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Abstract

Background

A vaccine against HIV is widely considered the most effective and sustainable way of reduc-

ing new infections. We evaluated the safety and impact of boosting with subtype C

CN54rgp140 envelope protein adjuvanted in glucopyranosyl lipid adjuvant (GLA-AF) in

Tanzanian volunteers previously given three immunizations with HIV-DNA followed by two

immunizations with recombinant modified vaccinia virus Ankara (HIV-MVA).
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Methods

Forty volunteers (35 vaccinees and five placebo recipients) were given two CN54rgp140/

GLA-AF immunizations 30–71 weeks after the last HIV-MVA vaccination. These immuniza-

tions were delivered intramuscularly four weeks apart.

Results

The vaccine was safe and well tolerated except for one episode of asymptomatic hypogly-

caemia that was classified as severe adverse event. Two weeks after the second HIV-MVA

vaccination 34 (97%) of the 35 previously vaccinated developed Env-specific binding anti-

bodies, and 79% and 84% displayed IFN-γ ELISpot responses to Gag and Env, respec-

tively. Binding antibodies to subtype C Env (included in HIV-DNA and protein boost),

subtype B Env (included only in HIV-DNA) and CRF01_AE Env (included only in HIV-MVA)

were significantly boosted by the CN54rgp140/GLA-AF immunizations. Functional antibod-

ies detected using an infectious molecular clone virus/peripheral blood mononuclear cell

neutralization assay, a pseudovirus/TZM-bl neutralization assay or by assays for antibody-

dependent cellular cytotoxicity (ADCC) were not significantly boosted. In contrast, T-cell

proliferative responses to subtype B MN antigen and IFN-γ ELISpot responses to Env pep-

tides were significantly enhanced. Four volunteers not primed with HIV-DNA and HIV-MVA

before the CN54rgp140/GLA-AF immunizations mounted an antibody response, while cell-

mediated responses were rare. After the two Env subtype C protein immunizations, a trend

towards higher median subtype C Env binding antibody titers was found in vaccinees who

had received HIV-DNA and HIV-MVA prior to the two Env protein immunizations as com-

pared to unprimed vaccinees (p = 0.07).

Conclusion

We report excellent tolerability, enhanced binding antibody responses and Env-specific

cell-mediated immune responses but no ADCC antibody increase after two immunizations

with a subtype C rgp140 protein adjuvanted in GLA-AF in healthy volunteers previously

immunized with HIV-DNA and HIV-MVA.

Trial Registration

International Clinical Trials Registry PACTR2010050002122368

Introduction
A vaccine against HIV is widely considered the most effective and sustainable way of reduc-
ing new infections [1]. Of the six HIV vaccine efficacy trials conducted to date, only one has
demonstrated efficacy [2–7]. In 2009, the RV144 “Thai” trial reported 31.2% protection
against HIV infection, with no associated impact on HIV viral load or CD4+ T cell count in
vaccinated infected individuals. This placebo controlled trial conducted in a low incidence,
largely heterosexual population in Thailand randomized 16402 men and women to receive
four immunizations with canarypox (ALVAC–HIV vCP1521) given twice on its own and
then twice more in combination with a monomeric envelope protein (AIDSVAX B/E gp120)
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in alum [7]. The modest reduction of acquisition of HIV infection is thought to correlate
with non-neutralizing antibodies, most likely associated with antibody-dependent cellular
cytotoxicity (ADCC) [8–10].

The HIVIS/TaMoVac consortium has optimized the delivery of multisubtype HIV-DNA
and HIV-MVA vaccine candidates in a series of trials, and have shown them to be safe and
potent T-cell and B-cell immunogens [11–15]. The recent TaMoVac 01 trial focussed on the
optimization of needle free priming and included 120 healthy men and women in Tanzania.
The volunteers were randomized to receive (i) 600 μg or 1000 μg of HIV-DNA as either (ii)
pooled or separate Env and Gag encoding plasmid pools intradermally (ID) via the needle
free Zetajet device [16]. There were no vaccine related safety concerns and no significant dif-
ferences between the groups with respect to the magnitude of IFN-γ ELISpot responses or the
proportion of individuals who responded (87–97%). Similarly, there was no significant differ-
ence between the groups in terms of binding antibody responses (83–97% responders
although the titers were low. The simplified regimen offered clear practical and logistical
advantages.

An Env protein gp140 (gp120 plus the external domain of gp41) from a subtype C envelope
clone p97CN54 (CN54rgp140) has been given to HIV negative women in Europe, formulated
in a vaginal gel in MucoVac1 [17], and via the parenteral, nasal and vaginal routes in
MucoVac2 [18]. In MucoVac2, nine women received three immunizations of 100 μg of the
CN54rgp140 protein given IM with glucopyranosyl lipid A (GLA-AF) over eight weeks, with a
subset of five individuals receiving two further immunizations 12–24 weeks later. The adjuvant,
GLA-AF is a synthetic monophosphoryl lipid A (MPL)-like molecule which has shown to be a
potent activator of dendritic cells in vitro [19]. The vaccines were immunogenic when adminis-
tered parenterally, eliciting systemic specific IgG antibodies in 9/9 (100%) and cervico-vaginal
antibodies to CN54rgp140 in 4/9 (44%) vaccine recipients [18].

