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Mangroves provide vital climate change mitigation and adaptation (CCMA) ecosystem services (ES), yet have
suffered extensive tropics-wide declines. To mitigate losses, rehabilitation is high on the conservation agenda.
However, the relative functionality and ES delivery of rehabilitated mangroves in different intertidal locations
is rarely assessed. In a case study from Panay Island, Philippines, using field- and satellite-derived methods, we
assess carbon stocks and coastal protection potential of rehabilitated low-intertidal seafront and mid- to
upper-intertidal abandoned (leased) fishpond areas, against reference natural mangroves. Due to large sizes
and appropriate site conditions, targeted abandoned fishpond reversion to former mangrove was found to be
favourable for enhancing CCMA in the coastal zone. In a municipality-specific case study, 96.7% of abandoned
fishponds with high potential for effective greenbelt rehabilitation had favourable tenure status for reversion.
These findings have implications for coastal zone management in Asia in the face of climate change.

© 2016 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Environmental management is placing increasing emphasis on the
services provided by the world's ecosystems (Cardinale et al., 2012).
Mangrove forests deliver numerous important ecosystem services
(ES) to humans, valued at $194,000 ha−1 yr−1 (Costanza et al., 2014):
food and fuel, nursery habitat, recreation (Barbier et al., 2008, 2011).
Mangroves are of particular significance in the context of climate
change (Duarte et al., 2013), affording among the largest per hectare
global carbon stores and coastal protection from regular waves and fre-
quent tropical storms (Dahdouh-Guebas et al., 2005; Donato et al.,
2011). Growing global policy emphasis on both emissions reduction
and climate impact mitigation in vulnerable countries (UNFCCC, 2015)
places ever higher significance on the climate changemitigation and ad-
aptation (CCMA) properties of mangroves. High susceptibility to an-
thropogenic activities and climate change impacts (Primavera, 2005;
Duke et al., 2007; Lovelock et al., 2015) has, however, led to mangrove
areal declines of 30–50% globally (Field et al., 1998; Valiela et al.,
2001), with continued losses of 0.16–0.39% per annum (Hamilton and
gical Society of London, Outer

. This is an open access article under
Casey, 2016; Richards and Friess, 2016). 16% of mangrove species are
now threatenedwith global extinction (Polidoro et al., 2010). Extensive
loss has left degraded and highly fragmented mangroves in many parts
of their global distribution (Giri et al., 2011; Hamilton and Casey, 2016)
that may have limited potential to deliver CCMA services into the future
(Koch et al., 2009; Barbier et al., 2011; Lee et al., 2014).

To combatmangrove losses, and to enhance CCMA efforts in the tro-
pics, rehabilitation is an essential management tool (Ellison, 2000; Kairo
et al., 2001; Lewis, 2005; Primavera and Esteban, 2008; Primavera et al.,
2012a). Rehabilitated mangrove blue carbon-based Payments for Eco-
system Services (PES) projects are emerging (Wylie et al., 2016), and
governments are increasingly recognising the significance of mangrove
coastal protection (Marois and Mitsch, 2015), with national coastal
greenbelt replanting programmes nowwidespread following recent nat-
ural disasters (Dahdouh-Guebas et al., 2005; Primavera et al., 2014). Re-
cent studies on potential blue carbon PES schemes have concluded that
projects would benefit from inclusion of “bundled services” to offset low
voluntary carbon market prices (Locatelli et al., 2014; Thompson et al.,
2014), with particular reference to coastal protection (Kairo et al., 2009;
Locatelli et al., 2014). However, mangrove rehabilitation efforts have his-
torically seen low successes (e.g. Primavera and Esteban, 2008; Dale et al.,
2014; Bayraktarov et al., 2015; but see Arnaud-Haond et al., 2009;
Goessens et al., 2014), and where established, longer-term monitoring
the CC BY license (http://creativecommons.org/licenses/by/4.0/).

http://crossmark.crossref.org/dialog/?doi=10.1016/j.marpolbul.2016.05.049&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.1016/j.marpolbul.2016.05.049
mailto:clare.duncan@ioz.ac.uk
http://dx.doi.org/10.1016/j.marpolbul.2016.05.049
http://creativecommons.org/licenses/by/4.0/
http://www.sciencedirect.com/science/journal/
www.elsevier.com/locate/marpolbul


773C. Duncan et al. / Marine Pollution Bulletin 109 (2016) 772–782
of functionality has been minimal (Bosire et al., 2008). Where this has
been monitored, the structure and specific functionality of rehabilitated
mangroves can be comparable to adjacent natural stands (Kairo et al.,
2001; Bosire et al., 2008; Ren et al., 2010; Salmo et al., 2013; Nam et al.,
2016); however, their relative potential for high multiple ES delivery is
mostly unknown (but see Rönnbäck et al., 2007 and Nam et al., 2016).
We thus currently lack quantitative information on the combined CCMA
potential of current mangrove rehabilitation efforts.

There are two major potential sources of variation in the ability of
rehabilitated mangroves to deliver high multiple CCMA ES. First, igno-
rance of or noncompliance to scientific guidelines has driven many re-
habilitation efforts to take place in low-intertidal seafront areas where
sub-optimal hydrological conditions limit survival and growth of
replanted mangroves (Iftekhar, 2008; Primavera and Esteban, 2008;
Primavera et al., 2012a, 2012b, 2014). Rehabilitation in such areas
may result in low relative mangrove biomass and density, and associat-
ed carbon stocks and coastal protection potential, particularly where re-
habilitation failure has historically been high. Second, site areal
configuration may heavily impact the potential ES delivery of rehabili-
tatedmangroves. Rehabilitatedmangrove carbon stocksmay be expect-
ed to increase linearly with site area, while coastal protection rapidly
increases with mangrove greenbelt width (Koch et al., 2009). Indeed,
low-intertidal rehabilitated mangroves exist primarily in monospecific
narrow-fringing stands (Ellison, 2000; Iftekhar, 2008; Primavera et al.,
2012a, 2012b), with potentially severely limited ability to deliver effec-
tive coastal protection (Ewel et al., 1998; Barbier et al., 2008, 2011; Koch
et al., 2009). Larger rehabilitation sites in the mid- to upper-intertidal
zonemay thus be expected to deliver much higher multiple CCMA ben-
efits than narrow, low-intertidal rehabilitatedmangroves. However, the
spatial configuration and area of suitable land for mangrove rehabilita-
tion is often constrained by land tenure conflicts and complexities in the
coastal zone (e.g. agri- and aquaculture); often themajor driver for pri-
oritizing low-intertidal zone rehabilitation (Iftekhar, 2008; Primavera
and Esteban, 2008; Primavera et al., 2012b, 2014). CCMA arguments
for rehabilitation actions may be key in future decision-making and
spatial planning. To guide effective coastal zone management in the
face of climate change, there is thus a need to identify and prioritise re-
habilitation locations in which high CCMA gains may co-occur with
minimal tenure issues (Locatelli et al., 2014; Primavera et al., 2014;
Thompson et al., 2014).

