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Abstract

Zinc oxide is an important wide bandgap n-type semiconductor with uses ranging from

electronics to catalysis. The chemical and physical properties related to its surfaces are of

fundamental interest and also key to the material’s design.

In this Thesis, computational methods have been used to model the surfaces of ZnO.

We report a detailed theoretical study on the four main low-index wurtzite ZnO surfaces.

For nonpolar surfaces, we focus on the stability, atomic structure and electronic properties

of both clean and defective surfaces. Our calculations explain why steps are common on

the (101̄0) surface, as seen in experiment. We calculate the ionisation potential which is in

good agreement with experiment. The electronic band edges of the nonpolar surfaces are

seen to behave differently, with a local rise of the VBM and CBM for (101̄0) and (112̄0),

respectively.

For ZnO polar surfaces, our results can explain why experimental findings reported

have been varied and even contradictory at times. The calculated surface energies indicate

on average a slightly higher stability of the (0001̄) surface compared to the (0001) surface.

Structurally, triangular and hexagonal patterns are seen among the stable structures but a

high level of disorder is predicted.

We also report new interatomic potentials (IP) for the Cu/ZnO system. Our IP can

work as a fast and reliable method to filter low energy Cu/ZnO structures. Global optimi-

sation calculations show a preference for planar Cu clusters over the (101̄0) surface, with a

strong interaction between the Cu and Zn species.

Finally, we study the surface atomic configurations for the MoO3/Fe2O3 catalytic sys-

tem. The lowest energy structure was used in the fitting of EXAFS parameters. Overall, our

Thesis shows the great utility of theoretical calculations in the explanation of experimental

findings in surface science.
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dial Cut-off of 12 Å was Used for All Potentials. The Forms

of the Potentials Described Below Are: E(Buckingham) =

Aexp(−R/ρ)−C/R6, E(Morse) = De((1− exp(−a(R− r0)))
2−

1), Where R Represents the Distance Between the Ions in Question. 111



List of Tables 16

6.1 Experimental and Theoretical Structural Parameters for the

Hematite Bulk Structure. Distances Are Given in Å. . . . . . . . . . 131
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Chapter 1

Introduction

Since affordable fossil fuels and mineral resources are on the decline and stricter air

pollution laws are being enforced, researchers have focused their efforts on search-

ing for alternative ways to produce energy. One of the main alternatives is the use of

hydrogen as a fuel. However, many transportation and storage problems still remain

unsolved. Rather than as a fuel, another approach is to use hydrogen as an energy

carrier, which is reacted with CO2 to form methanol [9–11]. This process, however,

requires a catalyst to reduce its activation energy. To date, the most widely used

catalyst is Cu supported on ZnO:Al2O3, where the properties of the metal oxide

surface play a crucial role. Yet the behaviour of ZnO surfaces and their interaction

with Cu particles are still under discussion in the scientific community. Methanol is

of great interest to the chemical industry, with an estimated production of 65 mil-

lion tonnes per year in 2013 [12]. Consequently, there is a clear industrial need for

improving and understanding the methanol synthesis process. If this can be done

cheaply, it will have a major impact on industrial processes and on the science of

clean energy fuels.

The understanding of metal oxide surfaces is of primary technological and sci-

entific importance. In the last forty years, the interest in metal oxide surfaces has

increased dramatically. They play a vital role in fields such as catalysis, passivation

of metal surfaces, and gas sensing for pollution monitoring and control. Electron-

ically, these systems cover the entire range in materials design from metallic to

insulator behaviours [13]. In this respect, zinc oxide, an important metal oxide,
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has been shown to have particularly interesting physical and chemical properties.

This metal oxide belongs to the II-VI semiconductor group with a wide-bandgap

n-type nature. Its uses and applications range from electronics to catalysis [14–17].

As mentioned earlier, ZnO is one of the main components in the catalyst used for

methanol synthesis, and it is at its surfaces where Cu atoms are present (creating the

active sites). Moreover, ZnO films with nonpolar faces have shown high emission

efficiency for blue or ultraviolet LEDs [18–21]. Hence, the chemical and physi-

cal properties related to the surface structures of ZnO are of fundamental interest

and are also key in the material’s design. We therefore report an extensive study

on the four main low-index surfaces of ZnO: (101̄0), (112̄0), (0001) and (0001̄).

We studied the atomic structure, stability and electronic properties of the clean sur-

faces, as well as both morphological features (at the nonpolar surfaces) and atomic

reconstructions (at the polar surfaces). We also report new Cu/ZnO interatomic po-

tentials, which were created to study the Cu growth on ZnO surfaces. Our analysis

leads to a clear and coherent understanding of the behaviour of the four key surfaces

of this widely used commercial material.

1.1 Objectives

There are two main goals in the study of a material’s surface: the first is to determine

where the atoms are found and the second is to analyse the electronic properties of

these atomic structures. In this Thesis, the focus is on the study of metal oxide

surfaces, with the main emphasis on zinc oxide, although one section is dedicated

to iron oxide, which is discussed in Chapter 6. Throughout this work, exclusively

theoretical methods based on interatomic potential and ab initio approaches are

presented and discussed. These methods are widely used in the study of metal

oxides and have been shown to be excellent tools in the characterisation of such

materials.

The main aim of this work is to explain experimental findings in relation to zinc

oxide and iron oxide surfaces, considering both structural and electronic properties.

More specifically, the objectives are: (i) to study the atomic and electronic proper-
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ties of ZnO bulk and its main low-index nonpolar (101̄0) and (112̄0) surfaces; (ii) to

explain the nature of the highly stepped ZnO nonpolar surfaces; (iii) to explain the

stability of the polar (0001) and (0001̄) ZnO surfaces and link the presented results

with experimental findings; (iv) to fit Cu/ZnO interatomic potentials to DFT cal-

culations (which will be used in future work in the study of Cu/ZnO system); and

(v) to help with the fit of experimental EXAFS data of MoO3/Fe2O3 catalyst using

DFT calculations.

1.2 General Aspects of Zinc Oxide
In this section, we list a number of general aspects of ZnO, which will serve as

a brief introduction to the material’s characteristics. Zinc oxide is an oxide com-

pound which crystallizes into two main structures: hexagonal wurtzite and cubic

zincblende, with the former universally observed over a wide range of temperature

and pressure, including ambient conditions. Our study will therefore focus on the

wurtzite structure. This structure has all its atoms in a tetrahedral coordination (Fig-

ure 1.1), i.e. every atom in the structure has four nearest neighbours of the opposite

type positioned like the vertices of a tetrahedron. It is considered an AA′ stack of

one atom thick planes [22], forming hexagonal patterns. Its space group is P63mc

in Hermann-Mauguin notation, or No. 186 in the International Union of Crystallog-

raphy classification. The wurtzite structure can be viewed as a “hexagonal lattice”

with four atoms in the unit cell. The lattice constants are a = b = 3.2417 Å, and

c = 5.1876 Å. The relative distance (along the c axis) between a pair of Zn and

O atoms is controlled by the internal parameter u = 0.3819.1 The atomic structure

of the wurtzite phase has no inversion symmetry, which is the main reasons for its

piezoelectric and pyroelectric properties. The wurtzite structure has four principal

low-index surfaces, two side faces nonpolar, (101̄0) and (112̄0) and two opposite

polar, (0001)-Zn and (0001̄)-O. The two nonpolar surfaces are composed of equal

numbers of cations and anions in each layer, whereas the polar surfaces have atomic

monolayers of cations and anions distributed along the c-axis.

1Experimental data are taken from the literature for the lowest available temperature: wurtzite
structure from neutron crystal diffractometry at 20 K [23].
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The zincblende structure also has a tetrahedral coordination and shares dia-

mond’s cubic structure, but with alternating zinc and oxygen atoms along the three

different axes (Figure 1.1). The space group for this structure is F4̄3m (Hermann-

Mauguin notation), or No. 216 (International Union of Crystallography classifica-

tion).

Electronically, zinc oxide is an ionic n-type semiconductor with a band gap of

3.37 eV at room temperature. It has a wide range of applications including ceramics,

catalysis, electronics, pharmaceutics (as an antiseptic) and, as a pigment, sensors,

among others.

Figure 1.1 Wurtzite and zincblende structures of zinc oxide. Red and grey circles repre-
sent oxygen and zinc.

1.3 Thesis Outline
In this Thesis, the main focus is on the structural and electronic properties of

zinc oxide surfaces, coupling the computational and experimental results of others,

whenever they are available, with our own theoretical calculations. The following

information is presented and discussed: Chapter 2 provides the fundamental back-

ground of the theory and computational methodology used in the work presented in

this Thesis. However, a more detailed description of specific methods used is also

provided in every chapter that follows. In Chapter 3, findings regarding the struc-

tural and electronic properties of the bulk and nonpolar surfaces of ZnO by means of

IP and DFT methods are presented. In Chapter 4, the origin of the stability of ZnO

polar surfaces through the employment of highly accurate interatomic potentials is

illustrated. In Chapter 5, the fitting of Cu/ZnO IP to DFT structures and energies
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is described. As a showcase for the new Cu-ZnO IP, global optimisation calcula-

tions of eight Cu atoms deposited on the (101̄0) surface are included. In Chapter 6,

DFT calculations in search of the most stable atomic structure of MoO3 supported

(0001) Fe2O3 catalyst are reported. Calculations presented in Chapter 6 aim to help

the fit of Extended X-ray Absorption Fine Structure (EXAFS) parameters by sug-

gesting stable MoO3/Fe2O3 atomic structures. Finally, Chapter 7 summarises and

concludes the work realised throughout this Thesis.



Chapter 2

Theoretical Methods

2.1 Introduction

Modelling materials using computational techniques has become a well established

way of doing chemistry and physics, which is becoming more popular and is now

widely accepted among the scientific community. Computational chemistry tech-

niques are used to calculate accurately structural parameters and electronic prop-

erties of a material and are complementary with experiment. These methods are

employed successfully for a wide range of fields including solid-state chemistry,

catalysis, condensed matter physics, material science, among others, where they

help with decoding the experimental data as well as suggesting and designing new

experiments. Computational chemistry techniques also offer a fast and safe method-

ology in the design and discovery of new materials.

Interatomic potential (IP) and quantum mechanical (QM) methods are two of

the most widely used approaches in modelling materials. Generally, the first goal

of these methods is to find the lowest energy structure of a given material. The

difference between QM and IP methods relies on the properties they were designed

to model. While IP methods provide a fast description of bulk properties, lattice and

surface energies, and defect analysis, QM methods give information about bonds,

electronic structure, and reactivity. From this point of view, QM methods are a

level of theory higher and computationally more demanding than IP, although the

latter may be more appropriate for a number of problems. Selecting the appropriate
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level of theory can be one of the more difficult tasks in computational chemistry

[24]; IP are suitable for systems containing up to several thousand atoms where the

role of the electronic properties are diminished and they are often used for a pre-

screening of the QM models. On the other hand, QM models are used to model up

to a few hundred atoms, due to the computational effort required, where an explicit

knowledge of electronic structure is needed.

Both IP and QM techniques have been applied in the study of metal oxide sur-

faces. They have been used in the investigation of defects and surface structures

because of the difficulties involved in experimental structure determination [13]. In

the case of ZnO and Fe2O3 surfaces, they have provided a deeper insight into the

atomic structure and electronic properties of such materials because of the limita-

tions of experimental studies.

In this Chapter, we will discuss the methods and theory underpinning the work

presented in this Thesis. Firstly, we give a brief description of a crystalline material,

periodic boundary conditions and the reciprocal space. Secondly, we review the

theory behind the IP and QM methods and the approximations linked to them. We

then continue with a summary of the global and local optimisation techniques, and

additionally, we describe the defect calculations and surface modelling methods.

Finally, details on the software packages used in this Thesis are given.

2.2 Crystalline Materials
An ideal crystal is a solid material where its atomic structure can be represented by

an infinite repetition of an individual atom or a group of atoms, called the basis.

This group of atoms is attached to an infinite array of discrete points called Bravais

lattice. The Bravais lattice defines the lattice type. The mathematical expression of

the position vector of all Bravais lattice points, for a given point, can be written as:

R = n1a1 +n2a2 +n3a3, (2.1)

where ai are the vectors of the unit cell and ni are integers. This vector R has the

property that for any integer value, the lattice looks exactly the same.
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In the case of wurtzite ZnO and α-Fe2O3, the crystal structures that are the

focus in this Thesis, the Bravais lattices are hexagonal and rhombohedral, respec-

tively. The crystal lattice is defined by a combination of the Bravais lattice and the

basis. In order to build-up a crystal, all the information needed is the parallelepiped

formed by the smallest unit of volume which contains the position of the atoms and

symmetry; this parallelepiped is the unit cell.

2.2.1 Periodic Boundary Conditions

Periodic boundary conditions (PBC) are used to simulate an infinite system by using

a small part of it (e.g. a unit cell). Figure 2.1 is a two dimensions representation

of the periodic boundary conditions applied to a unit cell. The unit cell has been

duplicated in x and y directions creating exact images with the same characteristics

as the original one. If an atom is taken outside of the original unit cell through

the right wall, its image simultaneously will enter the original unit cell through the

left wall from the periodic image as shown in Figure 2.1. In the calculation of

properties of solids, PBC are needed to represent a system with an infinite number

of atoms/electrons.

Figure 2.1 Periodic boundary conditions in two dimensions. A unit cell is shown on
the left-hand side of the picture. The periodic images on the right (presented with lighter
colours) were generated by PBC. The arrows over the circles represent displacements of the
atoms.
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2.2.2 Reciprocal Space

In the study of solids, an alternative representation of the Bravais lattice is a recip-

rocal lattice. The reciprocal lattice can describe some phenomena in an easier way

and it is essential in the study of periodic systems. It is extensively employed in the

analysis of X-ray diffraction, electronic bands, phonon dispersion, and long range

interactions (e.g. Coulombic interactions). In this Thesis, the reciprocal space was

used within computational codes to calculate properties of ZnO and Fe2O3.

In the case of a cubic system, the reciprocal lattice can be defined by three

reciprocal vectors: b1, b2, b3, as follows:

b1 = 2π
a2×a3

a1 ·(a2×a3)
; b2 = 2π

a3×a1

a1 ·(a2×a3)
; b3 = 2π

a1×a2

a1 ·(a2×a3)
. (2.2)

The vectors a1, a2, a3 describe the lattice in real space. Each vector presented in

(2.2) satisfies the orthogonality condition bi ·a j = 2πδi j. As an analogy of Equa-

tion (2.1), the vector that represents all reciprocal lattice points can be written as:

K = n1b1 +n2b2 +n3b3. (2.3)

As the unit cell in real space described by the Bravais vectors, the first Brillouin

zone is a uniquely defined unit cell in reciprocal space. The dimensions of this cell

are given by the vector K. Any point in the reciprocal space can be represented

by a vector k, often called wave vector due to its units of inverse length. The

importance of the Brillouin zone is that it depicts all of the Bloch states/waves

without redundancy. The Bloch theorem states that the solutions of the Schrödinger

equation in a periodic system may be written as:

ψk(r) = uk(r)eik ·r, (2.4)

where ψk(r) is a Bloch wave, k is the wave vector, uk(r) is function with the peri-

odicity of the crystal such as uk(r) = uk(r+R).
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2.3 Interatomic Potential Methods

2.3.1 Introduction

Interatomic potential, also known as atomistic or force field, techniques are an ef-

ficient approach to determine the atomic structure of material. Force field methods

use a parameterised interaction potential between ions as a function of the nuclear

coordinates. This parameterisation may be based on experiments and/or on a higher

level of theory (e.g. those derived from quantum mechanics). Since interatomic

potential methods neglect both the solution of the electronic Schrödinger equation

and the quantum aspects of the nuclear motion, they are incapable of calculating the

electronic properties of a material. However, in spite of the lack of the electronic

description of the material, interatomic potential methods have been shown to ac-

curately reproduce the crystal surface structures and properties [25–29]. Owing to

its simplicity, atomistic methods can provide the atomic structure of a system con-

taining thousands of atoms in a relatively short amount of computational time. The

General Utility Lattice Package (GULP) [30, 31] was used in this Thesis for all the

atomistic calculations presented.

2.3.2 The Calculation of the Energy

The calculation of the energy of a system is essential in modelling materials and

is the first step for the majority simulation techniques [31]. Thus, the stability of

a material is determined by its energy: lower energy indicates greater stability. In

theory, the internal energy of a solid is a function of the positions and momenta of

all electrons and nuclei, which it is indeed a very complicated problem. In order

to simplify this calculation, interatomic potential methods incorporate the effect of

the electrons into a single atomic centre. Thereby, the energy of a system can be

decomposed into an expansion in terms of interactions between different subsets of

the total number of atoms, N [31]:

U =
N

∑
i=1

Ui +
1
2!

N

∑
i=1

N

∑
j=1

Ui j +
1
3!

N

∑
i=1

N

∑
j=1

N

∑
k=1

Ui jk + · · · , (2.5)
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where the first term Ui represents the self energies of the atoms, the second Ui j

the two-body interactions, the third Ui jk the three-body interactions, etc. For the

majority of the systems, we find that as the order increases so its contribution to

the energy decreases. Therefore, to simplify the problem, a common approach is to

neglect the contributions of higher orders. In this Thesis, only the first two terms

were used: the first is due to the atomic polarisation as a result of external potential

fields whereas the second represents the pairwise interactions between atoms such

as Coulomb interactions.

2.3.3 Two-Body Potentials

The electrostatic interaction is a two-body potential, a result of the force acting on

a charged atom due to the presence of another charged atom. This interaction is

described by the Coulomb potential and can represent up to 90% of the total energy

[31]. This potential is represented by Coulomb’s law:

UCoulomb
i j =

qiq j

4πε0ri j
, (2.6)

where q is the charge of the ion, ε0 is the vacuum permittivity, and ri j is the distance

between the two ions. Its form is very simple but its evaluation in periodic systems

needs care [31], as the energy decreases at a rate of 1
r ; however, the number of ions

contributing to the total energy increases at a rate equal to the surface area of a

sphere, which is 4πr2. Thus, the Coulomb energy does not converge with respect

to the distance r. To compute this term, the most widely used solution is the Ewald

summation [32], which uses a partial transformation into reciprocal space.

Besides the Coulomb potential, the Lennard-Jones (LJ) [33], the Buckingham

[34] and the Morse potentials were employed to model the short range interactions.

These are the standard short-range potentials used for modelling many ionic mate-

rials; they are purely two-body, i.e. a function of the interatomic distance r between

ions.
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The Lennard-Jones potentials have the following analytical form:

ULennard−Jones
i j =

B
r12

i j
− C

r6
i j
, (2.7)

where B and C are the parameters to fit either to experiment and/or accurate ab initio

calculations. Here the first term on the right is the repulsive term and is due to the

overlap of the electronic wave functions, also known as Pauli repulsion. The second

term on the right, the r6
i j term, is the attractive long-range term; this is the dispersion

(van der Waals) force which results from the instantaneous induced dipoles on the

atoms. Because of the shape of the potential, there is a distance ri j where the energy

reaches a minimum value, which corresponds to the equilibrium bond distance. For

smaller values than the equilibrium bond distance, the atoms experience a repulsion

and for larger values attraction.

An improvement to the Pauli repulsion term of the LJ potential was given by

R. A. Buckingham [34]:

UBuckingham
i j = Ae

(
−r
ρ

)
− C

r6
i j
. (2.8)

Here, the last term on the right is the same dispersive term used in the LJ potential

(Equation (2.7)). The modification of the repulsive term from 1
r12 to an exponential

decay is supported by the radial fall off of electron density which is also found to

be exponential.

The Buckingham potential has a problem for short interatomic distances, as

r→ 0⇒UBuckingham
i j →−∞, which can be problematic where the distance between

the atoms is much smaller than a typical bond length which is, however, usually

unrealistic; nevertheless, this problem can be avoided by using sensible cut-offs

and/or adding the LJ repulsive term.

Another short-range potential widely used is the Morse potential, which is ap-

propriate when the interacting atoms are covalently bonded. In this work, this po-

tential is very useful in the modelling of the Cu/ZnO system. This potential can be
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represented as:

UMorse
i j = De((1− exp(a(ri j− r0)))

2−1.0), (2.9)

where De is associated with the binding energy, r0 is the equilibrium bond distance

and a controls the thickness of the potential well.

The LJ, Buckingham and Morse potentials are short-range, where the energy

decays to zero rapidly as r is increased; the shape of a typical short-range curve

is displayed in Figure 2.2. Thus, a sensible radial cut-off can be applied to these

potentials to reduce the computational cost without affecting the accuracy of the

calculations.

2.3.4 Shell Model

Polarisation effects are very important in a material such as ZnO, so the shell model

was employed [35]. In this model atoms are considered as a charged core (nuclei

and the inner electrons) connected by a harmonic spring to a massless charged shell

(the outer valence electrons). Figure 2.2 shows a schematic representation of this

model. The short-range potentials only act between shells. This term is known as

the spring potential, which can be written as:

U spring =
k2r2

2
+

k4r4

24
, (2.10)

where r is the distance between the centre of mass of the core and shell, and k2

and k4 are spring constants. Note that this potential only acts between core and

shell of the same atom, whereas the Coulombic forces are present between the core

and shell point charges of an ion and both the core and shell of other ions but not

between core and shell of the same ion.

2.3.5 Many-body Potentials

In some cases the simple two-body potentials like the ones described above are

insufficient and many-body potentials may be needed at the expense of a higher

computational cost. The following are common forms of many-body potentials:
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Figure 2.2 Typical shape of a two-body potential as a function of the interatomic distances
ri j. The subfigure at the top is a representation of the shell model interactions. The indices
“C” and “S” are used to represent the cores and shells, respectively. The charged points,
core and shell, experience Coulombic forces. The short-range interactions only act on the
shell of an ion. The spring potential models the core-shell interactions.

The Embedded Atom Model

The embedded atom model (EAM) is an approach that has been used successfully in

the description of metallic materials [31]. One of the advantages of the EAM is that

it does not need reparameterisation once the potential is fitted. This potential is an

attempt to model the energy as a function of the electron density of a system, as in ab

initio methods. However, in order to simplify the problem and make the calculations

cheaper, it expresses the energy as a function of the density at the nucleus of an

atom, summed over all particles [31]:

UEAM =−
N

∑
i=1

f (ρi). (2.11)

In this Thesis, the embedded atom model was used to represent the Cu-Cu interac-

tions as it has been shown to model successfully those interactions [8]. There are

different variations of the functional and the density which can be consulted in Ref.
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31. In this work, the shape of the density functional was represented by the power

law:

f (ρ) = Aρ
1
n , (2.12)

and the representation of how the density varies with distance as:

ρi j = Aexp
(
−β

(
ri j− r0

r0

))
. (2.13)

2.3.6 Fitting Potentials

A set of new potentials for the Cu/ZnO system were developed. Fitting potentials

may be turned out to be a very difficult task, as it is an iterative process where the

potentials are fitted to a set of observables. The observables can be obtained from

either experimental data or ab initio calculations. If fitted from ab initio calcula-

tions, the observables are usually a set of energies or derivatives of the energy that

correspond to a unique structure.

The objective of fitting potentials is to minimise the sum of squares, represent-

ing the quantity of the value that evaluates the quality of the fitting. The analytical

form of the sum of squares can be defined as follows:

F = ∑
all observables

w( fcalc− fobs)
2, (2.14)

where fcalc and fobs are the calculated and observable data and w is a weighting

factor given to each observable. The w factor is introduced as an indication of the

reliability of the data points. Furthermore, w can be weighted more for the points

that are close to the equilibrium bond length to gain a better representation of this

part of the curve.

2.4 Quantum-Mechanical Methods

2.4.1 Introduction

Interatomic potential methods cannot be used for describing many of the electronic

properties of a material. To model electrons, quantum mechanics must be used
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[36, 37]. Subatomic particles exhibit both wave and particle properties and are

distributed through space as waves. The behaviour of a particle can be described by

its wavefunction (ψ) which is determined by solving the Schrödinger equation. For

a time-independent system and one dimension system, the Schrödinger equation is

of the form:

− h̄2

2m
d2ψ(x)

dx2 +V (x)ψ(x) = Ĥψ(x) = Eψ(x), (2.15)

where m is the mass of the particle, V (x) its potential energy at point x, h̄ is a mod-

ification of Planck’s constant ( h
2π

), Ĥ is the Hamiltonian operator and E is the total

energy due to the sum of the kinetic and potential energies. Solving this equation

allow us to obtain the energy of a system. However, the Schrödinger equation can

only be solved exactly for the hydrogen atom and the H2
+ molecule. Hence, the

goal of the quantum mechanical methods is to get as close as possible to the exact

solution of Schrödinger equation. To do this, there are two well known methods:

Hartree-Fock (HF) and Density Functional Theory (DFT).