The results of the RV144 trial reinvigorated interest in the role of non-neutralizing antibod-
ies and the benefits of combining immunogens such as pox viruses and envelope proteins. The
HIVIS/TaMoVac consortium had access to the CN54rgp140 protein formulated in GLA-AF
through partnership with the UK HIV Vaccine Consortium and we were keen to assess the
impact of additional boosting of TaMoVac 01 vaccinees with this Env protein. We hypothe-
zised that this combination would be more potent than the alum adjuvanted AIDSVAX used
in RV144. Vaccinees who had received their first immunization 58 weeks or more and had
completed the schedule in the TaMoVac 01 trial were invited to receive two further immuniza-
tions with 100 μg CN54rgp140 adjuvanted with 5 μg GLA-AF, four weeks apart to assess the
safety and immunogenicity of this combination regimen.

Materials and Methods

Ethics statement
Ethical approval was obtained from the institutional review boards of the Muhimbili University
of Health and Allied Sciences (MUHAS), and the Mbeya Medical Research Ethics Committee.
The Tanzanian National Institute for Medical Research (NIMR), serving as the National
Health Research Ethics Committee, and the Regional Ethics Committee in Stockholm, Sweden
also approved the study. The Tanzania Food and Drugs Authority (TFDA) approved the can-
didate CN54rgp140/ GLA-AF vaccine for use in humans in Tanzania. This study was con-
ducted according to the principles of International Council of Harmonization and Good
Clinical Practice guidelines (ICH-GCP). All participants were provided with an information
sheet and were recruited after having signed the study informed consent form.
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Study design and population
This study built upon the TaMoVac 01 trial [17] and was submitted as an amendment to the
TaMoVac protocol. The amended study protocol and CONSORT checklist are available as
supporting information; see S1 Protocol and S1 CONSORT Checklist. The trial is registered at
the World Health Organization International Clinical Trials Registry with registration number
PACTR2010050002122368 that is available at http://apps.who.int/trialsearch/Trial2.aspx?
TrialID=PACTR2010050002122368.

The TaMoVac 01 trial encluded 120 HIV non-infected, healthy volunteers between March
2010 and June 2011 from two centers in Tanzania: the Muhimbili University of Health and
Allied Sciences (MUHAS) in Dar es Salaam, and the National Institute for Medical Research
(NIMR)-Mbeya Medical Research Center (NIMR-MMRC) in Mbeya. TaMoVac 01 partici-
pants received 7 DNA plasmids encoding HIV-1 subtypes A, B, and C (HIV-DNA) at weeks 0,
4 and 12 intrademally (ID) using the Zetajet device and were boosted intramuscularly (IM)
with viral vector vaccine HIV-MVA-CMDR expressing CRF01_AE at weeks 30 and 46. The
antigens included in the HIV-DNA and HIV-MVA vaccines are shown in S1 Table. The plas-
mids were delivered in combined or separated pools (Pool 1: EnvABC/RevB, Pool 2 GagAB/
RTmutB) [16]. Immunizations were active or placebo (sterile saline) in a 9:1 ratio. The last
TaMoVac 01 study visit was completed in June 2012 (Fig 1 and Table 1).

We aimed to enrol 40 TaMoVac 01 trial participants who had received their first
HIV-DNA/placebo vaccination at least 58 weeks previously and had received the three
HIV-DNA/placebo and two HIV-MVA/placebo immunizations. Individuals were invited to
discuss participation and interested volunteers were required to sign an additional informed
consent form before screening. Participants were not allowed to take part if they were found to
be HIV infected, pregnant, or suffering from any clinically relevant medical condition, had lab-
oratory abnormalities or used immunosuppressive medication. Participants were required to
use an effective method of contraception throughout the study period.

Immunogens and vaccinations
CN54rgp140 is a recombinant subtype C Env protein derived from a Chinese viral isolate
97CM001, clone p97CN54 (S1 Table) [20, 21]. The protein was manufactured using the mam-
malian CHO cell expression system. It comprises 634 amino acids, and has been shown to be
immunogenic in non-human primates and other animal models [22, 23]. The recombinant
protein is uncleaved and contains the native sequence (REKR)-reported to be highly cleavage
resistant, and contains no additional stabilization mutations such as SOSIP. The identity of the
product was confirmed by mass spectrometric analysis of tryptic fragments and stability vali-
dated even when kept at room temperature (D. Katinger personal communication, www.
polymun.at). CN54rgp140 was manufactured to GMP specifications by Polymun Scientific,
Vienna, Austria (accession number AF286226) and purchased by Imperial College London
and provided under a Material Transfer Agreement.