This study examines the CCMA potential of mangrove rehabilitation
in abandoned aquaculture ponds relative to low-intertidal, seafront
areas across Panay Island, Philippines. We first quantify the relative
vegetation and sediment carbon stocks, and coastal protection potential
of rehabilitated mangrove areas (mid- to upper-intertidal abandoned
fishpond and low-intertidal seafront areas), against mature natural ref-
erence mangrove stands, to explore the ES potential of these different
rehabilitation strategies. We then conduct a municipality-specific case
study to model the potential CCMA benefits of targeted abandoned
fishpond reversion, with specific reference to current coastal greenbelt
rehabilitation efforts. We conclude by examining the feasibility of
prioritising abandoned fishpond reversion for CCMA goals under cur-
rent fishpond tenure status across the case study.

2. Materials & methods

2.1. Study areas: Panay Island, Philippines

The Philippines is among themost typhoon-ravaged countries in the
world (Peduzzi et al., 2012; UNU, 2014). High typhoon-exposure of
coastal areas, and the infrastructural and institutional vulnerability to
typhoon events (UNU, 2014), has been recently evidenced by devastat-
ing impacts suffered during super-typhoon Haiyan (Soria et al., 2015).
The Philippines has experienced substantial mangrove loss: approxi-
mately 50% of the former 500,000 ha (Spalding et al., 2010) disappeared
over the last century, due primarily to shallow brackish-water fishpond
aquaculture development in former estuarine, basin and riverine
mangroves (Primavera, 2005). Some of the highest fishpond densities
occur in the West Visayas Region; e.g. on Panay Island (Primavera and
Esteban, 2008). Development is largely unregulated, and despite laws
mandating 50–100 m of mangrove greenbelt (Primavera et al.,
2012b), fishponds are often built to the shoreline. Abandonment is
high (estimates in the thousands of hectares; see Samson and Rollon,
2011; Primavera et al., 2012b), due primarily to bank breaches in sea-
facing fishponds over low productivity (Primavera et al., 2014). Fish-
ponds are tenured by among the wealthiest in society, and operated
by the poorest. Reversion of abandoned fishponds to formermangroves
for greenbelt resurrection could thus benefit coastal community liveli-
hoods through associated fisheries enhancement (Walton et al., 2006).

Philippines' public mangrove land is released by the Department of
Environment and Natural Resources (DENR) for aquaculture under
multiple tenure arrangements: from titled ownership, to temporary
leaseholds under Fishpond Lease Agreements (FLAs) granted under
the jurisdiction of the Bureau of Fisheries and Aquatic Resources of the
Department of Agriculture (DA-BFAR). Under Philippine law, failure to
adhere to FLA terms should preclude FLA cancellation by DA-BFAR,
and reversion of jurisdiction to the Forest Management Bureau of
DENR for subsequent mangrove rehabilitation. This includes Aban-
doned (no operational activity, subleasing, or neglect of payments),
Underutilised (no commercial production within three years), and Un-
developed (pond infrastructure absent) (AUU) FLA fishponds (see
Primavera et al., 2014). Herein, the term ‘abandoned fishpond’ refers
to all AUU fishponds. However, non-coordination between government
departments (DA-BFARandDENR), low institutional capacity, exclusion
of local government units (LGUs) and coastal communities from deci-
sion-making, and a lack of political will means FLA monitoring is mini-
mal, and cancellation and reversion rarely occurs: large areas of
former mangrove lie fallow. Furthermore, cancelled abandoned FLAs
are often absorbed and re-tenured under new FLA leases or operated il-
legally (Primavera et al., 2014).

Due to the challenges of abandoned fishpond reversion, national
greenbelt rehabilitation programmes continue to focus on low- and
sub-intertidal planting seaward of coastal infrastructure and fishponds
(‘seafront rehabilitation’). Highmortality in plantations of inappropriate
species wastes public and international funds, while threatening other
intertidal systems (seagrasses, mudflats; Primavera and Esteban,
2008; Samson and Rollon, 2008, 2011). Surviving seafront rehabilitated
mangroves are often small areas growing at the limits of their phys-
iological tolerance ranges (Tomlinson, 1986). In contrast, some Non-
Governmental Organisation-led projects, in partnership with specific
LGUs, have begun to target rehabilitation of abandoned fishponds in
the mid-upper intertidal zone where more natural hydrological condi-
tions largely remain (Primavera et al., 2012b, 2014).

This study investigated the relative CCMA ES delivery by rehabilitat-
ed low-intertidal seafront and abandoned fishpond areas across Panay
Island, with reference to adjacent natural stands. Six mangrove stands
from four sites in Iloilo and Aklan Provinces were used (Fig. 1):

1. Bakhawan ecopark, Buswang, Kalibo, a remnant area of a former del-
taic mangrove at the mouth of Aklan River (Cadaweng and Aguirre,
2005; Walton et al., 2006). Following over-exploitation of mangrove
timber, large portions of the seaward area have been replanted with
Rhizophora spp. since the early 1990s. A wide band of mature natural
Avicennia marina and Sonneratia spp.-dominated mangrove remains
behind the rehabilitated areas. This study focused on (1) a seafront
area replanted in 2006 with Rhizophora apiculata, and subsequently
naturally recolonised by A. marina, Nypa fruticans and Sonneratia
alba individuals (“Bakhawan rehab”); and (2) the inland natural
mangrove area (“Bakhawan natural”).

2. Ermita, Dumangas. A remnant now-fringing area of a former deltaic
mangrove cleared inland for fishpond aquaculture, bordered in the
landward direction by active fishponds and a coastal road. The site



Fig. 1. Location of rehabilitated and naturalmangrove sites considered in this study, and location of Panay Island inWest Visayas (Region VI), Philippines. Filled circles donate rehabilitated
abandoned fishpond sites, while half-filled circles donate replanted seafront sites and adjacent natural areas. Details of all sites are provided in Table 1.
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contains a narrow band of remaining natural mangrove (A. marina
dominant; “Ermita natural”). Seaward of the natural mangrove is a
low-intertidal stand planted in 2007 (“Ermita rehab”). The area
was originally planted with S. alba, A. marina and Rhizophora spp.
seedlings; however, only S. alba survived algal (A.marina) and barna-
cle (Rhizophora spp.) infestation.

