often too simplistic (17) or can be biased towards a specific model (18-20).
Real data acquisitions can, despite their unknown ground-truth, serve as valuable references to
complement phantom and simulated data in the validation and evaluation of new processing

strategies. Forthis purpose, acomprehensive dMRI datasetis required.

Data repositories and databases are becoming more readily available (21), greatly facilitating the
development of dMRI methods. Many of these repositories contain cross-sectional and/or
longitudinal data allowing for research on normal brain development and function (22-26). Other
databasesaimto give insightinto brain anatomy and resolve complex neuronal microarchitecture,
eitherby derivingtemplates oratlases from data of a single subject or multiplesubjects (27-30), or
using high resolution post mortem data (31-33). An example of a cross-sectional repository is the
Human Connectome Project (HCP) database, which will contain dMRI data (among others) of 1200
subjects acquired with maximum gradient strengths surpassing that of clinical scanners (25,26).
Although this database contains data acquired with multiple b-values and more diffusion gradient
directions than most acquisitionsitisstill imited inits sampling of q-space (270directions on three
shells). More densely sampled g-space data (512 directions) with higher b-values (b=10.000 s/mm?)
for a broaderage range are also available (34). These datasets are acquired with innovative gradient
systems and therefore not comparable to those typically acquired in a clinical setting in terms of
resolution and SNR, among others. Another dMRI database is provided as part of the
"MyConnectome Project" (35). This database contains 19 (15 usable) repeated scans of a single
subject acquired over the course of 18 months with the purpose of specifically investigating the
dynamics of brain function, and the scans are thusidentical in terms of acquisition parameters (i.e.,

b-values and gradient orientations). Despite the availability of many excellent high quality



repositories, for validation of processing methods and algorithms (36,37) in a clinical setting,

typically, synthetic phantoms (20,38,39) or small clinical datasets (40) are still used.

In thiswork we presentthe MASSIVE (Multiple Acquisitions for Standardization of Structural Imaging
Validation and Evaluation) brain dataset containing multi-modal MR data and 8000 dMRI volumes of
asingle healthy subject acquired onaclinical 3 T scanner. All the datasets were specificallyacquired
ina clinical setting, i.e., using single-shot echo-planarimaging (EPI), ‘conventional gradient strengths
and hardware, no dedicated head fixation or advanced high density receive coil, tobe inline with the
current standards in acquisition protocols from routine examinations. As such, subsets of the
MASSIVE datasetare comparable to data acquiredinclinical studies, and can serve as representative
testbeds for new developmentsin awide range of dMRI data correction strategies, image processing
techniques, and microstructural modeling approaches. The MASSIVE dataset consists of 8000 dMRI
volumes with b-values up to 9000 s/mm?, sampled in configurations of five shellsand two Cartesian
grids. Data was acquired with echo-planarimaging (EPI) phase-encodingin bothanterior-posterior
(AP) and posterior-anterior (PA) directions, and with gradient directions both in positive and negative
z-direction resulting in 2000 scans for each combination. In addition, the dataset contains B, field
maps, noise maps, and ten 3D fluid-attenuated inversion recovery (FLAIR), T;-, and T,-weighted
datasets, which often play animportantrole in dMRI processing and analysis methods (e.g., (41-43))
and can also be usedindependently for test-retest experiments and methodological evaluations and
comparisons (e.g., (44-46)). The MASSIVE dataset, which was first presented at the 22nd Scientific

Annual Meeting of the ISMRM (47), is made publicly available on www.massive-data.org.
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Methods

Data acquisition

All the MRI data of the healthy subject (female, 25y) were acquiredona clinical 3T system (Philips
Achieva) with an 8-channel head coil. The subject gave informed consent to participate inthis study
under a protocol approved by the University Medical Center Utrecht ethics board. In total, the
subjectwas scanned on 18 different occasions (total acquisition time: 22.5 h). A schematicoverview
of the protocol fora single session is shown in Figure 1. Each of the 18 scan sessions consisted of four
dMRI acquisition blocks of 15 minutes in which a unique subset of the 8000 DW volumes was
acquired with By-maps being acquired before and after each of these four dMRI acquisition block
(48-50). Additionally, noise maps were obtained at the end of each dMRI acquisition block by
switching off the RF pulses and imaging gradients. Finally, ten 3D FLAIR, T;-, and T,-weighted datasets
were acquired in five of the eighteen sessions. In these sessions, two FLAIR, T;-, and T,-weighted
datasets were acquired with a two hour pause in between. Positioning of the head in the coil and
planning the field-of-view in each session was done manually, which resulted in small offsetsin
rotation and translation. The coronal positioning was intentionally varied between sessions to
minimize the systematic effects of ghosting artifacts. The design of the diffusion and anatomical MRI
acquisitions will be outlined in more detail inthe next paragraphs (further acquisition details can be

foundinTable 1).