GLA-AF is an aqueous formulation containing glucopyranosyl lipid A, a completely syn-
thetic monophosphoryl lipid A (MPL)-like molecule [24]. Both GLA and MPL adjuvants are
potent stimulators of the innate immune system, mobilizing antigen presenting cells via bind-
ing and activation of toll-like receptor 4. GLA-AF was manufactured to GMP by Infectious
Disease Research Institute (IDRI, Seattle, USA), purchased by Imperial College and provided
under a Material Transfer Agreement.

CN54rgp140 and GLA-AF were mixed prior to administration IM in a dose of 100 μg
gp140/ 5 μg GLA-AF into the deltoid muscle of the left arm at enrolment to the amended pro-
tocol and four weeks later.
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Table 1. Randomized study groups, doses and routes of immunization.

TaMoVac 01 regimen [detailed in 16] Amendment

Vaccine N HIV-DNA ID HIV-MVA IM N Protein IM

Time point weeks 0, 4 and 12 weeks 30 and 46 Two immunizations with 4 weeks interval after week 58

Group I 36 600 μg (combined pools) 108 pfu 10 100 μg CN54gp140 5 μg GLA-AF

Group II 36 600 μg (separate pools) 108 pfu 11 100 μg CN54gp140 5 μg GLA-AF

Group III 36 1000 μg (separate pools) 108 pfu 14 100 μg CN54gp140 5 μg GLA-AF

Group IV 12 Saline ID 2 or 5 x 0.1 ml Saline IM 5 100 μg CN54gp140 5 μg GLA-AF

N: number of participants. Combined pools refer to a combination of pool 1 (EnvABC/RevB) and pool 2 (GagAB/RTmutB) and separated pools refer to

separate administration of pool 1 and 2 into the left and right arm, respectively.

doi:10.1371/journal.pone.0155702.t001

Fig 1. The number of individuals screened, randomized, allocated and withdrawn from the trial.

doi:10.1371/journal.pone.0155702.g001
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Safety assessments
Safety assessments for solicited local and systemic, non-solicited and laboratory adverse events
were performed as previously described [16]. Safety assessments were performed at each visit
using an open question on adverse events. Information on adverse events recognized to be
associated with licensed vaccines was collected on diary cards by participants for one week fol-
lowing each vaccination. These included local (pain, redness, swelling and induration) and gen-
eral (fever, headache, malaise, chills, nausea, vomiting, myalgia and arthralgia) events. Routine
laboratory parameters (full blood count, ALT, direct and indirect bilirubin, random blood glu-
cose and creatinine) were collected at one week after each immunization as well as after four
and eight weeks following the final immunization. The clinical and laboratory events were
graded for severity as mild, moderate, severe or life threatening based on the DAIDS toxicity
scale (Division of AIDS, National Institutes of Health) [25] except for neutropenia which was
based on the local reference ranges [26]. HIV infection was regarded as a grade four event
according to the study protocol. Each of the clinical events was evaluated for a relationship to
vaccine and classified as not related, probably not related, possibly related, probably related
and definitely related to the study products.

Urinalysis, pregnancy and HIV tests were performed at screening, on the day of each vacci-
nation and during the final visit. All women were required to have a negative pregnancy test at
screening and prior to each vaccination. Participants who were HIV infected or pregnant were
stopped from further vaccination but were followed up until the end of the trial or post-deliv-
ery for pregnant women. All safety laboratory tests were performed at the Department of
Microbiology and Immunology at MUHAS or at MMRC main laboratories. These two labora-
tories implement strict internal quality control programs and participate in external profi-
ciency testing programs including College of American Pathologists (CAP), United Kingdom
National External Quality Assurance Scheme (UKNEQAS) and USA Virology Quality Assur-
ance (VQA).

Immunological assessments
Binding IgG antibody responses. The median titer and estimated concentrations of sub-

type C CN54gp140-specific IgG antibodies was measured in sera/plasma samples, using
enzyme linked immunosorbent assays (ELISAs). ELISA plates (Greiner, Kremsmünster, Aus-
tria) were coated with 50 μL per well of anti-Human κ and anti-Human λ capture antibodies
mixed at a ratio of 1:1 (SouthernBiotech, Birmingham, USA) or CN54gp140 recombinant pro-
tein (homologous to the immunogen) at 1 μg/mL diluted in 1 X DPBS (Thermo Fischer Scien-
tific, Waltham, USA). After incubation overnight at 4°C, plates were washed four times with
wash buffer (PBS containing 0.05% Tween 20 (Sigma, St Louis, USA) and then blocked by
incubation with 200 μL of PBS containing 1% BSA (Sigma, St Louis, USA) and 0.05% Tween
20 for one hour at 37°C. The standard curve was generated from a serial 5-fold dilution of puri-
fied human IgG starting at 1 μg/mL (Sigma). Samples were serially diluted 3-fold starting at
1:100 through to 1:72900. Pooled sera served as controls (NIBSC high and low) and were used
neat and at a dilution of 1:100. After blocking and washing the plates four times, 50 μL of the
relevant standard, sample or control was added and incubated for an hour at 37°C before wash-
ing four times using wash buffer as before. Goat anti-Human IgG-HRP detection antibody
(50 μL, Sigma) was added at a dilution of 1:10000 diluted in assay buffer and incubated for 1
hour at 37°C. After final washing, 50 μL of TMB (KPL, Gaithersburg, USA) was added to each
well and the plate was incubated for exactly 5 minutes at room temperature in the dark before
stopping with 50 μL per well of TMB stop solution (KPL, Gaithersburg, USA). Absorbancies
were read immediately at 450 nm using a plate-reader (Tecan, San Jose, USA). A sample was
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considered as positive in a dilution 1:100 or 1:300 if the absorbance value was more than twice
that of the pre-immunization sample at 1:100 or 1:300 dilutions, respectively. A sample was
considered positive in a dilution>1:300 if the absorbance value was more than twice the mean
of the pre-immunization sample run at a 1:300 dilution. The results were reported as reciprocal
end-point titers.