2.4.2 Hartree-Fock Method

All ab initio methods use approximations to solve the Schrödinger equation of a

system. There is a set of approximations which is commonly used in all ab initio

approaches. The first approximation taken into account is the Born–Oppenheimer.

The Born–Oppenheimer (BO) approximation establishes that the wavefunction of

a system can be broken into two separate terms: the first to describe the atomic

nuclei and the second to express the electronic motion. The nuclear motion is ne-

glected as a consequence of its higher mass. Therefore, the electronic wavefunction

depends on the position of the nuclei but not upon their velocities. The second ap-

proximation made is that the potential of the Hamiltonian is time independent, as

expressed in equation (2.15). Lastly, relativistic effects are not taken into account,

i.e. the solution of the Schrödinger equation for systems containing heavy atoms is

inaccurate.

The Hartree-Fock theory is one of the cornerstones of the electronic structure

theory. HF attempts to solve Schrödinger equation for an electron in the potential of
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the nucleus and all other electrons. In this method, the motion of one electron with

respect to all other electrons is not neglected but expressed in an average manner.

HF expresses each electron by an orbital and the total wavefunction is given by the

product of these orbitals. Electrons are particles (fermions) with a spin quantum

number of 1
2 , for which their wavefunctions are antisymmetric. To solve this, the

solution of the many-electron wavefunction is approximated to a Slater determinant.

There is an implicit problem in the HF method: the position of the particles

are needed to obtain the Hamiltonian, and the Hamiltonian is needed for particle

positions. However, both are unknown. This problem is solved iteratively by the

self-consistent field (SCF) method. Figure 2.3 describes a greatly simplified algo-

rithmic flowchart of this process: (i) an initial guess set of atomic coordinates is

given, (ii) the charge density is calculated, (iii) the potential is calculated, (iv) the

Schrödinger equation is solved, (v) the new charge density is calculated. If the

charge density is the same as before or if the difference between the new and the

old charge densities falls below some threshold criterion, the self-consistency has

been achieved. Otherwise, the process must be repeated.

The HF method gives reasonable values for total energies of atoms and

molecules and a good description of exchange effects. On the other hand, it overes-

timates excitation energies and fails to reproduce metallic states.

Initial guess of orbitals

Input of the coordinates of atomic nuclei

Ef ective potential

Hartree-Fock equation

New set of orbitals

SCF

Converged? 

(To either energy or forces)

Calculate properties

End

No

Yes

Figure 2.3 Simplified algorithmic flowchart illustrating the SCF method.
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2.4.3 Density Functional Theory

Density Functional Theory is a method used to calculate the electronic structure of

many-body systems. DFT is based on Hohenberg-Kohn theorems, which have the

following consequences: i) there is a universal functional F [ρ(r)] that allows the

calculation of the energy from its electronic density, which can be written as:

E[ρ(r)] =
∫

V (r)ρ(r)dr+F [ρ(r)], (2.16)

where ∫
V (r)ρ(r)dr =Vne[ρ(r)]. (2.17)

Nonetheless, the form of the F [ρ(r)] functional is unknown and (ii) all properties

of the system are not calculated through the many-electron wavefunction but cal-

culated from the electron density (ρ) and the total energy is obtained from it. Wal-

ter Kohn and Lu Jeu Sham (Kohn-Sham) [38] proposed a replacement of the real

system by a fictitious one of non-interacting electrons, which generates the same

density as any given system of interacting electrons. If the total energy is given by:

E[ρ(r)] = Tni[ρ(r)]+Vne[ρ(r)]+Vee[ρ(r)]+Exc[ρ(r)], (2.18)

then Tni is the non-interacting kinetic energy, Vne is the nuclei-electron (Coulombic)

potential energy, Vee the electron-electron potential energy, and Exc is the exchange-

correlation (XC) energy which contains the difference between the exact and non-

interacting kinetic energies. From all the terms expressed in equation (2.18), Exc is

the only one we do not know how to obtain exactly. However, the Exc contribution

may be small, hence a sensible approximation of Exc would lead to a very good

approximation to the functional F . The density for non-interacting electrons is

given by:

ρ(r) =
n

∑
i=1
|ψi|2 , (2.19)

As the potential is a function of the charge density ρ(r), the KS equations must be

solved with the SCF method, as in HF. One of the inaccuracies in DFT is in the
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expression of the Coulomb energy. The expression of the Coulomb energy includes

the interactions of each electron with all other electrons, but it also includes itself

(in HF the self-interaction is cancelled by exchange). This electron self-interaction

is spurious and will be described below. In DFT, the solution of the Schrödinger

equation would be exact if we knew the exact form of the Exc[ρ(r)]. DFT relies

on the use of functionals which are approximate forms for the exchange-correlation

energy; a description of the two most used approximations for the XC energy is

given below.

2.4.3.1 Approximations for the Exchange-Correlation Energy

As is clear from the above discussion, the biggest error in DFT calculations comes

from the approximation of the exchange-correlation energy. Hence, a huge effort

of the research community is put into the search for more accurate approximations.

To date , there are two commonly used approximations to the exchange-correlation

energy: the local-density approximation (LDA) and the generalised gradient ap-

proximation (GGA). LDA depends purely on the electronic density at each point in

space and treats the system as locally homogenous. For a spin-unpolarized system,

the XC energy has the analytical form:

ELDA
xc [ρ(r)] =

∫
d3rρ(r)εLDA

xc (ρ(r)), (2.20)

where εxc(ρ) is the XC energy per particle of a uniform electron gas of density

ρ . The LDA approach is generally accurate for predicting structural properties;

however, it is less suitable for charge-transfer systems and there are inherent errors

in this approach such as:

• The electronic densities that are more homogeneous than the exact one are

favoured.

• The functional tends to underestimate atomic ground state and ionisation en-

ergies.

• LDA overestimates binding and cohesive energies of solids.
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• Van der Waals interactions are not reproduced.

• In general, LDA is not as good for small molecules as it is for larger size

systems.

The second approximation to the XC energy is the general gradient approxi-

mation. The GGA is considered to be an improvement over LDA, because GGA

methods take the variation of the electron density over space into account. This

expression can be written as:

EGGA
xc = Exc[ρ(r),∇ρ(r)],

or

EGGA
xc =

∫
d3rρ(r)εLDA

xc (ρ(r))F(ρ(r),∇ρ(r)).

Nowadays, there are many different functionals are available to deal with the

gradient of the electron density, commonly used ones are:

• Perdew-Burke-Ernzerhof (PBE) [39] functional. In this functional all param-

eters are fundamental constants. No fitting parameters are used in this func-

tional.

• PBEsol [40] is a revised Perdew-Burke-Ernzerhof GGA that improves equi-

librium properties of densely-packed solids and their surfaces.

The GGA functional provides very good results for molecular geometries,

binding energies, and ground-state energies and there is a small improvement in

the band gap of semiconductors and insulators over LDA (although standard DFT

is not strictly suitable to calculate band gaps). However, lattice constants for no-

ble metals are overestimated. Even with the consideration of the gradient of the

electron density, the electron self-interaction remains, causing inaccuracies in the

calculation of the total energy.

2.4.3.2 Approaches to Solve the Self-Interaction Problem

As noted, the self-interaction problem is the false interaction of an electron with

itself. In HF methods, this term is explicitly cancelled out. In DFT, the electron
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self-interaction would be cancelled if we knew the exact DFT exchange-correlation

functional. As a consequence of this problem, DFT favours delocalised solutions

where electrons do not interact greatly with themselves which is a problem for the

description of strongly localised d or f states in transition metals, and band gaps

are considerably underestimated for ionic and semi-ionic compounds. In an attempt

to solve this problem, two approaches have been developed with notably improved

results: hybrid functionals and DFT + U methods. In the former, the exchange

correlation energy is composed of a portion of exact exchange energy from Hartree-

Fock theory and a portion of DFT functional. In the DFT + U method, localized d

and f electrons are separated from the delocalized s and p. The localized electrons

are treated with the Hubbard model [41] based correction, whereas the localized

ones with normal LDA/GGA functionals. This approach requires a Coulombic “U”

parameter which is fitted to reproduce experimental data, e.g. band gaps.

Basis Set

Most calculations express the molecular orbitals using a basis set, which is a set of

functions which are combined to create molecular orbitals. These functions can be

atomic orbitals centred on atoms (localized basis sets) or plane waves. The former

is mostly used for isolated atoms and molecules whereas plane waves are typically

used for periodic systems. In this Thesis, plane wave basis sets were chosen in our

periodic calculations. In plane-wave basis sets the wavefunction of one electron can

be written as:

ψk(r) = ∑
G

ck+G exp[i(k+G) ·r], (2.21)

where k and G are reciprocal lattice vectors,and ck+G are coefficients for the plane

waves. Equation (2.21) is a sum of plane waves, which have the property that any

wavefunction with index k is identical to one with k + G index. Consequently, it is

only needed to find the solution for k values in one unit cell in the reciprocal space,

as suggested previously in page 28.
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2.4.3.3 Energy Cut-off and the k-mesh

The size of the basis set is very important; a larger basis means a calculation more

accurate and more expensive. In fact, to recreate exactly the real wavefunction,

an infinite number of basis functions would be needed. As this is intractable, the

number of wavefunctions needs to be controlled by imposing a cut-off on the kinetic

energy: the cut-off energy is chosen by defining the maximum kinetic energy of the

electrons in the system, and determines the size of the basis set. Generally, a cut-off

of a few hundred electronvolts is chosen for the first calculation, then the cut-off

is increased until reaching the desired convergence, typically 1 meV in the total

energy.

Another important parameter to choose is the representation of the first Bril-

louin zone. This representation is given by a number of points in the Brillouin zone,

known as the k-point mesh. In principle, there should be a set of orbitals for every

possible value of k; in reality, we need to choose a finite number of k-points which

are distributed evenly throughout the Brillouin zone according to a Monkhorst-Pack

scheme [42]. The Monkhorst-Pack scheme consists of choosing a set of k-points

(Mx×My×Mz), where the subscript indicates the direction of the wave vector for

sampling the Brillouin zone. As with the cut-off energy, the greater number of k-

points, the finer, more accurate and more expensive the calculation will be. The

set of k-points required for describing a system depends on the system under study.

Usually tests are performed, where the number of k-points is increased until the

desired convergence is reached.

2.4.3.4 Pseudopotentials

The core and valence electrons behaviour is completely different. Valence electrons

affect the chemical and electronic properties. Whereas, the core electrons are well

localised and tightly bound to their nuclei and their properties do not change signif-

icantly with the chemical environment of the atom. To simplify further the problem

of modelling a material, pseudopotentials are used. Pseudopotentials treat core and

valence electrons differently: core electrons are incorporated into a nuclear poten-

tial (or pseudopotential) and valence electrons are described by a softer effective
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ionic potential. Some of the advantages given by the use of a fictitious potential are

given in the following list:

• Core electrons are removed from the calculation so only valence wavefunc-

tions need to be calculated.

• A lower cut-off energy can be used to represent orbitals. Core electrons have

very high kinetic energy and there is no need to use plane waves for these

electrons.

• They can be optimised. Pseudopotentials are not defined for a particular ele-

ment; the shape of the potential can be modified in such a way to use as low

required cut-off energy as possible.

• There is the possibility to include relativistic effects. Relativistic effects affect

core electrons; pseudopotentials can be created to deal with this problem.

Among the most used pseudopotentials are: the norm-conserving pseudopoten-

tials [43], the Vanderbilt ultrasoft pseudopotentials (USPP) [44], and the projector-

augmented wave (PAW) [45]. The basis set for norm-conserving potentials can be

very large for some elements, whereas for USSP the number of plane waves per

atom is reduced. PAW potentials are similar to USSP; the difference is that the core

electron is frozen and only valence electrons are relaxed, allowing efficient DFT

calculations.

2.5 Surface Calculations
In chemistry, surfaces are very important since they control the interaction of the

material with other compounds. The surface properties determine the shape of a

crystal, moreover, catalysis and reactions processes occur principally on the surface

of a material. Surface models are usually created by cleaving a crystal.

In computational chemistry, calculations are performed to obtain both surface

atomic structure and surface properties usually in a straightforward way. On the

other hand, obtaining those same properties from experiment involves many diffi-

culties, which makes computational methods very attractive as they can give us an
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explanation of a specific property or help us to build an understanding of its atomic

structure.

One of the most important properties of a surface is its surface energy, as this

property determines its stability. Given a bulk energy containing the same number

of atoms as the slab, Ubulk, and a relaxed energy of the cleaved system, Uslab, then

the surface energy Usur f ace is defined by:

Usur f ace =
Uslab−Ubulk

A
, (2.22)

where A is the total surface area exposed of the cleaved system. Usually, when a

crystal is cleaved it creates two surfaces i.e. one of each side on the slab, so the A

includes both areas. For any stable material, the surface energy must be positive.

When a crystal is cleaved the periodicity is broken in the direction normal to the

surface. This cleaved surface is unstable due to the lower coordination number of

the surface atoms and the atoms will relax in order to stabilise the surface.

There are two widely used methods in the modelling of surfaces, which are

illustrated in Figure 2.4. The first is the two region model (or one-sided surface).

This method shows periodicity in two directions parallel to the surface and the slab

is split it into two regions. Region one is next to the vacuum and contains the surface

atoms which are allowed to relax, whereas region two is held fixed representing

the bulk crystal. The number of atomic layers in regions one and two have to be

sufficiently large to represent the surface and bulk properties, respectively. The

second method is the periodic slab model. In a periodic slab model (or two-sided

surface), both terminations of the slab are allowed to relax. The introduction of a

vacuum slab perpendicular to the surface is needed to avoid interactions between

surfaces. Here, two major considerations need to be taken into account to calculate

an accurate value for the surface energy: the vacuum gap needs to be large enough

to minimise any interaction between slabs, and the slabs need to be thick enough

so that its centre resembles the bulk. Usually, the atomic layer at the centre of the

slab is fixed to restrict any translations parallel to the surface. This method is used

in codes that only work with three-dimensional boundary conditions, such as those
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based on plane waves.

Vacuum

Vacuum

a) b)

Vacuum

Slab

z axis

Region 1

Region 2
Slab

Slab

Vacuum

Vacuum

Vacuum

Figure 2.4 Representation of (a) the periodic slab model and (b) the two region model

According to Tasker [46], any surface of an ionic material can be classified

into three different categories. This classification was made according to the charge

distribution of the atomic layers within a repeat unit and the dipole moment pro-

duced by this distribution, as illustrated in Figure 2.5. Type 1 surfaces have atomic

planes composed of equal numbers of anions and cations; the dipole is zero. In

type 2, surfaces consist of charged planes but there is no net dipole perpendicular to

the surface in the repeat unit because of the symmetrical stacking sequence. Lastly,

type 3 surfaces exhibit a dipole moment perpendicular to the surface. According

to electrostatic principles, types 1 and 2 should have modest surface energies and,

therefore, should be stable after relaxation of the surface ions. On the other hand,

type 3 surfaces need major atomic or electronic reconstructions on the surface in

order to minimise for the dipole formed. Theoretically, when a dipole moment ex-

ists in each repeat unit perpendicular to the surface, the electrostatic energy density

diverges with slab thickness and the surface energy tends to infinity.
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Figure 2.5 The three types of Tasker’s surfaces. (a) Type 1, same number of anions and
cations on each plane, nonpolar surface. (b) Type 2, charged planes but no net dipole
moment normal to the surface. (c) Type 3, alternating layers of cations and anions which
lead to charged planes and a dipole moment perpendicular to surface

2.6 Implementation
In this Thesis, we use interatomic potential and density functional methods to study

bulk and surface properties of metal oxides. In this, section we will focus on aspects

of IP and DFT of greatest relevance to this Thesis and their implementation for the

systems discussed here. In this Thesis, the General Utility Lattice Program [30, 31]

and periodic DFT code VASP [47, 48] were employed for interatomic potential and

ab initio calculations, respectively. More details will be included in the following

chapters.

2.6.1 General Utility Lattice Program (GULP)

The General Utility Lattice Program [30, 31] is an interatomic potential based pro-

gram, ideal for modelling ionic solids. It is capable of dealing with solids, clusters,

defects, surfaces, interfaces and polymers. All interatomic potential calculations

presented in this Thesis were performed with the GULP code, which requires only

a single input file. The GULP input file has all the necessary information to per-

form an atomistic calculation, and is usually distributed as follows: (i) the first line

include the keywords of the calculation, for example, opti (optimise), conv (con-

stant volume), conp (constant pressure), single (single point calculation), phonon,

defect, among others. (ii) next, the dimensions of the cell are given: lattice parame-

ter lengths and the angles between them, followed by (iii) the position of the atoms,

which can be in either fractional or Cartesian coordinates. (iv) The charge of each
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element is specified along with the interatomic potentials and cut-offs for each short

range interaction. Finally, the output is given in one single text output file.

2.6.2 Vienna Ab-initio Simulation Package (VASP)

VASP uses DFT with a plane wave basis set to describe the valence electrons states

[47, 48]. Interactions between the cores and the valence electrons are described

using the projector-augmented wave (PAW) [45, 49] method. Exchange and cor-

relation energy is treated with two different generalized gradient approximations

(GGA): Perdew-Burke-Ernzerhof (PBE) [39] and PBE functional revised specif-

ically for solids: PBEsol [40]. PBE0 and PBEsol0 hybrid exchange-correlation

(xc) functionals are used with a 25% of the exact exchange from Hartree-Fock

(HF). VASP calculations need four input files: POSCAR, INCAR, POTCAR and

KPOINTS. The POSCAR file contains the lattice parameters and atomic coordi-

nates of each atom. All the setup parameters are specified in the INCAR such as

force tolerances, plane wave cutoff, functional and optimisation technique. The

POTCAR file lists the potentials used. Lastly, the KPOINTS file contains the k-

mesh used.

2.6.3 Knowledge Led Master Code (KLMC)

The Knowledge Led Master Code code is used in this Thesis in an attempt to obtain

the global minimum (GM) of the atomic reconstructions at the ZnO polar surfaces.

This task required the creation of more than 500,000 input files. The only feasible

way of doing this was by using our in-house code KLMC [50, 51]. KLMC auto-

mates many repetitive or complex tasks, traditionally performed by the user, using a

range of third party codes (in this case, GULP). Some of these tasks include the cre-

ation and modification of input files and the extraction of information from output

files.

Within KLMC, we use the “solid solutions” routine as a global optimisation

technique. In this routine, KLMC creates a grid based on the initial ion bulk po-

sitions given in the input. It then automates the substitution of atoms among the

different predefined lattice sites. KLMC also reports the frequency of each unique
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surface structure found; this frequency is used in post analysis of the patterns dis-

covered. More details of the use of this routine will be given in Chapter 4.

2.7 High Performance Computing (HPC)
The work in this Thesis was underpinned with the facilities of the high-performance

computing services. Most of the calculations required a large number of process-

ing cores, for which we employ high-performance computing services which use

large numbers of processing cores in a tightly-coupled, parallel fashion. The UK’s

national high-performance computing services HECToR and ARCHER were used

during the realisation of the work presented here. To date, ARCHER is the latest

UK national supercomputing service [52]. The ARCHER supercomputer is a Cray

XC30 founded by EPSRC, NERC, EPCC and Cray Inc. ARCHER is about three

times faster than its predecessor, HECToR, and is hosted by the University of Edin-

burgh. For a set of smaller calculations, the compute clusters Legion and Iridis were

used. Legion is a centrally funded computing facility aimed at supporting all types

of research at UCL [53] and Iridis is available to the University’s entire research

community based at the University of Southampton [54].



Chapter 3

Bulk and Non-polar Surfaces of ZnO

3.1 Introduction

In this Chapter, we will focus on the structure and electronic properties of the bulk

and nonpolar surfaces of zinc oxide. The chemical and physical properties related to

the surface structures of ZnO are of fundamental interest and are also key to the ma-

terial’s applications. Accurate characterisation of surface structure and properties is

therefore essential. In the bulk, the wurtzite structure (zincite, see Figure 3.1) is the

most stable polymorph of ZnO over a wide range of temperature and pressure [16].

This structure has four principal low-index surfaces: two side faces that are non-

polar, (101̄0) and (112̄0); and two opposite polar, (0001)-Zn and (0001̄)-O. These

surfaces are composed of equal numbers of cations and anions in each layer. ZnO

films with nonpolar surfaces have attracted attention due to their novel properties,

which show higher emission efficiency for blue or ultra-violet LEDs [18–21].

Despite all the computational and experimental efforts, there are two major

issues to address in gaining an understanding of the ZnO surface properties. First,

the character of the atomic relaxation at clean surfaces compared to bulk and second,

the electronic structure of such surfaces. We therefore report a detailed theoretical

study of the two main nonpolar wurtzite ZnO surfaces: (101̄0) and (112̄0), including

the atomic structure of the clean surfaces, stability of both morphological features

and vacancies, the effect of specific surfaces feature (steps, dimer vacancies and

grooves) on the ionisation potential and surface band bending. Calculations were
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performed using a combination of different approaches: interatomic potentials and

density functional theory. Our analysis leads to clear and coherent models for these

two key surfaces of this widely studied material.

3.2 Calculation Settings
The periodic DFT code VASP (Vienna Ab initio Simulation Package) [47, 48] (in-

troduced in Chapter 2) was employed in this study. As noted in Section 2.6.2,

VASP uses a plane wave basis set to describe the valence electronic states. Ex-

change and correlation energy was treated with two different generalized gradi-

ent approximations (GGA): Perdew-Burke-Ernzerhof (PBE) [39] and PBE func-

tional revised specifically for solids: PBEsol [40]. PBE0 and PBEsol0 hybrid

exchange-correlation (xc) functionals were used with 25% of the exact exchange

from Hartree-Fock (HF). Interactions between the cores (Zn:[Ar] and O:[He]) and

the valence electrons were described using the projector-augmented wave (PAW)

[45, 49] method.

In the study of defective surfaces, we have also used a complementary atom-

istic approach. The interatomic potential (IP) code GULP (General Utility Lattice

Program) [30, 31] was used to study morphological features, including steps, dimer

vacancies and grooves, at the (101̄0) ZnO surface. We used the Born, shell model

potentials for ZnO developed by Whitmore, Sokol and Catlow [55], which show

excellent agreement with a range of experimental data (see Table 1 in Ref. 55).

Moreover, DFT theory was used to verify the structure and stability of these defec-

tive ZnO surfaces. The detailed description of the defective ZnO surface models

derived from both the DFT and IP techniques is given in the following section.

3.2.1 ZnO Bulk (DFT-based)

For the structural optimizations, we checked convergence of the total energy with

respect to k-mesh sampling and plane wave energy cut-off; the total energy was

converged to 1 meV. For GGA functionals, good convergence was achieved with a

cut-off of 700 eV and a k-mesh of 11× 11× 9 was used for both bulk relaxations

and density of states (DOS). The iterative relaxation of the ions was not stopped
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until the forces on the ions were all less than 0.01 eVÅ−1. For hybrid functionals,

the total energy criteria was kept as in the GGA functionals. A cut-off of 500 eV

and a k-mesh of 9×9×7 was found to be sufficient to converge for bulk relaxations

and DOS. The structures were deemed to converge when the force on every ion was

less than 0.01 eVÅ−1.

3.2.2 Surface Models of ZnO (DFT-based)

For the clean ZnO surfaces, cell parameters and atoms in the middle layer were kept

fixed, whereas the other ions were allowed to relax. The surface energy (Esurf) was

converged to 1 mJ/m2 with respect to the thickness of the slab and k-mesh sampling.

Convergence was fully achieved for a cell with 15 double layers (60 atoms) and 15

layers (60 atoms) for the (101̄0) and (112̄0) surfaces, respectively. The slabs were

separated by a vacuum gap of 15 Å. A k-point sampling of 7×7×1 was found to

be sufficient. The cut-off energy was kept as in the bulk.