Diffusion MRI

The MASSIVE dataset comprises 8000 unique DW volumes, subdivided into four ‘sets’ with both
positive and negative gradient directions, and with both AP and PA phase encoding directions (inthe
followingreferred to as AP+, AP-, PA+and PA-). The acquisition of each set of 2000 DW volumes was

dividedin 18 sessions (see examples shown in Figure 2) of which eight sessions contained 120 d MRI
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volumes and 10 sessions contained 104 dMRI volumes. The ordering of the diffusion gradient
orientations and b-values was randomized throughout every set to preventan acquisition bias across
sessions (Figure 2 D-F). The exact scan order can be found in the lookup table which can be

downloaded from the website www.massive-data.org.

The gradient directions are distributed overfiveshells and two Cartesian grids. The diffusion gradient
orientations on the shells were generated using the approach described in Caruyeretal., 2013 (51).
In short, this approach uses staticrepulsion of particles to homogenize the gradient orientations on
half a sphere (51-53). In this work, the solution was obtained by an iterative solver where in each
iteration the particles repel each other and are subsequently back-projected onto the unit sphere
until convergence is reached (see Supporting material 1, Figure S1). The software tool that was

developed forcomputingthese gradient orientations is also made available on the MASSIVE website.

The five shells consisted of 125, 250, 250, 250 and 300 gradient orientations onthe half sphere with
a b-value of 500, 1000, 2000, 3000 and 4000 s/mm?, respectively. The two Cartesian grids were
evenly spaced in half a cube, one with an even (83/2 = 256) and one with an odd ((93+1)/2 = 365)
number of samples. The maximum b-values along the axes were 2296 s/mm? (g = 0.038 um) forthe
evengridand 3000 s/mm?2(q= 0.043 um?)for the uneven grid. The maximum b-values forthe corner
points were 6890 s/mm? (q = 0.066 um) for the even grid and 9000 s/mm? (g = 0.075 um™) for the
uneven grid. For the diffusion data with a b>3000 s/mm? and for the Cartesian grids the EPI
bandwidth was reduced from 50 to 30 Hz (keepingthe TE, 6 and A constant) to maximize the SNRfor
the high b-valuesand to be able to acquire the data in a feasible scantime giventhe system’s duty
cycle limitations. Additionally, 204 b =0s/mm? images were acquired, resulting in the 2000 dMRI
volumes per set with approximately a 1:9 ratio between the non-DW and the DW volumes. These
non-DW volumes were randomly interleaved throughout each dMRI acquisition to avoid any

measurement bias and to allow for signal drift correction ((16), see also section 2.2).



Anatomical MRI

Ten anatomical MRI datasets (T;- and T,-weighted, and FLAIR) were acquired as theyoften support
dMRI processing and analysis methods (facial features were removed for anonymization). For
instance, T,;-weighted data can be used for segmentation of gray and white matter regions, which
can be used to improve fiber tractography (43,54). Similarly, as T,-weighted data provide a
comparable contrast with the non-DW data, these can be used to correct for susceptibility induced
distortions (41,42). The FLAIR data, which has a similar contrast to the T,-weighted data but with
suppression of the signals originating from the cerebrospinal fluid, may be useful toinvestigate the
contributions of partial volume effects (55,56). Details of the acquisition protocols for these

anatomical MRI data are includedin Table 1.

Data processing

In addition to the raw data, we provide further information on the acquired data, such as SNR
estimates and the “true” applied b-matrix forthe raw dataas derived from the scanner.Inaddition,
we make available three processed datasets: 1) only the intensity-normalized data; 2) both intensity-
normalized and signal-drift corrected data; and 3) data that has been intensity-normalized and
corrected for signal-drift, subject motion, eddy current distortions, and EPl deformations. Note that
for each of these results conventional processing tools were used as described in the following

subsections.

