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Abstract

A meshfree numerical model, based on the principle of Local Maximum En-
tropy (LME), including a B-bar algorithm to avoid instabilities, is applied
to solve axisymmetric consolidation problems in elastic saturated soils. This
numerical scheme has been previously validated for purely elastic problems
without water (mono phase), as well as for steady seepage in elastic porous
media. Hereinafter, an implementation of the novel numerical method in the
axisymmetric configuration is proposed, and the model is validated for well
known theoretical problems of consolidation in saturated soils, under both
static and dynamic conditions with available analytical solutions. The solu-
tions obtained with the new methodology are compared with a finite element
commercial software for a set of examples. After validated, solutions for dy-
namic radial consolidation and sinks, which have not been found elsewhere
in the literature, are presented as a novelty. This new numerical approach
is demonstrated to be feasible for this kind of problems in porous media,
particularly for high frequency, dynamic problems, for which very few results
have been found in the literature in spite of their high practical importance.
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1. Introduction1

The consolidation of saturated media is a process in which the soil settles2

as a consequence of the application of external loading, causing a gradual3

interchange between pore pressure and effective stress after a certain period4

of time, which mainly depends on the permeability of the soil. Immediately5

after external loadings are applied to a saturated soil domain, all the external6

pressure transfers to water, certain amount of time being required for the7

dissipation of this excess pore water pressure to the solid phase. When this8

dissipation is complete (i.e total drainage has taken place), the solid phase9

totally takes the external pressure, which is converted to effective stress. This10

is what is meant by consolidation [1].11

The external loads applied to the soil can be either static or variable in12

time, i.e. dynamic. In the former case, the evolution of water pressure dis-13

plays a monotonic trend until the equilibrium is achieved, while in the latter,14

when dynamic external loadings are applied, the problem becomes further15

more complicated, because at the same time, generation and dissipation of16

water pressure take place, and coupling effects between solid and fluid phases17

need to be considered to achieve an accurate solution [2]. The frequency of18

the applied external loadings is a very important aspect to consider when19

a numerical strategy is to be selected in order to model the problem. It20

is widely recognised that the implementation of the Biot’s equations [3] is21

a well-known way to solve problems in porous media from a macro-scale22

point of view. The advantage of this method is the possibility of account-23

ing for coupling between phases. The u − pw formulation (where u denotes24

the solid phase displacement, and pw is the pore fluid pressure) has been25

traditionally employed for simulating coupled problems in saturated porous26

media, although it has been demonstrated not to be a feasible approach when27

the frequency of the external loading is high [2]. The so-called complete or28

displacement based formulation, u − w (where w denotes the relative fluid29

displacement with respect to the solid phase) has been employed in several30

numerical schemes (López-Querol et al. [4], and recently adopted by Cividini31

and Gioda [5]). Such a methodology is employed in this work, first because32

of its simplicity in imposing impervious boundary conditions compared to33

the u− pw approaches; second, as the free surface comes out naturally as the34

zero-pressure contour, no detection algorithm is necessary; third, because its35

robustness makes it possible to model high frequency problems, in which the36

coupling between solid and fluid phase is more difficult to capture, and which37

are also very important from the practical point of view.38

It is possible to find in the literature numerical models for consolidation39

problems which successfully account for real elastic-plastic soil behaviour40
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[6, 7, 8]. Although meshfree numerical schemes have been known to per-41

form particularly well in the regime of large deformations, in this paper only42

the small strain range is dealt with. Thus, we undertake such schemes to43

solve coupled problems in saturated porous media, using the u−w formula-44

tion. The main aim of the present research is to explore the feasibility of the45

proposed B-bar based meshfree numerical tool to solve theoretical consolida-46

tion problems under the small strain range, particularly for high frequency47

problems.48

The current work is a natural follow-up of the author’s recent research on49

unconfined seepage flow through saturated soil [9] within a meshfree frame-50

work based on the principle of local maximum entropy [10]. In [9], a B-bar51

based algorithm was developed to avoid the volumetric locking problem en-52

countered in displacement-based finite element approaches [11, 12, 13, 14,53

15, 16, 17, 18] or meshfree approximation schemes [19]. The implementation54

takes advantage of the shape functions developed by Arroyo and Ortiz [20]55

and the OTM framework [21] for its numerous advantages in comparison with56

its alternatives. For example, the exact mass transport, the satisfaction of57

the continuity equation, exact linear and angular momentum conservation in58

order to solve different problems as spurious modes, tensile instabilities and59

unknown convergence or stability properties and convenient numerical inte-60

gration scheme. Since the deformation and velocity fields are interpolated61

from nodal values using local max-ent shape functions, the Kronecker-delta62

property at the boundary makes it possible for the direct imposition of essen-63

tial boundary conditions. In addition, the parameters pertinent to the local64

maximum entropy are obtained efficiently and and robustly, independently65

of the number of nodes in the support, through a combination of the Newton66

Raphson method and the Nelder Mead algorithm [22].67

The rest of the paper is organised as follows: the mathematical frame-68

work, including the B-bar based algorithm, is presented next. After that,69

applications to various consolidation problems are illustrated in Section 4.70

Finally, the most relevant conclusions are drawn in Section 5.71

2. Mathematical framework72

In this section, we first summarise the governing equations for unconfined73

seepage problems, in particular the Biot’s equations, formulated in a u − w74

framework, which have been successfully utilised in [5, 9, 23, 24]; next, the75

spacial discretisation based on the principle of maximum entropy is presented.76
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2.1. The Biot’s equations: a u− w formulation77

The Biot’s equations [25] are based on formulating the mechanical be-78

haviour of a solid-fluid mixture, the coupling between different phases, and79

the continuity of seepage through a differential domain of saturated porous80

media. In the following, u represents the displacement vector of the solid81

skeleton, whereas w denotes the relative displacement vector of the fluid82

phase with respect to the solid one. The advantages of the u−w formulation83

when impermeability boundary conditions are imposed are well described84

in [23]: if there is no water displacement at those boundaries, the condition85

w = 0 can be easily established. This fact, in addition to the suitability of86

this method for dynamic problems, leads us to employ the complete formu-87

lation.88

The final u−w equations to solve are obtained by re-arranging the original89

Biot equations, as López-Querol explains in [26]:90

ST De S du+Q∇
[
∇T (du+ dw)