3. A sea-facing abandoned fishpond (FP) in Nabitasan, Leganes
(“Nabitasan FP”),whichwas reverted and replanted under a partner-
ship between the Zoological Society of London (ZSL) and Leganes
LGU in 2009 (Primavera et al., 2012a). A. marina is dominant, with
Rhizophora spp., S. alba and A. rumphiana also present. Prior to
assisted rehabilitation, very low mangrove cover and seaward bank
destruction drove erosion of former fishpond sediments at the sea-
ward edge. The area drains directly into the sea and is flushed
twice-daily by the tide.

4. A sea-facing abandoned fishpond in Dumangas municipality
(“Dumangas FP”) which was abandoned following a seaward
bank breach in 2005–2006. The site has subsequently been natu-
rally recolonised. Vegetation is dense and dominated by A. marina,
with S. alba and Rhizophora spp. also present. The area drains directly
into the sea; however, much of the seaward bank remains. The site is
not presently flushed completely with the tide; in areas organicmat-
ter is trapped in waterlogged sediments. The area is currently leased
under an FLA, and the leaseholder is in breach of terms following
abandonment (Primavera et al., 2014).

2.2. Field data collection

Field data collection was conducted from 2014–2015. Temporary
circular plots (radius = 7 m) were established via stratified sampling
with variation in distance from the shoreline (Kauffman and Donato,
2012) within a 15 × 15 m grid (N= 8 per site). For each plot, tree spe-
cies, diameter at breast height (DBH; at 1.37 m height, or above the
highest prop root for Rhizophora spp.; Kauffman and Donato, 2012),
height, and maximum canopy width (m; Kauffman and Donato, 2012)
of all trees (N1.37 m height) were measured. Small trees were defined
as those with ≤1.5 cm DBH, in order to avoid underestimation of bio-
mass in areas with a high abundance of small trees (e.g. rehabilitated
sites; Kauffman andDonato, 2012), andweremeasuredwithin a 3m ra-
dius sub-plot (from the plot centre). All larger trees (N1.5 cm DBH)
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were measured throughout the plot. Low, shrubby, heterogeneous can-
opies in younger rehabilitated sites restricted traditional methods of
rapid canopy closure estimation (e.g. spherical densitometer or vertical
position digital photography; Korhonen et al., 2006). To avoid error
from ocular estimates (Korhonen et al., 2006), we estimated average
plot-level canopy closure (%) at all sites from horizontal position digital
photographs (N = 4 per plot; at the plot centre facing toward the plot
‘corners’). Average plot-level canopy closure was estimated as the aver-
age percentage of non-sky, -water or -sediment image pixels, classified
for all plot photographs from the ratio of green to red light. These
estimateswere then averaged across all plots for each site (N=8) to es-
timate site-specific average canopy closure (%). This approach enabled
us to index both large canopy gaps (where present) and canopy pene-
tration across plots.

Sediment cores were taken in a triangular configuration within the
3 m sub-plot (N = 3 per plot) with an Eijkelkamp gouge auger
(30 mm diameter, 50 cm sampling length). Within each core, six 5 cm
samples were taken at specified depths and aggregated to represent
the 0–50 cm (N = 3 depth subsamples × 3 cores = 9) and 50–150 cm
(N = 3 depth subsamples × 3 cores = 9) sediment horizons (5–15 cm,
15–30 cm and 30–50 cm, and 50–100 cm, 100–150 cm and 150 cm
respectively; Kauffman and Donato, 2012). Sediments were sampled
to 150 cm depth due to laboratory constraints (rather than the entire
sediment profile; Donato et al., 2011; Kauffman and Donato, 2012).
Average sediment profile depthwasmeasured (N=3 per plot) in a tri-
angular configuration within 3.5 m of the plot centre, avoiding areas
close to large trees (aerial roots), by inserting an iron rod (diameter =
1.5 cm) vertically into the sediment by hand until it could no longer
be pushed.

2.3. Ecosystem services quantification

2.3.1. Vegetation carbon stocks
Vegetation biomass was calculated via allometric equations. For

single-stemmed trees, biomasswas estimated via the generalmangrove
allometric equations derived byKomiyama et al. (2005) (Eqs. (1) & (2)),
in order to ensure continuity in biomass estimation across plots and
sites. Individual tree above- (BAG; kg) and belowground biomass (BTB;
kg) were estimated by:

BAG ¼ 0:251� p� D2:46 ð1Þ

BTB ¼ 0:199� p0:899 � D2:22 ð2Þ

where p is species-specific wood density (g cm−3) (Komiyama et al.,
2005). Two individual trees in the natural area at Ermita, Dumangas
were beyond the DBH limit of these equations and their biomass was
overestimated (Komiyama et al., 2005; Kauffman and Donato, 2012). In
the absence of guidelines to accommodate this situation (see Kauffman
and Donato, 2012; Thompson et al., 2014), these individuals were here
treated as multiple trees. Their DBH was split to create two separate
‘individuals’ (e.g. DBH1 = 49 cm, DBH2 = 12 cm) and their biomass
calculated. While this method likely still overestimates biomass, the
resulting overestimates were substantially smaller than those caused by
calculation via actual DBH. Estimates of p were taken from the Global
Wood Density Database (Chave et al., 2009; Zanne et al., 2009). Spe-
cies-specific averages of pwere taken across all Southeast Asian estimates
(Supplementary Information), in the absence of Philippines-specific esti-
mates for all species in this study.

For multi-stemmed trees, aboveground biomass was estimated via
the method of Fu and Wu (2011). BAG (kg) was calculated as:

BAG ¼ CD2 � H ð3Þ

where CD is the maximum canopy diameter (m) and H is tree height
(m). This method has been found to be applicable to species with
variable growth form (e.g. A. marina; Fu and Wu, 2011). Belowground
biomass of multi-stemmed trees was calculated via the general equa-
tion of Komiyama et al. (2005) (Eq. (2)), using an artificial DBH calculat-
ed from the DBH of the largest stem and the number of stems per
individual.