Signal-to-noise-ratio (SNR) estimation

Having knowledge of the image SNRis oftenimportantin dMRI modeling and processing (1,57-64).
The SNR can be quantified in numerous ways, however, and may not be the same across different
methods (65-69). Therefore, noise maps were obtained after each acquisition of a 15-minute
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diffusion block, by switching off the gradients and RF power but leaving the acquisition channels
open. The acquisition parameters of the noise map were equal to the dMRI acquisition parameters
and, as such, an accurate noise measurement is obtained. To calculate arough approximation forthe
global SNR, the average whole brain signal within a mask was computed for every DW volume and

divided by the noise standard deviation within the same brain mask as derived from the noise map.

Intensity normalization and signal drift correction

Since the data were acquired in different sessions, intensity normalization between sessions is
needed to be able to combine the DW volumes into a single data set (70). To this end, the first
volume of each 15-minute dMRI acquisition block, which was always anon-DWvolume, wasused to

normalize the signal intensities of all the other volumes within that acquisition block.

In dMRI, the heavy duty cycle of the EPI-readout and the diffusion gradients can lead to temporal
instability of the scanner. This instability typically causes adecrease in global signal intensity of the
DW imagesovertime, as explainedin detail in (16). To correct for this so-called signal drift, the non-
DW volumes, which were randomly interleaved throughout each dMRI acquisition block, were
identified. Subsequently, the signal drift that occurred during this 15 minute time-window was
characterized by a quadratic fit of the mean signal of the b=0 s/mm? volumes as a function of the

scannedvolume (16), i.e.

S(n|b=0s/mm)=d; ‘n®>+d, - n+S, (1)

where S isthe normalized measured signal, n the ordering number of the acquired volume, Sythe
signal offset at n =0, and d; and d, describe the quadratic and linear signal drift per volume,

respectively. The corrected signal of the n""volume, S, (1), isthen given by:

S(n)

S n)=o0 —————
COr( ) dl-n2+d2-n+50'



where the factor a is an arbitrary chosen signal scaling factor.

True b-matrix calculation

In addition tothe DW pulsed field gradients, imaging gradients can also contribute tothe diffusion-
weighting. Therefore, the actual b-matrix was calculated in addition to the prescribed b-matrix

(71,72). The amount of diffusion weighting b;; along the coordinate axes i = {x,y,z} and j =
{x,y,z} can be expressed asthe time (t) integral overthe echotime (TE) of the zeroth-order (n = 0)

moments (M) of the gradients, i.e.,

bj =y? foTEM(t)n=o,iM(t)n=o,jdt. (3)
with,

M(6), = [, £ "G ()dt, (4)

Wherey is the gyromagneticratio and G (t) the gradient wave form.

Correcting for subject motion, eddy current distortions, and EPI deformations

dMRI acquisitions suffer from subject motion and eddy current induced distortions within an
acquisition session (1,73). In this study, the dataset was scanned in multiple sessions which caused an
additional source of misalignment. As aresult, the final gradient distribution willslightly differ from
the applied one, because the b-matrix needs to be rotated when correcting for subject motion (74).
For each session, the dMRI data was registered using ExploreDTI (75) using an affine method with 12
degrees of freedom to also correct for eddy current induced distortions in the same step (76). The
first b=0s/mm? image of each acquisition was chosen as a reference image. To correct for EPI

distortions and subject motion between the different session, all datawas transformed toa common
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T,-weighted anatomical target dataset using arigid-registration forrough alignment, followed by a
non-rigid b-spline registration to correct for susceptibility induced deformations (42,77-79). Here,
only non-rigid deformations along the phase-encoding axis of the dMRI data were allowed, as this is
the axis along which susceptibility distortions occur. Note that the transformationsfrom these two
last steps are combined with the previous eddy current correction procedureto ensure that only one
interpolation step is needed minimizing unwanted smoothing effects due to resampling All other
anatomical datasets (FLAIR, T,-, and T,-weighted) were also transferred to the same T,-weighted

target dataset usingrigid registration.
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Results

Figure 3 shows representative images of the acquired data. The top two rows (Figure 3 A-H) show
images from the different shells and Cartesian grids. The FLAIR, T;-, and T,-weighted anatomical

scans are shownin Figure 3 1-K and a B, map is shown in Figure 3 L.