Quantitative results were derived after interpolation of sample values according to standard
curve values used for the generation of a linear trendline with r2�0.975.

Binding antibodies to subtype B gp160 were tested as detailed previously using a three-fold
dilution series [14]. Micro titer plates (Nunc Maxisorp) were coated with 0.5 μg/mL of subtype
B gp160 protein (HIV-1 IIIB, Advanced Biotechnologies Inc, Columbia, MD, USA). End point
titers were determined as described above for the subtype C gp140 ELISA.

Binding antibodies to subtype E 93TH975 gp120 recombinant protein (NIH AIDS Research
and Reference Reagents program, Division of AIDS, NIAD, Germantown, USA) using 1 μg/
mL for coating were determined as described above for the subtype C gp140 ELISA.

PBMC neutralization assay. A PBMC based assay, using infectious molecular clones
(IMCs) carrying the luciferase gene from Renilla reneformis (LucR) as a reporter, was used for
measuring neutralization antibody activity [27] as previously described [15]. The IMCs used
were SF162 subtype B, GS015 subtype C and CM235 CRF01_AE. The percent neutralization of
the post-vaccination serum was calculated based on the level of virus growth in the presence of
the same dilution of pre-vaccination serum and neutralization values greater than 50% were
considered positive.

TZM-bl pseudovirus neutralization assay. Neutralizing antibodies were measured using
pseudovirus and a luciferase-based assay in TZM-bl cells as previously described [13]. The pre-
udovirus used included SF162 subtype B, GS015 subtype C and CM235 CRF01_AE.

ADCC-luciferase assay. An ADCC assay employing Env.IMC.LucR virus-infected cells as
targets [9] was used as previously described [15]. The Env-IMC-LucR viruses used were sub-
type B IMCSF162, (Gen Bank accession no EU123924), CRF01_AE IMCCM235 (Gen Bank acces-
sion no. AF259954.1) and 1086.c IMC (Gen Bank accession no. FJ444395). ADCC activity was
measured as the percent of loss of luciferase activity observed in the presence of serum. The
ADCC-mediating antibody titer was defined as the reciprocal of the highest dilution indicating
a positive specific killing (>15% specific killing activity) after background subtraction.

IFN-γ ELISpot assay. IFN-γ ELISpot was performed on freshly isolated PBMCs using the
h-IFN-gamma ELISpot PLUS kit in a two-step detection system (Mabtech, Nacka, Sweden) as
previously described [16]. Results were expressed as spot forming cells (SFC) per million
PBMC. ELISpot responses were considered positive if the number of spot-forming cells was
>4 times the background and baseline value and>55 SFC/106 PBMCs. Data were excluded
from analyses if the background responses in medium wells exceeded 60 per million PBMCs.

Lymphoproliferation assay (LPA). Tritiated [3H]-thymidine LPA was performed as
described previously [12]. T cell proliferation was reported as a stimulation index (SI), deter-
mined by dividing the mean counts per minute of the antigen-stimulated wells by the mean of
the unstimulated control wells. A SI>6 was considered positive, based on the mean reactivity
of 57 healthy Tanzanian volunteers.

Outcomes
The primary safety endpoint was defined as any grade three and above clinical or laboratory
adverse event that occurred after the first immunization up until eight weeks from the last
immunization. The primary immunological end point was binding antibodies to subtype C
CN54rgp140 measured four weeks after the last vaccination. T-cell responses to vaccine
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antigens, binding antibody responses to other subtypes and functional antibody responses
were also measured four weeks after the final vaccination.

Statistical methods
Clinical and laboratory safety data were recorded in study specific case report forms and
entered twice into the study database which was programmed in SQL. Discrepancies between
the data records were resolved before the data files were extracted for analysis. Data were
exported directly into Excel from the ELISpot reader. The safety analysis dataset included all
solicited, non-solicited and routine laboratory data that were collected after the first vaccina-
tion up to eight weeks after the second CN54rgp140/ GLA-AF vaccination. The solicited and
non-solicited events were summarized according to the maximum grade of severity reported.
Laboratory events were included if they were new or had increased in grade and summarized
by grade. The immunological data were analysed using GraphPad Prism version 6 (GraphPad
Software, Inc., La Jolla, CA,USA). The Mann-Whitney test was used to compare the magnitude
of immune responses before and after the additional immunisations with CN54rgp140/
GLA-AF. A two sided p-value of<0.05 was considered to be statistically significant.