]
− ρ dü− ρf dẅ + ρ db = 0 (1)

Q∇
[
∇T (du+ dw)

]
− κ−1 dẇ − ρf dü−

ρf
n
dẅ + ρf db = 0 (2)

where ρ and ρf are respectively the mixture and fluid phase densities, b91

is the external acceleration vector, κ represents the permeability coefficient92

(κ = k/ρg, expressed in units [m3·s/kg], while k is the hydraulic conductivity93

in [m/s]). S is the differential operator and Q is the volumetric compress-94

ibility of the mixture. Here De denotes the elastic stiffness tensor, assumed95

in this research as the plane strain constitutive tensor.96

Equations (1) and (2) can be expressed as a system of equations, once
the elementary matrices have been assembled:

K du+C du̇+M dü = df , (3)

where K, C and M respectively denote stiffness, damping and mass matri-97

ces, du represents the vector of unknowns (containing both the solid phase98

and fluid displacements, u and w), expressed incrementally, and df is the99

increment of the vector of external forces, including gravity acceleration, as100

well as boundary conditions for nodal forces.101

2.2. Time discretisation102

A time integration algorithm is necessary to determine the solution of the103

problems dealt with in this paper. Even in the cases of static consolidation, in104

which the external loading is applied and kept constant in time, time integra-105

tion is also required to capture the steady solution in terms of displacements106

and pressures when the consolidation process is nearly complete, and thus107
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this numerical steady solution can be compared with analytical ones when108

they are available. For static problems, first order time integration schemes,109

neglecting the inertial terms, are usually sufficient, while for purely dynamic110

problems, second order of approximation is required most of the times to111

achieve stable and accurate enough solutions.112

In this research, a standard first-order Newmark scheme has been em-
ployed for the static problems. Moreover, in order to be able to capture the
effect of inertial terms in high frequency simulations, the Collocation time
integration scheme has been considered more appropriate for the dynamic
problems, some of them of high frequencies. This method was developed by
Hughes and Hilber [27] as a Newmark and Wilson-θ [28] mix method. It
introduces a numerical damping, allowing us to obtain a quick convergence
in this kind of problems. This method converges to the Newmark solution
for θ = 1, and to the Wilson-θ solution for α = 1/6 and δ = 1/2. Hughes
and Hilber [27] demonstrated that the most stable form of this method is ob-
tained using the following values of the parameters which control the stability
of the algorithm:

δ = 1/2; θ ≥ 1;
θ

2(θ + 1)
≥ α ≥ 2θ2 − 1

4(2θ2 − 1)
. (4)

These restrictions for the parameters have been employed in the present work.113

In this study, θ and α have been respectively taken as 1.5 and 0.273.114

As in all step-by-step time integration schemes, it is necessary to divide115

the time domain into steps, with time interval, ∆t, small enough to warrant116

both convergence and accuracy of the solution. In this paper, most of the117

problems consist of the application of harmonic loads. The maximum ∆t118

needs to be taken as T/10, where T is the period of the external load.119

Rearranging the above expressions, Eq. (3) finally yields120 [
1

α∆t2 θ2
M +

1

α∆t θ
C +K

]
∆uθ∆t = ∆f∆tθ + ∆Rn+

C

[
δ

α
u̇n −

(
1− δ

2α

)
∆t θ ün

]
+M

[
1

α∆t θ
u̇n +

1

2α
ün

]
(5)

where
∆Rn = fn −M ün −C u̇n −Kun. (6)

2.3. Spatial discretisation: Max-ent shape functions121

The local max-ent approximation scheme is defined by Arroyo and Ortiz
[20], and employed by Li et al. [21] for fields requiring differentiation, such
as deformation and velocity fields. Arroyo and Ortiz [20] defined the local
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max-ent function (LME) as a Pareto set, being optimal for β ∈ (0,∞). The
shape function is obtained as:

pa(x) =
exp [−β |x− xa|2 + λ∗ · (x− xa)]

Z(x,λ∗(x))
, (7)

where

Z(x,λ) =
n∑
a=1

exp
[
−β |x− xa|2 + λ · (x− xa)

]
, (8)

being λ∗(x) the unique minimiser for logZ(x,λ). The parameter β is related
with the discretisation size (or nodal spacing), h, and the constant, γ, which
controls the locality of the shape functions, as follows,

β =
γ

h2
(9)

For a uniform nodal spacing, β is also a constant, thus the first derivatives can122

be obtained by employing Arroyo and Ortiz [20] research with the following123

expression:124

∇p∗a = −p∗a (J∗)−1 (x− xa), (10)

where J is the Hessian matrix, defined by:125

J(x,λ, β) =
∂r

∂λ
(11)

r(x,λ, β) ≡ ∂λlogZ(x,λ) =
∑
a

pa(x,λ, β) (x− xa). (12)

Note that, the objective of the above procedure is to find the λ which min-126

imises logZ(x,λ). This unconstrained minimization problem with a strictly127

convex objective function can be solved efficiently and robustly by a com-128

bination of the Newton-Raphson method and Nelder-Mead Simplex algo-129

rithm [9, 20, 22].130

3. B-bar based algorithm: extension to axisymmetric formulation131

The B-bar algorithm developed by the authors in [9] is based on the132

strain projection method, which is typically characterised by an interpola-133

tion of the discrete gradient operator a-priori assumed, independently of the134

approximation adopted for the displacement. In particular, the proposed as-135

sumed strain field was developed by averaging the volumetric strain among a136

cluster of material points defined in the OTM framework, which falls within137

6



the class of often referred to B-bar procedure introduced by Hughes [11].138

The introduction of a material point discretisation and the local maximum139

entropy (LME) meshfree approximating subspace within the OTM frame-140

work yields no influence on the construction of a general B-bar procedure141

proposed by Simo and Hughes [29]. For completeness, we summarise it here142

to facilitate its extension to axisymmetric coordinate systems.143

The strain tensor ε(θp) computed at a material point θp is transformed
to ε(θp) by replacing its volumetric part to an averaged one evaluated on a
cluster of material points, or the patch associated with the material point,
i.e.,