Signal-to-noise-ratio (SNR)

The noise as derived from the noise map is Rayleigh distributed (see Figure 4A). The SNR estimates
are presented in Figure 4 B. The average SNR was between 35 and 40 for the non-DW images and
was in the same range across all sessions. The SNR of the datain sessions 9to 18 (b = 4000 s/mm?
shell and both DSI grids) was around 15 percent higher than for the shells with b <3000s/mm?,
which wasto be expected with the lowerbandwidth. The estimated SNRvalues peracquired volume

can be foundinthe lookuptable which can be downloaded from the website www.massive-data.org.

Intensity normalization and signal drift correction

In Figure 5, the mean signal of the non-DW volumes is shown as a function of the measurement
number (red markers) for 24 randomly chosen acquisition blocks. The quadratic fit used to correct
for signal drift is shown in black and the signal-drift corrected data are shown in blue. The mean
signal drift duringa 15 minute acquisition block was 9.3 % with a standard deviationof3.7% (range:
3.0 to 18.8 %) with respectto the initial volume. The mean signal forall the 8000 acquired volumesis
shown in Figure 6 A and B. By comparing A with B of Figure 6, one can appreciate that the mean

signal of the normalized and drift-corrected volumes across all sessions is more constant now.
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True b-matrix calculation

Since the slice selection gradients are always inthe orientation of the z-axis, the actual b-value for
the non-DW images, using equations [3] and [4], is 0.25 s/mm? instead of 0 s/mm?. The average
value and the range of the actual b-values of the five shellsare listed in Table 2. For the DW images
the actual b-value differs up to 2% from the applied b-value. The relative difference is largest for
lower b-values. The effect of these small differences is shown in Figure 6, C and D, where the
intensity-normalized mean signal (with and without signal-drift correctionis plottedasafunction of
boththe applied and the actual b-value. The imaging gradients not only affectthe b-value, but also
the gradient direction. However, the median change in orientation due to the slice selection
gradients across all gradients was found to be only 0.004 degrees. The applied and actual b-matrix
values can be foundinthe lookup table which can be downloaded from the website www.massive -

data.org.

Correcting for subject motion, eddy current distortions, and EPI deformations

The average maximal translations over all individual sessions were 0.3 +3.3 mm (range -4.7to 4.6
mm), 0.4 + 1.2 mm (range -2.5t0 2.8 mm), and -0.8 + 1.3 mm (range -3.6 to 2.3 mm) for the coronal,
sagittals and axial directions, respectively. The average maximal rotations overall individual session
were -0.6 £ 1.0 ° (range -2.5t02.9°),0.2+1.2° (range -2.9t0 2.6 °), and -0.2+ 1.1 ° (range -2.3t0 2.4
°) alongthe coronal (roll), sagittal (pitch), and axial (yaw) axes, respectively. The maximal range of the
rotations between and within the sessions was only +5 degrees with respect to the mean. The
difference between the imposed gradient distribution and the gradient distribution after b-matrix
correction for subject motion is shown for a subset of the data (b=1000s/mm? and b=3000 s/mm?

volumes) in Supporting material 1, Figure S2.
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Figure 7 shows the differences inimage distortions between AP and PA phase encoding directions,
on the one hand, and positive and negative diffusion weighting gradient directions, on the other
hand (AP+, AP-, PA+, PA-). The differencesin the distortions between the AP and PA phase-encoding
directions can be appreciated most in the regions of the eyes, the temporal lobes, and the
cerebellum. The difference in distortions between positive and negative gradient directions is
reflected by the opposite eddy current distortions (e.g., compressionsvs. stretches alongthe phase -
encoding orientation). The color-coded FA map (Figure 8 A) and the T,-weighted data (Figure 8 B) in
anatomical space with a 1x1x1 mm?3 voxel size are shown in Figure 8. The alignment of both datasets
after motion correction, eddy current distortion correction, and EPI distortion correction by
registration to the T,-weighted image is illustrated in Figure 8 C. The registered data in the
anatomical space is available with a 2.5x2.5x2.5 mm? (website) and a 1x1x1 mm?3 voxel size (upon

request, due to limited online storage capacity).