Results

Demographics, screening and inclusion
Between June and the end of August 2012, 48 volunteers who had participated in the TaMoVac
01 trial were screened and 40 who met the eligibility criteria proceeded to receive two doses of
CN54rgp140/GLA-AF. Among these, 21 (52.5%) individuals were from the MMRC and 19
(47.5%) fromMUHAS. The mean age was 25 years (range 18 to 39), and 25 (62.5%) were
males. Thirty-five (87.5%) participants were previously randomized to one of the vaccine
groups in TaMoVac 01 (N = 10 Group I, N = 11 Group II, N = 14 Group III) and the remaining
5 (12.5%) had received placebo (Group IV). Baseline characteristics did not significantly differ
between previous TaMoVac 01 group assignments, except that there was a predominance of
males in group III (S2 Table). Thirty-nine participants received both vaccinations with a four
week interval between August to October 2012. One participant (previously placebo recipient)
did not receive the second immunization due to pregnancy. The median interval between the
first HIV-DNA and first CN54rgp140/GLA immunization was 103 weeks (range 68 to 114
weeks), and between the last HIV-MVA and first CN54rgp140/GLA immunization it was 60
weeks (range 31 to 70 weeks).

Safety and tolerability
Solicited local, systemic and laboratory events are presented in S3 Table. In summary 32/40
(80%) vaccinated participants reported a local solicited event and 21 (52.5%) a solicited sys-
temic adverse event that started within one week of an immunization. The majority of these
events were mild, however, three participants reported moderate local pain and two partici-
pants reported moderate general malaise partially associated with moderate headache, arthral-
gia and/or myalgia. Twenty-nine laboratory adverse events were recorded in 19/40 (47.5%)
participants; 14 (48%) events were detected at safety visits within one week after an immuniza-
tion. These were mostly mild (N = 24, 83%) or moderate (N = 4, 14%), most frequently pre-
senting as asymptomatic neutropenia and clinically insignificant hypoglycaemia. Three
participants experienced mild and transient ALT elevation after the second immunization.
Severe, but asymptomatic, hypoglycaemia (glucose<2.24 mmol/L) was detected in one partici-
pant with pre-existing moderate hypoglycaemia seven days after the first CN54rgp140/GLA
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immunization. Only eight non-solicited adverse events were reported during the 12 weeks
observation period in 6/40 (15%) participants. All of these were mild or moderate and included
infectious diseases in four cases (malaria, tonsillitis or flu like illness), headache in two cases
and musculo-skeletal problems in another two cases. None was considered related to the vacci-
nations. No HIV infection occured.

Immunological outcomes
Binding IgG antibody responses. Fig 2 shows binding IgG antibody responses against

subtype C, B and CRF01_AE Env measured four weeks after three HIV-DNA and two
HIV-MVA vaccinations and four weeks after the first and second CN54rgp140/GLA-AF
immunizations, respectively.

After three HIV-DNA and two HIV-MVA vaccinations, 34/35 (97%) vaccinees exhibited sub-
type C CN54rgp140 antibodies with a median titer of 900 (range 100–8100) in responders. All 35
(100%) vaccinees exhibited antibodies to subtype C CN54rgp140 after the first and second
CN54rgp140/GLA-AF vaccination with median titers of 8100 (range 300–72900) and 24300
(range 2700 to> 72900), respectively. The magnitude of antibody responses to subtype C Env
was significantly higher both after the first and second CN54rgp140/GLA-AF immunization com-
pared to after the second HIV-MVA immunization, p<0.0001. After the first Env protein immu-
nization, 2 of 5 unprimed vaccinees mounted an antibody response to subtype C CN54rgp140.
The titers to subtype C Env in the two unprimed responding vaccinees were 100 and 8100. After
the second Env protein boost 4/4 unprimed vaccinees exhibited anti-CN54rgp140 antibodies with
a median titer of 5400 (range 2700–24300). The median titers in vaccinees who had received three
HIV-DNA and two HIV-MVA immunizations followed by two CN54rgp140/GLA-AF immuni-
zations were not significantly different from the median titer in those who were not primed before
receipt of two CN54rgp140/GLA-AF immunizations (p = 0.077).

The absolute concentration of CN54rgp140-specific IgG was measured at three time points
(S1 Fig). The absolute concentrations echoed what was seen when determining end point titers.
The concentration of CN54rgp140 antibodies increased significantly from a median of 0.861
(range 0.197–4.449 μg/ml) after the HIV-DNA and HIV-MVA vaccinations to a median of
9.866 (range 0.134–129.6 μg/ml) after the first dose of CN54rgp140/GLA-AF (p<0.001) and
then increased further to a median of 17.75 μg/ml (range 0.277 to 219.8 μg/ml) after the second

Fig 2. Binding antibody responses to three subtype antigens. Antibodies to A) subtype C CN54rgp140, B) subtype B gp160 and C)
CRF01_AE gp120 were determined at three time points; four weeks after three HIV-DNA and two HIV-MVA vaccinations, and four
weeks after the first and second CN54rgp140/GLA-AF immunization. Black dots show vaccinees who received 7 vaccinations, while
colored dots show unprimed vaccinees who received two CN54rgp140/GLA-AF immunizations only. The Mann-Whitney test was used
for statistical comparisons.

doi:10.1371/journal.pone.0155702.g002
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Env protein immunization (p<0.001). The increase between the two boosts was statistically
significant (p = 0.012).

