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Abstract  28 

 29 

Acne is a multifactorial inflammatory skin disease with high prevalence. In this work, the 30 

potential of 3D printing to produce flexible personalized-shape anti-acne drug loaded devices 31 

was demonstrated by two different 3D printing technologies: Fused Deposition Modeling (FDM) 32 

and stereolithography (SLA). 3D scanning technology was used to obtain a 3D model of a nose 33 

adapted to the morphology of an individual. Salicylic acid used in the treatment of acne was 34 

selected as a model drug (theoretical drug loading 2%w/w). 35 

In FDM 3DP, commercially produced Flex EcoPLATM (FPLA) and polycaprolactone (PCL) 36 

filaments were loaded with salicylic acid by hot melt extrusion (HME). Drug loading in the FPLA-37 

salicylic acid and PCL-salicylic acid filaments after HME was 0.6% w/w and 1.3% w/w 38 

respectively (showing significant thermal degradation of drug was observed during 3D printing). 39 

Diffusion testing in Franz cells using a synthetic membrane revealed that the drug loaded 40 

printed samples released less than 187 µg/cm2 of their drug content within 3 h. FPLA-salicylic 41 

acid filament was successfully printed as a nose-shape mask by FDM 3DP, but the PCL-42 

salicylic acid filament was not.  43 

In the SLA printing process, the drug was dissolved in different mixtures of poly(ethylene glycol) 44 

diacrylate (PEGDA) and poly(ethylene glycol) (PEG) that were solidified by the action of a laser 45 

beam. SLA printing led to 3D printed devices (nose-shape) with higher resolution and higher 46 

drug loading (1.9% w/w) than FDM, with no drug degradation. The results of drug diffusion tests 47 

revealed that drug release was faster than with the FDM devices, 229 and 291 µg/cm2 within 3 h 48 

for the two formulations evaluated.  49 

In this study, SLA printing was a more appropriate 3D printing technology to manufacture anti-50 

acne devices with salicylic acid. The combination of 3D scanning and 3D printing has the 51 

potential to offer solutions to produce personalised drug loaded devices, adapted in shape and 52 

size to individual patients. 53 

 54 

  55 
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1. Introduction 56 

A large proportion of the population is affected by acne vulgaris (acne), particularly 57 

postpubescent teenagers [1, 2]. Acne is a multifactorial chronic inflammatory skin disease 58 

commonly found on the face. It originates in the pilosebaceous units and is classified based on 59 

the level and severity of the inflammation as open comedones, closed comedones, papules, 60 

pustules or nodules. Two of the factors that lead to acne formation are perifollicular 61 

hyperkeratinization and follicular obstruction. Androgens, lipids, specific bacteria and cytokines 62 

induce hyperkeratinization and hyperproliferation of keratinocytes promoting follicular 63 

obstruction and formation of microcomedones [1, 3]. The disorder does not only affect patients 64 

physically but also psychologically, leading in some cases to suicide attempts [1, 4]. 65 

 66 

Most of the topical treatments, generally used for mild to moderate acne, aim to eradicate the 67 

pathogenic factors [1, 4]. Salicylic acid is one of the most widely used anti-acne agents; it is a 68 

lipophilic β-hydroxyl acid that acts as an anti-inflammatory and exfoliating agent. It penetrates 69 

through the skin and detaches corneocytes from each other, weakening the intracellular 70 

cement. As a result, the skin cell turnover increases, removing the comedones. Additionally, it 71 

improves the elasticity of the stratum corneum and stimulates the production of new 72 

corneocytes and collagen [5]. Salicylic acid is found in topical formulations such as creams, 73 

gels, cleansers and soap bars with concentrations ranging from 1 to 2% [4]. The commercial 74 

treatments containing salicylic acid have high efficacy but they sometimes cause mild and 75 

transient side effects (erythema, dryness, intense exfoliation and crusting) which are dependent 76 

on dose. The absorption of salicylic acid via topical treatment is enhanced when the formulation 77 

comprises a hydrophilic base or is kept occluded.  78 

 79 

Three-dimensional printing (3DP) is an additive manufacturing process that allows the 80 

fabrication of three-dimensional solid objects of virtually any shape from a 3D model file. The 3D 81 

models can be generated by computer aided design (CAD) software or obtained from 3D 82 

scanners that capture images and distance information of real objects and then transfer the data 83 

to a computer. The implementation of 3D printing technologies has been increasingly growing in 84 

many fields. In the pharmaceutical field, 3DP has been used for the production of personalised 85 

medicines, oral dosage forms, medical devices, and for tissue engineering [6]. 86 