3.3 ZnO Bulk
Zinc oxide crystallizes in two main structures: hexagonal wurtzite and cubic

zincblende. The former is the most stable over a wide range of temperature and

pressure, including ambient conditions. In this Thesis, all the calculations are per-

formed on the ZnO wurtzite structure, of which the atomic structure is shown in

Figure 3.1. The wurtzite structure has all his atoms in a tetrahedral coordination.

From the lowest available temperature, neutron single crystal diffractometry at

20 K [23], the lattice parameters a and c are calculated to be 3.2417 Å and 5.1876 Å

and the internal parameter u was determined as 0.3819, all showing good agreement

with experimental data (Table 3.1). It is seen that PBEsol and PBEsol0 functionals

show a better agreement for the lattice parameters a and c. For the internal lat-

tice parameter u, the best agreement was found with the hybrid functionals (0.26%

variation). Higher cut-off energies (900 eV) do not improve the results.

With respect to its electronic structure, a direct band gap of 3.44 eV has been

measured for ZnO [2, 3]. As discussed earlier and illustrated in Table 3.1, GGA

functionals seriously underestimate the band gap energy. On the other hand, hy-
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brid functionals show a significant improvement: band gap energies for both PBE0

(3.142 eV) and PBEsol0 (3.128 eV) are within 10% difference with experimental

data. The experimental width of the oxygen 2p band and the energy difference be-

tween the Zn 3d and O 2p bands are also better represented by hybrid functionals.

Table 3.2 displays the formation energy for zinc oxide and the cohesive ener-

gies with respect to Znmetal and O2. Again, the hybrid functionals give better results

than GGA for these properties. The PBEsol0 shows the best agreement in these

two cases: the deviation of the formation energy for ZnO and the cohesive energy

of Znmetal is ca. 11% and ca. 5% when compared to experimental data, respec-

tively. With respect to the bond energy of O2, the experimental value is −5.12 eV.

In this case, for the PBE0 functional is −5.188 eV (∼ 1.3% of difference) and for

the PBEsol0 functional is −5.584 eV (∼ 9%). As for the formation and cohesive

energies, the GGA functionals failed to reproduce the bond energy of oxygen.

Figure 3.1 ZnO wurtzite structure. The lattice vectors: a and c, and the internal parameter
u are shown. The ions in darker colours represent the primitive unit cell, which is shown on
the right-hand side. Red is reserved for O and grey for Zn.
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Table 3.2 Formation and Cohesive Energies.a

Formation Energy (∆H f ) Cohesive/Bond Energy (∆H f )

ZnO Znmetal O2

Functional eV kJ/mol eV kJ/mol eV kJ/mol

PBE −2.892 −279.118 -1.101 −106.263 −6.591 −636.020

PBEsol −2.990 −288.577 −1.576 −152.058 −6.986 −674.167

PBE0 −3.167 −305.594 −1.151 −111.077 −5.188 −500.688

PBEsol0 −3.282 −316.741 −1.472 −142.089 −5.584 −538.896

Exp.[56] −3.700 −357.050 −1.400 −135.100 −5.120 −494.080

a The values reported in this table correspond to a cut-off energy of 700 eV. Experimental
enthalpies of formation were used as comparison.

3.4 Non-polar Surfaces of ZnO
In this section, we report a detailed theoretical study on the structure and elec-

tronic properties of the two main nonpolar wurtzite ZnO surfaces, the (101̄0) and

the (112̄0). The topics studied are as follows: a brief introduction to the crystal

growth, the atomic structure and stability of the clean surfaces and morphologi-

cal features (steps and grooves), and the effect of such surfaces on the ionisation

potential and surface band bending.

3.4.1 Crystal Growth

Experiments have reported that the ZnO nonpolar surfaces have a high density of

defect sites (vacancies), steps and more complex morphological features [57, 58].

These findings are supported by atomistic calculations [55] that reported an ener-

getically inexpensive creation of vacancies, steps and non-flat ZnO surfaces. There-

fore, it is expected that, under strain, ZnO surfaces show a certain degree of rough-

ness.

Experimentally, cleaving crystals is one of the most widely used methods to

create a surface. Despite the efforts to manufacture high quality large single crys-

tals with well defined crystalline surfaces, ZnO-cleaved crystals suffer from strain

and external forces that may affect the crystallinity and flatness of the surfaces; as

a result, experimental techniques concerning the production of crystalline zinc ox-
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ide surfaces have developed new methods. Epitaxial growth procedures have been

shown to produce highly crystalline surfaces [19, 20, 59–64] and are now widely

used in surface studies. One of the complications of this technique is that ZnO

crystals usually grow along the polar hexagonal direction leaving polar surfaces ex-

posed at the top and bottom of the film. These structures can diminish the emission

efficiency of the nonpolar surfaces, therefore, choosing an appropriate substrate

(such as Al2O3) [19, 60, 62–65] that helps the growth of ZnO crystals along the

nonpolar directions is necessary to expose surfaces of interest. However, one very

common problem is the lattice mismatch between the substrate and the epitaxial

film. With a large mismatch, a very large strain energy may build up in the epilayer,

thus, creating a series of different defects. These defects show detrimental effects

on the optical and electronic properties of ZnO films; however, crystalline growth

of zinc oxide nonpolar epitaxial films has been successfully accomplished recently

[18–20, 59, 60, 62–66].

3.4.2 Surface Structure

Clean (101̄0) ZnO Surface

Structurally (see Figure 3.2), the (101̄0) ZnO surface has been studied very exten-

sively using theoretical and experimental approaches; however, the surface termi-

nation remains controversial. While, computational reports have calculated an up-

permost zinc relaxation towards the bulk of between 0.15 and 0.57 Å [55, 67–75],

experiments estimate a range from 0.06 to 0.45 Å [58, 76–78]. Among the different

surface structures proposed are: (a) terraces showing no strong atomic relaxation

[58, 79]; (b) terrace structures with strong inward oxygen relaxation leaving the

cation lying at the surface [58, 80]; (c) terraces with pronounced Zn relaxations to-

wards the bulk, which also results in a shortening of the corresponding topmost Zn-

O bonds [55, 67–69, 71–78, 81]; and (d) highly defective surfaces with vacancies

and steps [55, 58, 82]. As mentioned earlier, steps and terraces are very common

features of the (101̄0) surface. Experimental work [58, 82] has shown the presence

of steps and partial occupation (attributed to the presence of vacancies) of the first

two surface atomic layers, with “occupancies” of 0.77±0.02 and 0.90±0.04 (the
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value from 0 to 1 giving the probability of site occupation), in the first and second

layers respectively. These defective features have been supported by calculations

where it has been reported that the energy cost for creating these steps and broad-

ening the terraces was low [55].

Table 3.3 shows ours and previously calculated as measured atomic displace-

ments of the first two layers of the (101̄0) surface. Atomic movements in deeper

layers are negligible. In general, the same pattern was observed for the GGA and

hybrid functionals. In the first layer, Zn atoms show strong relaxation inwards and

a displacement parallel to the surface (y direction); O ions remain almost in bulk

positions, with just small relaxations away from the surface. From the second layer,

both ions relax towards the surface: the O relaxation is very small, whereas that of

Zn is more substantial. These results show a good agreement with the low-energy

electron scattering (LEED) measurements of Duke et al. [77], which predicted a

movement of the top-layer Zn towards the bulk of −0.45±0.1 Å and similarly a

displacement of the uppermost oxygen by 0.1±0.2 Å towards the surface; more-

over, high-resolution transmission electron microscopy (HRTEM) images by Ding

and Wang [78] showed the same structure. Angle-resolved photoemission spec-

troscopy (ARPES) studies of Göpel [76] also showed this strong Zn relaxation by

−0.40 Å. There is also good agreement when our results are compared with pre-

vious theoretical studies [55, 68, 71, 72, 75]: and there is a general consensus that

topmost zinc ions relax inwards by or by greater than −0.21 Å and with a parallel

displacement (y direction) of ca 0.16 Å, towards the O; second-layer zinc atoms

relax by (or greater than) 0.132 Å away from the bulk. We also noted small relax-

ations of first and second layer oxygen atoms away from the surface.

Clean (112̄0) ZnO Surface

The (112̄0) surface has been so far characterised in much less detail, with pertinent

structural results regarding this surface being controversial. Experimental LEED

analyses [83] on annealed (112̄0) surfaces show that the surface structure is bulk-

terminated within the accuracy of the measurements [13]. In agreement with the

previous LEED analysis, early ab initio studies by Wander et al. [84] and the tight -
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Table 3.3 Atomic Relaxations of the First Two Layers of the Non-Polar (101̄0) Surface.
a

Zn1z O1z Zn2z O2z Zn1y Zn1-O1 ω (deg)b

PBE −0.324 0.015 0.141 0.011 0.168 1.870 10.42

PBESol −0.335 0.031 0.141 0.001 0.169 1.848 11.39

PBE0 −0.290 0.004 0.132 0.016 0.154 1.852 9.11

PBEsol0 −0.217 0.086 0.205 0.081 0.176 1.837 9.30

LEED[77] −0.45±0.1 0.05±0.1 0.1±0.2 2.010c 11.5±5

ARPES[76] −0.400

GIXD[58] e −0.06±0.02 −0.12±0.06 0.000 0.000 −0.05 1.90±0.06 −1.8±2.3

TB[79] almost bulk-like

TB[74] −0.570 −0.055 17.2c

IP[80] −0.220 −0.260 0.080 0.100 0.090 1.76

IP[55] −0.250 0.036 0.165 0.007 0.156

HF[70] 2.31

HF-corr[70] 2.48

HF[67] −0.147 0.000 −0.103 0.000 0.000 2.007 1.52

B3LYP[67] −0.171 0.000 −0.094 0.000 0.000 2.006 2.74

LDA[81] −0.320 −0.200 −0.020 −0.010 3.60

LDA[69] −0.500 −0.130 −0.09 −0.090 11.70

LDA[72] −0.360 −0.040 0.180 10.70

PBE[72] −0.360 −0.040 0.180 10.10

LDA[68] −0.330 −0.050 0.1716d 1.830 8.80d

B3LYP[73] −0.255 −0.083 0.086 −0.003 0.000 1.905 5.20

B3LYP[71] −0.210 0.002 0.135 0.042 0.116 1.861 6.55

PW91[75] −0.210 0.100 9.56

a The nomenclature used in this table is shown in Figure 3.2. Subindexes represent the layer and
the direction of the relaxation. All relaxations and distances are given in Å.
b Zn-O angle.
c Taken from Wander et al. [73].
d Calculated from distances.
e Grazing incident X-ray diffraction.
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(a) Side view of the (101̄0) ZnO surface.

(b) View along the hexagonal axis of the (101̄0) ZnO surface.

Figure 3.2 Schematic representation of the relaxed and unrelaxed (101̄0) ZnO surface.
Black lines show the bulk position structure. The stick representation is the relaxed (101̄0)
structure. Only atoms in the first double layer were represented on the top view; darker
colours, in (b), were used to represent ions in the first layer. Layers 1, 2, 3 and 4 are
represented as L1, L2, L3 and L4, respectively.

binding (TB) model calculations by Ivanov and Pollmann [85] show that the atoms

on the (112̄0) surface remain close to a bulk-terminated position. However, in the

former computational study only three degrees of freedom per surface layer were

relaxed, which, as noted by Meyer and Marx [72], is only a first approximation.

On the other hand, the density functional theory study by Meyer and Marx [72]

found that the atomic relaxation on the (101̄0) and the (112̄0) surfaces is rather
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similar. Finally, as with the (101̄0) surface, scanning tunneling microscope images

by Dulub et al. [57] display a high density of small terraces running along the

〈0001〉 direction and long grooves (ca. 250 Å wide and 50 Å deep) along the 〈11̄00〉

directions. LEED and low-energy ion scattering (LEIS) analysis concluded that the

(112̄0) is the roughest of all the four main low-index ZnO surfaces. To date, despite

all the efforts, the (112̄0) surface remains significantly undercharacterised.

In general, as with the (101̄0) surface, our calculations show similar behaviour

between GGA and hybrid functionals: GGA show larger displacements when com-

pared to hybrid functionals (Table 3.4). We calculated larger inwards Zn relaxations

in the (101̄0) surface; however, movements parallel to the surface are larger (along

the x and y axis) for the (112̄0) surface. The distortion observed for surface ions in

this study is in agreement with the roughness seen in LEED and LEIS analysis [57].

The (112̄0) surface was calculated to be an anion terminated surface where

oxygen ions remain, as in (101̄0), almost in their bulk positions; uppermost zinc

shows strong relaxations along all three crystallographic directions. As with the

(101̄0) surface, ions in deeper layers remain almost in bulk positions. Table 3.4

gives ours and earlier calculated atomic displacement of the first two layers of the

(112̄0) along the three cartesian directions. Our relaxations are in good agreement

with previous theoretical work produced using interatomic potential methods by

Nyberg et al. [80], and with the ab initio studies of Meyer and Marx [72] and

Marana et al. [71]. As in the (101̄0) surface, topmost Zn moves towards the bulk

(by −0.190 to −0.229 Å). In this surface, zinc also shows considerable displace-

ment along both directions parallel to the surface. In the y direction, towards the

oxygen atom, relaxations are from −0.199 to −0.233 Å; and in x from −0.095 to

−0.124 Å. Additionally, Zn-O distances were calculated to allow comparison with

the extensive study on ZnO surfaces made by Meyer and Marx [72]. The atomic

structure of the (112̄0) surface is displayed in Figure 3.3.

3.4.3 Stability of the Clean Non-polar Surfaces of ZnO

Table 3.5 shows the calculated surface energy for the nonpolar (101̄0) and (112̄0)

surfaces. In agreement with previous theoretical work, it was found that the (101̄0)
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Table 3.4 Atomic Relaxations of the First Two Layers of the Non-Polar (112̄0) Surface.a

PBE PBEsol PBE0 PBEsol0
B3LYP PW91 TB IP LDA PBE

[71] [75] [74] [80] [72] [72]

Zn1x −0.121 −0.124 −0.095 −0.103 0.085

Zn1y −0.228 −0.233 −0.199 −0.201 −0.156 −0.14

Zn1z −0.223 −0.229 −0.217 −0.190 −0.093 −0.14 −0.540 −0.15

Zn2x 0.023 0.023 0.028 0.022 −0.017

Zn2y −0.035 −0.036 −0.030 −0.031 −0.025

Zn2z 0.075 0.073 0.048 0.074 0.117 0.095

O1x 0.038 0.031 0.053 0.041 −0.041

O1y 0.036 0.048 0.022 0.030 0.010 −0.17

O1z 0.029 0.040 −0.007 0.028 0.064 0.10 −0.17

O2x 0.025 0.025 0.032 0.026 −0.020

O2y 0.021 0.023 0.016 0.019 0.018

O2z 0.022 0.019 0.005 0.030 0.075

Zn1-O1 1.901 1.878 1.882 1.866 1.877

Zn1-O1’ 1.887 1.865 1.869 1.855 1.893

Zn2-O2 1.991 1.962 1.971 1.952 1.986

Zn2-O2’ 2.010 1.979 1.989 1.969 1.974

Zn1-O2 1.971 1.937 1.948 1.930 1.954

∆1z 0.253 0.269 0.210 0.218 0.540 0.243 0.240

∆2z −0.053 −0.054 −0.044 −0.044 0.095 −0.051 −0.049

Bulk 0.0

∆1y 3.458 3.405 3.388 3.350 3.388 3.359 3.448

∆2y 3.301 3.251 3.244 3.209 3.217 3.292

Bulk (1−u)c

∆1x 0.264 0.281 0.221 0.231 0.399 0.265 0.407

∆2x 0.056 0.059 0.046 0.050 0.063 0.085

Bulk 0.0

a The nomenclature used in this table is shown in Figure 3.3. “Bulk” rows represent values for the
unrelaxed surface. All relaxations and distances are given in Å.
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(a) Side view of the (112̄0) ZnO surface

(b) View along the hexagonal axis of the (112̄0) ZnO surface.

Figure 3.3 Schematic representation of the relaxed and unrelaxed (112̄0) ZnO surface.
Black lines show the bulk position structure. The ball-and-stick representation is the relaxed
(112̄0) structure. Darker colours were used to represent ions in the first topmost layer. ∆

values represent the distance between the selected ions along the specified direction.

surface is more stable for all the DFT functionals used. However, the difference in

the surface energy between the two surfaces is small (0.04−0.08 J/m2), so we infer

that under thermodynamic equilibrium these two surfaces will coexist in almost

equal proportions.

The surface energy varies according to the functional used. For example, it has

been seen that LDA and hybrid B3LYP functionals tend to overestimate surface en-

ergies; while the PBE functional underestimates surface energies [72]; PBEsol par-

tially corrects the PBE deficiency and hybrid GGA functionals show more accurate
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results [86]. The slightly smaller surface energy of the (101̄0) might be attributed

to the more distorted (112̄0) surface, as was shown in STM images by Dulub et al.

[57]. Using interatomic potential methods we calculated the same surface energy

for both surfaces and obtained similar results to our DFT calculations.

The ab initio study by Wander and Harrison [84] determined a (112̄0) surface

energy of 2.05 J/Å2, which show a discrepancy with the rest of the work published.

In their study, a small slab (seven layers) was used and not all parameters were

allowed to relax, which could account for the high calculated surface energy.

Marana et al. [71] calculated a smaller surface energy difference between

(101̄0) and (112̄0) surfaces than that given by Meyer and Marx [72]. However,

Marana et al. [71] compared the surface energy difference of 0.1 J/Å2 with the

cleavage energy difference of 0.2 J/Å2 given in Ref. 72. Since the cleavage energy

represents double the surface energy, the cleavage energy difference of 0.2 J/Å2

mentioned in Ref. 72 is actually a surface energy difference of 0.1 J/Å2, which is

the same value as calculated by Marana [71].

We consider that the surface structures presented in this Thesis are definitive

models of the nonpolar surfaces of ZnO, as they have explored the effects of com-

putational parameters in detail and are in agreement with experimental work.

3.4.4 Steps and Vacancies at the (101̄0) ZnO Surface

Following the experimental results of Jedrecy [58] and of Parker [82] and the

interatomic-potential calculations by Whitmore [55], we use IP methods to examine

models consistent with a fractional surface site occupancy of 0.75 in the first layer,

which has been suggested from experiment. As already seen in Ref. 55, Zn and O

vacancies scattered randomly over the surface are less energetically favourable than

nearest-neighbour Zn-O dimer vacancies. Therefore, we concentrate on the prob-

lem of the location of dimer vacancies; henceforth, the term “vacancy” will denote

a dimer vacancy.

We built a one-sided 2D periodic surface model using a two-region approach,

which has been widely employed in modelling surface structures for potentials

based methods [30, 31]. This approach allows free movement of the ions in the
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Table 3.5 Surface Energy, Esurf (J/m2), of the Non-Polar ZnO Surfaces with the Different
Functionals and in Comparison with Previous Calculations.

(101̄0) (112̄0)

PBE 0.85 0.89

PBEsol 0.99 1.05

PBE0 1.02 1.06

PBEsol0 1.11 1.19

IPa 1.00 1.00

LDA[72] 1.15 1.25

PBE[72] 0.80 0.85

LDA[68] 1.19 1.23

PW91[75] 1.04 1.06

B3LYP[71] 1.30 1.40

IP[80] 1.10 1.20

IP[55] 1.00 -

IP[68]b - 1.20

a using potentials reported by Whitmore [55].
b using Binks [87] potentials.

region next to the vacuum, whereas the second substrate region is held fixed rep-

resenting the bulk crystal. The (101̄0)-ZnO surface calculations converged using

five layers (20 atoms, ≈ 13 Å thick) in both region one and region two. To simu-

late 75% occupation of the topmost surface layer, we constructed a 4×4 supercell

and removed 4 of the 16 Zn-O dimers in the first layer. We developed an in-house

python code to build all possible reconstructions; all different configurations were

fully relaxed using the GULP code employing interatomic potentials. We analysed

the first five lowest energy structures. Key features of the results are as follows as

(see Figure 3.4):

• The lowest energy structure is a line of four vacancies along the [001] direc-

tion as was seen in Ref. 55 (structure 1).

• The maximum number of vacancies in the same row along [001] is energeti-

cally preferable.



3.4. Non-polar Surfaces of ZnO 63

• Connected vacancies have lower energies (see 2-4 structures) than isolated

(see structure 5).

• Zigzag patterns (structure 4) and diagonal connections among the vacancies

are observed in the lowest energy configurations.

• Two or more vacancies in the same row along the [010] direction are not

present in the first ten lowest energy structures.

• The highest energy structure has a line of four vacancies along the [010] di-

rection (structure z).

• Massive reconstructions are seen when vacancies along the [010] direction

are created: bonds are elongated along [010] direction (presumably driven by

the two rows of differently charged ions); and oppositely charged ions, where

the line of four vacancies is created, are bonded. In contrast, the structure is

well preserved when vacancies are created in the [001] direction.

• Creating a line of vacancies along the [010] direction leaves undercoordinated

second-layer atoms where ions are not in pairs as in structure 1, but form rows

of positive (Zn) and negative (O) ions, which may explain the high instability

of structure z.

Next, we calculated the vacancy formation energy as a function of vacancy

concentration. Comparison of the energies among the different surface structures

is possible; however, it only tells us which structure is more stable, but does not

provide any information about the stability of the vacancy. The vacancy energy

formation per ZnO dimer was calculated by:

Evac =
((Ede f

sur f ace +nEdimer)−Enonde f
sur f ace)

n
, (3.1)

where Ede f
sur f ace is the energy of the defective surface, n is the number of dimer

vacancies (4), Edimer is the energy of a ZnO unit in the bulk and Enonde f
sur f ace is the energy

of the nondefective surface. The energy cost per vacancy values in Figure 3.4 are in

a very good agreement with previous calculations [55].
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The low energy of formation obtained in the IP calculations for the linear defect

is suggestive of the ease of a step formation, which is is supported by experiment

[58, 82] where it has been shown that it is almost impossible to create a (101̄0)

ZnO surface free from steps. Therefore, we decided to make use of IP and ab

initio methods to calculate the energy needed to create a step along [010] and [001]

directions.

We find that vacancies aligning along the [001] direction show high stability.

We use GGA/PBEsol calculations to investigate the energetic cost of forming a step

along the [010] direction (vacancies aligning along the [001] direction) at the DFT

level, as such steps were observed in experiment using grazing incidence X-ray

diffraction (GIXD) techniques [58], and along the [001] direction (vacancies align-

ing along the [010] direction) building two sets of four different supercell models

of different sizes: (2×1), (4×1), (8×1) and (16×1); and (1×2), (1×4), (1×8)

and (1× 16). With these models, a vacancy will represent a step along the [010]

and [001] direction, respectively. Half of the first and second Zn-O dimers were

removed from all the structures. Dimers were removed in such a way that dimer

vacancies stay together, increasing the size of the step as we increased the size of

the supercell (see Figure 3.5). For the larger systems, using 16 unit cells results

in a lateral separation of ca. 26 Å and ca. 44 Å between periodic images of steps

along the [010] and [001] direction, respectively. Extrapolating the curve on Figure

3.6, we find that, when in the limit of infinite separation, Estep[010] = 0.029 eV/Å

(cf. 0.027 eV/Å using IP). The calculated Estep[010] suggests strongly that steps

would be seen even at room temperature (kT at room temperature is equivalent to

0.025 eV).

The energy cost of a step along the [001] direction shown in Figure 3.6 does

not seem to converge and could not be extrapolated to the limit of infinite step sepa-

ration. However, we find that, where the size of the slab is (1×16), the step energy

is about nine times greater than that of creating a step along the [010] direction.

The high energy cost per step along the [001] direction is as a result of exposing

charged atomic rows on each side of the step, creating a strong electric field, which
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is highly unstable without any major atomic reconstruction, as seen in polar (0001)

and (0001̄) ZnO surfaces. Steps along the [001] direction show strong displace-

ments with respect to bulk positions and will not be discussed further due to its high

instability.

Atomic Relaxation Close to a Step Along [010] Direction

We now summarise the most notable structural features of the (101̄0) ZnO surface

with a step in the [010] direction (see Figure 3.5).In general, we observed larger

relaxations for Zn than for O atoms. For the first layer, a strong average Zn relax-

ation of 0.312 Å towards the bulk and 0.155 Å along the [001̄] direction is calcu-

lated (similar to the relaxation on a clean (101̄0) surface, summarised in Table 3.3).