ε(θp) = εdev(θp) + π(εvol(θp)) (13)

and the projection function, π, is defined as

π(εvol(θp)) = εvol(θp) =

∑
q∈I(Ωp) ε

vol(θq)v
(q)∑

q∈I(Ωp) v
(q)

=
∑

q∈I(Ωp)

εvol(θq)w
(q) (14)

where Ωp is the patch associated with material point θp or the cluster of
material points which contains θp, v

(q) is the volume of material point θq
belonging to Ωp, and I(Ωp) is the index set of the material points in Ωp and
w(q) is a weight obtained from the volume:

w(q) =
v(q)∑

q∈I(Ωp) v
(q)
. (15)

The deviatoric and volumetric part of the strain tensor are defined as

εvol(θp) =
1

d
tr (ε(θp)) I and εdev(θp) = ε(θp)− εvol(θp), (16)

respectively, where d is the dimensional of the problem.144

Next we explain in detail the procedure to calculate the B-bar matrix for145

an axisymmetric framework.146

3.1. B-bar implementation in u− w axisymmetric problems147

Applications of the LME meshfree approximation in an axisymmetric soil
consolidation problem using u− w framework have not been investigated in
the literature. In this work, we re-visit the formulation proposed in [9] for
the LME interpolation of the u,w fields and the B-bar algorithm in the
axisymmetric coordinate system. In axisymmetric problems, the radial and
vertical directions (r and z) play the role of x and y in a 2D, cartesian case.
Consequently, the new displacement vector is related to the nodal vectors

7



through the shape function based on the principle of local maximum entropy
(LME) in a similar way:


ur
uz
wr
wz

 =


N1 0 0 0 N2 0 0 0 · · ·
0 N1 0 0 0 N2 0 0 · · ·
0 0 N1 0 0 0 N2 0 · · ·
0 0 0 N1 0 0 0 N2 · · ·





uhr1
uhz1
whr1
whz1
uhr2
uhz2
whr2
whz2

...


(17)

where the superscript h denotes discrete nodal values. In this Section, we
carry out the same procedure as a 2D multiphase problem by splitting the
strain tensor into its solid and fluid components, we have

ε = S u −→
[
εs

εw

]
=



εsr
εsz
εsθ
γsrz
εwr
εwz
εwθ


=



∂
∂r

0 0 0
0 ∂

∂z
0 0

1
r

0 0 0
∂
∂z

∂
∂r

0 0
0 0 ∂

∂r
0

0 0 0 ∂
∂z

0 0 1
r

0




ur
uz
wr
wz

 , (18)

where, the superscripts s and w denote the solid and fluid phases respectively.
In addition, the sum of the strain traces of the solid and fluid phases can be
done through the unit matrix, m∗, in Voigt notation as follows:

tr(εs) + tr(εw) = (m∗)Tε (19)

where:
(m∗)T =

[
1 1 1 0 1 1 1

]
(20)

Hence, the new constitutive matrix which relates σ and ε yields:148

σ = De∗ ε+QmTε m = (De∗ +QmTm) ε = Du−w ε

=



λ(1−ν)
ν

+Q λ+Q λ+Q 0 Q Q Q

λ+Q λ(1−ν)
ν

+Q λ+Q 0 Q Q Q

λ+Q λ+Q λ(1−ν)
ν

+Q 0 Q Q Q
0 0 0 µ 0 0 0
Q Q Q 0 Q Q Q
Q Q Q 0 Q Q Q
Q Q Q 0 Q Q Q





εsr
εsz
εsθ
γsrz
εwr
εwz
εwθ


(21)
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For the purpose of implementing the B-Bar based algorithm, the strain tensor
can be re-calculated as ε. Thus, the main equation yields:

ε = ε− 1

d
tr(εs) I +

1

d
[tr(εs)]p I− 1

d
tr(εw) I +

1

d
[tr(εw)]p I. (22)

In Voigt notation the equation, the corresponding lth-component is:

εl = εl +
1

d

(
−εkkms

l +

Nb∑
j=1

[ε
(j)
kk w

(j)]ms
l − εwkkmw

l +

Nb∑
j=1

[ε
w(j)
kk w(j)]mw

l

)
(23)

where the solid and fluid parts are related with the global strain through the
following expressions:

εskk = ms
k εk, εwkk = mw

k εk. (24)

The unit matrix in Voigt notation for the solid and fluid case are as follows

(ms)T =
[
1 1 1 0 0 0 0

]
, (mw)T =

[
0 0 0 0 1 1 1

]
. (25)

Alternatively, we know that the l-th component of the strain tensor in Voigt
notation is:

εl = Slj uj = Slj Njk u
h
k = Blk u

h
k, (26)

where, in this case, yields:



εr
εz
εθ
γrz
εwr
εwz
εwθ


=



∂N1

∂r
0 0 0 ∂N2

∂r
0 0 0

0 ∂N1

∂z
0 0 0 ∂N2

∂z
0 0

N1

r
0 0 0 N2

r
0 0 0

∂N1

∂z
∂N1

∂r
0 0 ∂N2

∂z
∂N2

∂r
0 0 · · ·

0 0 ∂N1

∂r
0 0 0 ∂N2

∂r
0

0 0 0 ∂N1
∂z

0 0 0 ∂N2

∂z

0 0 N1

r
0 0 0 N2

r
0





u
(1)
r

u
(1)
z

w
(1)
r

w
(1)
z

u
(2)
r

u
(2)
z

w
(2)
r

w
(2)
z

...