 87 

Of the several 3D printing technologies commercially available, fused deposition modelling 88 

(FDM) is perhaps the most widely used in pharmaceutics. FDM is simple and cost effective and 89 
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has been shown extremely versatile in the development of drug delivery systems [7], especially 90 

personalised medicines [8], and medical devices [9, 10]. In FDM an extruded polymer filament is 91 

passed through a heated nozzle that softens the polymer and it is then deposited on a build 92 

plate, creating one layer of the object to be printed. The build plate then lowers vertically and 93 

another layer is deposited. The object is fabricated by repeating these steps in a layer-by-layer 94 

manner. The main polymers used in FDM are PLA (polylactic acid or polylactide) and ABS 95 

(acrylonitrile butadiene styrene), although an increasing number of polymers is becoming 96 

commercially available. 97 

 98 

Polycaprolactone (PCL) is a biocompatible polyester with many applications that has been used 99 

in wound dressings, tissue engineering and drug delivery, leading to a several PCL drug-100 

delivery devices being approved by the FDA [11-13]. The use of flexible polymers would allow 101 

the manufacture of more comfortable devices that are, at the same time, robust to handle. 102 

NinjaFlex® (NF) and Flex EcoPLA™ (FPLA) are some of the most widely used flexible filaments. 103 

NF is a thermoplastic polyurethane, which is a biomaterial that due to its biocompatibility and 104 

mechanical properties is currently used broadly for regeneration, bone replacement and 105 

drug/gene delivery [14]. FPLA is a flexible variety of PLA, which is an aliphatic polyester that is 106 

degradable in the human body and in the environment, with appropriate mechanical strength 107 

and low toxicity [13].  108 

 109 

An alternative 3D printing technology that is becoming more affordable is stereolithography 110 

(SLA). In this technology, the production is based on the solidification of a liquid resin by 111 

photopolymerization. A laser beam causes localized polymerization (solidification) of 112 

photocrosslinkable polymers to form a solid layer and the process is repeated in a layer-by-layer 113 

manner until the solid 3D object is produced. This technology has been used in the fabrication 114 

of oral tablets [15], for tissue engineering [16, 17] and shows higher resolution than the FDM 115 

technology [18]. Over the past few years a number of photocrosslinkable polymers have been 116 

developed, such as poly(ethylene glycol) diacrylate (PEGDA) [19, 20]. 117 

 118 

The aim of this work was to evaluate the feasibility of printing anti-acne patches/masks 119 

personalised to the anatomy of the patient by 3D scanning and 3D printing. Two different 3D 120 

printing technologies - FDM and SLA - were evaluated in terms of manufacture capability, 121 

morphological characteristics of the printed object, drug stability while printing and drug release.  122 

 123 
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2. Materials and Methods 124 

Materials  125 

NF (NinjaFlex® filament, thermoplastic polyurethane, printing temperature 220−230°C, batch no: 126 

3D3071175) and FPLA (Flex EcoPLA™ BLUE 45D filament, flexible polylactic acid, printing 127 

temperature 210°C, number: 001) were purchased from iMakr, UK. PCL (Polycaprolactone, 6-128 

caprolactone polymer, (C6H10O2)n, MW: 80,000 Daltons, lot no: MKBR4733V), PEGDA 129 

(poly(ethylene glycol) diacrylate,, MW: 700 Daltons), PEG (poly(ethylene glycol) 300, MW: 300 130 

Daltons) and diphenyl(2,4,6-trimethylbenzoyl)phosphine oxide were purchased from Sigma 131 

Aldrich, UK. Salicylic acid (lot no: 14G020009) was purchased from VWR International, UK. 132 

Tetrahydrofuran (THF, HPLC grade) was supplied by Fisher Scientific, UK; dichloromethane 133 