All sites were highly heterogeneous in biomass distribution; remote
sensing methods were thus employed to index spatial variability. We
employed a technique similar to that derived by Simard et al. (2006)
and Fatoyinbo et al. (2008), using Shuttle Radar Topography Mission
(SRTM) near-global Digital Elevation Model (DEM) data (30 m resolu-
tion; Rodriguez et al., 2006). All analyses were conducted in R v. 3.2.1
(R Development Core Team, 2015). SRTM pixel values (SRTM-derived
height; m) were first extracted for each temporary field plot location.
C- and X-band SRTM radar scattering is influenced by vegetation densi-
ty, biomass and canopy closure, and error exists between observed
SRTM DEM height and true canopy height (Simard et al., 2006;
Fatoyinbo et al., 2008). We thus established a linear regression to
predict field plot mean height (m) from corresponding SRTM DEM
pixel height (m). Plot-level mean height data was used to derive
(1) a mean height-aboveground biomass relationship, and (2) a
mean height-belowground biomass (plot level Mg [tonnes], extrap-
olated to Mg 900 m2) relationship with our allometrically-estimated
biomass values (Komiyama et al., 2005), using linear regression.
These equations were then applied across all SRTM DEM pixels at
each site, and summed (biomass value × proportion of pixel within
the site boundary) to estimate site-level biomass. Site-level above-
and belowground biomass estimates were thenmultiplied by carbon
concentration values of 0.464 (Donato et al., 2011) and 0.39
(Kauffman and Donato, 2012) respectively to obtain vegetation car-
bon stock estimates. Mean per hectare above- and belowground veg-
etation carbon stocks were calculated across all pixels with ≥50% of
their area within the site boundary.

2.3.2. Sediment carbon stocks
Sediment samples were analysed at the Bureau of Soils and Water

Management, Cebu. Bulk density (BD; g cm−3) was determined against
the sample volume as:

BD ¼ DM
SV

ð4Þ

where DM is oven-dried mass (g) and SV is the sample volume (cm3).
Air-dried subsamples were homogenised and sieved (2 mm) (Donato
et al., 2011; Thompson et al., 2014). Organic carbon content (OC; %)
was determined gravimetrically for each subsample (0.25 g) via the dry
combustion method (Schumacher, 2002). Sediment horizon carbon
stock was calculated by summing the carbon stock for each of the two
sampled depth intervals (Kauffman and Donato, 2012). The 50–150 cm
depth samples were used to extrapolate sediment carbon to the entire
sediment profile depth for each plot, as OC does not vary greatly below
30 cm (Thompson et al., 2014). Sediment carbon (SC; Mg ha−1) was cal-
culated for each depth interval as:

SCi ¼ BD� D� OC ð5Þ

where D is the sediment depth interval (cm; e.g. here 50 cm and maxi-
mumdepth–50 cm for the 0–50 cmand 50–sediment profile depth inter-
vals respectively) and OC is the sample OC (%; Kauffman and Donato,
2012). Linear regressions (lms)were applied tomodel differences in veg-
etation and sediment carbon estimates (Mg ha−1) across sites (with Site
Name as a predictor variable). Site-level sediment carbon stock estimates
were calculated from the plot-level estimates from each site (Mg
153.94 m2). The area of each site was divided by plot area (153.94 m2)
to create ‘sub-site’ areas, and an estimate of sediment carbon stock for
each ‘sub-site’ was drawn from a normal distribution created from the
mean and standard deviation of plot-level estimates for each depth in-
terval. These ‘sub-site’ estimates were then summed to create total site
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sediment carbon storage estimates for each depth interval at each site
(mean over 1,000,000 runs).

2.3.3. Coastal protection potential
The model of wave attenuation derived by Bao (2011) was

employed to assess the coastal protection potential of each site.
This model estimates the width of mangrove greenbelt required to
attenuate a regular wave of three metres height to a ‘safe height’ of
0.3 m behind the forest (Bao, 2011). A Forest Structure Index (FSI),
calculated from field-derived mangrove structural parameters, is
calculated and characterises different forests into protection level
categories (I-V). FSI was calculated from mean plot-level data for
each site as:

FSI ¼ −0:048þ 0:0016 H þ 0:00178 log SDð Þ þ 0:0077 log CCð Þ ð6Þ

where H is mean mangrove height (m), SD is mean stem density
(N ha−1), and CC is mean canopy closure (%). The required greenbelt
width (BW; m) required at each site was calculated as:

BW ¼ log Hsafe
� �

− log 0:9899 H0 þ 0:3526ð Þ
0:048−0:0016 H−0:00178 log SDð Þ− log CCð Þ ð7Þ

where Hsafe is the ‘safe wave height’ (30 cm), and H0 is initial wave
height (300 cm). Required mangrove greenbelt width (BW) was
compared to the median actual landward width (BActual; m) to deter-
mine the current coastal protection potential of each site. Landward
and seaward boundaries of the polygon outline of each site were ex-
tracted in QGIS (QGIS Development Team, 2015) and themedian dis-
tance between seaward and landward boundary vertices (N≈ 2000)
were calculated for each site using the function ‘gDistance’ (Bivand
et al., 2015).

2.4. Case study: Dumangas municipality

Fishpond density in Dumangas, Iloilo is among the highest in West
Visayas (4282.7 ha; Primavera et al., 2014).Wemapped the distribution
of abandoned fishponds (mangrove vegetation present) from high-res-
olution satellite imagery (Google Earth, 2015). SRTM-derived vegeta-
tion biomass estimates (Mg ha−1) from the two abandoned fishpond
sites (Nabitasan and Dumangas) were used to project potential vegeta-
tion carbon stock accumulation across Dumangas' abandoned fishponds
over a period of 6.5 years (mean abandoned fishpond site age) via ran-
dom sampling from the observed distribution of vegetation carbon
stock (Mg ha−1) estimates (mean over 1,000,000 runs). This method
was employed to produce a conservative estimate, as some abandoned
fishponds are currently in relatively advanced stages of mangrove re-
colonisation (Primavera et al., 2014). Potential sediment carbon accre-
tion was estimated using a conservative accretion rate of 25 mm y−1

for the Indo-Pacific Region (Lovelock et al., 2015; 1.63 cm surface accre-
tion over 6.5 years) and random sampling from the observed distribu-
tion of sediment carbon stock (Mg ha−1) for the 0–50 cm depth
interval (mean over 1,000,000 runs). We compared the mapped aban-
doned fishponds against a recent survey of tenure status in Dumangas
(e.g. breached FLA leases; Primavera et al., 2014).

We then subset mapped sea-facing abandoned fishponds and calcu-
lated median distance between landward and seaward boundary verti-
ces as above. Vertices with median distance to landward boundaries
greater than estimated required greenbelt widths to attenuate three
metre initial waves (BW; estimated for abandoned fishpond sites as
above; Bao, 2011) were retained to calculate the length of Dumangas'
coastline with potential for effective coastal protection from regular
wind waves following abandoned fishpond reversion. We then com-
pared this against tenure status for identified sea-facing abandoned
fishponds (Primavera et al., 2014).
3. Results

3.1. Vegetation structure

Mean vegetation basal area, DBH, height and biomass were
greatest in the natural areas, followed by the rehabilitated seafront
areas, and abandoned fishponds (Table 1). Stem density was highly
variable across natural and rehabilitated sites, being greatest at the
rehabilitated seafront area at Bakhawan (11,839.18 stems ha−1)
and lowest at the rehabilitated seafront area at Ermita (1916.36 ha−1)
(Table 1).