(27)

In order to calculate the strain trace, εll, by re-arranging different terms, we
can obtain for the solid phase:

εsll = ms
l εl = mlBlk u

h
k = T sk u

h
k, (28)

where

T s =
[

∂N1

∂r
+ N1

r
∂N1

∂z
0 0 ∂N2

∂r
+ N2

r
∂N2

∂z
0 0 · · ·

]
; (29)
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for the fluid phase

εwll = mw
l εl = mlBlk u

h
k = Twk u

h
k, (30)

where

Tw =
[

0 0 ∂N1

∂r
+ N1

r
∂N1

∂z
0 0 ∂N2

∂r
+ N2

r
∂N2

∂z
· · ·
]
. (31)

Thus, the final lth-component for the new strain tensor ε at a single integra-149

tion point i in Voigt notation is calculated as:150

εl
(i) = B

(i)
lk u

h
k −

1

d
ms
l

(
T
s(i)
k uhk −

Nb∑
j=1

[T
s(j)
k w(j)]uhk

)

−1

d
mw
l

(
T
w(i)
k uhk −

Nb∑
j=1

[T
w(j)
k w(j)]uhk

)

=

[
B

(i)
lk −

1

d
ms
l

(
T
s(i)
k −

Nb∑
j=1

[T
s(j)
k w(j)]

)

− 1

d
mw
i

(
T
w(i)
k −

Nb∑
j=1

[T
w(j)
k w(j)]

)]
uhk

≡ Blk u
h
k. (32)

4. Application to consolidation in soils151

As previously mentioned, the settlement of saturated soils under loading152

is caused by a gradual interchange between pore pressure and effective stress.153

This process is known as consolidation. In this section, the above developed154

methodology is applied to consolidation in soils in three different configura-155

tions: one dimensional case (for validation purposes), radial consolidation,156

and consolidation with sinks. Both static and dynamic scenarios, with differ-157

ent frequencies ranging from low to high values, are studied. The obtained158

solutions are compared with analytical or available numerical solutions.159

4.1. Consolidation of a soil column: the one-dimensional static problem160

One-dimensional consolidation in a soil column under vertical loading161

occurs when there is no lateral strain, and only vertical displacements of both162

solid and fluid phases are developed. Analytical solutions for this problem163

are derived from the basic equation given by Terzaghi in 1925 [30].164
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Figure 1: Geometry, loading condition of the consolidation column, and the discretised
nodes and material points (shown for the first 5 m only). The same geometry has been
employed for both static and dynamic simulations.
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Figure 2: Loading history in a monotonic problem.
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Figure 3: Comparison of analytical and numerical solutions of degree of consolidation,
Uv(z) at different values of dimensionless time, Tv.

In order to validate our numerical model against the analytical solution165

given in [31], a 30-metre-deep elastic soil column, depicted in Fig. 1, is mod-166

elled. The column rests over an impermeable rigid base layer and loaded167

by a vertical, uniform pressure on the top. The lateral displacements are168

restricted for both solid and fluid phases. At the base layer, the vertical169

displacements for both solid and fluid phases are prevented. Thus the one-170

dimension draining condition is ensured. The column is discretised into 240171

nodes and 183 material points. In this case, the external loading is static,172

but is gradually applied as depicted in Fig. 2. The consolidation behaviour173

is led by the vertical consolidation coefficient, cv. As for elastic parameters,174

typical values for clays have been adopted: 2 MPa for the Young’s modulus175

and 0.33 for the Poisson’s ratio.176

In Fig. 3, analytical and numerical solutions along the depth of the column177

of soil for different values of the dimensionless time, Tv, are compared in a178

non-dimensional way. Note that the solution given by this research coincides179

with the analytical one except when Tv approaches infinity. In comparison180

with the one obtained with the commercial software PLAXIS in Fig. 3, for181

lower values of Tv, the solution of the degree of consolidation, Uv, given by182
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Figure 4: Comparison of different pore pressure evolution solutions at the top of the
consolidation column [26, 32].

the commercial program along the column of soil is similar to that of the183

current work, although significant discrepancy is observed for higher values184

of Tv, while our proposed solution is still close to the analytical one. With185

this example, we have validated the numerical method for static consolidation186

problems.187

In Fig. 4, the dissipation of excess pore pressure over time at the top of188

the soil column under the monotonic loading, as given in Fig. 2, is obtained189

using the current methodology, as well as with quadratic finite element codes190

under u−w or u−pw formulations [26, 32]. Note that the difference is hardly191

detectable.192

In Fig. 5, the comparison is shown for the isochrone at time 0.1 s for a193

soil permeability of 0.167×10−4 m/s. Note that when the impervious layer194

is approached, instability is observed for the solution obtained with u −195

pw formulation. Such an instability is overcome with the current meshfree196

methodology by utilizing a finer discretisation and tuning the parameter γ in197

Eq. (9). Since the γ-parameter controls the influence radius of the LME shape198

functions and a smaller γ alleviates the problem of volume locking as there199

are more neighbour nodes contributing to the value of the pore pressure of200

the material point, more details can be found in the author’s recent work [9].201

The advantages of the u − w formulation over the conventional u − pw are202

evidenced, in particular, for such dynamic problems.203
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formulations in finite-element and current meshfree solutions with a) different levels of
discretisation b) different β values [26, 32].