(DCM, >99.5% purity) was supplied by VWR International, UK; methanol (≥ 99.9% purity, HPLC 134 

grade) was supplied by Sigma Aldrich, UK. The salts for preparing the buffer dissolution media 135 

were purchased from VWR International Ltd., Poole, UK. 136 

 137 

Methods 138 

2.1 3D scanning 139 

3D scanning of the face of a volunteer was performed with a commercial scanner (SenseTM 3D 140 

scanner, 3D Systems Inc., USA) at a distance of 40 cm in accordance with the manufacturer’s 141 

instructions. The 3D scanner was panned 360° around the head of the subject to capture a 3D 142 

image that was exported to Meshmixer (v.10.9.332, Autodesk Inc., USA) to extract the final 3D 143 

template for 3DP. A nose-shaped mask (41.2 mm length x 34.5 mm width x 22.7 mm height) 144 

adapted to the physical characteristics of an individual was used as 3D model in order to the 145 

intricate shape of the design allowed the evaluation of the resolution of the different 3D printing 146 

technologies. 147 

 148 

2.2 Fused deposition modelling  149 

2.2.1 Preparation of the drug loaded polymers for HME by solvent casting 150 

Before the HME process, polymer (29.4 g) - NF, FPLA or PCL - was dissolved in organic 151 

solvent (200 mL) with salicylic acid (0.6 g) using an overhead stirrer. For NF and PCL, THF was 152 

used as the solvent while DCM was used for FPLA. The solution obtained after overnight stirring 153 

was transferred to Teflon Petri dishes and maintained in a fume cupboard until evaporation of 154 

the solvent was accomplished (room temperature, for 2 days). The casted films obtained were 155 

stored in an oven (40°C, for 3 days) to completely remove the solvent and, finally, cut into small 156 
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pieces to make them suitable for extrusion. The theoretical loading of salicylic acid in the 157 

polymer was 2% w/w. Blank filaments were prepared following the same process without 158 

addition of the drug. 159 

 160 

2.2.2 Hot melt extrusion (HME) 161 

The previously prepared pieces of polymer-salicylic acid were loaded into a single-screw 162 

filament extruder (Filabot®, USA) to obtain 1.75 ±0.1 mm diameter polymer filaments for 3D 163 

printing. The extruding temperatures were 170°C for NF- salicylic acid, 190°C for FPLA-salicylic 164 

acid and 60°C for PCL-salicylic acid. The diameter of the filament was randomly measured with 165 

a ProMax Electronic Calliper (Fowler High Precision, USA) at different positions along the 166 

filament. Drug loading of the filaments was determined by HPLC analysis (see below). 167 

	
  168 

2.2.3 FDM 3D printing 169 

Devices were fabricated from the drug-loaded filaments using a commercial fused-deposition 170 

modelling 3D printer, MakerBot Replicator 2X (MakerBot Inc, USA). The templates used to print 171 

the devices obtained by 3D scanning were modified with AutoCAD 2014® (Autodesk Inc., USA) 172 

and exported as a stereolithography file (.stl) into the 3D printer software (MakerWare v. 2.2.2, 173 

MakerBot Inc., USA). The .stl format encodes only the surface data of the object to be printed 174 

and requires the thickness of the surface, the infill and the temperature to be defined in order to 175 

print the desired object. The printing parameter settings are shown in Table 1. 176 

 177 

Table 1  

FDM printing settings 

Parameters Polymer 

FPLA PCL 

Printing temperature (°C) 230 170 

Infill (%) 100 100 

Number of shell 2 2 

Layer height (mm) 0.2 0.1 

Speed while extruding (mm/s) 90 50 

Speed while travelling (mm/s) 150 50 

Raft  No No 

Support  No No 

 178 
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2.3 Stereolithography (SLA) 3D printing  179 

Two different formulations were printed by SLA 3D Printing: PEGDA/PEG (4:6) and 180 

PEGDA/PEG (8:2). To do so, two photopolymer solutions were prepared mixing PEGDA and 181 

PEG 300 in different ratios to make a total volume of 40 mL. The photoinitiator, diphenyl(2,4,6-182 

trimethylbenzoyl) phosphine oxide was then added to the mixture solution to a concentration of 183 

1% w/v. Finally, salicylic acid was added into the solution to a concentration of 2% w/w.  184 

Devices were fabricated from the drug-loaded solutions using a commercial SLA 3D printer 185 

(Form 1+ Stereolithography 3D printer, Formlabs, UK) equipped with a 405nm laser. The 186 

templates used to print the devices were the same as for FDM. They were exported as a 187 

stereolithography file (.stl) into the 3D printer software (Preform Software v. 1.9.1, Formlabs, 188 