After three HIV-DNA and two HIV-MVA vaccinations, 25/30 (87%) of evaluable vaccinees
had detectable antibodies to subtype B gp160 with a median titer of 400 (range 100–1600) in
responders. All 30 (100%) vaccinees exhibited antibodies to subtype B gp160 after the first
CN54rgp140/GLA-AF vaccination with a median titer of 2700 (range 100–72900). After the
second subtype C rgp140/ GLA-AF vaccination, 28/29 (97%) of vaccinees had subtype B gp160
antibodies with a median titer of 2700 (range 300–72900) (Fig 2). The magnitude of antibody
responses to subtype B gp160 was significantly higher both after the first and second
CN54rgp140/GLA-AF immunization than after the second HIV-MVA immunization,
p<0.0001. A significant correlation was demonstrated between HIV-1 subtype C CN54rgp140
antibody titers and subtype B gp160 antibody titers after the first and the second CN54rgp140/
GLA-AF vaccinations r = 0.7 (p<0.0001) and r = 0.59 (p = 0.0005), respectively (S2 Fig).

None of the five TaMoVac 01 placebo recipients had antibodies to subtype B gp160 before
the CN54rgp140/GLA-AF vaccination. Two of the unprimed volunteers exhibited subtype B
gp160-binding antibodies after the first and second CN54rgp140/GLA-AF vaccination.

After three HIV-DNA and two HIV-MVA vaccinations, 17/35 (49%) vaccinees exhibited
subtype E gp120-specific antibodies which increased to 24/35 (69%) after the first
CN54rgp140/GLA-AF immunization, p = 0.144. After the second CN54rgp140/GLA-AF
immunization the proportion of responders, 28/35 (80%) was significantly higher as compared
to that after the HIV-DNA and HIV-MVA immunization, p = 0.012.

The median titer of subtype E gp120-specific antibodies among the vacinees who had
received three HIV-DNA and two HIV-MVA vaccinations was 900 (range 100–2700). The
magnitude of subtype E gp120-specific antibodies was similar after the first and the second
CN54rgp140/GLA-AF immunization with a median titer of 900 (range 100–8100) at both time
points. One of the unprimed vaccinees exhibited subtype E gp120-specific antibodies with low
titers (100) after the first and second CN54rgp140/GLA-AF immunization.

We did not see an influence on the binding antibody titers by time interval between the last
HIV-MVA vaccination and the first CN54rgp140/GLA-AF boost, although the time interval
varied considerably (31–70 weeks) between vaccinees (S3 Fig).

Functional antibody responses (Neutralizing Ab and ADCC). Neutralization and
ADCC-mediating antibody responses were assessed at two time points; after the second
HIV-MVA/placebo and after the second CN54rgp140/GLA-AF immunization (Table 2). None
of the 35 vaccinees who previously received HIV-DNA and HIV-MVA had positive responses
in the pseudovirus/TZM-bl assay against SF 162 subtype B, GS015 subtype C or CM235
CRF01_AE. Using the IMC/PBMC assay, 7/35 (20%) vaccinees had neutralizing activity
against GS015 subtypes C after the second HIV-MVA, while 11/35 (31%) had positive
responses after the second CN54rgp140/GLA-AF immunization (p = 0.4125). Neutralizing
antibody activity in the IMC/PBMC assay against CM235 CRF01_AE was seen in two of 35
vaccinees after the second HIV-MVA as well as after the second CN54rgp140/GLA-AF immu-
nization. ADCC-mediating antibodies against CM235 CRF01_AE were demonstrated in 10 of
35 (29%) vaccinees four weeks after the second HIV-MVA immunization and in 9 of 35 (25%)
vaccinees four weeks after the second CN54rgp140/GLA-AF immunization.

The magnitude of the ADCC-mediating antibody response against CM235 CRF01_AE did
not differ significantly between the two time points (Fig 3). The median titer four weeks after
the second HIV-MVA was 1801 (range 201–4772) and four weeks after the second
CN54rgp140/GLA-AF median titer was 491 (range 249–18140) p = 0.802. Only one of 35 vac-
cinees developed ADCC-mediating antibody to HIV 1086.c subtype C IMC after the second
CN54rgp140/GLA-AF vaccination.
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Table 2. Frequency of neutralization and ADCC antibody responses after the second HIV-MVA and after the second CN54rgp140/GLA-AF
immunization.