4.2. Consolidation of a soil column: the dynamic problem in 1D204

In this Section, the dynamic consolidation of a soil column is studied205

using the same geometry given in Fig. 1. In this case, the external load-206

ing is replaced by a harmonic pressure at the top. This problem was first207

analytically solved by Zienkiewicz et al. [2] in 1980s, and more recently by208

López-Querol [26] using a quadratic finite element method. The material pa-209

rameters are provided in Table 1, and they are chosen to fit the dimensionless210

parameters employed by Zienkiewicz et al. [2]. For example, the density ρ211

in Table 1, does not correspond to a real soil, but is chosen to obtain the212

same ρf/ρ ratio as that of given in [2]. The amplitude of the loading is213

100 kPa, while the frequency ranges from low to high values, to cover all the214

possible types of dynamic consolidation problems defined in [2]. The varia-215

tion of the pore pressure with depth is calculated for different values of the216

dimensionless parameters Π1 and Π2, which are defined as follows [2]:217

Π1 =
k V 2

c

g
ρf
ρ
ω H2

T

=
k ω

g
ρf
ρ

Π2

, Π2 =
ω2H2

T

V 2
c

(33)

where HT is the column height, Vc is the p-wave velocity calculated as:

Vc =

√(
D +

Kf

n

)
1

ρ
, (34)
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Figure 6: Zones of the different behaviour of the soil depending on the parameters Π1 and
Π2 [2] showing simulations carried out in a) 1D column problem; and b) radial, sink and
Lamb’s consolidation problem.

In the above expression, D stands for the constrained modulus of the soil.218

Note that, since ω/(2π) is the frequency of forced motion (external load),219

whereas Vc/(2HT ) is the representative natural frequency of the system (the220

soil column), the parameter Π2 is closely related with ratio between the221

two. The parameter Π1 combines this ratio together with the influence of222

the hydraulic conductivity, the loading frequency and the relative density223

between the fluid and the dry mixture.224

Different soil behaviours can be distinguished according to the values of225

Π1 and Π2. The three different zones classified in this manner by Zienkiewicz226

et al. [2] are illustrated in Fig. 6. Zone I is characterised as slow phenomenon227

where both solid and fluid accelerations can be neglected; Zone II is typical228

of moderate speed behaviour, where only the fluid phase inertia is negligible;229

in Zone III, however, inertial contributions from both solid and fluid phases230

are significant and cannot be neglected.231

Table 1: Material parameters employed for the dynamic consolidation problem of a soil
column (where G is the shear modulus).

G ν n ρ ρf Kf Ks Vc
[MPa] - - [kg/m3] [kg/m3] [MPa] [MPa] [m/s]
312.5 0.2 0.333 3003 1000 104 1034 3205
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Note that for the given material properties in Table 1, Π2 is directly232

related to the angular velocity of loading, w, whereas Π1 is also influenced233

by the the hydraulic conductivity, k. The parameter values to define the234

nine points, from P1 to P9, depicted in Fig. 6a), are listed in Table 2. For235

given k and ω, transient calculations are performed to obtain the maximum236

envelop of the pore pressure history for different points along the column237

depth and the excess pore water pressure distribution at a give time (i.e.238

isochrones). These results are then compared with the analytical solution239

given by Zienkiewicz et al. [2] in Figs. 7-10 to check the accuracy of the240

current methodology.241

Table 2: The parameters, k and ω, for HT = 10 m and different Π1 and Π2 values for P1

to P9 in Fig.7a).

Π2 10−3 10−1 101 102

ω [rad/s] 10.14 101.4 1014 3206
Π1 k [m/s]

102 3.22E-2 (P1)
101 3.22E-2 (P4)
100 3.22E-4 (P2) 3.22E-2 (P6)
10−1 3.22E-3 (P7) 1.018E-2 (P9)
10−2 3.22E-6 (P3) 3.22E-5 (P5) 3.22E-4 (P8)

For the three points P1, P2 and P3 located in Zone I, Π2 is kept constant,242

which means the external loads are of the same frequency. The parameter Π1243

covers four orders of magnitude, so does the soil permeability. The isochrones244

of the pore pressure are compared with the analytical ones in Fig. 7. It245

needs to be pointed out that Zienkiewicz’s solution is calculated neglecting246

the accelerations, whereas the present research solution is a second-order247

approximation taking into consideration the inertia term. No significant248

differences between both approaches are appreciated. This confirms that,249

as indicated by Zienkiewicz et al. [2], in Zone I, the inertial terms can be250

ignored. The solution obtained using a finite element code is also included,251

demonstrating the similarity with the solutions derived with the methodology252

presented in this paper.253

Employing the different values of k and ω listed in Table 2, the obtained254

isochrones for points P4 to P9 are compared with the analytical ones given255

by Zienkiewicz et al. [2] as well as the solution obtained with FEM, employ-256

ing u-w formulation for Π2 from 10−1 to 102 in Figs. 8–10. The higher is257

the parameter Π2, the more unstable is the problem. In spite of that, the258
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Figure 7: Isochrones of the pressure in the whole column for different π1. The solution by
Zienkiewicz et al [2] neglects the accelerations, while they are considered in the present
research.

numerical results obtained with the current methodology fit reasonably well259

the analytical solutions in all cases. This demonstrates the robustness of260

the current approach for highly unstable consolidation problems, even in the261

range of high frequencies. No big differences are found with the solution of262

the finite element method. Even more, the meshfree solution fits better the263

analytical one for the highly unstable cases.264

265

For both meshfree and finite element solutions, 320 integration points266

have been employed. However, despite of this fact, the performance is very267

different, the meshfree calculation being 6 or 7 times faster than the one268

obtained with finite elements. In Table 3 the performances of both, in269

terms of computational efforts, are presented. The computer employed had270

a processor: Intel Core i7 2.3 GHz, with memory of 16 GB 1600 MHz. The271

software was MatLab R2014a.272
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Table 3: Computational efforts, given in time of calculation (in seconds, s) with meshfree
and finite elements simulations.

P1 P2 P3 P4 P5 P6 P7 P8 P9
Meshfree 26 s 26 s 26 s 25 s 26 s 33 s 26 s 26 s 65 s

Quad-FEM 184 s 188 s 185 s 185 s 188 s 188 s 186 s 190 s 394 s
Difference 710% 712% 713% 749% 725% 567% 724% 742% 602%
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4.3. Radial consolidation: static axisymmetric problem273

r

z

rw

re

q

Impervious layer

Drains

S

re

a) b)

nr =
r e
rw

,

Figure 11: a) Scheme of section of set of drains and b) quadrangular net of drains
(re/S=0.564).