3.2. SRTM vegetation biomass modelling

A positive linear relationship was found between mean plot-level
vegetation height (m; log-transformed) and SRTM-derived height (m;
square root-transformed): R2 = 0.43; root-mean-square error
(RMSE) = 0.41 (Fig. 2). Allometrically-estimated (Section 2.3) plot-
level above- (linear; R2=0.73; RMSE=0.50; Fig. 3a) and belowground
biomass (quadratic; R2 = 0.89; RMSE= 0.44; Fig. 3b), both extrapolat-
ed to Mg 900 m2, showed a positive relationship with mean plot-level
vegetation height (m; log-transformed). We applied these equations
across SRTM tiles for Panay to predict above- (Fig. 4) and belowground
biomass across sites.

3.3. Carbon stocks

Mean above- and belowground vegetation carbon stocks (Fig. 5)
were greatest at the two natural areas (Ermita: 50.41 Mg ha−1;
Bakhawan: 46.95 Mg ha−1), followed by the rehabilitated seafront
areas (Ermita: 41.01 Mg ha−1; Bakhawan: 30.42 Mg ha−1), and were
lowest in the abandoned fishponds (Dumangas: 25.68 Mg ha−1;
Nabitasan: 5.17 Mg ha−1). Both rehabilitated seafront sites had sig-
nificantly lower SRTM-derived vegetation carbon stocks (Mg ha−1)
than adjacent natural areas (log(vegetation carbon); intercept =
4.46 ± 0.10 (1 s.e.); Bakhawan rehab: −1.08 ± 0.18 (1 s.e.),
p b 0.001; Ermita rehab: −1.35 ± 0.18 (1 s.e.), p b 0.001). Both
abandoned fishponds had significantly lower SRTM-derived vegeta-
tion carbon stocks (Mg ha−1) than rehabilitated seafront areas
(log(vegetation carbon); intercept = 3.25 ± 0.13 (1 s.e.); Dumangas:
−0.58 ± 0.23 (1 s.e.), p = 0.02; Nabitasan: −1.42 ± 0.23 (1 s.e.),
p b 0.001).

Sediment OC estimates for the 0–50 cm depth interval ranged
from 0.71% (Ermita Rehab) to 4.88% (Dumangas FP), and for the
50–150 cm depth interval ranged from 0.82% (Bakhawan Rehab)
to 4.59% (Dumangas FP) (Table 2). Bulk density ranged from 0.37–
0.38 g cm−3 at the Dumangas abandoned fishpond to 0.85–
0.91 g cm−3 at the Ermita seafront rehabilitation site (Table 2).
Mean total sediment carbon stocks were similarly variable (Fig. 5),
being lowest at the two seafront rehabilitated areas (Bakhawan:
120.85; Ermita: 131.14 Mg ha−1), followed by the natural area at
Bakhawan (204.47 Mg ha−1), the Nabitasan abandoned fishpond
(207.04 Mg ha−1), and the natural area at Ermita (324.85 Mg ha−1).
The largest mean total sediment carbon stock occurred at the
Dumangas abandoned fishpond (684.67 Mg ha−1) (Fig. 5). Both reha-
bilitated seafront sites had significantly lower plot-level total sediment
carbon stocks (Mg ha−1) than adjacent natural areas (log(total sedi-
ment carbon); intercept = 5.52 ± 0.10 (1 s.e.); Bakhawan rehab:
−0.86 ± 0.17 (1 s.e.), p b 0.001; Ermita rehab: −0.67 ± 0.17 (1 s.e.),
p b 0.001). Plot-level total sediment carbon stocks at the Nabitasan
abandoned fishpond were not significantly different than at the two
natural areas (log(total sediment carbon); intercept = 5.52 ± 0.09
(1 s.e.); Nabitasan:−0.23 ± 0.16 (1 s.e.), p = 0.16), while those at the
Dumangas abandoned fishpond were significantly larger (Dumangas:
0.92 ± 0.16 (1 s.e.), p b 0.001).



Table 1
Mean field-derived structural parameters across plots (N = 8) in all surveyed sites. Biomass refers to mean total (above- and belowground) biomass.

Site Basal area (m2 ha−1) Stem density (N ha−1) Canopy closure (%) DBH (cm) Mean height (m) Biomass (Mg ha−1)

Bakhawan Natural 27.68 6496.12 88.10 5.76 6.16 177.88
Bakhawan Rehab 16.52 11,839.18 84.45 2.71 3.78 79.27
Ermita Natural 33.16 2151.84 84.85 18.0 6.67 241.62
Ermita Rehab 10.75 1916.36 87.19 6.86 4.63 52.88
Nabitasan FP 3.38 2379.21 63.60 3.27 1.99 15.25
Dumangas FP 8.17 6950.85 84.00 3.98 2.89 37.96
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3.4. Site-level carbon storage

The largest site-level total carbon stock occurred at the Dumangas
abandoned fishpond (vegetation carbon = 1176.12 Mg; sediment
carbon = 31,482.69 Mg), followed by the natural area at Bakhawan
(vegetation carbon = 1813.37 Mg; sediment carbon = 7888.11 Mg),
the seafront rehabilitated area at Bakhawan (vegetation carbon =
599.06 Mg; sediment carbon = 2358.92 Mg), and the Nabitasan
abandoned fishpond (vegetation carbon = 46.82 Mg; sediment
carbon = 1870.91 Mg). Owing to small areal coverage (2.34 ha and
0.50 ha respectively), total site carbon stockwas low at both the natural
(vegetation carbon = 114.03 Mg; sediment carbon = 760.10 Mg) and
seafront rehabilitated areas at Ermita (vegetation carbon = 7.19 Mg;
sediment carbon = 64.60 Mg) (Table 3).