Assay IMC Subtypes Time pointa and number of positive/number tested (%)

After 2nd

MVA
After 2nd CN54rgp140/
GLA-AF

After 2 CN54rgp140/GLA-AF
only

NAb, pseudovirus/ TZM-bl cells SF 162 B 0/35(0%) 0/35(0%) 0/4

GS015 C 0/35(0%) 0/35(0%) 0/4

CM235 CRF01_AE 0/35(0%) 0/35(0%) 0/4

NAb, IMC/PBMC SF 162 B 1/35 (3%) 0/35 (0%) 0/4

GS015 C 7/35 (20%) 11/35(31%) 0/4

CM235 CRF01_AE 2/35(6%) 2/35 (6%) 1/4

ADCC, IMC-LucR infected CEM.
NKRCCR5

SF162 B 2/35 (6%) 1/35 (3%) 0/4

1086 C 0/35 (0%) 1/35 (3%) 0/4

CM
235

CRF01_AE 10/35 (29%) 9/35 (28%) 0/4

IMC: Infectious Molecular Clone; NAb: neutralizing antibody
a four weeks after each of the indicated time points

doi:10.1371/journal.pone.0155702.t002

Fig 3. ADCC-mediating responses to CM235 CRF01_AE infected IMC. ADCCmediating antibodies four
weeks after receipt of three HIV-DNA and two HIV-MVA vaccinations and four weeks after two CN54rgp140/
GLA-AF immunizations are shown. Black dots show vaccinees who received 7 vaccinations, while colored
dots show unprimed vaccinees who received two CN54rgp140/GLA-AF immunizations only. The Mann-
Whitney test was used for statistical comparison.

doi:10.1371/journal.pone.0155702.g003
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One of four volunteers who was unprimed prior to the two subtype C CN54rgp140/
GLA-AF immunizations had neutralizing activity against CM235 CRF01_AE after the second
CN54rgp140/GLA-AF immunization in the IMC/PBMC assay, yet none developed ADCC-
mediating antibody responses after two CN54rgp140/GLA-AF immunizations.

IFN-γ ELISpot responses. Fig 4 shows the IFN-γ ELISpot responses. The IFN-γ ELISpot
responses were assessed in 35 volunteers who had received all seven vaccinations and in vol-
unteers who received placebo and two CN54rgp140/GLA-AF vaccinations. Two weeks after
the second HIV-MVA, 26/33 (79%) of the evaluable vaccinees had IFN-γ ELISpot responses
to Gag-CMDR and 26/31 (84%) to Env-CMDR. At the time of the first CN54rgp140/GLA-AF
immunization, 16/34 (47%) vaccinees still had IFN-γ ELISpot to Gag-CMDR and 10/34
(29%) to Env CMDR. Four weeks after the second CN54rgp140/GLA-AF immunization, the
IFN-γ ELISpot response rate to Gag-CMDR was 17/35 (49%), similar to what was seen at the
time of the first CN54rgp140 immunization. In contrast, the response rate to Env had
increased significantly to 24/35 (69%), p = 0.0017, relative to the response seen at the time of
the first CN54rgp140/GLA-AF immunization but was similar to the level seen after the sec-
ond HIV-MVA vaccination (Fig 4). None of the vaccinees responded to the Pol-CMDR pep-
tide pool at any of the three time points. Two weeks after the second HIV-MVA vaccination,
the median response to Gag-CMDR was 182 SFC/million PBMCs (range 65–1610) and to
Env-CMDR 140 SFC/million PBMCs (range 60–480). There was no significant difference
between the magnitude of responses to Gag-CMDR among the responders at the time of the
first CN54rgp140/GLA-AF, median 95 SFC/ million PBMCs (range 60–590) and four weeks
after the second CN54rgp140/GLA-AF immunization, median 110 SFC/million PBMCs
(range 70–545), p = 0.87. Interestingly, the magnitude of responses to Env-CMDR was signifi-
cantly higher four weeks after the second CN54rgp140/GLA-AF than at the time of the first
CN54rgp140/GLA-AF immunization, median 100 SFC/million PBMCs (range 60–495) ver-
sus 85 (range 60–145) p<0.0001.

One of the four (25%) unprimed vaccinees had a response to Env-CMDR at the time of
(70 SFC/million PBMCs) and after the second CN54rgp140/GLA-AF immunization (220
SFC/million PBMCs. We did not see an influence on the magnitude of IFN-γ ELISpot
responses by time interval between the last HIV-MVA vaccination and the first
CN54rgp140/GLA boost, although the time interval varied considerably (31–70 weeks)
between vaccinees (S3 Fig).