UK). In the settings of the 3D printer, the layer thickness was 0.1mm and the material selection 189 

was flexible. 190 

2.4 Characterisation of the filaments and 3D printed objects 191 

 192 

2.4.1 Mechanical evaluation of the filaments 193 

An Instron® 5900 Series (Instron, UK) equipped with a 100 N load cell was utilized to carry out 194 

tensile tests of standardized filaments (in terms of diameter and length). The equipment was 195 

controlled by BlueHill software selecting the default tensile test method. Prior to the test, the 196 

system was calibrated for balance length of extension (mm) and load (N).  197 

The filaments were fixed vertically to the clamps of the equipment and stretched gradually 198 

during the test until a rupture point or irregular deformation was observed (n=4). The distance 199 

between the two clamps was adjusted to 30mm and the diameter and length of tested filament 200 

was introduced in the software for the calculation of Young’s modulus from the strain-stress 201 

curve automatically plotted by BlueHill software. Young’s modulus is calculated in the linear 202 

region as stress divided by strain.  203 

 204 

2.4.2 Thermal analysis 205 

DSC measurements were performed with a Q2000 DSC (TA instruments, Waters, LLC, USA) at 206 

a heating rate of 10°C/min. Calibration for cell constant and enthalpy was performed with indium 207 

(Tm = 156.6°C, ∆Hf =28.71 J/g) according to the manufacturer’s instructions. Nitrogen was used 208 

as a purge gas with a flow rate of 50 mL/min for all the experiments. Data were collected with 209 
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TA Advantage software for Q series (version 2.8.394), and analysed using TA Instruments 210 

Universal Analysis 2000. All melting temperatures are reported as extrapolated onset unless 211 

otherwise stated. TA aluminium pans and pin-holed hermetic lids (Tzero) were used with an 212 

average sample mass of 8-10 mg.  213 

 214 

For TGA analysis, samples (average weight: 3-5 mg) were heated at 10°C/min in open 215 

aluminium pans with a Discovery TGA (TA instruments, Waters, LLC, USA). Nitrogen was used 216 

as a purge gas with a flow rate of 25 mL/min. Data collection and analysis were performed using 217 

TA Instruments Trios software and % mass loss and/or onset temperature were calculated. 218 

 219 

2.4.3 X-ray powder diffraction (XRPD) 220 

Discs (23.78 mm diameter x 1.00 mm height) made from pure polymers or drug-loaded 221 

polymers were printed and analysed. A sample of pure salicylic acid was also analysed. The X-222 

ray powder diffraction patterns were obtained in a Rigaku MiniFlex 600 (Rigaku, USA) using a 223 

Cu Kα X-ray source (λ=1.5418Å). The intensity and voltage applied were 15 mA and 40 kV. The 224 

angular range of data acquisition was 3–60° 2θ, with a stepwise size of 0.02° at a speed of 225 

5°/min.  226 

 227 

2.4.4 Scanning Electron Microscopy (SEM) 228 

The Surface and cross-section images of the filaments and the printed devices were captured 229 

with an FEI Quanta 200F Scanning Electron Microscope (FEI, UK). The voltage and working 230 

distance were set at 5 V and 50 mm, respectively. Filament samples for SEM imaging were 231 

previously coated with gold. Pictures of the 3D printed devices were taken with a Nikon 232 

CoolpixS6150 with the macro option of the menu.  233 

 234 

2.4.5 Determination of the drug content 235 

For filaments and FDM printed devices, a section of the drug-loaded filament and the 3D printed 236 

objects (approx. 0.50 g) was placed in a volumetric flask (25mL) with the appropriate organic 237 

solvent (THF was used for NF and PCL while DCM was used for FPLA) under magnetic stirring 238 

until complete dissolution. Aliquots (10 mL) were transferred to a volumetric flask with methanol 239 

(40 mL) to precipitate the polymer. The solution was then filtered through a 0.22 µm filter 240 

(Millipore Ltd., Ireland) and the concentration of drug in the filtrate was determined by HPLC. 241 

 242 
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For SLA printed devices, a section of the drug-loaded 3D printed mask (approx. 0.50 g) was 243 

milled with mortar and pestles and placed into a volumetric flask with methanol (25mL) under 244 

magnetic stirring until complete dissolution of the drug. The solution was then filtered through a 245 

0.22 µm filter (Millipore Ltd., Ireland) and the concentration of drug in the filtrate was determined 246 

by HPLC (see below). 247 

 248 

The HPLC (Hewlett Packard 1050 Series HPLC system, Agilent Technologies, UK) assay 249 

entailed injecting samples (20.0 µL) into a mobile phase consisting of methanol (70%) and 0.1% 250 

trifluoroacetic acid (TFA) in water (30%), through a reverse phase column (Ascentis® C18, 5 µm 251 

particle size, 4.6 × 150 mm) connected with a pre-column all maintained at 25°C. The mobile 252 

phase was pumped at a flow rate of 1.0 mL/min and the eluent was screened at the wavelength 253 

of 234 nm.  254 

 255 

2.4.6 Diffusion studies 256 

 257 

Drug diffusion experiments from circular-shaped 3D printed devices (16 mm diameter and 1 mm 258 

thickness) were conducted in vertical glass Franz cells with an effective diffusion area of 98.5 ± 259 