The physical equation governing the radial consolidation problem is dif-
ferent from the one given in the previous section. According to Terzaghi [30],
it is as follows:

ch

(
∂2pw
∂r2

+
1

r

∂pw
∂r

)
=
∂pw
∂t

(35)

where ch is the horizontal consolidation coefficient. Since the radial consol-274

idation equation involves a second term (tangential flow), it is impossible275

to solve it within a plane strain formulation, as the one employed for ver-276

tical one-dimensional consolidation. Therefore the axisymmetric framework277

shown in previous sections is utilised herein.278

In Fig. 11, a sketch of drains with induced radial flow is presented, r and279

z representing the radial and vertical directions as depicted in the figure. rw280

is the drain radius and re is the influence radius. Parameters of this soil are281

shown in Table 4.282

Table 4: Material parameters employed for the radial consolidation problem.

E ν n ρ ρf Kf Ks k kdrain
[MPa] - - [kg/m3] [kg/m3] [MPa] [MPa] [m/s] [m/s]

1.0 0.0 0.333 3003 1000 104 1034 9.8E-3 9.8E-1

The analytical solution for this problem was given by Barron in 1948 [33], [31].283

Herein we study the case for a quadrangular net of drains as shown in284
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Fig. 11b). In Fig. 12, several solutions of the radial consolidation degree,285

Ur, along the dimensionless time, Tr, are shown. Note that, except at the286

early stage, the solution obtained from the present methodology fits well the287

analytical ones.288
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Figure 12: Analytical and numerical solutions of Ur along the non-dimensional time Tr

A further comparison is carried out to validate the present methodol-289

ogy against the experimental results of Hsu and Liu [6] on radial consoli-290

dation. In the modelled test, the soil was vertically loaded with a pressure291

of 1.569 MPa, applied with a rate of 98.07 kPa/h. The parameters and di-292

mensions employed in the test are listed in Tab.5. The numerical solution is293

contrasted with both the analytical and the experimental solutions in Fig.13.294

Note that the analytical and numerical results fit very well for constant ch295

values. However, in order to obtain the solutions for varying ch (to represent296

the actual test conditions), a constitutive model to include plastic soil be-297

haviour is indispensable, which is beyond the scope of the current work. In298

spite of that, these results show that the experimental tendency is correctly299

captured by the numerical simulations. Consequently, our numerical model300

is further validated with this example.301
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Table 5: Parameters and dimensions employed in the radial consolidation test of Hsu and
Liu [6].

E ν n ρ ch kh kdrain re rw
[MPa] - - [kg/m3] [mm2/s] [mm/s] [mm/s] [mm] [mm]
10.2 0.3 0.333 2000 1E-2 1E-7 1E-3 31.75 8.75

Time (s)
3000 30000 300000

0

0.2

0.4

0.6

0.8

1.0

1.2

Ur 

Hsu and Liu (2013)

Analytical (constant ch)

Analytical (varying ch)

Present research

Figure 13: Analytical, experimental and numerical solutions for the radial consolidation
test of Hsu and Liu [6].

4.4. Radial consolidation: dynamic axisymmetric problem302

In order to deal with the dynamic radial consolidation problem, a dy-303

namic loading at the surface has been applied to the same geometry as in304

Fig. 11. The dynamic effect on the development of excess pore water pressure305

in the domain is studied. Similarly to the 1D dynamic consolidation prob-306

lems, various scenarios representing different zones of behaviour in Fig. 6b)307

are explored herein. The loading frequency and the hydraulic conductivity308

in Table 6, are chosen to give the predefined hypothetical dimensionless pa-309

rameters, taking into account that the term, HT , in Eq. (33) refers now to310

the horizontal distance to the drain. Four simulations, denoted as A, C, D311

and E in Fig. 6b, have been carried out. Vertical displacements of water in312

the entire domain are prevented to reproduce a purely radial process.313

22



Table 6: Angular velocity and permeability for each of the four radial dynamic consolida-
tion problems.

Π1 Π2 k [m/s] ω [rad/s]
A 10−1 10−2 5.82× 10−5 56.07
C 10−2 100 5.82× 10−5 560.7
D 10−1 102 5.82× 10−3 5607
E 102 102 5.82× 100 5607

The first row of Fig. 14 represents the maximum envelope of the horizon-314

tal isochrone of excess pore pressure at three different elevations along the315

domain (0.5 m, 5.0 m and 9.5 m). As expected, high frequency problems316

(with higher Π2 values), D and E, have a more unstable behaviour than the317

low frequency one, A. In addition, since Π1 is higher for E, thus presents318

higher peaks. The second row shows the same results along three different319

radial distances from the drain (0.5 m, 3 m and 5.0 m). In this case, the320

difference between D and E is inappreciable, although both are significantly321

different from A. However, for case C (located in Zone II in Fig. 6), a sig-322

nificant overpressure at the bottom of the column is observed, which was323

seen in the first row as well. This can be attributed to the fact that when324

the instability of the water pressure arrives at the bottom of the soil but is325

not reflected, since the soil is not permeable enough so that the water move-326

ment may be significant. Similar behaviour is perceived in P4, P7 and P8 in327

Figs. 8-9. In the third row of Fig. 14, the evolution of pore water pressure328

at three different elevations of the column at the radius of 0.5 m are illus-329

trated for case A and C, whereas maximum and minimum envelope evolution330

with time are shown for cases D and E. It needs to be emphasised that the331

steady state is achieved for case A at the first cycle of loading, whereas for332

case C the convergence is relatively fast and for cases D and E, the solutions333

become stable after 0.08 s. The maximum and minimum values of excess334

pore water pressure in the entire domain at steady state are shown for A335

and D respectively in Fig. 15 and Fig. 16. Note that in contrast to Fig. 15,336

low frequency cases present a slow pressure redistribution, which is similar337

to a series of static states. By contrast, the high-frequency results, typically338

show a pattern that depicts the distributions of the waves. Indeed, from the339

alternate feature shown in Fig. 16, the position of the drain is not detectable,340

consequently, it might exert litter influence over the pressure distribution.341
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Figure 17: Geometry for the soil consolidation problem with a sink.