3.5. Site-level coastal protection

Variable vegetation structure (Table 1) produced variable potential
coastal protection and required greenbelt width (BW) across sites
(Table 4). Both natural and rehabilitated areas at the Bakhawan site pro-
vide relatively strong protection (protection categories III and II respec-
tively) and require narrow greenbelt widths (BW = 201 and 270 m
respectively). This iswithin themedianactual greenbeltwidth (BActual=
842 m) (Table 4). At the Ermita site, despite high FSI and protection
category (III and II respectively), the required BW for adequate coast-
al protection potential (229–331 m) is not achieved, due to a narrow
fringing area available for rehabilitation (median BActual = 81 m;
Table 4). Both abandoned fishpond sites had highmedian actual green-
belt width (BActual; Nabitatasan = 268 m and Dumangas = 827 m).
High stem density and vertical growth (Table 1) translated to a higher
Fig. 2. Regression of observed plot-level mean mangrove height (m; log-transformed)
against SRTM DEM-derived elevation (m; square root-transformed). log(mean height) =
1.31 + 0.23

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SRTMelevation

p
; R2 = 0.43; RMSE= 0.41.
protection category for the Dumangas abandoned fishpond site (II)
and adequate current coastal protection potential (BW =370m). How-
ever, low vegetation density and height (Table 1) at the Nabitasan
Fig. 3. Best-fitting regressions (highest variance explained; R2) of (a) above- and (b)
belowground biomass (allometric estimation from field DBH data; Komiyama et al.,
2005) against observed mean mangrove height (m; log-transformed). Allometrically-
estimated above- and belowground biomass has been scaled from plot- to pixel-level
estimates (900m2; log-transformed). The relationship between allometrically-estimated
aboveground biomass and observed mean mangrove height was linear in form
(log(aboveground biomass) = 2.14log(mean height) – 1.84; R2 = 0.73; RMSE = 0.50),
while the relationship for allometrically-estimated below-ground biomass was a quadratic
relationship (log(belowground biomass) = −1.05log(mean height)2 + 6.13log(mean
height) – 6.25; R2 = 0.89; RMSE= 0.44).



Fig. 4. Predicted aboveground mangrove biomass (Mg 900m2) across the two SRTM DEM tiles on Panay Island. Blue pixels denote areas of low biomass, while red areas denote higher
biomass areas. Dark blue pixels indicate active aquaculture pond areas, and black pixels denote areas with biomass N10 Mg 900 m2. N.B. This figure illustrates predictions of areas
outside of the distribution of mangroves on Panay Island (e.g. beach forest and terrestrial forest and plantation areas), which were not included in the analyses of this study.
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abandoned fishpond site resulted in a low protection category (I) and
high required greenbelt width (BW = 2405 m).

3.6. Case study: Dumangas municipality

We delimited an area of 377.25 ha of abandoned fishponds in
Dumangas (8.8% of total current aquaculture area; Primavera et al.,
2014). Potential total vegetation carbon stock accumulation across this
area over 6.5 years was estimated at 4691.73 Mg. We estimated poten-
tial sediment carbon accretion (1.63 cm; 0.25 cm yr−1) over 6.5 years at
911.32Mg.We further undertook this analysis based on only vegetation
and sediment carbon stock estimates (Mg ha−1) from the partially-
banked Dumangas abandoned fishpond site in order to model potential
abandoned fishpond reversion carbon gains under seaward dike



Fig. 5. Mean mangrove vegetation and sediment carbon stocks across all study sites
(Mg ha−1). Mean plot-level sediment carbon stock to 30 cm depth is depicted in hashed
bars, and from 30 cm to soil profile depth in filled black bars. Mean aboveground
vegetation carbon stock is depicted in white bars, and below-ground (roots) carbon
stock in grey bars. Mean above- and below-ground vegetation carbon stocks (Mg ha−1)
were calculated as the mean SRTM DEM-predicted above- and below-ground carbon
storage across all pixels with N50% of their area within each given study site (see
Methods). Mean sediment carbon stock estimates (Mg ha−1) were calculated across all
plot-level measurements (N = 8 per site). Error bars depict one standard deviation from
the mean of each estimate at each site.
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management for high propagule and organic matter retention (see
Section 2.1). Under this scenario, we estimated potential total vege-
tation carbon accumulation of 6564.49 Mg and sediment carbon
accretion of 1166.41 Mg in Dumangas municipality's abandoned
fishponds over 6.5 years. Of the 377.25 ha of abandoned fishponds
identified in Dumangas, 167.59 ha (44.4%) are currently leased
under FLAs (Primavera et al., 2014).

We estimated a length of 8.59 km of Dumangas' coastline (30.5% of
total coastline) currently fringedby abandonedfishponds. All abandoned
fishponds within this 8.59 km had an estimated median landward
width N 100 m (current greenbelt mandate). 3.66 km of coastline had
an estimated median landward width N 370 m (estimated required
bandwidth (BW) based on the Dumangas abandoned fishpond site),
translating to 13.0% of the Dumangasmunicipality coastlinewith poten-
tial adequate coastal protection from abandoned fishpond mangroves
over eight years from reversion (Dumanagas abandoned fishpond
site age; Table 4). Of this, 3.45 km (96.7%) is fringed by abandoned
fishponds in breach of FLAs (Primavera et al., 2014).

4. Discussion

This study provides a quantitative analysis of relative CCMAES deliv-
ery by different mangrove rehabilitation areas and adjacent natural
Table 2
Data summary from soil analysis, organised by site and soil depth interval. Values repre-
sent mean values across all plots at each site (N=8)± one standard deviation. Sediment
depth values denote the range of depths across all plots.

Site Depth interval
(cm)

Bulk density
(g cm−3)

OC (%) Sediment depth
(cm)

Bakhawan Natural 0–50 0.60 ± 0.07 1.01 ± 0.29 207–238
50–150 0.67 ± 0.08 1.61 ± 0.80

Bakhawan Rehab 0–50 0.65 ± 0.16 0.85 ± 0.33 181–226
50–150 0.68 ± 0.16 0.82 ± 0.55

Ermita Natural 0–50 0.70 ± 0.11 1.84 ± 1.11 163–391
50–150 0.63 ± 0.07 2.33 ± 0.83

Ermita Rehab 0–50 0.91 ± 0.07 0.71 ± 0.24 159–172
50–150 0.85 ± 0.06 1.02 ± 0.32

Nabitasan FP 0–50 0.62 ± 0.04 1.72 ± 0.60 146–250
50–150 0.63 ± 0.03 1.70 ± 0.51

Dumangas FP 0–50 0.38 ± 0.08 4.88 ± 0.97 380–400
50–150 0.37 ± 0.12 4.59 ± 1.41
stands.While per hectare carbon stocks were variable across both reha-
bilitated and natural areas, rehabilitation for enhanced CCMA goals
appears more promising in abandoned fishponds. Despite currently
lower per hectare biomass production, carbon-rich sediments and
large areal coverage enhanced the overall carbon stocks and coastal pro-
tection potential of rehabilitated abandoned fishponds. Our municipal-
ity-specific case study revealed that overlap may exist between areas
of high rehabilitation potential for CCMA goals and low competing op-
portunity costs, with 96.7% of the identified wide sea-facing abandoned
fishponds currently in breach of lease agreements (FLAs) on public
lands. Our results may also have implications regarding reverted aban-
doned fishpond management for high carbon stocks.

