
Solving Problems of Clustering and Classification of Cancer Diseases Based 
on DNA Methylation Data 

A. Polovinkin1, I. Krylov1, P. Druzhkov1, M. Ivanchenko1, I. Meyerov1, A. Zaikin1, 2, 
N. Zolotykh1  

1 State University of Nizhni Novgorod, Institute of Information Technologies, Mathematics 
and Mechanics, Nizhni Novgorod, Russia  

 
2 University College London Department of Mathematics, London, Great Britain  

 

Abstract 
The article deals with the problem of diagnosis of oncological diseases based on the 
analysis of DNA methylation data using algorithms of cluster analysis and supervised 
learning. The groups of genes are identified, methylation patterns of which significantly 
change when cancer appears. High accuracy is achieved in classification of patients 
impacted by different cancer types and in identification if the cell taken from a certain 
tissue is aberrant or normal. With method of cluster analysis two cancer types are 
highlighted for which the hypothesis was confirmed stating that among the people 
affected by certain cancer types there are groups with principally different methylation 
pattern. 

Introduction 
In spite of all advances of modern medicine introduction of new diagnosis and treatment 

methods, cancer disease and mortality rates constantly keep steadily growing all over the world. 
Unfortunately show signs of clinical symptoms indicate the extensive-stage disease that is why 
pre-existing cancer detection seems to be the most promising approach. According to the 
international practices the selection of risk groups and screening study are the most prospective 
early detection of malignant neoplasms. This article discusses a new approach to the problem of 
early cancer diagnosis based on searching and analysis of low-level factors which can witness 
the development and existence of oncological disease in gene domain. 

At the moment the genetic risk factors of cancer are practically elusive, however, their 
identification is supposed to be breakthrough advance which will result in much more effective 
screening methods and early diagnostics. 

Epigenetic changes are DNA modifications resulted not from variations of nucleotide 
sequence, i. e. the variations occur not in genes but in external factors directly related to gene 
activities. One type of epigenetic changes is DNA methylation when methyl group (-CH3) joins 
certain molecule regions.  

Aberrant structure of DNA methylation is one of the essential cancer signs, which 
enables its early diagnosis [7], however the exact role of this data in cancer genesis and clinical 
prediction remains elusive. Cancer is characterized by both hypermethylation (increase of 
methylation) and hypomethylation (decrease) of DNA. However, cancer can be witnessed not 
only by variation of mean level of gene methylation. The hypothesis has been proposed 
according to which dysregulation of stem cell genes results from aberrant variability (dispersion) 
of intragenic DNA methylation. This correlates with the fact that not only methylation level but 
also variability in certain genomic locations may be highly relevant to cancer development [6]. 
In particular, it has been shown that the increased stochasticity and variability in regions where 
the methylation level changes with cancer, results in aberrant and modified gene expression, thus 
explaining tumor heterogeneity [3]. Also some authors have shown that the markers reflecting 
differential variability of DNA methylation features may provide for better diagnosis and risk 
assessment of precancer genesis [8, 9]. 



Though the importance of study of intragenic and intergenic DNA methylation structure 
is clearly understood at the moment only modifications between different genomes have been 
studied but the problem how the remodeling of intragenic and intergenic DNA methylation is 
related to the origin of carcinomas. This article deals with the problem how to identify the gene 
group, methylation patterns of which significantly change with emerging of cancer disease, and 
analyses the application efficiency of certain DNA methylation methods to solve problems of 
classification and identification of essential features. Using methods of cluster analysis the 
hypothesis is studied which states that among the people affected by the same cancer type there 
are different groups which might be treated with potentially different methods. Authors analyze 
accuracy of solving problems of binary and multiclass classification between different cancer 
types under application of ensembles of decision trees. 

 
Methods and data 

As initial data for supposed study we propose to use inspection results of examinees from 
the international data base The Cancer Genome Atlas [10], which contain information about 
methylation level received with TheIlluminaInfinium HumanMethylation450 BeadChip [5]. Data 
contain circa 485000 loci per genome the intragenic location for 330000 of which is known as 
well as the name of related gene. Thus 15-17 loci per gene are available. These data are available 
for 13 different cancer types (Bladder Urothelial Carcenoma, BLCA; Breast Invasive 
Carcenomia, BRCA; etc). The number of objects related to each cancer type varies from tens to 
hundreds.  

The following methods and markers are proposed to study intragenic DNA methylation 
structure. The first marker group does not depend on probe sequence inside the gene or related 
gene region. This marker group includes the mean value for gene methylation and dispersion. 
The second group includes markers considering the intragenic probe location. These markers are 
the mean value of outlier derivative, degree of spatial outlier asymmetry, degree of deviation 
from line linking methylation levels at the gene ends. Except the computation of their value, for 
the markers of the first and second groups Z-score is applied that is computation of deviation 
from the mean value of proper degree for all samples from “normal” selection, measured in 
mean-square deviation. The value obtained in such manner will be an instability degree for 
methylation outlier for the corresponding gene.  