Moreover we find a relaxation of 0.116 Å outwards from the step only for the Zn

ions that are on the edge of the step (denoted as Zn[1*], where the number refers

to the layer and the “∗” indicates an ion in the edge of the step), while smaller

relaxations are seen in this direction for the rest of Zn atoms. The maximum dis-

placement of 0.063 Å (with an average of 0.036 Å) is observed for O[1*] away from

the bulk; the relaxations are less pronounced in the other two directions. For the

remaining O atoms there are no significant relaxations.

For the second layer, Zn[2*] atoms showed the strongest relaxations of 0.292 Å,

0.115 Å and 0.105 Å towards the step, in the [001̄] direction and inwards, respec-

tively. The rest of the Zn[2] ions behave in a completely different way with an

average strong relaxation of 0.143 Å outwards and smaller relaxations along the

other two directions. Again, the O[2] ions show smaller relaxations.

The atoms in the third layer are divided into two sets: atoms with reduced co-

ordination number (e.g. Zn[3-], where the minus sign indicates the reduction in the

number of bonds) and full-coordinated atoms (Zn[3]). As expected, Zn[3-] atoms

show the larger relaxations, whereas the O[3] atoms remain close to their bulk po-

sitions. The Zn[3-] ions showed an average relaxation of 0.170 Å and 0.320 Å in

the [001̄] direction and towards the bulk, respectively (similar to the relaxations in

Zn[1]). Smaller relaxations were observed for Zn[3] ions.

The ions in the fourth layer are also divided into two sets: ions below under-
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coordinated atoms (e.g. Zn[4§]) and ions below full-coordinated atoms (e.g. Zn[4]).

In general, only Zn[4§] atoms relax outwards (0.140 Å) in a similar manner to the

Zn[2] ions, with the only difference being that the Zn[4*§] showed a smaller relax-

ation (0.045 Å) in the same direction.
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(a)

(b)

(c)

(d)

Figure 3.5 Schematic representation of the relaxed and unrelaxed (101̄0) ZnO surface
showing a step along the (a,b) [010] direction and along the (c,d) [010] direction. (a) Side
view along the [001] direction of the (101̄0) ZnO surface, (b) top view along the hexagonal
axis of the (101̄0) ZnO surface, (c) side view along the [010] direction of the (101̄0) ZnO
surface and (d) top view along the hexagonal axis of the (101̄0) ZnO surface. Black lines
show the bulk position structure. Ball and stick representation is the relaxed structure. Only
atoms that are in the green region were shown in the top view; darker colours, in (b) and
(d), were used to represent uppermost ions.
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Figure 3.6 Energy of step formation on the (101̄0) ZnO surface, where n is the size of the
supercell along the [010] or [001] direction. The dashed line is a linear fit for the step along
the [010] direction.
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3.5 Electronic Properties of Non-polar Surfaces

With the ZnO bulk and surface well defined, its electronic properties can be pre-

dicted using ab initio techniques. A correct positioning of the band edges is vital to

calculate a great variety of physicochemical properties such as work function (Φ),

ionisation potential (I), electron affinity (A), band gap, among others, which are

essential in the design of electronic devices, for example, transparent conducting

oxides (TCO). One of the fascinating uses of zinc oxide is as a TCO for electrodes

in solar cells, energy efficient low-emissivity windows, flat panel displays, touch

screens, light-emitting diodes and architectural glass applications [88–91]. The be-

haviour of transparent conducting oxides is controlled by the fundamental electronic

properties band gap, Fermi level and correct positioning of the valence band max-

imum (VBM) and conduction band minimum (CBM). To date, various theoretical

approaches have been used to calculate the bulk ionisation potential and band align-

ment; however, each has implicit difficulties [6]. Sokol et al. [92] used a hybrid

QM/MM approach to calculate the ZnO bulk ionisation potential (Ib) as 7.71 eV,

which is in close agreement with the experimental value reported by Swank [1]

(7.82 eV). A recent method developed by Logsdail et al. [6] to calculate Ib (at the

plane wave DFT level) showed an agreement with experimental data for a range

of different rocksalt ionic oxides using the PBEsol0 functional. This method uses

simple polarisable shell-based interatomic potentials to include the surface polari-

sation effects. At the surface, near to the vacuum, there is a shift in the electronic

energies, or the band structure (known as surface band bending) caused by surface

polarisation effects, band width and the change of the Madelung potential. Hence,

the ionisation potential and electron affinity will differ between the bulk and the

surface. In a recent study, Hinuma et al. [93] have calculated the surface ionisation

potential (Is) and electron affinity for the (101̄0) and (112̄0) ZnO surfaces using

GWΓ1@HSE (GW approximation with vertex corrections in the screened Coulomb

interaction using Heyd-Scuseria-Ernzerhof hybrid functional). They report an Is

value of 8.15 eV (exp. 8.00 eV) [4] and 8.17 eV (exp. 7.82 eV) [1] and an EA value

of 4.28 eV (exp. 4.60 eV) [4] and 4.30 eV (exp. 4.38 eV) [1] for (101̄0) and (112̄0)
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surfaces, respectively.

3.5.1 Ionisation Potential and Band Alignment

The bulk ionisation potential (Ib) is the energy required to remove an electron from

the system. Ideally, we would like to determine this as a “bulk” property, which is

independent of the surface termination. When Ib is known, the effect of a particular

surface, i.e. the surface band bending, or offset can be determined, yielding the

surface ionisation potential, Is, which is in turn related to a wide range of surface

physical/chemical properties. We calculated the ZnO bulk ionisation potential using

a recently developed method by Logsdail et al. [6], then determined surface ionisa-

tion potential, and finally studied the effect of different surface features (including

point defects in the form of dimer vacancies and a line of four vacancies along the

[001] direction, grooves and steps) on the ionisation potential.

As noted by Jacobi et al. [4] and Uhlrich et al. [5], the particular surface

morphology will affect the positioning of the bands: ideal surfaces result in higher

band bending values. The surface treatment given by Swank et al. [1] in the (112̄0)

surface and the extrapolation to time zero after ion bombardment and annealing by

Jacobi et al. [4] in the (101̄0) surface minimised the surface effects on the ionisation

potential. Therefore, the values reported there closely correspond to the bulk values.

Bulk and Surface Ionisation Potential

The calculated bulk ionisation potentials (Ib) are reported in Table 3.6. There is

a significant improvement in the calculation of the Ib values with the method pro-

posed in Ref. 6: Ib (where “D” makes reference to the multipolar shift) is enhanced

by ca. 1 eV when compared to the widely-used “band alignment” technique [94].

As mentioned earlier, this method takes into account surface polarisation effects

using polarizable-shell based IP. There is neither a significant difference between

PBE and PBEsol functionals nor between PBE0 and PBEsol0 (Figure 3.7). More-

over, the calculated Ib,D values using hybrid functionals show a good agreement

with experiment (7.82 eV) [1] (Figure 3.7), and calculations [92] using a QM/MM

approach (7.71 eV). Moreover, this method [6] is shown to be practically surface



3.5. Electronic Properties of Non-polar Surfaces 72

independent.1

Table 3.6 shows that the surface effect on Is is stronger when hybrid function-

als are used. Uhlrich et al. [5] observed an Is value of 8.1±0.1 eV for dry annealed

(101̄0) crystals, whereas Klein et al. [88] reported a value of 7.7 eV. Hinuma et

al. [93] calculated values of 8.15 eV and 8.17 eV for (101̄0) and (112̄0) surfaces

with GWΓ1@HSE calculations while Stevanović et al. [95] calculated 7.53 eV and

7.60 eV using DFT and GW approaches. However, the calculated numbers by Ste-

vanović et al. might have converged to the incorrect value as suggested by Klimeš

et al. [96] in their study of about the energy convergence in the GW approximation

using the PAW method.

The theoretical values reported for the surface ionisation potential Is are af-

fected by the method used. Hinuma et al. [93] aligned the CBM by adding the

experimental bulk band gaps to the calculated VBM; however, VBM and CBM

bend differently, as noted for ZnO in Figure 3.9 and in CdO [97]. The creation of

steps and grooves at the (101̄0) surface has a very small effect on the ionisation po-

tential (a decrease of only ca. 0.04 eV), which might be an explanation of the great

stability of such features as suggested by this and previous work [55, 58]. How-

ever, creating a 25% dimer vacancy at the same surface has a bigger impact on Is (a

decrease of ca. 0.13 eV).

We proceed with the calculation of the band gap for the surfaces using hy-

brid functionals ( Figures 3.7 and 3.8). We observed that for the (101̄0) surface, the

band gap is slightly smaller (ca. 2.9 eV) than in bulk (ca. 3.13 eV); whereas, for the

(112̄0) surface, the band gap is slightly larger (ca. 3.2 eV). The latter finding sug-

gests that the thickness of the (112̄0) surface (15 layers) is not sufficient to represent

the band gap correctly. We attribute this overestimation to a quantum confinement

effect in a relatively thin slab surface model, which is particularly strong for delo-

calised conduction states. This behaviour was confirmed using a computationally

less expensive GGA/PBEsol functional: when the (112̄0) slab is increased from 15

to 29 layers the band gap decreases from 0.89 eV to 0.77 eV to be compared with

1Ionisation potential for the surface features was only calculated only at GGA level (PBEsol) as
the size of the supercells makes hybrids very computationally expensive.
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the ideal bulk value of 0.70 eV. The rate of the band gap decrease in these calcu-

lations, however, is significantly smaller than that in our hybrid functional calcula-

tions and we note, the hybrid functional Gaussian function based study reported in

Ref. 71, where no difference between the (112̄0) surface and bulk band gap values

are reported.

To rationalise further the behaviour of the surface band gap, we have separated

the band edges as a function of the atomic layers (Figures 3.8 and 3.9). The smaller

band gap at the (101̄0) surface is attributed to the upwards bending of the VBM.

With the atomic structure and surface energy converged, the slightly larger band

gap for the (112̄0) surface is caused by the quantum confinement effects: whilst

the (101̄0) surface has 15 double layers with a pair of ZnO in each single layer and

a slab thickness ca. 40 Å, the (112̄0) surface is composed by 15 layers with two

pairs of ZnO on each layer and only half of the (101̄0) thickness. Therefore, for the

(112̄0) surface there are the same number of ions as for (101̄0), but the slab has only

half the thickness, resulting in a stronger quantum confinement effect on the (112̄0)

surface.

Work Function

The work function (Φ) can be defined as the energy needed to take an electron from

the Fermi level to vacuum. A strong emphasis has been made in the determination of

this property; however, this property is, like Is, very sensitive to the sample history,

surface preparation procedure, the method of measurement and the facet involved

[98, 99]. For example, for the (101̄0) face, different work function values have

been reported by experiment and theory: ca. 4.6 eV [1, 4, 5, 100–102], ca. 4.3 eV

[95, 103–106]. Kuo et al. reported a work function value of 3.74, 3.95 and 4.21 eV

for as-deposited ZnO films, after Ar sputter cleaning and after exposure to oxygen

plasma [105]. Typically, in intrinsic ZnO, the Fermi level lies just below the CBM.

Therefore, the values CBM values reported on Figure 3.7 are comparable to the

ZnO work function.
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Density of States (DOS)

The shift of the band edges at the nonpolar surfaces across the slab is represented

in Figure 3.9. In general, cleaving a nonpolar ZnO surface along the (101̄0) and

(112̄0) planes results in a local rise of the VBM and CBM energy, respectively. For

these calculations, we separated the total DOS into projected DOS per layer. The

VBM of the middle layer was set to the corresponding negative Is value (as this

layer represents the bulk). The total DOS for the bulk is shown for comparison and

only the hybrid calculations are shown since GGA functionals tend to underestimate

severely the band gap. No significant differences were observed when using PBE0

and PBEsol0 functionals. For the (101̄0) termination, we see a split in the O 2s

band at the surface due to the lower coordination of the surface atoms. There is also

a decrease in the intensity of the Zn d band. For the valence band of the “surface”

layer, there is a shift to the VBM of the highest peak, indicating a relative destabil-

isation of the majority of the valence electrons near the surface, which places their

energies close to the VBM. Another important feature is the peak that is seen in the

CBM (indicated by a dashed line in Figure 3.9); at the surface, this peak overlaps

completely with the adjacent peak.

For the (112̄0) surface, different behaviour is observed. There is no splitting

in the O 2s band at the surface. However, there is a displacement of the top of

this band. The Zn d band is pushed away from the VBM and the O 2p band is

concentrated close to the VBM, as in (101̄0). The band gap shrinks at the surface

for both (101̄0) and (112̄0) terminations due to the displacement of the top of the

VBM; the position of the bottom of the CBM is preserved. The first peak in the

conduction band overlaps completely with the adjacent peak, as in (101̄0).
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Table 3.6 ZnO Ionisation Potential. Where I is the Ionisation Potential, “b” Refers to the
Bulk, “s” to the Surface and “D” to the New Method Used (Taking into Account Surface
Polarisation Effects) [6]. Energies are in eV.

Bulka Surface Stepb Grooveb 25% Dimer Vacancyb

Ib Ib,D Is Is Is Is

ZnO (101̄0)

PBE 5.49 6.52 6.03

PBEsol 5.42 6.42 6.18 6.07 6.08 5.98

PBE0 6.56 7.58 7.30

PBEsol0 6.57 7.58 7.41

ZnO (112̄0)

PBE 5.46 6.57 6.13

PBEsol 5.42 6.51 6.10

PBE0 6.52 7.63 7.29

PBEsol0 6.53 7.62 7.35

a Experimental bulk ionisation potential, Ib = 7.82 eV [1].
b Ionisation potential for the surface features was calculated only at GGA level (PBEsol) as
the size of the supercells makes hybrids very computationally expensive.

Figure 3.7 ZnO band alignment based on the ionisation potential. The horizontal lines
represent the experimental reported values: 7.82 eV for Ib [1] and 3.44 eV for the bulk band
gap [2, 3]; for the (101̄0) and (112̄0) a Is value of 8.00 eV [4, 5] and 7.82 eV [1], respec-
tively. “(D)” [6] has the same meaning as in Table 3.6. The positioning of the CBM bands
for the relaxed (101̄0) and (112̄0) surfaces was made by adding the band gap calculated for
each relaxed surface presented on Table 3.6 to the VBM value.
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Figure 3.8 ZnO band bending of the CBM and VBM. Bulk values for CBM and VBM
were taken from experiment. Evac, −eVCBM, −eVV BM, EF , χ and Φ represent the vacuum,
band bending at the CBM, band bending at the VBM, the Fermi level, the electron affinity
and the work function, respectively. Each diamond/square represents a layer. Values were
taken from Figure 3.9.
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Figure 3.9 (a) Representation of the total density of states for wurtzite ZnO structure
using PBEsol0 functional, for comparison see Figure 2 in Ref. 7. Surface band bending
across the ZnO surfaces: (b,c) (101̄0) and (d,e) (112̄0). Surfaces structures from (b,d) PBE0
and (c,e) PBEsol0 functionals were taken to produce the surface band bending. Layer 1 and
8 are labelled as “Surface” and “Bulk” layers, respectively. The vertical red line represents
the top of the valance band. The VB and CB were amplified by a factor of 3 and 25 to make
the changes more visible.
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3.6 Summary and Conclusions

In this Chapter, the surface structure and electronic properties of the nonpolar

(101̄0) and (112̄0) ZnO surfaces have been investigated using three different lev-

els of theory: interatomic potentials, density functional theory and using hybrid

functionals.

Our hybrid DFT calculations for the clean nonpolar surfaces of ZnO con-

firm earlier GGA reports of the strong inward cationic relaxation in the topmost

atomic layers of the material, although with smaller amplitudes, accompanied by

pronounced lateral displacements of cations and anions especially on the (112̄0)

surface.

The calculated surface energies indicate a higher stability of the (101̄0) sur-

face over the (112̄0) surface. However, the difference in the surface energy between

the two surfaces is small, which implies the importance of thermal vibrational con-

tributions to the free energy, that could determine the crystal morphology under

thermodynamic equilibrium or of the kinetic crystal growth factors. However, the

(101̄0) surface is seen predominantly in experiment.

Our calculations provide the first computational rational for the extensive step-

ping observed on the nonpolar surfaces of ZnO at the ab initio level of theory. The

energy cost of creating a step along the [010] direction, Estep[010], on the (101̄0) was

found to be 0.029 eV/Å (cf. 0.027 eV/Å using interatomic potentials). Thus, we

expect that steps would be seen even at room temperature (kBT ≈ 0.025 eV).

The surface structures obtained in this work have been employed to determine

the bulk and surface ionisation potentials of ZnO along with the electronic band

bending. The calculated bulk ionisation potential values using the method described

in Ref. 6 show an improvement of about 1 eV with respect to the widely used “slab

alignment” method. For hybrid functionals, Ib is calculated as ≈ 7.6 eV, compared

to the experimental value of 7.82 eV. Surface features such as steps and grooves

are shown not to have a strong effect on the ionisation potential (a decrease of ca.

0.04 eV), whereas a 25% dimer vacancy formation at the surface would decrease

the ionisation potential by 0.13 eV.
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The surface electronic properties are shown to converge much slower with the

slab model thickness. Using hybrid functionals, the band gap at the (101̄0) surface

is still smaller (ca. 2.9 eV) than in the bulk (ca. 3.13 eV). For the (112̄0) surface,

using a slab of fifteen layers thickness was not enough to represent the band gap

correctly, which could be attributed to quantum confinement. It is expected that

with a thicker slab, the band gap of the surface will become closer to the bulk band

gap, as confirmed by our GGA calculations.

To characterise the band bending we have decomposed the density of states into

atomic layer contributions. The two nonpolar surfaces are seen to behave markedly

differently with a local rise of the VBM for (101̄0), whilst remaining nearly flat

for (112̄0). In contrast, the CBM rises for the (112̄0) surface. Therefore, a band

gap closing will be seen on the first surface by 0.31 eV and band gap opening on

the second by 0.12 eV. No significant differences were seen between PBE0 and

PBEsol0 functionals.



Chapter 4

Polar Surfaces of ZnO

4.1 Introduction

In the previous Chapter, we described in detail the surface structure and electronic

properties of the zinc oxide nonpolar surfaces. In this section, we continue with a

discussion of the two main low-index polar ZnO surfaces. Cleaving the ZnO crystal

along the c axis creates, inevitably, two different polar surfaces: the Zn-terminated

(0001) and the O-terminated (0001̄) (Figure 4.1), which present different physical

and chemical properties [107]. These polar surfaces are classified as type 3 (Tasker

[46]) and are unstable without a major reconstruction.

One of the most puzzling features of ZnO is the stability of its polar surfaces,

which is not present in other oxides [13]. Clean polar ZnO surfaces are not stable

due to an inherent dipole formed in each unit cell along the c axis. These polar sur-

faces, however, are present in nature; as a consequence, we must take into account

the factors that stabilise these surfaces.

Over the last 40 years, both experimental and theoretical approaches have been

applied in order to understand the stability of these surfaces. The particularly strong

interest in apprehending the stabilisation mechanism of the ZnO polar surfaces can

be attributed to their profitable use in catalysis (methanol synthesis), photocataly-

sis and hydrogen gas sensitivity [108]. Nowadays, there is a clear industrial need

for improving methanol synthesis, which was estimated to be 65 million tonnes

worldwide in 2013 [12]. If this can be done cheaply it will have a major impact on
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industrial processes and the science of clean energy fuels. Understanding the sta-

bilisation mechanism of these surfaces will help us with their characterisation and

synthesis, as well as with the identification of active sites in the Cu/ZnO catalyst.

To date, the stabilisation of the polar ZnO surfaces remains poorly understood.

On the zinc terminated face, LEED [109–111] and HAS (Helium atom scattering)

[112] studies have shown surfaces with a (1× 1) periodicity with no evidence of

atomic reconstruction. If no reconstruction is present, a charge transfer between

the two terminations must stabilise these surfaces, as suggested by Nosker et al.

[113]. The (1× 1) periodicity would lead to surface metallic states in both termi-

nations, which is discussed in more detail below. In contrast, the best fitting of

a grazing incidence X-ray diffraction (GIXD) study [58, 114] could be obtained

when only 75% of the topmost Zn ions are present. This finding was corroborated

by one recent STM study on the (0001) ZnO surface, where a large number of steps

are seen which form triangular reconstructions of different sizes [57]. For the O

terminated face, LEED [101, 110, 115], LEIS [116], GIXD [58, 114, 117], and

surface X-ray diffraction [117] have shown a bulk-like (1× 1) structure with no

atomic reconstruction. Moreover, a (1× 3) (0001̄) reconstruction with rows of O

vacancies along the [101̄0] direction has been proposed by Wöll [118]. The latter

reconstructions are supported by an XPS (X-ray photoelectron spectroscopy) quan-

titative analysis [119] of the O 1s intensities, where a deficiency of 39±10% of the

topmost O ions in a (1×3) periodicity is suggested. More recently, a small portion

of high-resolution STM images [120] show an oxygen terminated face with (5×5)

hexagonal-shape reconstructions.

Recent theoretical investigations of polar surfaces of ZnO have been mainly

following experimental studies. Early DFT studies have predicted unreconstructed

ZnO polar surfaces [72, 117]. On the other hand, a set of ab initio studies

[113, 121–124] calculated more stable non stoichiometric polar ZnO surfaces. Fol-

lowing experiment, calculations have shown that, on the Zn face, the stabilisation

mechanism happens through triangular shaped reconstructions of different sizes

[122, 123, 125, 126], whereas on the O terminated side there are hexagonal atomic



4.2. Stabilisation Mechanisms of Polar Surfaces of ZnO 82

reconstructions [120, 124] with a (5× 5) periodicity. The calculations involved

have, however, been based on limited experimental data, giving only a partial solu-

tion to the problem and leaving many experimental findings unexplained.

In this Chapter, we investigate the origin of the stability of polar ZnO sur-

faces using global search techniques coupled with methods based on interatomic

potentials. We report a detailed computational study of the mechanism of surface

reconstruction that rationalises their unique behaviour. Our calculations explain the

many differing experimental findings [58, 101, 109, 110, 110–120], which seem to

be self contradictory, by examining in detail the crystal growth along the polar di-

rections. Firstly, we explain the polar surface problem and we discuss the different

stabilisation mechanisms that have been proposed in the literature. Secondly, we

introduce the approach we use throughout our study. We then describe the meth-

ods and computational details used for this work. Thirdly, we present an analysis

on the surface structure and stability of the ZnO polar surfaces obtained from our

calculations. Finally, we present a summary of our work and the conclusions which

it leads to.

4.2 Stabilisation Mechanisms of Polar Surfaces of

ZnO
The instability of the ideally terminated ZnO polar surfaces can be described from

two different points of view: the covalent and the ionic. In the covalent picture,

there is a loss of 25% in the coordination number (0.5e) of the surface atoms, which

would result in the appearance of dangling bonds. As ZnO is a polar semiconductor,

the Zn terminated face would be expected to show an excess of electrons in the Zn

4s conduction band, while at the O terminated face there would be electrons missing

(holes) from the O 2p valence band. Both dangling bonds and excess charge car-

riers should be evident from surface metallization, which, however, is not usually

observed. Moreover, in the ionic picture, the instability of the ZnO polar surfaces

is clearly associated with the charge distribution of the ionic monolayers along the

c axis. Assembling such monolayers would produce a dipole moment in the repeat
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unit cell normal to the surface [46] (Figure 4.3). Therefore, crystals with unrecon-

structed polar surfaces would resemble charged capacitors. If the crystal slab is

thick enough, the stored energy will result in a dielectric breakdown causing the

material to collapse and conduct. The dipole moment is a function of the size of the

material: in principle, polar surfaces of very small oxide particles could be stable

[118]. In theoretical calculations, the surface energy of these surfaces diverges as

the slab size increases.

Three different mechanisms have been proposed to stabilize the ZnO polar

surfaces: (i) surface “metallization”, (ii) change of the stoichiometry at the surface

(removing/adding Zn/O ions) and (iii) adsorption of H, O and OH ionic species. All

three mechanisms involve charge transfer between the two opposing polar surfaces

in the ionic picture.