All rehabilitated stands exhibited structural parameters (stem
density, DBH, biomass) within observed trajectories to maturity
(15–20 years; Bosire et al., 2008; Alongi, 2011; Table 1), suggesting
good rehabilitation status to date. However, contrary to expectations
according to their mid- to upper-intertidal position, both abandoned
fishponds had comparatively low per hectare vegetation carbon
stocks (Table 1; Fig. 5). This may in part reflect methodological lim-
itations that could have underestimated true biomass and canopy
height: first, shrubby A.marinawas dominant at both sites, and biomass
calculation formulti-stemmed individuals (Fu andWu, 2011)may have
underestimated biomass; second, SRTM-DEM data were acquired prior
to rehabilitation of these areas (Rodriguez et al., 2006). Application of
new high resolution TanDEM-X global DEM data (2014) to be released
for scientific use in late 2016-2017will enhance the application of SAR-
derived DEM data to recent mangrove rehabilitation monitoring (Zink
et al., 2015). However, the SRTM-DEM related limitation also applied
to the seafront rehabilitated areas, where estimated vegetation carbon
stocks remained high (Fig. 5). High heterogeneity across both aban-
doned fishponds, due to on-going natural recolonization at the
Dumangas site and high pre-rehabilitation erosion at the Nabitasan
site, likely contributed to low average per hectare vegetation carbon
stocks. However, lower relative biomass production may also indicate
possible hydrological or fishpond effluent constraints to biomass pro-
duction in abandoned fishponds (Lewis, 2005; Matsui et al., 2010;
Primavera et al., 2014). These results suggest further active rehabilita-
tion may be necessary to enhance mangrove functioning in reverted
abandoned fishponds. Indeed, the Bakhawan seafront site had the
highest per hectare vegetation carbon stocks of all rehabilitated sites
(Fig. 5), which may reflect a combination of active replanting and high
natural re-colonisation as an effective strategy in low-mid intertidal
areas (sensu Matsui et al., 2010), and a possible positive influence of
multi-species rehabilitation (Lang'at et al., 2011).

As observed in other studies from the region (Thompson et al.,
2014), carbon stocks in natural areas (Fig. 5) were at the lower end of
estimates for Indo-Pacific mangroves (Donato et al., 2011). The aban-
doned fishponds were either not different (Nabitasan) or had signifi-
cantly greater (Dumangas) plot-level sediment carbon stocks than
natural areas, and greater than seafront rehabilitated areas (Fig. 5).
This reflects their position on former mangrove sediments, and high-
lights their greater potential over seafront rehabilitation sites in refores-
tation PES schemes that recognise existing stocks (Locatelli et al., 2014).
The large sediment carbon stocks at the Dumangas fishpond are notable
(mean 684.67 ± 263.39 Mg ha−1), as these are among the highest re-
corded in Panay. This includes a large ancient basin mangrove (mean
sediment carbon stock 372.60 ± 128.61 Mg ha−1; C. Duncan unpub-
lished data). A possible driver is site configuration:much of the seaward
bank is retained and reduces complete tidal flushing, trapping organic
matter in partially-waterlogged sediments. Conversely, near-complete
loss of the Nabitasan fishpond seaward bank before recolonization has
resulted in extensive erosion at the seawardmargin.While our observa-
tions are limited to only two abandonedfishponds, these results suggest
that retaining partial seaward banks may be important for preventing
erosion, retaining sediment carbon stocks and improving propagule es-
tablishment in recovering abandoned fishponds (similar to breakwater



Table 3
Results of site-level carbon stock analysis.

Site Aboveground
vegetation C (Mg)

Belowground
vegetation C (Mg)

Sediment C 0–50 cm (Mg) Sediment C below
50 cm (Mg)

Total (Mg) Site area (ha)

Bakhawan Natural 1267.27 546.10 1176.94 6711.17 9701.48 38.59
Bakhawan Rehab 430.18 168.88 563.18 1795.74 2957.98 19.52
Ermita Natural 79.30 34.73 140.31 619.79 908.86 2.34
Ermita Rehab 5.05 2.14 15.56 49.04 71.79 0.50
Nabitasan FP 41.35 5.47 477.97 1392.94 1917.73 9.04
Dumangas FP 856.90 319.22 4315.52 27,167.17 32,658.81 45.99
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interventions: Hashim et al., 2010; Primavera et al., 2012a). Relatively
high bulk densities and lowOC at seafront rehabilitation sites compared
to adjacent natural areas (Table 2) suggest low rates of soft sediment ac-
cretion, and slow gains in potential sequestration-oriented PES schemes
(Locatelli et al., 2014). Further surveying of abandoned fishpond areas,
and study of accretion rates in abandoned fishponds and seafront plan-
tations, will be required to investigate these findings further and estab-
lish relative sediment carbon sequestration rates.

Overall, the comparatively large size, mid- to upper-intertidal posi-
tion and high sediment carbon of the abandoned fishponds translated
to high relative total ecosystem carbon stocks (Table 3). We moreover
predicted high vegetation and sediment carbon sequestration gains
over 6.5 years of potential future rehabilitation of abandoned fishponds
in Dumangas municipality (5809.95–7995.75 Mg). It is important to
note that these estimates are preliminary and likely underestimates;
they employ basic (but conservative) accretion rates and do not account
for important processes such as carbon burial (Lee et al., 2014). Large
area translates to landward widths available for rehabilitation at aban-
doned fishpond sites (Table 4) that are considerably greater than at re-
habilitated seafront areas (Bakhawan: 186 m; Ermita: 41 m). Seafront
rehabilitation siteswere bordered at their landwardmargins by existing
natural mangrove, increasing effective greenbelt width (Table 4). In the
unique case of Bakhawan ecopark (see Section 2.1), the combination of
rehabilitated and natural forest make the total greenbelt well above
that estimated for effective coastal protection potential (Table 4). How-
ever, for Ermita, a site more typical of remaining seafront mangroves in
the Philippines, the combined greenbelt width of both rehabilitated and
natural areas is far below that required (Table 4). Repeated LGU planting
in adjacent areas to the Ermita site since the early 2000s have seen no
survival. The existence of a coastal road between these now fringing
areas and the former deltaic mangrove (now active fishponds) inland
further prohibits development of an effective greenbelt in the area.