14



Discussion

In this work, we have presented the MASSIVE brain dataset, which contains 8000 in vivo dMRI
volumes of a healthy subject. Currently, the raw, intensity-normalized, signal-drift corrected, and
subject motion / eddy current distortion / EPI distortion corrected dMRI data can be downloaded
fromwww.massive-data.org. Allthe B, field maps, noise maps, and the volumetricFLAIR, T;-,and T,-

weighted datasets are also made available.

We have established a platform through the MASSIVE website to share improvements of specific
processing steps and updates of the processed data. Such methodological developments encompass
novel subject motion and distortion correction methods, new microstructural modeling approaches,
etc. Similarly, we anticipate that segmentations of the anatomical images (e.g., T;-and T,-weighted

images) using common brain atlases and processing tools will also becomeavailable.

The purpose of MASSIVE is to serve as an extensive dataset to compare, evaluate, and validate
existing or novel diffusion MRI methods, such as preprocessing steps, signal modeling, tissue
characterization, and analysis strategies. While existing brain dMRI databases can provide data from
many subjects with only moderate coverage of g-space, none of these provide dMRI data from a
single subject with as dense a g-space sampling as provided in the MASSIVE database. MASSIVE is
unique in consisting of 8000 DW volumes that are sampled on shells as well as two Cartesian grids.
The data was acquired on a standard clinical system using a coil and acquisition settings that are
commonly available. This makes the data quality of each individual dMRIvolume comparable to data
typically acquired in most clinical studies, which means that subset of the data, e.g. containing 100
dMRI volumes with b= 1000s/mm?, would closely resembleaclinical acquisition. Assuch, methods
and models derived from this database can easily be transferred to other clinical and pre-clinical

research workflows.
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Examples of research questions that have already been addressed usingthe MASSIVE brain database
include characterizing signal drift in dMRI acquisitions (16), investigating the in vivo trade-off
between accuracy and precision of multi-fiber methods with respect to b-value and number of
gradientorientations (80), studying the difference between interpolation methodsfortransforming
dMRI data between grids and shells (81), and characterizing single fiber population signal profiles
using a wide range of reconstruction strategies (82). Furthermore, the MASSIVE dataset could be
useful ininvestigating the optimality of different EPI distortion correction techniques, e.g. usingfield
maps, registration to an anatomical image, or using opposite phase encoding images. Commonly
used dMRI acquisition protocols sample eitherthe upperorlower hemispherein q-space. However,
eddy current correction techniques might benefit from sampling on the whole sphere (83). In
additionto correcting forimage distortions, correction for subject motion remainsan active field of
research in which new methods (e.g. targeted to high b-values) are constantly beingdeveloped and
evaluated (84,85). Therefore, the optimal acquisition scheme to adequately correct forartifacts and
motion remains an open question, and the MASSIVE dataset could be subsampled to investigate such
issues. In addition, whereas there is areasonable consensus of an ‘ideal’ singleshell acquisition for
diffusiontensorimaging (86), optimal acquisition strategies for many of the otherdiffusion models
are still being investigated and new models are constantly under development (14,51,87-91). The
MASSIVE brain database, and in particular the unique dMRI dataset, which — to the best of our
knowledge — represents the largest in vivo dMRI dataset of a single subject to date, will avert the
need to continuously reacquire optimized dataand boost new developmentsindiffusion modeling

and processing.

Conclusion
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We have presented the MASSIVE (Multiple Acquisitions for Standardization of Structural Imaging
Validation and Evaluation) brain dataset, consisting of an unprecedented set of 8000 DW volumes of
a single human subject. This unique set of in vivo MRI data will provide a robust framework to
evaluate novel diffusion processing techniques and to reliably compare different approaches for

diffusion modeling. All datais made publicly available on www.massive-data.org.
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Figure Captions

Figure 1: Schematicoverview of the MRI acquisition protocol of asingle session.