4.5. Static consolidation in a soil with a singular drainage point: the static342

sink problem343

In this Section, we apply the previously developed approach to model the344

soil consolidation problem when a singular drainage point is introduced in the345

domain. The existence of the sink is expected to accelerate the consolidation346

of the porous media, since there is an additional output of flow around the347

sink point. To reproduce this singular drainage point, excess pore water348

pressure is impeded to develop at several nodes around the domain center.349

The simulated geometry is a square section with 20-meter edge length, see350

Fig. 17. The employed material properties are given in Table 7.351

The evolution of the consolidation degree, U , at the bottom, lowest corner352

and the U -distribution over the entire domain after two seconds are respec-353

tively plotted in Fig. 18 and Fig. 19. In spite of slight differences in the final354

part of the evolution in Fig. 18, it can be concluded that the results from355

the current approach and the commercial software are fairly similar, thus356

validating the present formulation for this kind of problems.

Table 7: Material parameters employed for the soil consolidation problem with a sink.

E ν n ρ ρf Kf Ks k ksink
[MPa] - - [kg/m3] [kg/m3] [MPa] [MPa] [m/s] [m/s]

100 0.0 0.333 3003 1000 103 1034 10−3 10

357
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4.6. Dynamic consolidation in a soil with a singular point: the dynamic sink358

problem359

Table 8: Angular velocity and permeability in each of the three sink dynamic consolidation
problems.

Π1 Π2 k [m/s] ω[rad/s]
A 10−1 10−2 62.25× 10−5 5
C 10−2 100 62.25× 10−5 50
D 10−1 102 62.25× 10−3 500
E 102 102 62.25× 100 500

In this Section, we study the dynamic counterpart of the consolidation360

problem presented in Section 4.5. The same geometry in Fig. 17 is opted for361

and the material properties in Table 7 are employed. Taking into account362

Eq. (33), the permeability coefficients and angular velocities in Table 8 are363

selected to give the corresponding dimensionless parameters Π1 and Π2 for364

the points A, C, D and E defined in Fig.6b).365

In Fig. 20, the evolution of excess pore water pressure at the top right366

corner for all three cases are plotted. For the sake of clarity, maximum and367

minimum envelopes are illustrated. As mentioned before, the higher the Π2,368

the more unstable the evolution of the excess pore pressure. Consequently,369

the slowest (fastest) convergence and highest (lowest) pressure amplitudes370

are presented for case E (A) before the steady state is achieved. The same371

trend is observed in Fig. 21 where different peak values occur along the372

depth for high frequency problems D and E, whereas uniform amplitude is373

obtained for the low frequency case A. The intermediate case C, overpressure374

at the bottom of the domain is observed, this is similar to the case C of375

the radial consolidation problem shown in Fig. 14. Note that unreasonable376

pore pressure values near the sink are cut off from the figure. Furthermore,377

in Fig. 22, the maximum and minimum excess pore water pressures over378

the entire domain are depicted for both the low frequency case A and high379

frequency cases D, E. Once again, these results demonstrate the suitability380

of the present formulation for dynamic consolidation problems in saturated381

soils.382
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Figure 20: Evolution of excess pore water pressure during external cyclic loading at the
top, right corner (for the sake of clarity, the left, lower figure represents maximum and
minimum envelope of the solutions).

0 100 200 300 400 500 600 700 800

D) π2 = 102 , π1 = 10-1A) π2 = 10-2, π1 = 10-1 E) π2 = 102 , π1 = 102

Pw(Pa)
0 100 200 300 400 500 600 700

0

2

4

6

8

10

12

14

16

18

20

800 900

z(m)

Pw(Pa)

x=5m x=10m

SINK

C) π2 = 100, π1 = 10-2
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Figure 23: The Lamb’s problem: geometry, material parameters and loading (static and
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4.7. Axisymmetric Lamb’s problem383

The propagation of vibrations over the surface of a semi-infinite isotropic384

elastic solid was first studied by Lamb [34] in 1904. Since a saturated soil385

needs to be treated as a two-phase medium which consists of soil skeleton and386

pore water, the coupled problem has been dealt with as a traditional problem387

of consolidation in porous media, see [35, 36, 37], or through an axisymmetric388

scheme to obtain the solution in a more realistic situation, see [38]. Herein389

we tackle the Lambs problem using the axisymmetric meshfree formulation390

validated in Section 4.5. In order to compare our results with those of Cai391

et al. [38], the same geometry and material parameters as shown in Fig. 23392

are employed. Additionally plotted in Fig. 23 are the harmonic and stepped393

loading for the two series of transient calculations carried out.394

It needs to be pointed out that, since a u − w formulation is assumed
in the current work, the total water displacement in the vertical direction is
extracted as

Uz = u+
w

n
. (36)

The obtained results for three different levels of permeability are compared395

with those of Cai et al. [38] for the case of stepped loading, with ramped396

time T ∗ of one second, in Fig. 24. Close agreement is achieved for all three397

cases.398

For the case of harmonic loading, the dimensionless parameter

a0 =
ω r0

Vs
, where Vs =

√
G

ρ
. (37)

which was defined by Cai et al. [38], is adopted to characterise the combined399

effect of loading frequency and load area. Four simulations, represented400
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gradually applied stepped load (T ∗ = 1).

Table 9: Angular velocity and permeability in each of the Lamb’s problems.