4.2.1 Surface “Metallization”

The “metallization” mechanism has been studied by different groups with ab initio

techniques [72, 117, 122, 123, 127]. This method arises naturally from the covalent

picture, whereas in the ionic description it implies electron transfer from the O face

to the Zn. The surface “metallization” is quite common for polar semiconductor

surfaces [121]; however, it has not been observed for ZnO polar surfaces using

either photo-emission experiments [76, 128] or scanning tunnelling spectroscopy

[57], whereas calculations yield high surface energies [46].

4.2.2 Adsorption of Adatoms.

Metal oxide surfaces are usually in contact with some water and its dissociated

species. There is experimental and theoretical evidence that the stability of the ZnO

polar surfaces can be achieved by adsorption of charged H, O, and OH species,

mainly by the creation of stable hydroxylated surfaces [124]. Thus, the excess (at

the Zn side) and deficiency (at the O side) of electrons/charge can be compensated

by the adsorption of these charged ions.

Earlier B3LYP studies [129] suggested that the adsorption of OH on the Zn

face and H on the O face was energetically unfavourable when compared to an ab
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initio study [117] where metallic surface states are allowed. However, the coverage

tested in the ab initio study was one monolayer (ML) of OH on the Zn side and one

ML of H on the O side, which are not the concentrations needed to neutralise the

dipole moment. Whenever OH adsorption is compared to H at the (0001) surface,

a more stable OH adsorption is reported [122], the reason being that the adsorption

of hydrogen on the Zn side is so reactive (exothermic) that it can reduce ZnO units

to metallic Zn, forming OH groups —implying oxygen mass transport close to the

surface (for experimental reference, see [112]). Structurally, ab initio calculations

[122] have reported a bulk-like structure of the (0001) surface in the presence of hy-

drogen; while OH groups are more stable when adsorbed at interstitial sites, where

oxygen atoms are coordinated to three surface Zn atoms.

Another stabilisation alternative is the adsorption of oxygen atoms on the Zn

face. The best O adsorption site on the Zn terminated surface was shown to be more

stable than the creation of random Zn vacancies on the same surface [122]. Never-

theless, triangular reconstructions are reported to be even more stable that random

Zn vacancies or isolated O adatoms [122]. On the other hand, hydroxylated (0001̄)

surfaces are stable [124]. However, metal oxide surfaces are strongly passivated by

the presence of hydroxyl groups, which is not desirable if high a concentration of

active sites is needed.

4.2.3 Vacancies.

Experiment and theory have proposed that the stability of the non stoichiometric

polar ZnO surfaces can be attributed to Zn and/or O vacancies [113, 121–124]. For

example, the best fit to X-ray diffraction data was obtained in [130] with 25% Zn+2

vacancies at the Zn-terminated surface, which according to the ionic model is the

charge needed to compensate the dipole. On the (0001) ZnO surface, portions of

STM images and density functional theory (DFT) calculations have shown that the

vacant Zn sites can cluster as triangular shaped reconstructions [122, 123, 125].

Triangular terraces terminated by single-layer steps, ca. 2.4 Å in height [57], will

be decorated by oxygen. Such reconstructions could be produced by removing the

topmost pairs of Zn and O atoms from the surface, as confirmed by Monte Carlo
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(MC) simulations using empirical potentials [126]. In general, larger triangles are

preferred over smaller triangles [57]. The energetic competition between triangles

of different size is, however, found to be very tight, explaining the observed macro-

scopic roughening of the surface in experiment. These MC calculations showed

that triangular reconstructions are even more stable than isolated oxygen adatoms

or Zn vacancies at the Zn termination, in agreement with STM measurements [123].

These reconstructions appear to be electrostatically driven and are stable over a wide

range of oxygen and hydrogen chemical potentials [123]. In contrast, at the (0001̄)

surface, honeycomb-like reconstructions are observed occasionally in experiment

and are supported by ab initio calculations [120, 124]. The difference in recon-

structions between the two polar surfaces has been attributed to a higher flexibility

of Zn atoms to form bonds than O atoms [124].

Different factors will determine the reconstruction and stabilisation mechanism

of the ZnO polar surfaces including synthesis conditions and residuals in the ultra-

high vacuum (UHV) chamber used in STM experiments. STM images [57] have

shown that at high annealing temperatures, terraces grow wider and triangular pits

smaller for the (0001) surface. Whereas at the (0001̄) termination, some STM im-

ages show partial hexagonal reconstructions [120, 124], with others displaying no

clear reconstruction and a (1×1) periodicity [109–112].

4.2.4 Faceting

It is widely reported that small changes in the synthesis conditions may lead to

different atomic structures. For example, Zheng et al. [131] have proposed an

alternative stabilisation method for the (0001) ZnO structure. According to their

STM images, depending on preparative conditions, the (0001) surface consists of

either triangular islands and pits of different sizes or the formation of facets of

high step density with (101̄4) surface orientation. We note that these structures

are created after annealing at ≈ 850 ◦C: the use of high annealing temperatures (>

700 ◦C) causes roughening. Facets were already suggested by Nosker et al. [113],

which according to their study yields a lower surface energy.

Wherever the polar ZnO surface properties are to be exploited, the presence of
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high step density with another surface orientation might not be beneficial. The use

of lower annealing temperatures (< 700 ◦C) or the growth of ZnO polar epitaxial

layers may avoid surfaces with a high density of steps.

4.3 Methods and Computational Details

4.3.1 Strategy

One of our main interests is the study of the catalytic Cu/ZnO system. Therefore,

we focus our efforts on clean ZnO polar surfaces, which show a higher catalytic

activity than those surfaces compensated with OH groups.

In view of the complexity of the chemistry of polar ZnO surfaces, here we

investigate the origin of the stability of polar ZnO surfaces using unbiased global

search techniques on the energy landscape defined by highly accurate interatomic

potentials [55]. A two-dimensional (2D) periodic surface supercell model is used

throughout. A top layer vacancy concentration of 25% has been suggested [57,

122, 123, 126] to compensate the inherent dipole; however, this percentage would

only be correct if there were no polarisation. We used interatomic potential (IP)

based methods with a polarisable shell model [55] to calculate the Zn/O vacancy

ratio needed to minimise the dipole. First, bulk ZnO was optimised and cleaved

along the c axis, creating both the (0001) and the (0001̄) surfaces. Second, we

calculated the dipole produced for the three charged atomic layers (Zn, O core and O

shell). Finally, we calculated the charge compensation needed to reduce the dipole

to a minimum value. This compensation is done through an ionic transfer between

opposing polar sides (Figure 4.1).

The Zn/O vacancy ratio was calculated as follows. The dipole moment of the

unreconstructed surface is given by:

P = [qZn( j)+qOc(uc− kc)+qOs(us−uc)]cNz, (4.1)

while the dipole produced by the ion transfer is:

Pcounter = [−mZnqZn−mO(qOc +qOs)]cN (4.2)
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and the condition of nonpolarity, dipole = 0:

P−Pcounter = 0 (4.3)

where qZn, qOc and qOs are the charges of Zn, O core and O shell, respectively. k

and u are the fractional distances described in Figure 4.1, and j = k+ u. N, m, c

and z are the number of unit cells, the number of ions to be transferred, the lattice

parameter c and number of surface atoms. Sub-indices are used for core and shell

units.

Figure 4.1 ZnO polar surface. The internal parameter u and the fractional distance k are
shown. Red colour is reserved for O and grey for Zn.

From Equations (4.1), (4.2) and (4.3), the ionic transfer needed to minimise

the dipole depends on two parameters: the ionic charge of all species and on the

distances between charged layers in c direction. By solving (4.3), we calculated the

optimum number of vacancies being at |mZn−mO|/25 = 0.240988 (ca. 24%; this

ratio has been already proposed by 120, 124) — using both: the potentials reported

in Ref. 55 and the IP atomic structure given by our previous calculations [86].

Another important variable in the reconstructions of the surfaces is their size.
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This variable constrains the size of the reconstruction patterns and the lowest dipole

that can be achieved. Figure 4.2 shows the smaller possible dipole values for a range

from 1 to 400 unit cells and the inset only shows the data points where the dipole

is improved with respect to the previous data point. Three interesting cells sizes are

shown in the inset: (2×2), (5×5) and (19×19). The first data point, (2×2), is too

small for our purposes, e.g. does not allow many different reconstructions, and its

dipole is ca. 50% stronger than the (5×5) cell size. The second data point, (5×5),

produces a reasonable low dipole and is supported by STM images [9, 120]. The

last data point, (19×19), gives the lowest dipole from all the 3 data points; however,

this size is very computationally expensive — calculations ca. 3000 times slower

than the (5× 5) size. In conclusion, the (5× 5) supercell gives a good balance

between size and the magnitude of the dipole. Attempts to reduce the dipole to

a value of 10−6eÅ would require a computationally infeasible (1000× 1000) cell

size.

However, our approach raises another interesting question: what is the struc-

tural and energetic influence of a very weak dipole? We studied this problem by

creating an artificial dipole of the same magnitude and opposite direction as the

one that remains in the surface after the ionic transfer as illustrated in Figure 4.3.

The artificial dipole is generated by a set of point charges (pc) distributed over the

surface (Figure 4.3); a more detailed description of this approach is given below.

4.3.2 Polar ZnO Surface Models

We have used an atomistic approach as implemented in the interatomic potential

(IP) code GULP (General Utility Lattice Program) [30, 31]. The use of IP allowed

us to optimise a vast number of structures generated by our in-house global opti-

misation code, the Knowledge Led Master Code (KLMC) [50, 51] (introduced in

Chapter 2), and identify the lowest energy configurations.

The surface structures were built and optimised by KLMC and GULP, respec-

tively. We used the Born, shell model potentials for ZnO developed by Whitmore,

Sokol and Catlow, which show excellent agreement with a range of experimental

data (see Table 1 in Ref. [55]), as with of calculations.
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Figure 4.2 Lowest dipole possible using entire ionic transfer from a range of 1 to 400
supercell size. Inset: only points that reduce the dipole while increasing the cell size shown.

The bulk structural parameters used were a = 3.2518, c = 5.1969 and u =

0.3806 as calculated in our recent publication [86]. The dipole compensation was

performed by removing Zn and/or O atoms from the surface and spreading com-

pensating charge uniformly over the slab bottom. As discussed above, the optimum

configuration is a (5×5) supercell with a ratio of |mZn−mO|/25≈ 0.24, e.g. hav-

ing 6 Zn vacancies (VZn) produces a similar dipole to that for 13 VZn and 7 O va-

cancies (VO). We employ a one-sided 2D-periodic surface model using a two region

approach which has been widely employed in modelling surface structures with in-

teratomic potential based methods. Our models consist of 6 layers thick in the c

direction (250 atoms, ca. 15 Å), the top 3 atomic layers were allowed to relax (re-

gion 1), whereas the bottom 3 were held fixed representing the bulk crystal (region

2). The bottom layer (6th layer) was used to spread compensating charge uniformly

(Figure 4.3). The lowest energy structures were tested with a slab twice as big

as the one implemented in our calculations; no significant structural changes were
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Figure 4.3 ZnO polar surface. A dipole-corrected one-sided model of the Zn-terminated
polar surface of ZnO. A two-region setup is used in our calculations with region on, R1,
allowed to relax, and region two, R2, held fixed. The residual surface dipole is compensated
by the opposite and equal in magnitude dipole due to two planes of point charges: placed
outside of the surface slab at a large distance. In this paper, red colour is reserved for O and
grey for Zn.

observed and the difference in the average surface energy is only by −0.1 J/m2.

As discussed earlier, after ionic transfer there is a weak remaining dipole. The

latter was completely cancelled by the creation of one point charge layer on each

side of the slab, which contained 100 points that were distributed over the surface.

The point charges were situated ca. 50 Å from the surface to avoid any interactions

with the topmost atoms (Figure 4.3). The same approach was used to model both

zinc and oxygen terminations.

We used Monte Carlo routines as implemented in KLMC for the surface struc-

ture global optimisation of ZnO polar surfaces. The top layer was made of a grid

with Zn and O bulk lattice positions where the number of VZn and VO was specified
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and KLMC created the surface structures by swapping the vacancies among the grid

positions. Two restrictions were specified: KLMC restricted anions from swapping

with cations and vacancies were only allowed to occupy bulk lattice positions of the

top layer. For each structure created, KLMC called GULP to perform a structure

optimisation using the BFGS algorithm.

We tested all the Zn/O (and O/Zn) possible ratios in a (5×5) supercell: a total

of 26 different stoichiometries for each surface termination. The global search using

Monte Carlo routines as implemented in KLMC probed more than 10,000 different

reconstructions for each stoichiometry — more than 500,000 different structures in

total. The need to analyse the whole range of Zn/O stoichiometries arises from the

fact that the concentration of Zn and O ions on each surface depends strongly on the

sample preparation conditions, including temperature, annealing time, sputtering

time and energy [57].

4.3.3 Surface Energy Calculation

Since the number of ions at the top and bottom layers is different for each stoi-

chiometry, an energetic comparison across stoichiometries cannot be made using

total but surface energies. The surface energy (Esur f ) of a material is the energy per

unit area required to create a surface and is associated with the stability of the sur-

faces. Given a bulk energy containing the same number of atoms as the slab, Ebulk,

and a relaxed energy of the cleaved system, Eslab, then the surface energy, Esur f , is

defined by:

Esur f =
Eslab−Ebulk

A
, (4.4)

where A is the surface area of the cleaved system. For any stable material the surface

energy must be positive. In our 2D model, Esur f is calculated as:

Esur f =
Eslab−Ebulk−Epc

A
, (4.5)

where Epc is one half of the energy of an unrelaxed cleaved slab where the charge

of the top and bottom layer was spread uniformly minus Ebulk.
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4.4 The Dipole Effect on the Atomic Structure of

ZnO Polar Surfaces
As discussed above it is essential to compensate the inherent dipole of the ZnO

polar surfaces; however, there is no energetic and structural study of the importance

of cancelling completely the dipole. In this section, we study the effect of the dipole

moment on the atomic structure and energetic rankings. Our first model (weak

dipole) was built by moving Zn and/or O ions from the top to the bottom layer until

satisfying the relation: |mZn−mO|/25≈ 0.24, where m is the number of ions i in the

topmost surface layer. Twelve different stoichiometries were chosen between the

two polar ZnO surfaces. In the second model (dipole = 0), the inputs of the lowest

five energy structures from the first model were then locally optimised with the use

of point charges. Results are displayed in Figure 4.4, which shows the ranking for

the different approaches. We note that the residual dipole plays a very important

role on the ZnO polar surfaces, as energies and surface structures differ and only

data points on the blue line did not change rankings after cancelling completely

the dipole. Therefore, all the structures discussed below will be referred to those

optimised with the use of point charges.
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Figure 4.4 Energetic rankings for five optimised structures using both with and without
compensating point charges. Twelve different stoichiometries were tested between the two
ZnO polar surfaces. Data points on the blue line represent atomic structures that did not
change energetic rankings. Data points out of the blue line show structures that changed
energetic rankings, meaning a difference between weak dipole and dipole = 0 approaches
(more description of these methods is given in Section 4.4).

4.5 Surface Energies
The surface energy of a material determines its stability along a specific orienta-

tion. Figure 4.5 displays the surface energy for the whole range of stoichiometries

for both polar surfaces, 26 in total for each surface termination. The O-terminated

(0001̄) surface proves to be more stable than the Zn terminated (0001) surface by ca.

0.105 J/m2 on average. The higher stability of the oxygen terminated surface pre-

dicted in this study implies that, under thermodynamic control, the (0001̄) surface

is expected to be more expressed; whereas experiment report a faster (0001̄) growth

with respect to the (0001) surface [132]. The oxygen terminated surface shows less

variation in energy than the Zn terminated face; the difference between the maxi-

mum and minimum is about ca. 0.175 J/m2 compared to ca. 0.230 J/m2 for the

Zn face. The relatively small difference in surface energy in the (0001̄) surface with

respect to the stoichiometry suggests a larger range of approximately equally stable

structures, which would make it very difficult to attribute a single pattern to this

surface. In the Zn terminated surface, the crystal growth will be mainly attributed

to those compositions with low energies. The change of surface energy as a func-

tion of the stoichiometry (Figure 4.5) might be an explanation for the experimental
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behaviour observed for the polar surfaces of ZnO crystals: experiment have shown

that to identify a reconstruction pattern in the (0001) termination is easier than in the

(0001̄) surface. Experimentally, it has been more difficult to attribute a single recon-

struction pattern to the (0001̄) surface than to the (0001) surface. Experiments sup-

ported by ab initio calculations have shown that, under certain conditions, triangular

patterns are formed as a stabilisation mechanism for the (0001) surface whereas for

the (0001̄) surface hexagonal patterns form occasionally [57, 120, 122, 123, 126].

Moreover, in the case of the (0001̄) surface, substantial amounts of OH groups are

expected to be present at low temperatures even at UHV conditions. However, the

areas covered by hexagonal patterns in the O terminated surface are not as wide as

the triangular ones in the Zn terminated surface. Additionally, the (1× 1) period-

icity suggested by experiment [109–112] can be a result of the amount of disorder

suggested by our calculations. Our calculations support the fact that slight changes

to the synthesis conditions lead to different atomic configurations.

Figure 4.5 Surface energies of the polar surfaces as a function of the stoichiometry. For
each data point the relation |mZn−mO|/25≈ 0.24 was conserved.

4.6 Atomic Structure
Figure 4.6 presents the lowest energy surface structures for each stoichiometry with

the Zn termination, and Table 4.1 shows the average atomic relaxation for the first

two atomic double layers. On average, for this termination, we observed strong



4.6. Atomic Structure 95

inwards relaxation from the topmost Zn atoms. For the topmost O atoms, the move-

ment depends on the stoichiometry and is only strong for 0 < mZn < 5. In this

range, the oxygen atoms relax towards the bulk by −0.15 Å to −0.66 Å, increasing

the relaxation as the Zn coverage decreases. For the second double layer, we cal-

culate weak outwards relaxations. For example, the strong relaxations observed for

mZn < 9 make some Zn ions move from the second layer to the top layer. In our

calculations, three different atomic configurations are observed: stripes, triangles

and random vacancies. As the size increases the triangular reconstructions start to

appear, but it is not until mZn = 9 that a well defined triangular configuration is ob-

served. Triangular reconstructions appear among several different stoichiometries

and their stability is supported by the surface energy plot (Figure 4.5). For a higher

mZn, the lowest energy structures are with conglomerated vacancies rather than iso-

lated ones. We observed that for mZn > 19, oxygen adatoms are spread above the

first layer in interstitial sites. The extra zinc ions help to fill the holes left by the

missing zincs. At mZn = 25 there is no vacancy either in the first or second layer.

The first layer presents smooth lateral displacements with 6 oxygen on top in in-

terstitial sites. Triangular reconstructions of different sizes are observed among the

stoichiometries. We noted as well that, most of our reconstructions are surrounded

by oxygen edges. Even though triangular reconstructions appeared in some stoi-

chiometries, in agreement with experiment, we do not see a definitive preference

for such reconstructions. From Figures 4.5 and 4.6 we conclude that triangular re-

constructions are a mechanism of stabilisation but not the only one. The preferred

configuration, as seen in experiment, will depend on synthesis conditions and sur-

face stoichiometry.

Figure 4.7 shows the lowest energy surface structures for the (0001̄) surface.

In contrast to the Zn termination, there is no ionic exchange between layers. For

a range of 0 < mO < 6, the lowest energy structures show small islands spread all

over the surface with Zn interstitials. For mO = 0,2, hexagonal patterns appear

formed with a combination of zinc and oxygen interstitials, the smaller hexagon

is regular with a side length of 5.65 Å; whereas the bigger hexagon has two sides
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of 11.3 Å and four of 8.59 Å. At mO = 6, there is the first well defined triangular

pattern, which increases smoothly till mO = 11,12, where well defined big triangles

connected by oxygen interstitials are formed. These big triangles have the lowest

energy surfaces of all the stoichiometries. For mO > 12, the triangular patterns start

to distort and the surface energy increases slightly. An attempt to create a bigger

triangle is seen in mO = 16. For mO > 19, oxygen ions start to fill the vacancies

and zinc ions sit above the first layer bonded to 3 oxygens from the first layer. The

surface energy for mO > 19 remains nearly constant. At mO = 25 all the vacancies

from the first layer are filled and the excess of three-coordinated zinc ions are spread

over the surface in interstitial sites.

We note that each of the data points displayed in Table 4.1 and Figures 4.5, 4.6

and 4.7 represent the lowest energy structure from 10,000 calculations for a given

stoichiometry. Therefore, it is important to know the influence of higher energy

states on our system: are there more reconstruction patterns that can be seen? or are

only the GM representative? In order to answer these questions, we calculated the

average number of unique configurations that can be present at a given temperature

as a function of the stoichiometry as:

n(T ) =
N

∑
i

exp−(Ei−E1)/kBT (4.6)

where N, Ei, E1, kB and T are the total number of unique configurations, the en-

ergy of a unique state i, the energy of the GM, the Boltzmann constant and the

temperature, respectively. Equation (4.6) is used under the assumption of a canon-

ical ensemble. Figure 4.8 shows the number of unique structures for four different

temperatures: 300 K, 500 K, 1000 K and 5000 K. We observe that, at room tem-

perature (RT), the number of unique structures that are thermally occupied for most

of the stoichiometries for both terminations is close one, thus, validating the data

presented in Sections 4.5 and 4.6. The latter means that the gap between the GM

and the second lowest energy structure is large enough to prohibit the second lowest

and higher energy from being present at RT. As expected, for higher temperatures,

the number of statistically significant structures increases as there is more disorder.
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We also note that where the number of unique structures is greater than one at RT

is mainly for the extreme stoichiometries (at the edge of the graph), which could

also be expected as the number of possible structures for midrange stoichiometries

is much larger than those with high and low stoichiometries. This can be related

to the fact that for high and low stoichiometries are easier to change their atomic

structure without a strong energetic penalty. As we saw from the Figure 4.9), this

happens by moving the isolated atoms. That task is not as easy for midrange, here,

to move an atom means a change of coordination number with a strong penalty,

making bigger the gap between GM and second lowest minimum. For those cases

with more than one unique structure at RT, we compare the atomic arrangement of

the higher energy structures with respect to their GM. Figure 4.9 shows four second

lowest energy structures for different stoichiometries. For the stoichiometry 2 at

the Zn termination, there are no significant changes between the GM and the sec-

ond lowest energy structure to the naked eye. A similar behaviour is observed for

the O termination (stoichiometries 6 and 1); the patterns are conserved, only small

changes can be seen: at O-6, the two isolated zinc atoms are closer for the second

lowest minimum and for O-1 the energetic difference is also attributed to the dis-

tribution of their isolated zinc atoms. For the O-13 stoichiometry, there are some

structural changes; however, the pattern is conserved: a big triangle made of vacan-

cies, with the rest of the vacancies being close together. In general, for the cases

where more than one structure is significant, the slightly higher energy structures

show a very similar atomic arrangement to their GM with only a few changes like

a different distribution of isolated atoms or/and a change of coordination number.

Therefore, the data in Table 4.1 and reconstruction patterns in Figures 4.5, 4.6 and

4.7 are the only meaningful information at room temperature.
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Figure 4.6 Lowest energy structures for the zinc terminated surface. Numbers in each
sub-figure represent the number of zincs at the top surface (mZn); for each stoichiometry
there are 6 oxygens more than zincs. The grey colour is reserved for the second layer
atoms, dark grey and light grey represent oxygen and zinc, respectively. Red and blue were
used for top oxygen and zinc atoms, respectively.
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Figure 4.7 Lowest energy structures for the oxygen terminated surface. Numbers in each
sub-figure represent the number of oxygens at the top surface (mO), for each stoichiometry
there are 6 zincs more than oxygens. The grey colour is reserved for the second layer atoms,
dark grey and light grey represent oxygen and zinc, respectively. Red and blue were used
for top oxygen and zinc atoms, respectively.
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Table 4.1 Atomic Relaxations of the First Two Layers Along the c Axis of the Polar
(0001) and (0001̄) Surfaces. All Relaxations are given in Å.