Figure 2: Schematic representation of the encoding schemes in gq-space. A) The 5 shells (b= 500,
1000, 2000, 3000 and 4000 s/mm?). B) The two Cartesian DSl grids (DSI8: light gray, DSI9 dark gray).
C) The five shells and the two Cartesian grids combined. D-E) Examples of the random selection of
gradients for each session. The gradients defined along the positive direction are shown in color,
whereas the mirrored gradient directions are showninlight gray. All the gradients are color-coded
for their session. F) The 18 sessions combined fill up half of the g-space (2000 orientations) and by

mirroring the gradients the g-space is fullyfilled.

Figure 3: Representative images of the acquired data (intensity windowing is adjusted for each
image). Diffusion-weighted images with an applied b-value of: A) 0s/mm?, B) 500 s/mm?, C) 1000
s/mm?, D) 2000 s/mm?, E) 3000 s/mm?, F) 4000 s/mm?, G) 5500 s/mm?, H) 9000 s/mm?. Anatomical

images: 1) T,—~weightedimage, J) T,~weighted image, and K) FLAIR. L) B, phase map.

Figure 4: Method and result used for SNR calculation. A) Schematic representation of the method
used for SNR calculation. Using a whole-brain mask the average signal was estimated from the
diffusion weighted volume. The noise standard deviation was estimated using the acquired noise
map in which the noise is Rayleigh distributed as shown in the probability density histogram. B)
Estimated SNR using the acquired noise map. Black markers are for session 1to 8 (b <3000 s/mm?)
and blue markers are for session 9 to 18 (b > 3000 s/mm? and DSl grids). The left image shows the
SNR per session in the scanned order, the middle image shows the SNR per session sorted for the
SNR, and the right image shows the SNRforall the volumes. The SNR levels of the different shells can

clearly be identified.
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Figure 5: Original (red) and signal-drift corrected (blue) average signal of the non-diffusion-weighted
volumes for 24 acquisition blocks of 15 minutes. The black line describes the quadratic signal drift

(see Eqg.1) and the dashed line is the theoretically constant signal of 100%.

Figure 6: A-B) The mean signal per acquired volume of the drift-uncorrected volumes (top row - A)
signal-drift corrected volumes (bottom row - B). The left column shows the signal persession in the
scanned order, the middle column shows the mean signal for all sessionsinthescanned order and
the right column shows the signal for all the volumes sorted for the signal values.
C-D) The intensity-normalized mean signal per acquired volume as a function of the b-value for all
8000 volumes (top row) and a zoomed b-value range (bottom row). The signal is plotted using a
linear and a logarithmic scaling of the y-axes revealing the obvious non-exponential decay of the
diffusion weighted signal. C) The normalized mean signal (but not corrected for signal drift) as a
function of the predefined b-value. D) The intensity-normalized and signal-drift corrected mean
signal as function of the actual b-value. The bottom row clearly shows how the “effective” b-value

causes a spread of the signal overthe b-value axes, that correctly follows the signal decay.

Figure 7: Representative images for the different phase encoding (AP+, AP-, PA+, PA-) directions.
Axial (A and C) and sagittal (B and D) cross-sectional images of a non-diffusion-weighted (A and B,
b =0s/mm?) and a diffusion-weighted (C and D, b = 1000 s/mm?) volume with the different phase
encoding directions and gradient signs. The differences in the distortions between the AP and PA
phase encodingdirections can be appreciated mostinthe eyes(green arrows), temporal region (blue

arrows), and the cerebellum (red arrows).

Figure 8: Example DTl reconstruction of the MASSIVE data. A) Color coded FA maps afterapplyingall
the correction procedures. B) T, weighted data, which were used here to correct for EPI
deformations. C) Color coded FA maps fused with T, weighted data to appreciate the quality of the

processing.
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Figure S-1: A) lterative method of optimization, first all particles are repulsed (red) afterwhich they
are projected back on the unit sphere (blue). The resulting particles (green) are then used for the
next iteration. B) The percent change in entropy of the system over 1500 iterations for single- and
multi-shell optimizations. C) Time it takes to perform 1000 iterations (Intel Core i5-2520M CPU,

2.5GHz) forshell ranging from 3 to 180 gradient orientations.