4.8 mm2 and a receptor volume of 4.6 mL (n=3).  260 

 261 

The 3D printed patches were mounted between the donor and receptor compartments, 262 

separated from the receptor by a cellulose nitrate membrane (pore size 0.45µm, cat no. 7184-263 

002, Whatman, UK) previously soaked in receptor fluid for at least 12 hours before starting the 264 

test was started. The receptor compartment of the diffusion cell was filled with phosphate-265 

buffered saline (Dulbecco A, Thermo Scientific, UK) at pH 7.3  266 

 267 

The whole assembly was incubated at 32°C in a water bath in order to mimic the skin 268 

temperature and the solution in the receptor compartment was constantly stirred at 400 rpm 269 

using a magnetic stirrer. Donor (with no solution) and receptor compartments were occluded 270 

with Parafilm to prevent evaporation.  271 

 272 

At different intervals, 200 µL aliquots were withdrawn from each cell and replaced with an equal 273 

amount of phosphate-buffered saline. The drug concentration was then determined by HPLC. 274 

The cumulative percentages of drug permeated per square centimetre from the 3D printed 275 

patches were plotted against time. 276 
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3. Results and discussion 277 

3D scanning 278 

The 3D scanning process performed with the commercial SenseTM 3D scanner showed good 279 

resolution (according to the manufacturer, the point-to-point spacing is around 0.65mm), 280 

capturing the object with the real size without the need of calibration (Fig. 1A). The quality of the 281 

scanning process is dependent on the experience of the operator and the light conditions, but 282 

the system is easy to operate with basic training. The scanning process can be performed 283 

without contact in a few seconds, so it could be useful for people who have difficulties remaining 284 

still and as a fast/routine technique.  285 

 286 

A section of the model obtained from the 3D scan (the nose of the volunteer) was selected as a 287 

model for 3D printing due to the prevalence of acne localized in that region and the challenge of 288 

printing intricate shapes (Fig. 1B). The use of CAD software (Meshmixer) easily allowed the 289 

selection of specific parts to be printed. In this case, the internal part of the nose design was 290 

designed hollow, to fit perfectly on the nose of the individual.  291 

 292 

 293 

Fig. 1. A) Volunteer scanning image and B) 3D model nose used for 3DP. 294 

 295 

Fused Deposition Modelling (FDM) 3DP 296 

It was possible to produce drug-loaded filaments by HME incorporating salicylic acid into the 297 

polymers; however, for the commercial filaments the characteristic of the filaments changed 298 

considerably by inclusion of the drug and were significantly different from the commercial 299 

filament in terms of size, physical appearance and mechanical behaviour.  300 

A B 
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 301 

The NF-salicylic acid filament obtained from HME became red-brown with a rough surface and 302 

brittle after being extruded. It was so brittle that it was not possible to hold it in the Instron 303 

equipment to determine Young’s modulus. The SEM images show that the NF-salicylic acid 304 

filament had an irregular surface and inconsistent morphology (cross section not circular) 305 

compared with commercial NF (Fig. 2A and 2B). According to the manufacturer’s material 306 

safety data sheet (MSDS), NF is made of polyurethanes and its properties are highly affected by 307 

solvents and acids [21]. It has also been reported that salicylic acid is incompatible with 308 

polyurethanes, affecting physical properties of the polymer, such as tensile strength, hardness 309 

and elongation [22]. Consequently, the NF-salicylic acid filament was significantly different from 310 

the NF filament in terms of flexibility and colour, which made the filament not suitable for 3D 311 

printing.  312 

The FPLA-salicylic acid filament (1.67 ±0.16 mm diameter) showed a surface as smooth as the 313 

commercial FPLA filament (1.75 ±0.02 mm diameter) (Fig. 2C and 2D). The colour of the FPLA-314 

salicylic acid filament was slightly darker compared with the commercial FPLA, however the 315 

flexibility of the filaments was comparable. Young’s modulus of FPLA-salicylic acid and 316 

commercial FPLA filament was 93.53 ± 4.34 MPa and 93.17 ± 3.72 MPa respectively. 317 