No. of
Zn/O

(0001)-Zn (0001̄)-O

Zn1 O1 Zn2 O2 O0 O1 Zn1 O2 Zn2 Zn0

25 0.073 0.124 0.027 0.013 -0.746 0.091 0.045 0.013 0.011 -1.006
24 -0.037 0.036 0.035 0.016 -0.645 0.077 0.049 0.014 0.008 -0.987
23 -0.180 0.028 0.093 0.019 -0.686 0.052 0.049 0.018 0.011 -0.990
22 -0.244 0.028 0.093 0.018 -0.747 0.065 0.094 0.032 0.012 -1.066
21 -0.270 0.016 0.055 0.014 -0.749 0.066 0.127 0.029 0.012 -0.919
20 -0.304 0.001 0.015 0.006 -0.757 0.050 0.135 0.034 0.014 -0.944
19 -0.385 -0.010 0.011 0.003 0.047 0.141 0.024 0.012
18 -0.368 -0.004 0.014 0.006 -0.016 0.086 0.029 0.014
17 -0.354 0.002 0.018 0.010 -0.079 0.010 0.012 0.007
16 -0.344 -0.004 0.015 0.007 -0.029 0.029 0.035 0.015
15 -0.227 0.077 0.018 0.012 -0.111 -0.040 0.009 0.007
14 -0.277 0.028 0.023 0.017 -0.107 -0.059 0.021 0.011
13 -0.227 0.039 0.026 0.016 -0.145 -0.092 0.001 0.006
12 -0.236 0.029 0.015 0.018 -0.075 -0.106 0.047 0.005
11 -0.311 0.040 0.064 0.017 -0.026 0.029 0.050 0.020
10 -0.244 -0.026 0.022 0.025 -0.086 -0.167 0.030 0.013
9 -0.270 0.014 0.078 0.033 -0.069 -0.203 0.053 0.015
8 -0.212 -0.039 0.031 0.033 -0.101 -0.274 0.061 0.013
7 -0.450 0.115 0.183 0.033 -0.082 -0.311 0.089 0.022
6 -0.196 -0.084 0.027 0.034 -0.058 -0.278 0.074 0.029
5 -0.238 -0.151 0.012 0.031 0.032 -0.351 0.108 0.032
4 -0.234 -0.218 0.023 0.037 0.072 -0.392 0.140 0.058
3 -0.333 -0.321 0.023 0.039 -0.144 -0.646 0.126 0.048
2 -0.340 -0.548 0.010 0.045 -0.317 -0.781 0.109 0.037
1 -0.344 -0.588 0.001 0.038 -0.317 -0.877 0.119 0.047
0 0.000 -0.664 0.015 0.050 0.000 -1.016 0.112 0.042
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Figure 4.8 Number of significant unique surface reconstructions as a function of the sto-
ichiometry for different temperatures. The horizontal grey lines represent 1,2,3,4 and 5
unique structures, respectively. The nomenclature of the stoichiometries are used as in Fig-
ures 4.5, 4.6 and 4.7

Figure 4.9 GM and second lowest energy structures for selected stoichiometries. Nomen-
clature represents the surface termination and the stoichiometry.
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4.7 Summary and Conclusions

We studied the stabilisation mechanism of the polar ZnO surfaces by means of inter-

atomic potential methods. Our calculations provide a detailed computational study

for the crystal growth of the polar ZnO surfaces. The inherent dipole in the po-

lar ZnO surfaces was cancelled by both ionic transfer between surface sides and

a set of point charges spread over both sides of the surfaces. We have demon-

strated the importance of cancelling the dipole on the ZnO polar surfaces. Neither

the atomic structure nor the energetic ranking was kept between the weak dipole

and zero dipole stabilisation mechanisms for the polar surfaces. The first approach

minimises the dipole by transferring ionic charges between top and bottom lay-

ers, while the second one adds a set of point charges, which cancels completely

the dipole. Among twelve different stoichiometries distributed between the two

polar terminations, the two approaches showed difference in atomic structure and

energetic rankings. Therefore, we conclude that the dipole plays a crucial role in

energetics and atomic structure.

The calculated surface energies indicate a higher stability of the (0001̄)-O sur-

face over the (0001)-Zn surface. On average, there is a ca. 0.102 J/m2 higher

surface energy for the Zn terminated face. For the (0001̄) surface, the change in

surface energy as a function of stoichiometry is about a 24% of that seen for the

(0001) surface. This finding suggests that it is more likely to find a larger range

of approximately equally stable stoichiometries in the (0001̄) surface than in the

(0001) surface. The latter finding is supported by experiment, where it has been

easier to identify patterns in the (0001)-Zn surface than in the (0001̄)-O surface. We

suggest that the (1×1) periodicity seen in experiment can be a result of the amount

of disorder predicted by our calculations.

Structurally, the ZnO polar surfaces also behave differently. While on the Zn

terminated side, we calculated pronounced relaxations across the surface with some

ions (Zn) jumping from the second layer to the first layer, on the O terminated side

the movements are not so strong and the ionic transfer between layers only hap-

pens when the top zinc layer is full (mO > 19), and every oxygen that is transferred
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to the top layer serves to fill the oxygen vacancies. For both surfaces, triangular

reconstructions are common. The triangular reconstructions shown in this work

for the Zn terminated side agree with STM images [57], whereas experiment sug-

gests hexagonal reconstructions. In our calculations, only hexagonal patterns are

observed for mO = 1 and mO = 3 (Figure 4.7). We demonstrated that, in general,

the different stoichiometries will be represented by their GM and that for the cases

where more unique structures are representative, a similar reconstruction pattern is

expected. We note that further stabilisation of the structures presented here may

be possible. Future work will examine larger reconstruction patterns in a (10×10)

supercell size, as well as the possible combination of two stoichiometries with low

surface energy.



Chapter 5

The Cu/ZnO System

5.1 Introduction

The Cu/ZnO system is of great interest in the chemical industry due to its wide use

in the water-gas shift reaction [133], methanol steam reforming [134] and synthesis

of methanol [135]. For example, the production of methanol was estimated to be

65 million tonnes per year in 2013 [12]. This system has been widely studied both

experimentally and theoretically. Due to its activity in the methanol synthesis pro-

cess, most of the studies have been focused on copper deposition on the ZnO polar

surfaces. However, the nonpolar ZnO surfaces are predominant and contribute up

to ca. 80% of the total surface area [136]. Additionally, nonpolar surfaces are easier

to model (e.g. they do not present a dipole moment across the slab nor show atomic

reconstructions), which makes them ideal to describe Cu-ZnO interactions.

The low computational cost of IP calculations compared with ab initio allow

us to optimise a vast number of structures (e.g. a bigger portion of the energy

landscape) in a reasonable amount of time, from which the lowest energy structures

can be selected as candidates to be refined with the DFT approach.

In this Chapter, we focus on the atomic structure that results from the interac-

tion between copper clusters and ZnO nonpolar surfaces, which have been inves-

tigated by means of interatomic potentials and DFT methods. The first section is

focused on the atomic structure of small copper clusters and their growth on the

nonpolar ZnO surfaces, which is followed by a description of the methods used
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throughout this Chapter. In the results section, we discuss the fitting of the Cu/ZnO

interatomic potentials to DFT structures and energies, followed by DFT calculations

performed to optimise the procedure for our global optimisation technique. Then,

the new Cu-ZnO IP are used to perform global optimisation calculations of eight

Cu atoms (this number provides a good balance between cluster size and comput-

ing time required to find the global minima) deposited on the (101̄0) surface. From

the latter calculations, the lowest five energy Cu/ZnO structures were refined and

compared through DFT. Lastly, we perform global optimisation calculations of Cun

clusters (1 ≤ n ≤ 7) deposited on the (101̄0) surface at the atomistic level. At the

end, we give a brief summary of our results and future planned work.

The work summarised in this Chapter is part of an international collaboration

with Professor Stefan Bromley (Universitat de Barcelona) to fit potentials between

metals and metal oxide surfaces as interatomic potentials are used in global optimi-

sation techniques to study metal cluster growth as well as to predict new interface

structures. All work presented in this Chapter is, however, my own.

5.1.1 Small Cu Clusters

We showed in Chapters 3 and 4 that ZnO IP provide very similar structures to those

from DFT calculations. With respect to the Cu-Cu interatomic interactions, the

Gupta many-body potentials by Cleri and Rosato [8] have been widely used to study

cluster structures, growth and dynamics [137–140]. For example, these Gupta po-

tentials have been used to study Cun clusters (n ≤ 56) using a genetic algorithm

(GA) [137]. Atomic structures were found to have high symmetry geometries (an

effect of attractive long-range forces in the Gupta potential) and mainly based on

icosahedral structures [137]. The latter structures can be compared with previous

studies using different techniques [141–143].

Global minimum structures for Cun clusters (3≤ n≤ 8), predicted in this work

using the Gupta potentials derived by Cleri and Rosato [8], are presented in Fig-

ure 5.1. These structures show a good agreement with previous experimental and

theoretical studies [137, 138]. All global minima structures have triangular faces

(as mentioned earlier, the high symmetry is attributed to the attractive long-range
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forces in the Gupta potential). The atomic structure of Cun clusters is as follows:

Cu3 cluster = equilateral triangle, Cu4 = triangular pyramid (tetrahedron), Cu5 =

triangular bipyramid, Cu6 = regular octahedron, Cu7 = pentagonal bipyramid, and

Cu8 = snub disphenoid.

Figure 5.1 Global minuma Cun clusters (3 ≤ n ≤ 8) as calculated with the Gupta inter-
atomic potentials [8].

5.1.2 Cu Growth on Nonpolar Surfaces of ZnO

As mentioned previously, the growth of copper on ZnO surfaces is of great interest

due to its commercial applications. STM images [144] show that one mono-layer

(ML) of copper on the (101̄0) ZnO surface wets the surface, whereas at lower cover-

ages of 0.025 ML exclusively 3D Cu clusters are found. These 3D metallic particles

include 2-3 layers of Cu, 6−9 Å height and 15−40 Å diameter. As discussed in

Chapter 3, the (101̄0) ZnO surface is highly stepped. STM images [144] display a

high concentration of steps with edges decorated with Cu clusters, mainly on steps

running along the [001] direction. Clusters on edges along the [12̄0] direction and

on terraces (away from the step edges) are rarely seen. At higher Cu coverages

(0.05-0.5 ML), the concentration of clusters increases faster than their average size.

According to this STM study [144], the nucleation of Cu takes place in the follow-

ing sequence: along the (12̄10) steps > on the terraces > along the (0001) steps.

Electronically, photoelectron experiments show that at low Cu coverages, there

is a downward band bending of ZnO which is attributed to an electronic transfer

from Cu to ZnO [104, 145], whereas at high Cu coverages, the ZnO band bending
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disappears. This charge transfer was confirmed with a hybrid DFT study by Hell-

ström et al. using small Cu clusters (with n ≤ 9) on the (101̄0) ZnO surface. In

the latter study it was concluded that even-numbered clusters are always charge-

neutral, while odd-numbered clusters can become positively charged by donation

of an electron to the ZnO conduction band.

5.2 Methodology

In this Chapter, all the electronic structure calculations were performed using the pe-

riodic plane-wave Vienna Ab-initio Simulation Package (VASP) [47, 48] employing

the generalized gradient approximation (GGA) PBEsol functional [40]. The inter-

actions between core (Zn:[Ar], O:[He] and Cu:[Ar]) and valence electrons were

described with the projector augmented wave (PAW) approach [45, 49]. The ZnO

surface models employed in this Chapter were the nonpolar (101̄0) and (112̄0) sur-

faces. As in previous Chapters, a kinetic energy cutoff of 700 eV was sufficient to

converge the lattice energy to less than 1 meV. Supercell sizes of (4×4) and (4×3)

with a vacuum slab of 18 Å were found to be large enough to avoid the effects of

spurious interactions between repeated cells. In the (101̄0) ZnO surface, a 2×1×1

gamma centred k-point mesh was used for the (4× 4) supercells and 2× 2× 1 for

the (4×3). When an atomic relaxation was performed, the forces on all ions were

converged to less than 0.02 eVÅ−1. DFT calculations served two purposes in this

Chapter: to generate the data to which the interatomic potentials are fitted and to

refine the Cu/ZnO structures obtained with global optimisation techniques.

The interatomic potential calculations were carried out using the General Util-

ity Lattice Program (GULP) [30, 31] with the shell model potentials for ZnO de-

veloped by Whitmore et al. [55] (presented in Table 5.1 and used in Chapters 3

and 4), and an embedded-atom model interatomic potentials for Cu by Cleri and

Rosato [8] (Table 5.2). The interatomic potential parameters representing the Cu-O

and Cu-Zn interactions were fit to a set of data: geometries and energies of a series

of periodic single point (SP) DFT calculations of Cu4 and Cu8 clusters interacting

with the bulk terminated nonpolar (101̄0) and (112̄0) ZnO surfaces. These data
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were validated using a higher quality hybrid DFT test on the Cu4/(112̄0)-ZnO sys-

tem. Figures 5.2 and 5.3 show the schematic model used to generate the data. For

Cu4, one adsorption site on each ZnO surface was employed (Figure 5.2), whereas

for Cu8, 3 different sites were chosen: two on the (101̄0) and one on the (112̄0)

ZnO surface (Figure 5.3). A set of 18 SP calculations for each site was used for

the fitting procedure (90 points in total). Among these 18 SP calculations, only the

z coordinate of the Cu atomic positions varies, see side views of Figures 5.2 and

5.3. The distances between the topmost ZnO surface atom and the closest Cu atom

were varied in steps of 0.1 Å from 1.5 to 2.0 Å, of 0.2 Å from 2.0 to 3.0 Å, and of

0.5 Å from 3.0 to 6.0 Å. Additionally, one SP calculation was made at 9.0 Å (at the

middle of the vacuum slab), which represents the Cu cluster being in gas phase hav-

ing no interaction with the ZnO slab and where the adsorption energy is zero, the

energy of this point was shifted to zero and the rest of observables are reported with

respect to this value. Buckingham and Morse potentials (Table 5.3) were used to

describe the Cu-O and Cu-Zn short-range interactions, respectively. Greater details

of the fitting procedure are given in the following section.

The new Cu-ZnO interatomic potentials were used in global optimisation cal-

culations of Cu8 on the (101̄0) ZnO surface with the Knowledge Led Master Con-

troller (KLMC) code, the features of which have been discussed in Chapter 2, and

which was applied in Chapter 4. The solid solutions routine was used to perform

this task, which created 1,000 different Cu/ZnO structures by swapping Cu ions

over a given lattice mesh. A ZnO slab of size (4× 3) and a depth of 5 double

atomic layers (240 atoms) was employed with the restriction that only Cu atoms

are fully relaxed. The Cu mesh used was 3 atomic layers (41 atoms) in a (4× 4)

supercell of the (110) Cu surface, where the closest Cu atoms are at ca. 2.5 Å above

of the topmost ZnO surface atom (Figure 5.4). The structure and stability of the

lowest five structures were verified with DFT calculations.
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Table 5.1 Parameters of the Interatomic Potentials Used for Zinc Oxide. a

Buckingham Range (Å) A (eV) ρ (Å) C (eV Å6)

Znc-Os 0.0−2.2 592.342818 0.352159 12.896893
Znc-Os 3.1−3.3 157.297013 0.429673 5.815914
Znc-Os 3.6−12.0 912.517869 0.078935 11.723055
Os-Os 0.0−12.0 23674.698081 0.226404 33.476469

Polynomial C0 (eV) C1 (eV Å) C2 (eV Å2)

Znc-Os 2.2−3.1 111.901725 −158.727040 89.657363
Znc-Os 3.3−3.6 64102.354057 −93216.170229 54188.807700

C3(eV Å3) C4(eV Å4) C5(eV Å5)

Znc-Os (cont.) 2.2−3.1 −24.986350 3.399631 −0.177932
Znc-Os (cont.) 3.3−3.6 −15741.070904 2284.873362 −132.581025

Spring k2 k4

Oc-Os 0.0−0.6 55.518883 2625.567362

L-J A(eV Å12) C (eV Å6)

Znc-Os 0.0−2.2 316.435204 0.000000

Ion charges charge (−e)

Znc 2.000000
Oc 1.754415
Os −3.754415
a Table taken from Ref. 55. Znc, Oc and Os represent Zn core, O core and O
shell, respectively. All short-range potentials were cut off at 12 Å. The poten-
tial between Zn core and O shell is split into three regions, each of which deals
with a specific coordination sphere of the opposed ions. The polynomial po-
tentials are used to spline the regions together, and across the whole range, the
ZnO potential function is continuous. The forms of the potentials described above
are: E(Buckingham) = Aexp(−R/ρ)−C/R6, E(Lennard-Jones) = A/R12−C/R6,
E(Spring) = (1/2)(k2r2 + k4r4), E(Polynomial) = C0 +C1R +C2R2 +C3R3 +
C4R4 +C5R5, E(Coulomb) = q1q2/R , where R represents the distance between
the ions in question.
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Figure 5.2 Top and side views of the Cu4-ZnO structural model employed in fitting pa-
rameters of interatomic potentials to DFT data. The (101̄0) (black) and the (112̄0) (blue)
(2×2) supercell are shown. In the side views, different blue shades were used to represent
the heights of the SP calculations. Blue circles are reserved for copper atoms.

Table 5.2 Parameters of the Interatomic Potentials Used for Copper. a

Buckingham Range (Å) A (eV) ρ (Å) C (eV Å6)

Cu-Cu 0.0-12.0 9837.021759 0.233229 0.0

Embedded Atom Model

Cu-Cu 0.0-12.0
EAM Functional EAM Density

Type A Type A β r0
Square root 1.0 Baskes 1.498176 4.556 2.556191

a Potentials taken from [8]. The values presented in this table are a conversion
from the Gupta potentials, where the repulsive part was adapted to the Buckingham
potential and the many-body term to the embedded atom model.
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Figure 5.3 Top and side views of the Cu8-ZnO structural model employed in fitting pa-
rameters of interatomic potentials to DFT data. The (101̄0), in black, the (112̄0), in blue,
(4×4) supercell and the GM Cu8 cluster are shown. In the side views, different blue shades
were used to represent the heights of the SP calculations. Blue circles represent copper
atoms.

Table 5.3 Interatomic Potentials Parameters for the Cu-ZnO System. A Radial Cut-off
of 12 Å was Used for All Potentials. The Forms of the Potentials Described Below Are:
E(Buckingham) = Aexp(−R/ρ)−C/R6, E(Morse) = De((1− exp(−a(R− r0)))

2 − 1),
Where R Represents the Distance Between the Ions in Question.

Morse De (eV) a0 (Å−1) r0 (Å)

Cu-Zn 1.148402 1.7393 2.23494

Buckingham A (eV) ρ (Å) C (eV Å6)

Cu-O 46.34077 0.593419 0.0
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Figure 5.4 Graphical representation of the global optimisation process used within
KLMC. (a) Shows the 5 double-layer (4×3) ZnO surface with 3 atomic layers of a (4×4)
supercell of the (110) Cu surface on top of it. This picture shows 41 Cu lattice positions
from which 8 will be occupied. (b) A structure example created by KLMC after the swap-
ping process with 8 Cu occupied lattice positions.

5.3 Fitting of Interatomic Potentials
The number of atomic arrangements for small systems such as Cun/ZnO (n≤ 9) can

be huge and unfeasible to study at the DFT level. On the other hand, good IP can

provide a reasonably accurate atomic structure and energetic information at a much

cheaper computational cost: for example, one single 200 atom structure can be opti-

mised in ca. one hour using one computer core, whereas the same calculation at the

DFT/GGA level can take up to one day (depending on how far the initial structure

is from the local minimum) using hundreds of cores. Therefore, it is sensible to

create interatomic potentials for the Cu/ZnO system, which will save computational

resources.
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Initially, the Cu/ZnO potentials were fitted using relaxed (101̄0) and (112̄0)

ZnO surfaces and the three adsorption sites with a Cu8 cluster, which are shown in

Figure 5.3 (54 observables); however, it was noted that with this configuration the

Cu-Zn potential parameters drop to zero. This behaviour is due to the termination

of the surface slab: as discussed in Chapter 3, both nonpolar ZnO surfaces show an

ionic termination with strong cationic relaxation towards the bulk, thus, increasing

the Cu-Zn distance and showing a weak interaction. However, our DFT calculations

using a Cu atom on top of a Zn ion showed high positive Cu-Zn adsorption energies

at short distances e.g. ca. 1.5 Å. From the latter observation, it is concluded that the

relaxed ZnO atomic surface structures are not optimum to compute the interactions

between Cu and Zn atoms at the DFT level. Therefore, the Cu-Zn interactions were

taken into account by using bulk-like nonpolar ZnO surface terminations.

Our potentials were initially fitted to Cu8 clusters; however, they were tested

and refitted using a combination of Cu4 and Cu8 clusters on different sites on the

nonpolar ZnO surfaces. In a second phase, 36 observables were added in the fit

using a planar Cu4 cluster (Figure 5.2), with one adsorption site on each nonpolar

ZnO surface. This refinement achieved a good balance between planar and non-

planar clusters as well as accurately reproducing the atomic structures of Cu clusters

of different sizes.

As discussed in Chapter 2, the Buckingham potential has an intrinsic problem

at short interatomic distances: the Cr−6 term diverges when the interatomic distance

r is close to zero. To avoid this problem and noting that the implementation of a

C term in the Cu-O interatomic potential does not improve substantially our fit, the

Cr−6 was excluded from the potential. In an attempt to improve the accuracy of our

two-body Cu-ZnO potentials, Buckingham force field parameters were converted

to Morse potentials followed by a further fit optimisation. Our results showed an

improvement when a Morse force field described the Cu-Zn interactions. The Morse

potential has an implicit attractive term, which is not present in the interaction of

the electron rich Cu and O species. Therefore, Cu-Zn interactions were represented

by a Buckingham potential. As mentioned in Chapter 2, the Morse potential is
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appropriate when the interacting atoms are covalently bonded, e.g. interactions

between an adsorbate and a surface.

Finally, Figure 5.5 shows the set of energies as calculated with DFT and those

as calculated with the new Cu-ZnO potentials (Table 5.3). Clearly, good agreement

between the interatomic potentials and DFT calculations is achieved. When com-

pared with DFT, our IP match the equilibrium bond length in three of the five cases

with a disagreement within 0.1 Å for the other two sites: (101̄0) + Cu8 model 2 and

(112̄0) + Cu4. Moreover, a good representation of the energy depth is achieved in

all cases.
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Figure 5.5 Potential fitting curves. Blue and green lines show the adsorption energy ob-
servables using DFT and IP, respectively. From 5 Å to 9 Å all the curves remain flat to the
naked eye.
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5.4 Further Optimisation
In order to speed-up the global optimisation calculations, we have studied different

aspects that could modify the Cu/ZnO atomic structure: (i) the effect of the ZnO slab

relaxation on the structure of the Cu cluster; (ii) the reduction of the ZnO supercell

from (4×4) to (4×3); and (iii) the Cu/ZnO optimised structure when two different

initial configurations are used.

Figure 5.6 shows the initial and two optimised atomic structures with the dif-

ference that the first was fully optimised, whereas in the second only the Cu8 cluster

was allowed to relax. The structural difference between the two optimised configu-

rations is rather small with only noticeable changes in the ZnO slab where Zn ions

undergo strong inwards relaxation as previously discussed in Chapter 3. The effect

of the ZnO slab relaxation on the Cu8 atomic structure is small, thus, allowing us to

reduce substantially the computational cost in our calculations by keeping the ZnO

fixed.

Figure 5.7 displays a reduced (4× 3) supercell of the (101̄0) ZnO surface

model with a Cu8 cluster sited on top of it in two different positions (see top views).

In the initial configurations, the three Cartesian coordinates are different between

the Cu8 clusters. After optimisation, both structures find the same atomic structure.

Since the (101̄0) ZnO slab does not have many morphologically different sites, and

the Cu8 is big enough to cover most of them, we would expect that this optimised

structure will be found if a different starting point is chosen (using a reasonable

distance away from the slab, e.g. 3−4.5 Å). We notice as well that this optimised

structure is the same as the one shown in Figure 5.6. Therefore, neither the reduc-

tion of the ZnO supercell to (4× 3) nor the use of different initial configurations

affect the DFT results. In our global optimisation calculations, we use a (4× 3)

supercell with the ZnO slab fixed.
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Figure 5.6 Top and side views of the initial and optimised Cu8/ZnO structures. The black
lines represent the (4× 4) supercell. All ions were allowed to relax in the figures at the
center, whereas in the figures on the right the ZnO atoms were held fixed.