Figure S-2: Effect of subject motion onthe imposed gradient orientations. The 500 gradient direction
for b =1000 s/mm?2and b = 3000 s/mm?2as they were defined (Aand B) and afterregistration with b-
matrix correction (74) (C and D). The condition number of the b =1000s/mm? and b = 3000 s/mm?

shells (1.5813 for both) changed to 1.5826 and 1.5861, respectively.
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Tables

Table 1: Overview of the acquisition parameters. (Abbreviations: IR—inversion recovery, TSE—turbo
spinecho, TFE — turbo field echo, SE— spin echo, EPI— echo planarimaging, FFE— fast field echo, FOV
— field of view, AP — anterior posterior, RL —right left, IS —inferior superior, SENSE — sensitivity
encoding, SPIR — spectral pre-saturation by inversion recovery, BW —bandwidth, NSA —number of

signal averages, G— gradient strength, DSI — diffusion spectrum imaging)

FLAIR T: T2 DWI Bo
Dualecho
Sequence 3D-IR-TSE 3D-TFE 3D-TSE 2D-SE-EPI
2D-FFE
3 2
FOV [mm3/ mm?] 240x180x140 | 240x180x140 | 240x180x140 240x240 240x240
(AP/RL/IS)
Acquisition matrix 240x90x140 240x90x140 240x90x140 96x96 96x96
Reconstruction matrix 240x180x140 240x180x140 240x180x140 96x96 96x96
Slice thickness [mm)] - - - 2.5 2.5
Voxel size [mm3] 1x1x1 1x1x1 1x1x1 2.5x2.5x2.5 2.5x2.5x2.5
Slices - - - 56 56
SENSE: AP/RL: 2/2 2/2 2/2 2.5 (AP) -
Flipangle[°] 90 8 20 90 20
Partial Fourier - - - 1/0.77 *
TSE/TFE/EPI factor 182 122 124 36 (24ms)/ -
31 (25ms) *
Startup echo’s 6 4 6 - -
TE [ms] Effg ctive: 300 1.5 Effe_ctive: 213 100 First:2
Equivalent: 128 Equivalent: 92 Second:4
TR [ms] 4800 8000 2500 7000 / 7500 * 322
TI [ms] 1650 - - - -
Fatsuppression SPIR none SPIR SPIR none
BW frequency [Hz] 1111 191 1111 3035/1991 * 2804
BW EPI [Hz] - - - 50/30 * -
NSA 2 1 2 1 1
A/6/T[ms] - - - 51.6/32.8/0.9 -
Gmax [mT/m] - - - 61.7 -
12.6 (b500) /
Go [mT/m] 17.8 (b1000) /
(Diffusion-weighting 25.2 (b2000)/
gradient strength - - - 30.9 (b3000) / -
alongone 35.6 (b4000) /
gradient axis) 27.0 (DSI8)/
30.9 (DSI9)
. . 14:08 /
. 4 4 2:47 :32
Scan time [min:s] 3:45 3:46 1310 * 0:3

* Settings for session 1-8 and (b < 3000 s/mm?2) and for session 9 to 18 (b > 3000 s/mm?2 and DS grids) respectively.
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Table 2: Mean valuesandrange of the actual b-values forthe 5 acquired shells.

Applied b-value in Actual b-value Actual b-value Percent deviation
units s/mm?2 (mean % SD) in units s/mm? range in units s/mm? from applied b-value
500 500.3+5.2 491.3-509.2 +1.8
1000 10003+ 7.3 987.6—1013.0 1.3
2000 2000.3+10.4 1982.3-2018.2 09
3000 3000.3+12.7 2978.3-3022.3 +0.7
4000 4000.2+15.1 3974.1-4026.4 +0.7
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Figure 1: Schematicoverview of the MRl acquisition protocol of asingle session.
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A Shells

Figure 2: Schematic representation of the encoding schemes in g-space. A) The 5 shells (b= 500,
1000, 2000, 3000 and 4000 s/mm?2). B) The two Cartesian DSI grids (DSI8: light gray, DSI9 dark gray).
C) The five shells and the two Cartesian grids combined. D-E) Examples of the random selection of
gradients for each session. The gradients defined along the positive direction are shown in color,
whereas the mirrored gradient directions are shownin light gray. All the gradients are color-coded
for their session. F) The 18 sessions combined fill up half of the q-space (2000 orientations) and by

mirroring the gradients the g-space is fullyfilled.
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Figure 3: Representative images of the acquired data (intensity windowing is adjusted for each
image). Diffusion-weighted images with an applied b-value of: A) 0s/mm2, B) 500 s/mm?2, C) 1000
s/mm2, D) 2000 s/mmz2, E) 3000 s/mm2, F) 4000 s/mm2, G) 5500 s/mm2, H) 9000 s/mm?2.