Π1 Π2 a0 r0 [m] k [m/s] ω [rad/s]
A 10−1 10−2 0.4 1.0 2× 10−4 20
B 10−1 10−2 4.0 10.0 2× 10−4 20
C 10−2 100 4.0 1.0 2× 10−4 200
D 10−1 102 40.0 1.0 2× 10−2 2000
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by points, A, B, C and D, as marked in Fig. 6b) and the corresponding401

parameters listed in Table 9 are carried out. In Fig. 25, the envelope of402

maximum displacements is represented for a total computation time of 20403

seconds. It needs to be remarked that, even though points A and B coincide404

in Fig. 6b), the loading area for point A is only one percent of that for point405

B, consequently, the vertical displacement is more extended for case B.406
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Figure 25: Envelopes of vertical water displacements along the radial direction during 20 s
for cases A, B and C.
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In Fig. 26, the maximum envelopes of isochrones of the pore pressure407

along the two columns located at 0.5 m and 5.0 m from the loading center408
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are compared for cases A, B, C and D. Note that A, C and D share the same409

loading radius of 1 m, but represent the low (20 rad/s), medium (200 rad/s)410

and high (2000 rad/s) frequencies, and fall in Zone I, Zone II and Zone III411

respectively. By contrast, case B refers to a wider loading area (a radius of 10412

m). The total histories of the pressure envelopes at three different locations in413

the domain for all four cases are represented in Fig. 27. Note that a different414

scale is used for case B, since the pressure amplitudes are much higher due to415

a wider loading area, see Figs. 26-27. Similar patterns seen in the previous416

can be noticed in the A, C and D cases. In general, high-frequency problems417

present higher pressure peaks and more instabilities than low-frequency ones.418

Similar peak values are obtained for A and C, but the convergence is faster for419

case A as the frequency is lower. Furthermore, the maximum and minimum420

pressures of the entire domain under low (case A) and high (case D) frequency421

situations are depicted in Fig. 28. It is noteworthy the unstable behaviour422

of the fast frequency results are well captured using the current formulation.423

Note the different zones where the maximum and minimum values in Fig. 26424

and Fig. (28)b, which are attributed to the reflection of the waves at the425

bottom boundary in the fast problems. This fact does not appear in slow426

problems because there is enough time to dissipate the excess pore pressure.427

5. Conclusions428

We have extended the previously developed B-bar based algorithm to429

mesh-free numerical schemes in axisymmetric framework for porous media.430

The methodology is applied to both static and dynamic consolidation prob-431

lems in saturated soils. Static and dynamic consolidation of a soil column,432

radial consolidation, consolidation with singular points (sinks), as well as the433

Lamb’s problem, have been simulated and compared with analytical solu-434

tions (whenever they exist) or available solutions obtained with finite ele-435

ment based codes. The feasibility of the current formulation in solving con-436

solidation problems in saturated soils, particularly for dynamic ones in high437

frequency domain, has been clearly demonstrated. The better efficiency, in438

terms of computational efforts, compared with FE simulations has also been439

demonstrated for dynamic cases. Moreover, applications of the LME mesh-440

free approximation in axisymmetric soil consolidation problems using u− w441

formulation have not been previously reported in the literature.442

In addition, the numerical results presented in this paper for high-frequency443

dynamic problems are completely new and the feasibility of the developed444

methodology is rather promising even for such unstable cases. It is ver-445

ified that the complete u − w formulation is particularly suitable for the446

modelling of dynamic high-frequency problems, which had been previously447
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demonstrated in finite element approaches, but never before in meshfree mod-448

els for soils.449

The novelty of the current work also lies in the presentation of the soil450

behaviour for different drainage configurations and under different types of451

loading. Results are shown both along time and at representative locations452

of the domain, paying special attention to the peak values. The employment453

of behaviour classification as for the zones given by Zienkiewicz et al. [2],454

illustrated in Fig. 6, is adopted for all the problems studied in this paper.455

Although slight differences are noticed, the pattern behaviour of the soil is456

closely related with the mentioned figure in all cases. Cases in zone I present457

a quasi-static behaviour, as the pore pressure is redistributed with a fast con-458

vergence along the domain. In zone II, the high-moderate frequency leads459

the acceleration of the soil being important, causing several instabilities, al-460

though, as Zienkiewicz stated, the acceleration of the water phase can be461

neglected due to the low permeability, which normally provokes an overpres-462

sure at the bottom. The bigger the values of Π1 and Π2, the more unstable463

and higher peaks of the pore pressure. As the permeability is high, distri-464

butions of the waves along the domain are observed and the accelerations of465

the fluid phase become essential if an accurate and stable solution is to be466

found.467

The radial consolidation is an axisymmetric problem, but as in the consol-468

idation of a soil column, in terms of water displacement, it is a 1D problem,469

in which only horizontal water movement is allowed. The classification in470

zones as proposed by Zienkiewicz et al. [2] is demonstrated to be valid also471

in this problem, in which cases located in the same zones behave in a quite472

similar manner and same range of instability.473

In addition, the sink problem is purely 2D, with vertical and horizon-474

tal displacements in both solid and fluid phases. In this case, although475

Zienkiewicz’s classification is still approximate, some differences appear in476

problems located in zone III: the higher the Π1, the higher the amplitude in477

the response in terms of pore water pressures, and the longer it takes until478

a steady solution is found. The same trend was also found in the Lamb’s479

problem, also 2D in nature. This behaviour was not obtained in the case of480

radial consolidation.481

Finally, as the unstable behaviour of high-frequency problems is very well482

captured by the employed formulation, which stresses the robustness of this483

methodology. Further study on this topic is still needed to seek out the484

limit response of the soil under high frequency loadings. Implementation485

of plastic constitutive laws under the current meshfree framework deserves486

further study.487

Comparison between the present formulation and experimental research,488
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taking into account non elastic soil, would be required in the future to extend489

the validity of this new methodology to real consolidation problems.490

Acknowledgements491

The financial support to develop this research from the Ministerio de492

Ciencia e Innovación, under Grant Numbers, BIA2012-31678 and MAT2012-493
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