Figure 5.7 Top and side views of two different initial Cu8/ZnO structures. The black lines
represent the (4×3) supercell. Both structures optimised in the same final structure shown
at the bottom of the Figure.
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5.5 Global Optimisation

A set of 1,000 different Cu8/ZnO structures was found to be enough to find the

global minimum. These structures were optimised using the method described in

Section 5.2 and IP presented in Tables 5.1, 5.2, and 5.3. The five lowest energy

structures of the Cu-ZnO system, as calculated using IP and refined with DFT, are

shown in Figure 5.8. We consider that, analysing those five structures is sufficient

to test on our potentials. In general, when compared with DFT, the Cu/ZnO IP show

a good agreement both structurally and energetically, although in some cases there

are significantly different.

Structurally, similarities between IP and DFT calculations are clear and only

few significant atomic displacements are observed. The lowest DFT energy struc-

ture was found with two different IP structures. We note a preference for planar

Cu structures over non-planar. The optimised structures were found in less than

40 ionic steps in 60% of the cases, whereas placing a GM Cu8 cluster at 3 Å can

take over 200 ionic steps, thus reducing the computational cost by ca. 80%. Cop-

per atoms supported on ZnO tend to form triangular configurations, like those in

gas-phase copper clusters.

Energetically, when refined by DFT, the lowest energy structure is 0.32 eV

lower in energy than the configuration obtained by relaxation of a gas-phase global

minimum Cu8 cluster placed on top of the ZnO surface at ca. 3 Å (Figure 5.7);

the atomic structures are different as seen in Figures 5.7 and 5.8. At the DFT

level, only the second structure shown in Figure 5.8 is higher in energy than the

one in Figure 5.7. Here, structurally, there is no substantial difference between IP

and DFT (suggesting that this structure is either situated close to a saddle point or

it is very difficult to break its high symmetry); however, the energetic difference

is 2.093 eV for DFT (when compared to the DFT GM); whereas for IP it is only

0.097 eV (Figure 5.8). The DFT optimised structures (Figure 5.8) reveal different

atomic arrangements from those calculated with IP (not the case for the second

structure), which makes direct comparison difficult between IP and DFT energies.

The structural modification suggests that electrons play a significant role during the
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DFT refinement. We suggest a direct comparison by taking the relative IP energies

of the optimised structures and those calculated with DFT, where the DFT energies

are taken from a SP calculation on the optimised IP structures. The shifted SP DFT

energies are: 0.000 eV, −0.430 eV, 0.016 eV, −0.289 eV and−0.500 eV. The sec-

ond structure results very stable in comparison with the others, which tell us that the

large mismatch is related to its positioning on the DFT landscape: it is very close

to the bottom of the saddle point, whereas the other four structures are farther, thus,

allowing a further energetic decrease.

We also checked that the optimised DFT structures are not lower in energy (un-

der the IP landscape) than their respective initial IP structures. When an optimised

DFT structure is re-optimised with IP, it always finds a lower energy structure, going

back to the optimised IP structure (Figure 5.8) in most of the cases.

Structural and energetic discrepancies can be expected not only from our Cu-

ZnO fit but also to the ZnO and/or Cu-Cu IP. Since the ZnO slab is held fixed and the

strong agreement of their IP and DFT has been proved earlier [55, 86, 92, 146, 147],

any mismatch should be linked to either the Cu-Cu or Cu-ZnO potentials. To further

rationalise the behaviour of the Cu/ZnO IP, we have calculated the five lowest en-

ergy IP structures shown in Figure 5.8, with the modification that the ZnO slab was

removed. These periodic single point calculations were performed using both IP and

DFT. IP (DFT) energies, with respect to the first structure, are as follows: 0.000 eV

(0.000 eV), 0.062 eV (0.345 eV), −1.387 eV (−0.942 eV), −0.261 eV (0.049 eV)

and 0.442 eV (0.725 eV). There is a preference for 3D clusters; whereas with the

ZnO slab, the Cu clusters wet the surface. On average, there is an energetic differ-

ence of ca. 0.3 eV between IP and DFT calculations. Additionally, we repeated the

previous IP and DFT calculations but using a gas-phase Cu8 cluster. The results are

slightly different from the periodic ones. IP (DFT) energies, with respect to the first

structure, are as follows: 0.000 eV (0.000 eV), 0.534 eV (0.558 eV), −2.187 eV

(−2.385 eV), −1.044 eV (−1.350 eV) and 0.506 eV (0.678 eV). When compared

with the Cu8 periodic calculations, the stability of 3D clusters is higher; whereas

linear structures are more unstable: this may be related to the even further reduction
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of coordination number. Again, there is a good agreement between IP and DFT

energies with the biggest difference being ca. 0.3 eV (fourth structure, Figure 5.8)

between the two approaches.

Another factor which could cause a mismatch between IP and DFT calcula-

tions is the shape of our Cu-ZnO potentials (Morse and Buckingham) and the curves

presented in Figure 5.5. With respect to the Figure 5.5, there are small differences

between the set of DFT data and our fit. As discussed in Chapter 2, Morse and

Buckingham potentials are employed to model the short range interactions, and (in

our case) are represented by three and two parameters, respectively. The small num-

ber of variables employed may be not enough to perfectly describe such a complex

system.

Generally, our approach and potentials have proved to be very effective in de-

scribing the Cu/ZnO system (predicting low energy structures with high accuracy)

and to perform global optimisation calculations, which are unfeasible to run at the

DFT level. Our calculations suggest that a small IP-DFT mismatch (caused by the

landscape difference and the combination of errors in the Cu-Cu and Cu-ZnO po-

tentials) must be expected. However, our potentials can work as a filter to give

sensible Cu/ZnO structures with a subsequent DFT refinement.

With the validation of our Cu/ZnO potentials, we proceed to calculate the low-

est energy IP structures of Cun clusters (1≤ n≤ 7) on the (101̄0) surface. Figure 5.9

shows the GM structures and energies after global optimisation for Cun/ZnO. As

copper and oxygen are electrons rich and zinc are poor, we expect a Cu-Zn attrac-

tion and a Cu-O repulsion. The latter behaviour is observed in our calculations: Cu

configurations tend to avoid oxygen atoms. Moreover, Cu triangular based struc-

tures are predominant with a preference for planar Cu clusters. We calculated a

decrease of the adsorption energy per Cu atom as the concentration increases, in-

dicating a higher stability for bigger Cu clusters over the smaller ones. The higher

stability for planar Cu clusters at low coverages is in agreement with STM studies

by Dulub et al. [148], complemented by LEED, UPS and LEIS. In general, they

observe a 2D copper growth at low coverages (0.001-0.05 equivalent ML); whereas
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at coverages greater than 0.01 ML, 3D clusters start to appear. As suggested earlier

by STM images and quantum and molecular mechanical (QM/MM) calculations

[148–150], the ZnO substrate shows a strong influence in the Cu growth, as the 3D

shape of the most stable “gas phase” Cu clusters disappears when in contact with

the ZnO surface.
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Figure 5.8 Top and side views of the five lowest energy structures from global optimisa-
tion. On the left, the structures predicted by our new Cu/ZnO set of potentials. On the right,
the structures refined by DFT. Energies are with respect to the lowest energy structure on
the respective energy landscapes. The (4×3) supercell is shown in the first structure.
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Figure 5.9 Top and side views of the global minima found of Cun clusters (1 ≤ n ≤ 8)
deposited on the (4× 3) (101̄0) surface from global optimisation. The formation energy
(using Cumetal as a source of Cu) per Cu atom is displayed.
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5.6 Summary and Conclusion

In this Chapter, we parameterised the force fields that describe the interactions be-

tween copper and zinc oxide. These IP were created with the aim of exploring the

energy landscape of Cu clusters on ZnO surfaces. In order to obtain good Cu/ZnO

IP, different aspects were taken into consideration such as: (i) bulk-like nonpolar

ZnO surface terminations were used to allow a good description of the Cu-Zn inter-

actions; (ii) planar Cu4 clusters were employed to increase the accuracy and give a

good balance between planar and non-planar clusters; (iii) Buckingham and Morse

potentials gave a good description of the Cu-O and Cu-Zn interactions.

There is a strong agreement in the fit of the interatomic potentials to DFT SP

calculations, which suggests that a good representation of the Cu/ZnO system is

expected. We also show that the relaxation of the ZnO has no substantial effect

on the optimised Cu8 structures, which allow us to speed-up our calculations even

further during the global optimisation.

Our global optimisation calculations found three structures lower in energy

when compared to the optimised GM Cu8 cluster on top of the (101̄0) surface,

with a difference of 0.32 eV with respect to the lowest (found twice) refined DFT

Cu8/ZnO energy structure.

In a structural comparison, a close similarity between IP and DFT calculations

was achieved with a preference for planar Cu structures. In most of the cases, the

DFT optimised structures were found in less than 40 ionic steps, whereas using the

same computational resources and a GM Cu8 cluster at 3 Å can take over 200 ionic

steps. In conclusion, the new Cu/ZnO interatomic potentials proved to give a good

structural agreement with DFT calculations.

Energetically, in general, a good agreement between IP and DFT structures

was achieved. However, we observed a strong disagreement for the second lowest

energy IP structure. This is related to the difference between energetic IP and DFT

landscapes: the second structure is very close to a saddle point which is why its

atomic arrangement does not change substantially, whereas the other four structures

relax further. There is a small energetic IP-DFT mismatch, which is produced by
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the combination of errors in the Cu-Cu and Cu-ZnO potentials. We note that the Cu-

ZnO potentials were fit using only five parameters, which might produce a relatively

simple IP, that is not sufficient to perfectly describe such a complex system.

In agreement with previous experimental and theoretical work, global optimi-

sations of Cun clusters (1 ≤ n ≤ 7) deposited on the (101̄0) surface show a prefer-

ence for planar Cu clusters, with a strong interaction between the Cu and Zn species.

Thus, exhibiting the strong influence of the ZnO substrate over the gas phase 3D Cu

clusters.

5.7 Future Work
The work presented in this Chapter represents the first phase of this project. We

have fitted and tested Cu/ZnO interatomic potentials, finding a good agreement be-

tween IP and DFT. In the next stage, we will be using the Cu/ZnO IP to study the

Cu growth on the nonpolar ZnO surfaces. Firstly, we will address the stable struc-

tures of small Cu clusters on the nonpolar surfaces on terraces and steps (as seen in

Chapter 3). Secondly, we will study bigger Cu clusters and investigate their stability

on the steps edges as seen in STM images [148]. In the final stage, we will focus on

the Cu crystal growth on the stable ZnO polar surfaces presented in Chapter 4.



Chapter 6

The MoO3/Fe2O3 System

6.1 Introduction

In Chapters 3, 4 and 5, we have extensively described the structure and electronic

properties of the four main low-index zinc oxide surfaces and their interaction with

copper clusters. In this Chapter, we focus on the α-Fe2O3(0001) surface and its

interaction with MoO3 molecules.

The mineral form of iron (III) oxide, also known as hematite, has a corundum

structure and is the most abundant and economically important source of iron in the

world. Industrially, Fe2O3 is the main source of iron for the steel industry; it has a

wide range of uses and applications including electronics (data storage disks), pho-

tocatalysis (water-splitting reaction), metallurgy (production of iron, steel and many

alloys) and medicine (production of calamine). Moreover, one of the important uses

of Fe2O3 is as a support in the MoO3/Fe2O3 catalyst. The structure of the molyb-

date monolayer covered iron (III) oxide is of great importance due to its role in the

synthesis of formaldehyde, which is an important industrial chemical produced by

the catalytic oxidation of methanol. Among its applications, formaldehyde-based

materials are the key in the production of resins, inks and wrinkle-free clothing. It is

also used in drilling operations in petroleum industries and in 2012 the worldwide

formaldehyde consumption exceeded 40.8 million tonnes [151]. There is a clear

industrial need to understand the behaviour of the MoO3/Fe2O3 catalyst which will

be reflected in an improvement of the catalytic activity and a reduction of the pro-
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duction cost.

In methanol oxidation, Fe2O3 is known to be completely unselective to

formaldehyde [152, 153], whereas the MoO3/Fe2O3 catalyst has been reported to

have a very high selectivity to formaldehyde. Therefore, any formaldehyde selectiv-

ity in the MoO3/Fe2O3 system can be attributed to the molybdenum at the material

surface. This material is proposed to be present in commercial catalysts as an active

Mo monolayer on top of ferric molybdate [154].

Usually, commercial iron molybdate catalysts are doped with an excess of Mo

because the hot temperatures during reaction volatilizes it [155, 156]. The problem

with this approach is that it creates multiple distinct phases including both MoO3

and Fe2(MoO4)3, which makes it difficult to assign the nature of the active site.

Experimental XANES (X-ray absorption near edge structure) studies [154] have

confirmed the presence of octahedral Mo units in 1 ML equivalents of Mo oxide

onto the surface of Fe2O3, whereas the EXAFS showed that these Mo units are

bound to the Fe2O3 surfaces with clear Mo-Fe interaction. More information on the

atomic structure of this material can be obtained with modelling techniques.

In this Chapter, we carried out ab initio calculations in the search for the most

stable atomic structure for the clean Fe2O3 (0001) surface and MoO3 supported

(0001) Fe2O3 catalyst. All the calculations presented here were driven by exper-

iments, our aim was to suggest a MoO3/Fe2O3 atomic structure for the fitting of

EXAFS parameters. Therefore, our analysis focuses mainly on MoO3 adsorption

energies and Mo-O and Mo-Fe bond lengths. Different adsorption sites were tested,

with the lowest energy structure showing a good agreement with experiment.

6.2 Methods and Computational Details

6.2.1 Bulk Fe2O3

All the calculations presented in this Chapter were performed on the α-Fe2O3

corundum structure which has been shown to be the most thermodynamically stable

form of iron oxide over a wide range of oxygen partial pressure including ambient

conditions [157].
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Calculations were carried out using spin-polarized DFT with the Vienna Ab

initio Simulation Package (VASP) [47, 48], discussed in Chapter 2. The projector

augmented wave (PAW) method [45, 49] was used to describe the core electrons

together with the nuclei. In this formalism, eight valence electrons (3d74s1) for Fe

atoms and six valence electrons (2s22p4) for O atoms were taken into account.

Due to the strongly localised Fe d electrons, the exchange-correlation energy

was treated for on-site strong Coulombic interactions using the so-called DFT + U

[158] approximation, which was introduced in Chapter 2. A value of (U−J)= 4 eV

was applied to the Fe d states, which has been found to show optimal agreement

between theory and experiment for a wide range of physical properties [159]. The

GGA was chosen, which provides very good results for molecular geometries, bind-

ing energies, and ground-state energies. PBEsol functional [40] was used to deal

with the gradient of the electron density. The PBEsol is an improvement of the

Perdew-Burke-Ernzerhof (PBE) [39] functional as it achieves better results of equi-

librium properties for densely-packed solids and their surfaces. Representative cal-

culations have been strongly corroborated using higher-quality, smaller core pseu-

dopotentials on metal ions.

The total energy was converged to 1 meV with respect to the k-mesh sam-

pling and the plane wave cutoff. The Brillouin zone integration was described us-

ing Monkhorst-Pack grids [42]. Good convergence was achieved with a k-mesh

of 16× 16× 16 for the rhombohedral primitive cell and a plane wave cutoff of

500 eV. The iterative relaxation of the ions was carried out until the forces were

below 0.01 eVÅ−1.

6.2.2 Surface Models

All the calculations were done on the Fe-terminated Fe2O3(0001) surface, which

has been shown to be the most stable over a wide range of oxygen partial pres-

sure [160]. The slab method was employed to describe surfaces within three-

dimensional periodic boundary conditions.

The Fe2O3 polar surface (0001) was modelled by keeping fixed the three lattice

parameters and middle slab atoms, whereas all other ions were allowed to relax. The
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Figure 6.1 Hexagonal unit and primitive cells of α-Fe2O3. Both lattice parameters and
interplane distances Fe-Fe(A) and Fe-Fe(B) are shown. The anti-ferromagnetic arrangement
is indicated with green arrows. Red and brown spheres represent oxygen and iron ions,
respectively.

surface energy (Esur f ) was converged to 1 mJ/m2 with respect to the thickness of

the slab and the k-mesh sampling. Convergence was achieved with a slab containing

thirteen Fe2O3 layers (65 atoms) and a k-mesh of 6×6×1. A denser grid of 10×

10× 1 does not show substantial changes in the surface energy. The cutoff energy

was kept as in the bulk and a vacuum space greater than 18 Å was used. All the

surfaces were built with symmetry to avoid dipole moments.

6.2.3 MoO3 Adsorption

Five different initial MoO3 adsorption sites were tested on the most stable (0001)

surface of α-Fe2O3, which are represented in a (1× 1) cell in Figure 6.2. To aid

experimental site characterisation, we have run a series of ab initio plane-wave cal-
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(a) Top view. (b) Side view.

Figure 6.2 Top and side view of the α-Fe2O3(0001) surface. Different initial adsorption
sites (from A to E) for the MoO3 molecule are shown; the rhomboids represent the surface
unit cell. The drawn plane marks the position of the semi-transparent oxygen ions showed
in the left picture.

culations using (1×1) and (2×2) surface models, with a MoO3 neutral unit added

to each of the candidate sites at ca. 3 Å away from the surface, which would cor-

respond to 0.5 and 0.25 ML MoO3 surface coverage, respectively, considering only

the uppermost cationic layer. Close-range MoO3-MoO3 interactions have thus been

avoided in agreement with EXAFS data, where the primary Mo octahedral envi-

ronment is associated with the Mo-O scattering paths followed by Fe neighbours

(after 2 Å). We note that our approach to the problem of global optimisation of the

MoO3 overlayer does not aim to mimic the real experimental synthetic conditions,

but proves to be useful in establishing the interface structure.

In order to evaluate the MoO3 load and the MoO3-MoO3 interaction, different

cell sizes were evaluated: (2× 2), (2× 1) and (1× 1). In the (2× 2) and (2× 1)

surfaces, just one MoO3 unit was adsorbed on the surface, whereas in the (1× 1)

till two MoO3 units were adsorbed. Simulations of the formation of the MoO3 over-

layer on Fe2O3 were performed identically on both sides of the slab to ensure that

the slab dipole moment perpendicular to the surface was zero. A +Ue f f correction

of 6.3 eV was applied to the Mo d states, as proposed by Coquet and Willock [161].

The calculations presented here were driven by experimental findings and our

aim was to get the lowest energy structure which matched EXAFS bond lengths and

coordination numbers with respect to the adsorbed Mo atom.
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6.3 Fe2O3 Bulk
Hematite has a rhombohedral, corundum structure with an octahedral coordination

geometry and experimental lattice parameters a = b = 5.035Å and c = 13.72Å [13].

To reproduce the inherent antiferromagnetic character of the α-Fe2O3 material, we

performed a set of calculations using different stacking spin-up and spin-down se-

quences in the primitive cell. We tested the three different possible antiferromag-

netic sequences: ++−−, +−−+ and +−+−. In agreement with previous reports

[159, 160, 162], the magnetic ground state was found to be represented by ++−−

sequence. The latter means that along the c axis, there are two different types of Fe

ions: type A ions (short distance) that have opposite magnetic moments, and type

B ions (larger distance) that have equal magnetic moments (see Figure 6.1).

The corresponding structure and magnetic moments of the α-Fe2O3 magnetic

ground state are represented in Table 6.1. The calculated lattice parameters a and c

and the c/a ratio show a good agreement with previous calculations and experimen-

tal data [159, 160, 163–165]. When compared to experiment, the lattice parameters

a and c are within ca. 0.48% and 0.24% deviation, respectively, whereas the c/a ra-

tio is only 0.22% larger. Additionally, interplanar distances Fe-Fe(A) and Fe-Fe(B)

are calculated to be ca. 1.30% smaller and ca. 0.52% greater than in experiment.

The magnetic moment computed was ca. 4.13µB, which is ca. 0.77µB below the

experimental value (4.6−4.9µB).

Table 6.1 Experimental and Theoretical Structural Parameters for the Hematite Bulk
Structure. Distances Are Given in Å.

a c c/a Fe-Fe(A) Fe-Fe(B) µB/atom]

This study 5.008 13.705 2.736 2.852 4 4.13

GGA/PZ81[160] 5.007 13.829 2.772 2.929 3.998 3.45

GGA + U /PZ81[160] 5.067 13.882 2.739 2.896 4.044 4.11

GGA/FP-LAPW[166] 5.025 13.671 2.721 3.39

Exp.[165] 5.029 13.73 2.730 2.883 3.982 4.6-4.9

Exp.[163] 5.035 13.747 2.730 2.896 3.977
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6.4 Surface Structure

As mentioned in Section 6.2.2, the most stable surface for the α-Fe2O3 over a wide

range of temperature and pressure is the (0001) termination, which has, however,

different possible atomic terminations. The stability of these terminations has been

studied previously by experiment and theory. Experimental scanning tunnelling

microscope (STM) studies [166, 167] presented evidence of the coexistence of two

different terminations (oxygen and iron) on the (0001) surface under oxygen pres-

sures. Both studies show STM images with hexagonal lattices and a periodicity of

ca. 5 Å, which is compatible with the interlayer distance between (0001) Fe layers

in the corundum structure. However, the STM images by Chambers and Yi [168]

show the surface to be purely iron terminated. Therefore, depending on the prepa-

ration method, the termination of the (0001) surface can be either a combination of

iron and oxygen terminated surfaces or creates uniquely iron terminated surfaces.

On the other side, Rohrbach et al. [160] conducted an ab initio computational study

on five possible terminations of the α-Fe2O3 (0001) surface: three oxygen termi-

nated and the two iron terminated: — Fe2O3, — FeO3 - Fe3O3, — Fe2O3 - O,

— Fe2O3 - Fe2 and — Fe2O3 - Fe. They reported a — Fe2O3 - Fe termination

(Figure 6.1) as the most stable at a wide range of oxygen partial pressures. The

oxygen-terminated surfaces are strongly disfavoured because of the increased ener-

getic cost of stabilising a higher oxidation state of the transition metal close to the

surface [160]. Following these conclusions, we decided to focus our calculations

on the —Fe2O3-Fe termination of the α-Fe2O3 (0001) surface.

Table 6.2 shows the relative Fe-O and Fe-Fe relaxations of the first three mono-

layers on the (0001) α-Fe2O3 surface. Generally, we calculated strong contraction

of the slab size which is in agreement with previous theoretical works on corundum-

type materials such as Cr2O3 and α-Al2O3 [160]. No atomic lateral displacements

were observed in our models. Our results show a great relaxation of the first in-

terlayer Fe-O distance of 73% while previous theoretical results show a relaxation

of 53% [160] and 57% [160, 164, 166]. We attribute the larger relaxations to the

PBEsol functional, which, as noted, is a revised version of the PBE functional and
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provides better structural results for solids. We note that, in our calculations, the

bulk interlayer Fe-O and Fe-Fe distances are 0.86 Å and 0.57 Å, whereas a recent

STM study [167] found that these distances are 0.85 Å and 0.60 Å for the Fe-Fe

and Fe-O, respectively. The other relaxations also show very good agreement with

previous results. The large Fe-O relaxations in the first two layers is an electrostatic

effect, characteristic of this polar surface [160].

Table 6.2 Relative Interlayer Distances on α-Fe2O3(0001) Surface. All the Values Be-
low Are Given as a Percentage with Respect to Bulk Interlayer Fe-O (0.568 Å) and Fe-Fe
(0.858 Å) Distances Along the c Axis. For the Nomenclature Used, See Figure 6.1.

GGA + U GGA[160] GGA + U[160] GGA[166] GGA[164]

Fe(1)-O3(1) −72.8 −53.0 −57.0 −57 −57.8

O3(1)-Fe(2a) 7.2 22.0 9.6 7 3.5

Fe(2a)-Fe(2b) −37.5 −31.0 −40.0 −33 −74.0

Fe(2b)-O3(2) 16.3 34.0 17.0 15 15.9

O3(2)-Fe(3a) 4.7 2.5 3.5 5 4.0

Fe(3a)-Fe(3b) −5.5 −9.8 −4.4 −3 30.0

6.5 MoO3 Adsorption
Due to their importance in catalysis, the (0001) surface of α-Fe2O3 and its interac-

tion with adsorbed molecules have been the subject of intensive experimental and

theoretical studies [159, 160, 164, 169–171]. However, despite its importance, there

are no previously reported computational studies of adsorbed MoO3 molecules on

Fe2O3 surfaces.