Anatomical images:|) T1-weighted image, J) T2-weighted image , and K) FLAIR. L) BO phase map.
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Figure 4: Method and result used for SNR calculation. A) Schematic representation of the method

used for SNR calculation. Using a whole-brain mask the average signal was estimated from the

diffusion weighted volume. The noise standard deviation was estimated using the acquired noise

map in which the noise is Rayleigh distributed as shown in the probability density histogram. B)

Estimated SNR using the acquired noise map. Black markers are for session 1to 8 (b <3000 s/mm2)

and blue markers are for session 9 to 18 (b >3000s/mm2 and DSI grids). The left image shows the

SNR per session in the scanned order, the middle image shows the SNR per session sorted for the

SNR, and the right image shows the SNR for all the volumes. The SNR levels of the different shells can

clearly be identified.
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0 s/mm° volumes

Normalized signal for b

Figure 5: Original (red) and signal-drift corrected (blue) average signal of the non-diffusion-weighted

volumes for 24 acquisition blocks of 15 minutes. The black line describes the quadratic signal drift
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(see Eq.1) and the dashedline is the theoretically constant signal of 100%.
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Figure 6: A-B) The mean signal per acquired volume of the drift-uncorrected volumes (top row - A)

signal-drift corrected volumes (bottom row - B). The left column shows the signal persession in the

scanned order, the middle column shows the mean signal forall sessionsinthescanned order and

the right column shows the signal forall the volumes sorted for the signal values. C-D) The intensity-

normalized mean signal per acquired volume as a function of the b-value for all 8000 volumes (top

row) and a zoomed b-value range (bottom row). The signal is plotted usingalinearand a logarithmic

scaling of the y-axes revealing the obvious non-exponential decay of the diffusion weighted signal. C)

The normalized mean signal (but not corrected for signal drift) as a function of the predefined b-

value. D) The intensity-normalized and signal-drift corrected meansignalas function of the actual b-

value. The bottomrow clearly shows how the “effective” b-value causes aspread of the signal over

the b-value axes, that correctly follows the signal decay.
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b =1000 s/mm’
PA
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Figure 7: Representative images for the different phase encoding (AP+, AP-, PA+, PA-) directions.
Axial (AandC) and sagittal (B and D) cross-sectional images of a non-diffusion-weighted (AandB, b =
0 s/mm?2) and a diffusion-weighted (C and D, b = 1000 s/mm?2) volume with the different phase
encoding directions and gradient signs. The differences in the distortions between the AP and PA
phase encodingdirections can be appreciated mostinthe eyes (green arrows), temporal region (blue

arrows), and the cerebellum (red arrows).
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Figure 8: Example DTl reconstruction of the MASSIVE data. A) Color coded FA maps afterapplying all
the correction procedures. B) T1 weighted data, which were used here to correct for EPI

deformations. C) Color coded FA maps fused with Tl weighted datato appreciate the quality of the

processing.

36



SUPPORTING MATERIAL
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Figure S-1: A) Iterative method of optimization, firstall particles are repulsed (red) afterwhich they
are projected back on the unit sphere (blue). The resulting particles (green) are then used for the
next iteration. B) The percent change in entropy of the system over 1500 iterations for single- and
multi-shell optimizations. C) Time it takes to perform 1000 iterations (Intel Core i5-2520M CPU,

2.5GHz) forshell ranging from 3 to 180 gradient orientations.
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b=1000 s/mm* b=3000 s/mm*

Corrected

Figure S-2: Effect of subject motion on the imposed gradient orientations. The 500 gradient direction
for b =1000 s/mm?2and b = 3000 s/mm?2as they were defined (A and B) and afterregistration with b-
matrix correction (45) (C and D). The condition number of the b =1000s/mm? and b = 3000 s/mm?

shells (1.5813 for both) changed to 1.5826 and 1.5861, respectively.
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