 318 

The PCL-salicylic acid filament was white, smooth and with good morphology (uniform diameter, 319 

1.65 ±0.11 mm), comparable to that of the PCL filament obtained from PCL pellets without drug 320 

by HME (Fig. 2E and F). Young’s modulus of PCL-salicylic acid (286.43 ± 25.23 MPa) and not 321 

drug-loaded PCL filament (280.39 ±25.92 MPa) are similar, but stiffer than FPLA filaments 322 

(Young’s modulus ~93 MPa). 323 

 324 
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 325 
 326 

Fig. 2. SEM images of A) commercial NF filament, B) the NF-salicylic acid filament, C) 327 

commercial FPLA filament, D) FPLA-salicylic acid filament, E) plain PCL filament prepared from 328 

PCL pellets and F) PCL-salicylic acid filament. 329 

 330 

The drug loading of the FPLA-salicylic acid filament was 0.63 ± 0.10% w/w. It is evident that the 331 

extrusion process causes degradation of salicylic acid (theoretical drug loading 2% w/w), which 332 

was a result of the high extruding temperature (190°C). The drug loading in the PCL-salicylic 333 

acid filament was 1.34 ± 0.01% w/w. The amount of salicylic acid in the PCL filament is higher 334 

than that in the FPLA filament because the extrusion temperature is much lower (60°C), so the 335 

salicylic acid remains more stable during extrusion, but this still represents a significant degree 336 

of degradation. 337 

 338 

A B 

C D 

E F 
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TGA data show also signs of drug degradation (Fig. 3). The amount of salicylic acid at different 339 

temperatures compared with the starting amount in terms of percentage implies the degradation 340 

temperature range of the tested substance. The percentage of weight of salicylic acid is greatly 341 

reduced at the temperature above 140°C and salicylic acid completely degraded at the 342 

temperature about 200°C (Fig. 3).  343 

 344 
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Fig. 2. TGA results for Salicylic acid (SA), the extruded filaments (blank) and the drug loaded 346 

filaments. 347 

The weight loss percentage for the FPLA-salicylic acid filament was higher than non-drug 348 

loaded filament by approximately 1.5%, which corresponded to salicylic acid degradation and 349 

reduced heat stability of the polymer due to hydrolysis. It was assumed that salicylic acid 350 

hydrolysed ester bonds of the polymer, resulting in decreased strength and heat stability of the 351 

polymer [23]. However, the stability of the FPLA-salicylic acid filament was acceptable at the 352 

printing temperature since the weight loss percentage was not significant. 353 
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 354 

The mass of PCL-salicylic acid filament decreased more than the non-drug loaded PCL 355 

filaments at temperatures above 200°C. This may be because the incorporation of drug into 356 

PCL affects the properties of polymer, reducing heat stability. 357 

 358 

For the 3D printing process, sections of filaments with the diameter closer to the optimum for the 359 

FDM printer (1.75mm) were selected. The FPLA-salicylic acid filament was successfully printed 360 

as a flat circular patch. The quality of printing was considered good, as the shape was well 361 

defined and there were no printing inconsistencies. Pure PCL and the PCL-salicylic acid 362 

filaments were also successfully 3D printed as circular patches. As mentioned previously, the 363 

NF-salicylic acid filament was not printable due to the lack of flexibility (and so NF-salicylic acid 364 

filament was not further evaluated in this study).  365 

 366 

The evaluation of the drug loading from 3D printed devices showed lower values to those of the 367 

drug–loaded filaments used for printing, indicative of degradation during the 3DP process. The 368 

mean amount of salicylic acid content in the FPLA-salicylic acid printed circle was 0.35 ± 0.01% 369 

w/w. This shows that the percentage of salicylic acid in the 3D printed device decreases 370 

compared with the initial percentage of drug in the filament because of the printing process, 371 

which was performed at 230°C. The mean amount of salicylic acid content in the PCL-salicylic 372 

acid printed patch was 1.21 ± 0.02% w/w, which indicates that some salicylic acid in the filament 373 

decomposed while 3D printing at 170°C. The decomposition of the drug while printing, due to 374 

the heat involved process, has been noted previously [24]. 375 

 376 

The XRD data reveals that FPLA is semi-crystalline because crystalline peaks and an 377 

amorphous halo are noticeable (Fig. 4). However, the XRD data of the FPLA-salicylic acid could 378 

not confirm the physical form of salicylic acid in the formulation. There are not peaks similar to 379 

those in the XRD pattern of pure salicylic acid powder, which indicates that the drug is either 380 

dissolved in the polymers or it is not detected due to the low drug loading percentage.  381 