On geometry optimisation (see Figure 6.3), we observed that whenever the Mo

ion was placed just above a surface oxygen (adsorption site D), it moved off this

site and stabilised above the Fe ion of the second (subsurface) layer adopting ei-

ther configuration A or B illustrated in the figure and described in greater detail

described below. With a surface interstitial site E as a starting point, the Mo ion

relaxed weakly towards the surface as one of the molybdate O ions is displaced to-

wards the top Fe layer Fe forming a Mo-O-Fe bridge. The adsorption site C proved

to be highly unfavourable; the Mo ions stayed above the uppermost Fe atom with no
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strong Mo relaxation; the neutral MoO3 monolayer remained nearly flat at a non-

bonding distance above the surface. At sites A and B, we observed an especially

strong Mo relaxation into the surface where it adopts an octahedral coordination

(Figure 6.4 ): at the most stable site A, Mo has one neighbour Fe ion at 2.80 Å and

three at 2.96 Å, whereas at site B it has three Fe neighbours at 2.94 Å and one at

3.05 Å (Table 6.3). Coordination numbers and bond lengths on site A were con-

firmed with the more accurate hybrid PBEsol0 functional using a computationally

less expensive 7 layer slab (Table 6.3). Thus, we could identify the lowest energy

adsorption site for the molybdenum. This site agrees with the coordination num-

bers in the EXAFS analysis and shows a good agreement with most of the bond

distances. Moreover, this theoretical model agrees with the Fe exposure suggested

at the surface for the 1 ML catalysis, see site A in Figures 6.2 and 6.3. Compar-

ing the structural parameters of Mo from EXAFS and theory, the calculations using

the (2×2) surface model predict the three short Mo-O bond distances to be 3.44%

greater and the Fe-O distances 1.4% and 3.59% smaller. However, our calcula-

tions yield the three long Mo-O bond distances 14.87% greater than experiment;

Table 6.3 gives a comparison of the bond distances and coordination number of the

different adsorption sites and EXAFS results. This discrepancy could be expected

due to the structural disorder in the position of Mo ions on the surface, where at the

experimentally observed 0.14 ML coverage, Mo can occupy a number of alterna-

tive energetically most favourable A sites, but also less favourable but kinetically

accessible B sites.

Table 6.3 Mo-O, Mo-Fe Distances (Å) and Adsorption Energies of the Relaxed
MoO3/Fe2O3 Structures. The Coordination Number is Shown in Parenthesis. DFT + U
and EXAFS Experimental Data Are Displayed.

(1×1) Surface (2×2) Surface Hybrid EXAFS
Site A Site B Site C Site A Site A

Mo-O 1.77 (x3) 1.77 (x3) 1.74 (x3) 1.80 (x3) 1.75 (x3) 1.74 (x3)
2.24 (x3) 2.21 (x3) 2.18 (x3) 2.23 (x3) 1.95 (x3)

Mo-Fe 2.80 (x1) 2.94 (x3) 2.70 (x1) 2.81 (x1) 2.81 (x3) 2.85 (x1)
2.96 (x3) 3.05 (x1) 2.99 (x3) 2.95 (x3) 3.10 (x3)

Eb (eV) −4.850 −4.553 −0.288 −6.316
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Figure 6.3 Relaxed structures for the different adsorption sites. Energies based on (1×1)
surface calculations. The relaxed structure for the adsorption site D is not shown since it
adopts either structure A or B. Red, brown, and violet spheres denote oxygen, iron, and
molybdenum, respectively. The rhombohedron represents the surface unit cell. Energies
are in kJ/mol.

Figure 6.4 Side view of the polyhedral representation of the lowest energy MoO3 ad-
sorbed on a thirtheen-Fe2O3-(0001)-layer surface.
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6.6 Further Refinement

In the search for better agreement with experiment with respect to the long-range

Mo-O distance, we ran a series of calculations based on the most stable A and B

sites. Different approaches were tested including bigger supercells, hydroxylated

terminations, substitution of Fe ions for Mo and the use of higher-quality, smaller

core pseudopotentials on metal ions. In all these calculations, the slab charge was

kept neutral and the Fe2O3 stoichiometry was conserved. As described in Sec-

tion 6.2.2, models were built by symmetry on both terminations of the slab, thus,

avoiding the creation of a dipole moment.

Supercell and Hydroxylated Surfaces

We did not observe significant changes when the cell size is increased to (2×2) and

(3×3). Minor changes in the bond lengths were seen and the molybdenum kept its

octahedral environment. With these observations, we can conclude that the Mo-Mo

interaction between cell images is so small that it can be neglected.

As mentioned in Chapter 3 and 4, metal oxide surfaces are usually in contact

with water and its dissociated molecules (H, O and OH). In this section, we analysed

the effect of hydrogen and water molecules in the Mo-O and Mo-Fe bond lengths.

Six H2 molecules were added to the two lowest energy structures (sites A and B),

e.g. 3 H atoms symmetrically equivalent on each side of the slab. These ions were

placed on top of the topmost oxygens (oxygens from the MoO3 molecule). Fig-

ure 6.5 shows the initial and optimised structures of the two lowest energy struc-

tures with hydroxylated surfaces. Results show a bigger discrepancy with EXAFS

data (see Figure 6.5 and Table 6.4). In the hydroxylated surfaces, Mo atoms keep

an octahedral environment, having, for site A, 6 oxygen atoms at ca. 2.02 Å and for

site B, 3 oxygens at 1.95 Å and 3 at 2.03 Å. We also note a substantial shrinkage

of the Mo-Fe bond lengths for both cases. The adsorption of a water molecule was

tested as well, with no better agreement with the EXAFS data. We conclude that

hydroxylated surfaces are not an answer to describe the Mo-Fe and Mo-O EXAFS

bond lengths.
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Figure 6.5 Side and top views of the two lowest energy MoO3/Fe2O3 structures. Struc-
tures before and after hydroxylation are shown. White spheres represent hydrogen. The
rhombohedron represents the surface unit cell.

Table 6.4 Mo-O, Mo-Fe Distances (Å) of the Relaxed Hydroxylated MoO3/Fe2O3 Struc-
tures. Coordination Number Is Shown in Parenthesis. For Comparison with Experiments
See Table 6.3.

Site A + 3H2 Site B + 3H2 Site A + 1H20

Mo-O 2.01 (x3) 1.95 (x3) 1.79 (x3)
2.03 (x3) 2.03 (x3) 2.19 (x3)

Mo-Fe 2.41 (x1) 2.68 (x1) 2.80 (x1)
2.90 (x3) 2.89 (x3) 2.93 (x1)

3.03 (x2)
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Extra MoO3 and Ionic Substitution

As mentioned in Section 6.4, different atomic terminations are allowed for the

(0001) α-Fe2O3 surface. Depending on synthesis conditions, the surface can be

either oxygen or iron terminated [160, 166–168]. Based on this, we decided to

build two surface models with modifications to the lowest energy site A structure:

(i) adding an extra MoO3 molecule on top of the Fe(2b) (see Figure 6.2); and (ii)

exchange Mo and topmost Fe positions. Modifications were done on both sides of

the slab. Figure 6.6 shows the initial and optimised structures of the two modified

surfaces and Table 6.5 displays the Mo-O and Mo-Fe distances. When adding an

extra MoO3 molecule, the surface expands and the Mo-O short range bond length

increases. There is also a decrease in the Mo-Fe and Mo-O long range distances.

The second Mo atom also has an octahedral coordination, with no Fe atoms within

3 Å. In the model produced by an ionic Mo-Fe exchange, the structure does not

show an improvement in fitting to the EXAFS parameters. In this case, the Mo-

Fe coordination number changes, moving further from the EXAFS data. Despite

all the efforts, a better agreement with the long-range Mo-O distance could not be

achieved. We conclude that our original model is adequate with the remaining dis-

crepancy due to structural and dynamic disorder.

Table 6.5 Mo-O, Mo-Fe Distances (Å) of the Relaxed MoO3/Fe2O3 and 2MoO3/Fe2O3
Structures. Coordination Number Is Shown in Parenthesis. For Comparison with Experi-
ments See Table 6.3.

Site A + MoO3 Ionic Mo-Fe exchange

Mo-O 2.02 (x3) 1.80 (x3)
2.13 (x3) 2.16 (x3)

Mo-Fe 2.52 (x1) 2.89 (x3)
2.91 (x3)

Mo-O (2nd O) 2.03 (x3)
2.43 (x3)
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Figure 6.6 Side and top views of the two modifications to the lowest energy site A struc-
ture: (i) an extra MoO3 on top of the Fe(2b) ( see Figure 6.2) and (ii) exchange Mo and
topmost Fe positions. The rhombohedron represents the surface unit cell.

6.7 Summary and Conclusions

We have presented a detailed analysis on the structural properties of different MoO3

adsorption sites on the (0001) α-Fe2O3 surface as an alternative tool in the fitting

of EXAFS parameters. We have shown that the GGA + U shows a good agreement

with the experimental Fe2O3 structure, thus, giving us confidence on the results

presented here.

From the five different starting points (sites A-E), we conclude that adsorption

site D tends to stabilise adopting either the optimised configuration A or B. In the

surface interstitial site E, the Mo ion relaxed weakly towards the surface as one

of the molybdate O ions displaced towards the first layer Fe forming a Mo-O-Fe
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bridge. The adsorption site C proved to be highly unfavourable. Sites A and B

show a strong Mo relaxation towards the Fe2O3 surface adopting an octahedral

coordination. The slightly more stable A site presents the best agreement in the

fitting of EXAFS parameters and shows a good agreement with most of the bond

distances. In this site, the Mo would have an octahedral coordination with 6 O

neighbours: three short range at ca. 1.77 Å and three long range at ca. 2.24 Å.

Fe atoms are also present at relatively short distances from the Mo atoms: three

Fe neighbours at around 3 Å and one Fe neighbour at a shorter distance. The long

range Mo-O distance discrepancy is probably due to the structural disorder in the

position of Mo ions on the surface, where at the experimentally observed 0.14 ML

coverage, Mo can occupy a number of alternative energetically most favourable A

sites, but also less favourable but kinetically accessible B sites.

In an attempt to improve the larger discrepancy at the long range Mo-O dis-

tance, we ran a series of calculations based on the two most stable sites A and B.

None of our attempts showed an improvement in the long range Mo-O distance. We

only calculated very small improvements when a (2× 2) or (3× 3) supercell was

used. Hydroxylated surfaces proved to elongate the short range Mo-O distance and

shrink the long range Mo-O and Mo-Fe distances. Neither the addition of a MoO3

molecule nor the ionic Mo-Fe exchange provided an improvement. We conclude

that our original model provides a good basis for describing the surface structure of

the Fe2O3.



Chapter 7

Summary and Conclusions

In this Chapter, the results of this Thesis are summarised and suggestions for fu-

ture work are presented. We have shown that computer modelling techniques are a

powerful tool in studying the surface sciences of oxides. They provide an insight

into the materials investigated on an atomic-scale, helping to clarify the materials’

structure and the findings observed in experiment. In the work presented, we have

used interatomic potential and ab initio methods to provide a better understanding

of both the atomic structure and electronic properties of metal oxide surfaces. Our

focus has been on the four main low-index surfaces of the wurtzite phase of ZnO,

while one Chapter has been dedicated to iron oxide.

In the first section of results (Chapter 3) we provided a detailed report on the

atomic structure and electronic properties of nonpolar ZnO surfaces: (101̄0) and

(112̄0), with the goal of providing a conclusive statement about the atomic structure

of such surfaces. These ZnO terminations show higher emission efficiency for blue

and ultra-violet LEDs. In addition, they represent the biggest surface area of ZnO

crystals. Three levels of theory were used in the first section of this dissertation:

IP, DFT and hybrid DFT. Our calculations confirm earlier GGA and experimental

reports on the cationic termination for both nonpolar surfaces, with lateral displace-

ments for both species on the (112̄0) surface. A slightly higher stability of the

(101̄0) surface was calculated, indicating an almost equal prominence for both sur-

faces under thermodynamical equilibrium. The larger surface area of the (101̄0)

surface observed in experiment suggests the importance of thermal vibrational con-
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tributions to the free energy, which could determine the crystal morphology, or of

the kinetic crystal growth factors.

According to experimental observations, steps are an unavoidable feature in the

nonpolar surfaces of ZnO. We calculated the energy required to create a step along

the [010] direction on the (101̄0) surface as 0.029 eV/Å (at the DFT level), thus,

suggesting the existence of this feature even at room temperature (kT is 0.025 eV).

Our IP calculations also agree with this high stability.

Electronically, we calculated a ZnO bulk ionisation potential as ca. 7.6 eV

using hybrids, in agreement with the experimental value of 7.82 eV. The method

used in this Thesis showed an improvement of about 1 eV when compared with

the widely used “slab alignment” method. We found that the effect of surface fea-

tures (steps and grooves) is not strong on the ionisation potential (a decrease of

ca. 0.04 eV when compared to bulk). However, a 25% dimer vacancy formation

reduces the ionisation potential by 0.13 eV. We observed that the band gap as a

function of the slab model thickness converges much slower than both the atomic

structure and surface energies. The slow convergence could be attributed to quan-

tum confinement effects. The electronic band edges of the nonpolar surfaces are

seen to behave markedly differently, with a local rise of the VBM and CBM for

(101̄0) and (112̄0), respectively. The rest of the bands remained flat.

After the detailed description provided for the nonpolar ZnO surfaces in the

third Chapter, we continued with the other two characteristic terminations: the po-

lar zinc and oxygen terminated faces. These polar surfaces are required to explain

the stability of ZnO crystals. In addition, these terminations are linked strongly

to profitable chemical processes, such as methanol synthesis, photocatalysis, and

hydrogen gas sensitivity. For the polar surfaces of ZnO, we engaged in a detailed

study of their stabilisation mechanism, using interatomic potential methods. Our

results can explain why experimental findings reported have been varied and even

contradictory at times. The results presented here demonstrate the importance of

completely cancelling the inherent dipole moment present in these surfaces. The

calculated surface energies indicate on average a slightly higher stability of the
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oxygen terminated surface over the zinc termination, which implies that under ther-

modynamic equilibrium the (0001̄) surface will be more expressed. The change of

surface energy as a function of the stoichiometry among the stoichiometries on the

Zn terminated side is stronger than in the O side. Thus, it is expected that, on the

(0001̄)-O surface there will be a higher number of stoichiometries that are equally

stable than on the (0001) surface, which is in agreement with experiment, in which

it has been easier to identify reconstruction patterns in the Zn termination. Our cal-

culations suggest that the common (1×1) periodicity seen in experiment is a result

of the degree of disorder. We also demonstrated that the stoichiometries would be

represented mainly by their GM and that for the cases where more structures are

thermally accessible, a similar pattern is expected.

Our structural analysis shows that the (0001) and (0001̄) surfaces also behave

differently. In the zinc termination, there are strong movements across with some

Zn ions from the second layer jumping to the first layer; whereas in the O terminated

side an ionic transfer across layers only happens at high stoichiometries (mO > 19).

Triangular reconstructions are seen on both surfaces; however, stripes and random

vacancies are also stable. Hexagonal patterns are also observed in the oxygen termi-

nated face. Our calculated triangular and hexagonal patterns agree with experiment.

Based on our findings, we conclude that triangular and hexagonal patterns are not

the only stable ones; we predicted a high level of disorder, with reconstruction pat-

terns as a function of the synthesis procedure and conditions.

In the third section of results in Chapter 5, we studied the Cu/ZnO system using

interatomic potential methods. Cu particles over ZnO surfaces are of great interest

in the chemical industry, in which they are used for the production of methanol (es-

timated to be 65 million tonnes per year in 2013). New IP were created to explore

the energy landscape of Cu clusters on ZnO surfaces with the use of global opti-

misation techniques. A combination of Buckingham (Cu-O) and Morse (Cu-Zn)

potentials were fitted to DFT SP calculations. Our atomistic model shows a good

agreement with DFT SP calculations, suggesting a good description of the Cu/ZnO

system.
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The new Cu/ZnO potentials were used in global optimisation calculations of

eight copper atoms on the (101̄0) surface. After the DFT refinement of the lowest

five IP atomic structures, three DFT structures were found lower in energy than an

optimised GM Cu8 cluster on top of the (101̄0) surface. The highest difference of

0.32 eV was found between the GM Cu8/ZnO and the global optimised Cu8/ZnO,

showing that our approach and IP can find lower energy structures successfully.

Thus, our new IP can work as a fast and reliable method to filter sensible Cu/ZnO

structures, which could be refined by DFT methods afterwards.

Structurally, the new Cu/ZnO interatomic potentials agree with DFT calcula-

tions. We calculated a preference for planar over 3D Cu structures. Moreover,

using the same computational resources, our technique proved to be efficient and

produced IP structures close to the optimised DFT structures: The DFT ionic steps

were reduced by 80% (in most of the cases) when compared with a GM Cu8 cluster

at 3 Å.

Energetically, new IP and DFT calculations produce similar results, with the

exception of one structure. One of the IP structures shows a strong disagreement

with DFT. The second lowest IP energy structure is close to the DFT saddle point,

relaxing by only 0.6 eV with no substantial changes in the atomic arrangement,

whereas the remaining four IP structures change their structures slightly, with ener-

getic changes of the order of 2−3 eV after the DFT refinement. Moreover, small

discrepancies between IP and DFT are expected from the combination of errors in

the Cu-Cu and Cu-ZnO potentials. We should note that our Cu/ZnO potentials are

relatively simple and might not be expected to perfectly describe the DFT land-

scape.

The new Cu/ZnO potentials created were used to run global optimisations of

Cun clusters (1≤ n≤ 7) deposited on the (101̄0) surface. Results show a preference

for planar Cu clusters, with a strong interaction between the Cu and Zn species,

thus, exhibiting the strong influence of the ZnO substrate over the gas phase 3D Cu

clusters.

The last section of results, Chapter 6, was dedicated to the MoO3/Fe2O3 cat-
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alytic system. This material is industrially used in the production of formaldehyde

through the oxidation of methanol. In this reaction, the formaldehyde selectivity

is attributed to the molybdenum at the material’s surface. Therefore, we investi-

gated the MoO3 adsorption on the (0001) α-Fe2O3 surface using DFT + U . This

study was suggested following experimental findings and was realised with the

aim of helping in the fitting of EXAFS parameters by suggesting a MoO3/Fe2O3

atomic structure. The most stable configuration found shows a strong Mo relax-

ation towards the Fe2O3 surface adopting an octahedral coordination. This struc-

ture presents the best agreement in the fitting of EXAFS parameters and a good

agreement with most of the bond distances: The Mo atom would have an octahe-

dral coordination with six O neighbours. Four Fe neighbours would also be present

at larger distances. The latter model presents a variation in the Mo-O long-range

distance of about 0.23 Å. The discrepancy can be expected due to the structural

disorder in the position of Mo ions on the surface, where at the experimentally ob-

served 0.14 ML coverage, Mo can occupy a number of kinetically accessible sites.

Further possibilities were tested such as larger supercell sizes, hydroxylated sur-

faces and extra MoO3 molecules. However, only the larger (2× 2) supercell size

showed a very small improvement in the long-range Mo-O distance.

In summary, we have provided a detailed structural and electronic descrip-

tion of the nonpolar ZnO surfaces. Morphological features on the most stable ZnO

termination were also studied. Regarding the polar surfaces, we have explained

their stability and provided an explanation for the divergent experimental findings

reported in the literature. Moreover, we have created a new set of interatomic poten-

tials to describe the Cu/ZnO system, with which we analysed the Cu growth on the

(101̄0) ZnO surface. In addition to the ZnO surfaces, we studied the MoO3/Fe2O3

system to help with the fitting of experimental data.

This Thesis has only considered Cu cluster growth on the most stable (101̄0)

ZnO surface. However, the way in which copper grows on the nonpolar (112̄0)

and polar (0001) and (0001̄) surfaces is poorly understood. Therefore, studying the

Cu crystal growth on the (112̄0), (0001) and (0001̄) surfaces would be of particu-
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lar interest in the future. Our new Cu/ZnO potentials represent a first step in this

direction. In the future, we will address the stable structures of small Cu clusters

on the other three ZnO surfaces, as well as on terraces and steps (as presented in

Chapter 3). Our aim is to corroborate experimental STM findings of big Cu clusters

decorating the step edges on the (101̄0) surface. In addition, we would like to study

the further stabilisation of the polar ZnO surfaces by using bigger supercell size

models.

In this Thesis, we presented high-quality calculations and efficient methods to

study the surface science of metal oxides, providing answers to poorly understood

surface features and giving new tools for the study of adsorbate-surface interactions.

There is a clear industrial need to improve and understand the behaviour of metal

oxide surfaces due to their wide range of profitable uses and applications. A small

contribution to their understanding will have a major impact on industrial processes

and on the relevant surface science.
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gren, H. Nylén, and I. Lindau, “Electronic structure of ZnO(0001) studied

by angle-resolved photoelectron spectroscopy,” Surf. Sci., vol. 373, no. 2-3,

pp. 409–417, 1997.

[129] A. Wander and N. M. Harrison, “The stability of polar oxide surfaces: The in-

teraction of H2O with ZnO(0001) and ZnO(0001̄),” J. Chem. Phys., vol. 115,

no. 5, p. 2312, 2001.



BIBLIOGRAPHY 161

[130] N. Jedrecy, M. Sauvage-Simkin, and R. Pinchaux, “The hexagonal polar

ZnO(0001)-(1× 1) surfaces: structural features as stemming from X-ray

diffraction,” Appl. Surf. Sci., vol. 162-163, pp. 69–73, 2000.

[131] H. Zheng, M. Gruyters, E. Pehlke, and R. Berndt, ““Magic” vicinal zinc

oxide surfaces,” Phys. Rev. Lett., vol. 111, no. 8, p. 86101, 2013.

[132] P. Chul-Hong, “First-principles study of the surface energy and atom cohe-

sion of wurtzite ZnO and ZnS - Implications for nanostructure formation,” J.

Korean Phys. Soc., vol. 56, no. 12, p. 498, 2010.

[133] M. S. Spencer, “The role of zinc oxide in Cu/ZnO catalysts for methanol syn-

thesis and the water–gas shift reaction,” Top. Catal., vol. 8, no. 3-4, pp. 259–

266, 1999.

[134] J. P. Breen and J. R. Ross, “Methanol reforming for fuel-cell applica-

tions: Development of zirconia-containing Cu-Zn-Al catalysts,” Catal. To-

day, vol. 51, no. 3-4, pp. 521–533, 1999.

[135] K. C. Waugh, “Methanol synthesis,” Catal. Today, vol. 15, no. 1, pp. 51–75,

1992.

[136] D. Scarano, G. Spoto, S. Bordiga, A. Zecchina, and C. Lamberti, “Lateral

interactions in CO adlayers on prismatic ZnO faces: a FTIR and HRTEM

study,” Surf. Sci., vol. 276, no. 1-3, pp. 281–298, 1992.

[137] S. Darby, T. V. Mortimer-Jones, R. L. Johnston, and C. Roberts, “Theoretical

study of Cu-Au nanoalloy clusters using a genetic algorithm,” J. Chem. Phys.,

vol. 116, no. 4, p. 1536, 2002.

[138] G. G. Rusina, S. D. Borisova, and E. V. Chulkov, “Structure and analysis

of atomic vibrations in clusters of Cun (n ≤ 20) ,” Russ. J. Phys. Chem. A,

vol. 87, no. 2, pp. 233–239, 2013.

[139] Y. Y. Gafner, S. L. Gafner, I. S. Zamulin, L. V. Redel, and V. S. Baidyshev,

“Analysis of the heat capacity of nanoclusters of FCC metals on the example



BIBLIOGRAPHY 162

of Al, Ni, Cu, Pd, and Au,” Phys. Met. Metallogr., vol. 116, no. 6, pp. 568–

575, 2015.

[140] I. V. Chepkasov and L. V. Redel, “Calculations of the heat capacity of Cu

clusters synthesized by condensation from the gas phase,” IOP Conf. Ser.

Mater. Sci. Eng., vol. 81, no. 1, p. 012014, 2015.

[141] N. T. Wilson, Ph. D. thesis. PhD thesis, University of Birmingham, 2000.

[142] G. D’Agostino, “Copper clusters simulated by a many-body tight-binding

potential,” Philos. Mag. Part B, vol. 68, no. 6, pp. 903–911, 1993.
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