In contrast, both abandoned fishponds had large median landward
widths (Nabitasan: 268 m; Dumangas: 827 m). Low vegetation density
caused very large estimates of required greenbelt width for Nabitasan
abandoned fishpond mangroves (Table 4). However, saplings (high
density at Nabitasan) were not considered in these analyses, and can
contribute to protection from regular wind waves (Mazda et al.,
1997). Furthermore, rehabilitated mangroves at this site are compara-
tively young (Table 4), and assisted rehabilitation by the Leganes LGU
Table 4
Results of coastal greenbelt protection analysis. FSI = Forest Structure Index and the
associated protection category (min = I; max = V), BW = required greenbelt width
(Bao, 2011), BActual=median actual greenbelt width calculated fromGIS distance analysis
(Bivand et al., 2015).

Site FSI Protection category BW (m) BActual (m) Age
(years)

Bakhawan Natural 0.012 III 201 842 –
Bakhawan Rehab 0.009 II 270 842 8
Ermita Natural 0.011 III 229 81 –
Ermita Rehab 0.007 II 331 81 7
Nabitasan FP 0.001 I 2405 268 5
Dumangas FP 0.006 II 370 827 8
is on-going. The landward greenbelt width of the Dumangas abandoned
fishpondmay provide ample coastal protection, evenwhile in relatively
young stages of development (Table 4; Alongi, 2011). In direct conflict
with current rehabilitation programmes in Dumangas, we found a
large length of coastline (3.66 km) with adequate future protection po-
tential from abandonedfishpondmangroves (N370mwide) eight years
post-rehabilitation. While this wide greenbelt requirement will reduce
as rehabilitated abandoned fishpond mangroves mature (Alongi 2008;
Bao, 2011; McIvor et al., 2012; Lee et al., 2014), it is important to note
that: (1) these estimates are derived for protection from regular
waves (Bao, 2011),while greenbelt requirements for storm surge atten-
uation may be substantially greater (Koch et al., 2009; McIvor et al.,
2012), and (2) natural stands were estimated here to have required
greenbelt widths of N200m (Table 4). This suggests that current Philip-
pines greenbelt laws (50–100m)may be inadequate for coastal protec-
tion in typhoon-prone areas. Reallocation of Philippines' National
Greening Program (NGP) funds and capacity away from seafront plant-
ing toward targeted reversion and assisted rehabilitation of large sea-
facing abandoned fishponds is thus advisable if effective mangrove
greenbelt reestablishment and integrated CCMA goals are to be realised
(Blankespoor et al., 2016). Ourmunicipality-specific case study revealed
that 96.7% of coastline identified as having rehabilitation potential for
effective coastal protection within eight years is currently tenured
under and in breach of FLA terms. As such, reversion (DA-BFAR) and re-
habilitation (DENR) of these areas is a legal requirement, is not in direct
conflict with opportunity costs of fishpond leaseholders, and could pro-
vide substantial benefits to inland coastal communities from coastal
protection and fisheries enhancement (Walton et al., 2006; Primavera
et al., 2012a).

Integrated spatial planning and coastal zone management ap-
proaches incorporating ES goals are increasingly on the agenda (Lester
et al., 2013; Arkema et al., 2015) to prioritise areas for management to
reduce ecosystem degradation (e.g. Atkinson et al., 2016). Similarly,
such approaches, including multiple CCMA ES and considering their
value to the full cohort of stakeholders, could be an important tool for
identifying key areas forwhole ecosystem rehabilitation and restoration
in converted lands. However, existing formally-recognised and local
tenure structures provide a major challenge to spatial planning and
prioritisation approaches (e.g. Adger et al., 2005; Brown et al., 2014),
and may impact the effectiveness of management decisions (Weeks
et al., 2010). In contrast, our case study identified substantial areas
with minimal tenure conflict within priority areas for CCMA man-
grove rehabilitation (mid- to upper-intertidal zone and large areal
coverage). Spatial planning exercises to prioritise multiple CCMA ES
greenbelt rehabilitation (based on e.g. coastal vulnerability assessment)
should first aim to evaluate the existence of formally-recognised tenure
gaps (e.g. tenure breaches or unproductive lands) to evaluate the rehabil-
itation potential of currently-tenured areas. In cases such as that of man-
grove rehabilitation in the Philippines, this may maximise benefit:cost
ratios of CCMA efforts for coastal communities and avoid ineffective
and wasteful allocation of limited conservation funds. Such spatial
planning approaches for mangrove rehabilitation may have particu-
lar relevance elsewhere in South and Southeast Asia where fishpond
abandonment is similarly high: e.g. Malaysia (60%; Choo, 1996),
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Thailand (50–80%; Hossain and Lin, 2001) and Sri Lanka (60–90%;
Jayakody et al., 2012; Bournazel et al., 2015). In other, more ty-
phoon-prone countries believed to have high rates of fishpond aban-
donment (e.g. Vietnam, Taiwan; Stevenson, 1997), the potential
CCMA benefits of abandoned pond identification and rehabilitation
may be of particular consequence. In many parts of Asia, much un-
productive abandoned fishpond area is rapidly being converted to al-
ternative uses, cementing mangrove loss (e.g. salt pans, agriculture:
Stevenson, 1997; Hossain and Lin, 2001; Jayakody et al., 2012). Mon-
itoring and evaluation of aquaculture productivity within these
coastal areas and their inclusion within spatial planning for man-
grove rehabilitationmay provide a means to halt such loss. However,
the relevance of such approaches to wider regional areas may be
comparatively limited where (1) wider continental shelves enhance
the suitability of low-intertidal seafront rehabilitation, or (2) titled
ownership is the predominant form of coastal zone land tenure.

In recent decades, evidence has been mounting on the relative po-
tential of abandoned fishpond rehabilitation for conserving mangrove
forests (e.g. Lewis, 2005; Matsui et al., 2010; Primavera et al., 2012a,
2012b, 2014; Brown et al., 2014). Our case study highlights a high con-
tribution of ES strings to the bow of fishpond reversion, with a high rel-
ative potential for coastal greenbelt rehabilitation for integrated CCMA
goals in the Philippines. While our case study revealed favourable ten-
ure status for most potential greenbelt abandoned fishpond areas,
strong political will and capacity shifts will be required to cancel lease-
holds and rehabilitate former mangrove areas (Primavera et al., 2014).
However, mid-upper intertidal mangrove rehabilitation in abandoned
fishpond areas may hold one of the many keys to safeguarding man-
grove forests and their CCMA ES delivery, particularly important in the
context of the increasing severity of storms and sea level rise associated
with climate change (IPCC, 2013; Lovelock et al., 2015; Blankespoor et
al., 2016).
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