 382 

PCL is also in a semi-crystalline form as the XRD pattern consists of both crystalline peaks and 383 

an amorphous halo (Fig. 4). No evidence for salicylic acid as a crystalline phase was seen in 384 

the PCL-salicylic acid XRD data.  385 

 386 
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Fig. 4. X-ray powder diffraction patterns for salicylic acid and various FDM printed discs 388 

 389 
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Fig. 5. DSC thermal traces for salicylic acid and various FDM printed discs 390 

 391 

The DSC thermograms for salicylic acid show a sharp endothermic peak (melting point, Tm) at 392 

160°C (Fig. 5). This implies that salicylic acid powder was in the crystalline form. The 393 

comparable DSC profiles of FPLA and FPLA-salicylic acid discs are shown in Fig. 5. A salicylic 394 

acid melt is not seen in the FPLA-salicylic acid disc. Although the Tm of FPLA patch (187°C) is 395 

slightly higher compared with the two endothermic peaks at 183°C and 202°C that became a 396 

combined peak with Tm of 185°C of FPLA-SA, the overall properties of FPLA are not significantly 397 

affected by the presence of SA. For the PCL, PCL-salicylic acid disc does not show the melting 398 

peak of the SA, and PCL printed disk shows also similar Tm (60°C) to the Tm of the PCL-salicylic 399 

acid disc (61°C).  400 
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 402 

Fig. 6. Cumulative amounts of salicylic acid permeated from the FDM 3D printed devices. 403 

 404 

Drug permeation from the patches occured slowly (Fig. 6), as expected for a topical drug 405 

delivery device (even though the synthetic membrane used is considered as a high flux material 406 

[25]). 407 



 17 

 408 

The PCL-salicylic acid printed sample showed a higher rate of drug diffusion than the FPLA-409 

salicylic acid. The release profiles show that the cumulative percentage of drug diffused from 410 

the printed FPLA-salicylic acid patch was 16 and 22µg/cm2 at 15 and 60 min, respectively. For 411 

the 3D printed PCL-salicylic acid sample the values were higher; 40 and 66 µg/cm2 at 15 and 60 412 

min, respectively. In use, such a mask could be worn on numerous occasions since the 413 

maximum diffusion reached only 191 µg/cm2. 414 

 415 

Regarding the printing of intricate devices/masks, the FPLA-salicylic acid printed nose was 416 

successfully obtained with the same printing settings as for the FPLA-salicylic acid circular 417 

patch. The printed nose was flexible and the shape was clearly defined, although some parts of 418 

the nose had small gaps between layers due to the inconsistency of the printing process.  419 

 420 

The nose mask could not be printed using the PCL-salicylic acid filament. At the printing 421 

temperature used to print the patch from the PCL-salicylic acid filament (170°C) the layer cooled 422 

down slowly and failed to solidify to form stable layers in the curved regions of the nose. Lower 423 

temperatures resulted in blockage of the nozzle of the printer. The use of lower printing speed 424 

or extra fans to cool it down faster may allow the fabrication of structures more complex than a 425 

flat patch.  426 

 427 

SLA printing 428 

 429 

It was possible to fabricate patches incorporating drugs by SLA printing. The composition of the 430 

formulations included the photocrosslinkable polymer PEGDA and PEG that was added as a 431 

filler. PEG chains are interspersed with the PEGDA chains, which reduces the degree of 432 

crosslinking between PEGDA chains. The PEGDA/PEG-salicylic acid patches were smooth and 433 

slightly flexible; those with higher amounts of PEG: PEGDA/PEG (4:6)-salicylic acid were most 434 

flexible. 435 

 436 

The salicylic acid content in the devices obtained by SLA was 1.95 ± 0.04% w/w for the 437 

PEGDA/PEG (4:6)-salicylic acid and 1.96 ± 0.03% w/w for the PEGDA/PEG (8:2)-salicylic acid, 438 

both higher than that in the devices prepared by FDM 3DP and very close to the expected 439 

value. Since fabrication of the mask by SLA printing is not based on heat, unlike FDM 3DP,, 440 

salicylic acid is not thermally degraded and remains in the mask at a higher concentration.  441 