As classifier we suggest to apply the decision trees [4] and their ensembles (in particular 
Random Forest [1]). Among the advantages of Random Forest the following features shall be 
mentioned: high quality of obtained models, similar to SVM and boosting, and better compared 
with neural nets [2], ability to effectively process data with large number of features and classes, 
invariance for monotonic transformations of features values, possibility to process both 
continuous and discrete features, presence of methods to evaluate the importance of specific 
features in the model. Moreover Random Forest model enables estimation of generalization error 
on-the-fly during its training (out-of-bag error [1]). 

 
Results of Numerical Experiments 

Classification results 
From the practical point of view it is desirable to consider two types of problems: to 

define if a person is affected or normal using tissue samples of certain organ; to distinguish 
between different cancer types and normal cells. The developed measures of intragenic 
methylation are used as a sample description. Classification accuracy is expressed in terms of 
misclassified samples fraction and estimated using the out-of-bag error of the Random Forest 
model. As Table 1 shows, the achieved accuracy for problems of binary classification makes up 
from 93% to 100% and for problem of multiclass classification (Table 2) is 96.5% which enables 
practical application of these results. 



Table 1. Results of Binary Classification for 13 Cancer Types 

Cancer type Accuracy Type I error Type II error 
BLCA 0.965 0.166 0.008 
BRCA 0.978 0.133 0.009 
COAD 0.989 0.105 0 
NHSC 0.975 0.12 0.006 
KIRC 1.000 0 0 
KIRP 0.984 0 0.023 
LIHC 0.966 0.02 0.051 
LUAD 1.000 0 0 
LUSC 1.000 0 0 
PRAD 0.933 0.183 0.04 
READ 0.98 0.25 0 
THCA 0.968 0.26 0.003 
UCEC 0.983 0.139 0 

 

Table 2. Misclassification Table to Classify Individuals Affected by Different Cancer Types. 

 HEALTHY BLCA BRCA COAD HNSC KIRC KIRP LIHC LUAD LUSC PRAD READ THCA UCEC 

HEALTHY 0.96 0 0.01 0 0 0 0 0.02 0 0 0 0 0.01 0 
BLCA 0.01 0.85 0.01 0 0.09 0 0 0 0 0 0.04 0 0 0 
BRCA 0.01 0 0.99 0 0 0 0 0 0 0 0 0 0 0 
COAD 0 0 0 1.00 0 0 0 0 0 0 0 0 0 0 
HNSC 0.01 0 0 0 0.97 0 0 0 0 0 0.02 0 0 0 
KIRC 0.03 0 0 0 0 0.95 0.01 0 0 0 0.01 0 0 0 
KIRP 0.02 0.03 0 0 0 0.13 0.82 0 0 0 0 0 0 0 
LIHC 0.01 0 0 0 0 0 0 0.99 0 0 0 0 0 0 
LUAD 0.07 0.01 0 0 0 0 0 0 0.92 0 0 0 0 0 
LUSC 0.01 0 0 0 0 0 0 0 0 0.97 0.02 0 0 0 
PRAD 0 0 0 0 0.08 0 0 0 0 0.08 0.84 0 0 0 
READ 0.23 0 0 0.03 0 0 0 0 0 0.04 0 0.70 0 0 
THCA 0.07 0 0 0 0 0 0 0 0 0 0 0 0.93 0 
UCEC 0 0 0 0 0 0 0 0 0 0 0 0 0 1.00 

 
Clustering Results 

The hypothesis has been proposed that within the same type of oncological diseases there 
are a number of different groups which theoretically speaking might be treated differently. To 
test this hypothesis the following has been proposed – for each type of cancer to divide 
classifying description of cells, related to specified type, in groups applying the methods of 
cluster analysis. The degree of mean level of methylation for the gene has been used as a 
classifying description, the k-means algorithm has been used for clustering [4] (for practical 
reasons 2-3 clusters has been supposed to be available). The experiment has shown that there is a 
distinct separation of individuals affected by KIRC and THCA cancer types in clusters. So the 
further analysis of these results is required from practical point of view. 

 



 
Pic.1 Clustering Results with k-means Algorithm for KIRC and THCA Cancer Types 

 
Selection of important features 

One of the problems of practical importance is the existence of specific genes responsible 
for the development of one or another oncological disease. In this article the importance of each 
gene was analyzed regarding its usefulness to solve problems of binary classification (if a cell of 
certain tissue is malignant or normal). A set of features has been selected for each type of cancer 
thereby each feature ensures the quality of binary classification (cross-validation error in 
decision trees of depth 1) exceeding a certain threshold (within this article this value equals 0.9). 
The lists of significant genes for all cancer types obtained in this manner have been combined. 
The picture 2 shows the overall statistics (the number of genes simultaneously important for 
classification of a certain number of cancer types). As the diagram shows there are relatively 
small sets of genes important for classification of several cancer types. In the future the obtained 
results shall be analyzed medically. 

 
Pic.2 Number of Genes Important for Classification of Several Cancer Types  

Conclusion 
Within this article the gene group methylation patterns of which significantly change with 

emerging of cancer disease has been identified. Using methods of cluster analysis the hypothesis 
has been studied which states that among the people affected by the same cancer type there are 
different groups. Two cancer types have been outlined for which the hypothesis has been 
confirmed. The obtained solution accuracy for the problems of binary and multiclass 
classification enables the practical application of the results. 
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