 18 

 442 

XRPD results suggest that salicylic acid is present in the amorphous phase within the patches 443 

as no peaks appeared in the patterns of these formulations (Fig. 7). The drug is completely 444 

dissolved in the photopolymer solution while printing and according to these results there is no 445 

crystallization of the drug during the photopolymerization process. DSC data confirm that extent 446 

since no drug endotherm peak is observed (Fig. 8) 447 

10 20 30 40 50 60

 PEGDA/PEG (8:2) - salicylic acid

2-Theta

 PEGDA/PEG (8:2)

 

 Salicylic acid

 PEGDA/PEG (4:6) - salicylic acid

2-Theta

 PEGDA/PEG (4:6)

2-Theta
	
  448 

	
  449 

Fig. 7. X-ray powder diffraction patterns for salicylic acid and various SLA 3DP polymer discs. 450 
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 451 
Fig. 8. DSC thermal traces for salicylic acid and various SLA 3DP polymer discs . 452 

 453 

 454 

Drug diffusion from the two 3D printed devices manufactured by SLA was higher than that 455 

obtained from devices printed by FDM 3DP after 3h (Fig. 9). The diffusion profiles show that the 456 

cumulative percentage of drug diffused from the printed PEGDA/PEG patch with the higher 457 

amount of PEG is similar (25 and 48 µg/cm2 at 15min and 60 min, respectively) to that with 458 

lower amount of PEG (30 and 45 µg/cm2 at 15min and 60min) during the first 2 h. After this time 459 

diffusion is faster from patches with higher amount of PEG. A possible explanation is that the 460 

PEG gets dissolved in the dissolution media, forming pores that let the media have improved 461 

access to more internal regions of the devices easier and faster than in less porous devices. 462 

The effect of the PEGDA/PEG ratio was previously described for oral tablets prepared by SLA 463 

printing [15]. 464 
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 466 

Fig. 9. Cumulative amounts of salicylic acid permeated from the devices 3D printed by SLA. 467 

 468 

For the fabrication of the nose-shaped device containing salicylic acid, SLA 3DP provided 469 

higher resolution than the FDM approach (Fig. 10). The mask is as flexible as the mask 470 

obtained from FDM 3DP with the flexible polymer FPLA-salicylic acid.  471 

 472 
Fig. 10. Nose-shaped device fabricated by SLA 3D printing PEGDA/PEG (4:6)-salicylic acid. 473 
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 474 

Conclusions 475 

3D printing technologies show potential in the development of personalized anti-acne drug 476 

loaded masks/patches. In FDM 3DP, the use of HME produced filaments of FPLA-salicylic acid 477 

and PCL-salicylic acid with uniform diameter and suitable for 3D printing, whereas the NF-478 

salicylic acid filament was too brittle for 3D printing. Drug loading was higher in 3D printed 479 

objects obtained with PCL-salicylic acid filaments than with FPLA-salicylic acid filaments due to 480 

the greater degradation of the drug at higher temperatures (extrusion and 3D printing). 481 

However, the resolution and printing characteristics of the objects were better with FPLA-482 

salicylic acid, it was not possible to print nose-shaped mask with the PCL-salicylic acid filament. 483 

 484 

Drug diffusion tests conducted in Franz cells revealed that FPLA-salicylic acid and PCL-salicylic 485 

acid printed samples diffused only 53 and 187 µg/cm2 respectively within 3 h. 486 

 487 

SLA printing involves a one-step process that leads to 3D printed devices with higher resolution 488 

than the obtained with the FPLA-salicylic acid filaments and with higher drug loading than the 489 

PCL-salicylic acid filament (1.9% w/w), with no drug degradation. The results of drug diffusion 490 

tests conducted under the same conditions revealed that the total drug diffused is also faster 491 

than with the FDM approaches, 291 µg/cm2 within 3 hour for PEGDA/PED (4:6)-salicylic acid 492 

and 229 µg/cm2 for the PEGDA/PED (8:2)-salicylic acid. 493 

 494 

Therefore it can be concluded that SLA printing is a more convenient 3D printing technology to 495 

manufacture anti-acne devices with salicylic acid. The 3D printed masks may be considered as 496 

promising formulations that can be developed further to provide higher efficacy in acne 497 

treatment. The dose of drug may be adjusted (reduced) to personalize the device by 498 

incorporating a specific dose of drug into the polymer that will then be printed as a patch for 499 

each patient, maybe ameliorating the dose-dependent side effects of the treatment. In other 500 

pathologies, the combination of 3D scanning and 3D printing, have the potential to offer 501 

solutions to produce personalised drug loaded devices, adapted in shape and size to individual 502 

patients. 503 

 504 

 505 

 506 

 507 
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