Lympoproliferative responses. Lymphoproliferative responses are shown in Fig 5. Prolif-
erative responses to AT-2 treated HIV MN subtype B and HIV CM235 CRF01_AE antigen
were measured in 19 vaccinees from the MUHAS trial site, three of whom were placebo recipi-
ents before the two CN54rgp140/GLA-AF immunizations. The frequency of LPA response to
subtype B MN at the time of the first CN54rgp140/GLA-AF immunization among the evalu-
able vaccinees who had received three HIV-DNA and two HIV-MVA immunizations was 8/14
(57%) which increased to 12/14 (86%) two weeks after the second CN54rgp140/GLA-AF,
p = 0.442. The frequency of responses to CRF01_AE CM235 was 9/14(64%) at the time of first
CN54rgp140/GLA-AF immunization which increased to 11/14 (79%) two weeks after the sec-
ond CN54rgp140/GLA-AF, p = 0. 677. The magnitude of the LPA response among the
responders increased significantly against subtype B MN from the time of the first
CN54rgp140/GLA-AF immunization, median SI 29 (range 11–166) to after the second rgp140/
GLA-AF immunization, median SI 34 (range 10–250) p = 0.041. None of the three unprimed
vaccinees had LPA responses at the time of the first CN54rgp140/GLA-AF immunization, but
after receipt of two CN54rgp140/GLA-AF immunizations one vaccinee developed LPA
responses to subtype B MN and CRF01_AE CM235.
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Fig 4. Magnitude of the IFN-γ ELISpot responses. IFN-γ ELISpot to (A) Gag and (B) the Env peptide pool
after the second HIV-MVA, at the time of first CN54rgp140/GLA-AF and four weeks after the second
CN54rgp140/GLA-AF immunizations. ELISpot responses were considered positive if the number of spot-
forming cells (SFC) was > 55 spots/million peripheral blood mononuclear cells (PBMCs) and four times the
background value. Black dots show vaccinees who received 7 vaccinations and colored dots show
volunteers who received two CN54rgp140/GLA-AF immunizations only. The number of IFN-γ ELISpot
responders per number of tested volunteers are given in parentheses. The Mann-Whitney test was used to
compare the magnitude at different time points.

doi:10.1371/journal.pone.0155702.g004
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Discussion
To our knowledge, this is the first clinical study of an HIV vaccine to combine DNA, MVA and
adjuvanted protein. We were able to conduct the study as an amendment to a phase IIa trial in
which healthy Tanzanian volunteers received three immunizations ID with HIV-DNA/placebo
followed by two immunizations with HIV-MVA/placebo IM [16]. Forty volunteers were
recruited to receive two additional immunizations with subtype C CN54rgp140 envelope pro-
tein adjuvanted with GLA-AF 31–70 weeks after the last HIV-MVA/placebo and 39 received
both immunizations. The adjuvanted Env protein was well tolerated, except in one patient with
pre-existing hypoglycaemia who experienced a clinically asymptomatic, transient aggravation
of severe hypoglycaemia. Severe hypoglycaemia related to the CN54rgp140 has not been
reported in the previous phase I trials using this protein [17, 18], but has been speculated to be
associated with some vaccines, especially in metabolically vulnerable individuals [28,29]. Thus
vaccine-induced hypoglycaemia warrants further study in future trials.

In the current study both humoral and cellular immune responses were boosted by
CN54rgp140/GLA-AF immunizations. Systemic binding antibodies to CN54rgp140 increased
significantly after each vaccination and reached titers of a median 23400. In the RV144 trial, in
which the AIDSVax gp120 Env protein in alum was given twice together with ALVAC after
“priming” twice with ALVAC alone, the estimated geometric mean antibody titer to gp120
subtype B MN was 31207 and to gp120 subtype E A244 was 14558 [7]. In the present study,
binding antibody responses to subtype B gp160 and subtype E gp120 Env proteins were also
significantly boosted by the CN54rgp140/GLA-AF protein but only in response to the first and
not the second immunization. The effect of the adjuvanted gp140 Env protein on functional
antibody responses was, however, disappointing with no detectable impact on IMC/PBMC
neutralization or ADCC responses. The DNA and MVA envelope inserts did not match the
CN54rgp140 although one DNA envelope plasmid was also subtype C. Optimal prime for

Fig 5. Magnitude of the lymphoproliferative responses. Responses at A) the time of the first CN54rgp140/GLA-AF immunization and
B) four weeks after the second CN54rgp140/GLA-AF immunization to AT-2 treated subtype B MN and CRF01_AE antigen and their
respective control antigen (Supt1 and Jurkat) are shown. Black dots show vaccinees who received 7 vaccinations and colored dots show
volunteers who received two CN54rgp140/GLA-AF immunizations only. The number of vaccinees with a positive lymphoproliferative
response per number of tested volunteers are given in parentheses. The Mann-Whitney test was used for statistical comparisons.

doi:10.1371/journal.pone.0155702.g005
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CN54rgp140 boost may be a sequence matched envelope insert for DNA and/or MVA. This
combination is not available in cGMP vaccine for human use. It is worth noting that the fre-
quency of ADCC-mediating antibody responses in the present TaMoVac 01 trial was lower
than reported in our previous phase I HIVIS03 trial where Tanzanian vaccinees received three
HIV-DNA immunizations either 1 mg ID or 3.8 mg IM followed by two HIV-MVA vaccina-
tions IM [13,15].

The RV144 trial reported modest efficacy. Similar to what is described here, binding anti-
bodies to Env were seen in 98% of individuals [7]. Extensive post-hoc analyses of the RV144
trial generated two correlates; antibodies to Env V1/V2 scaffolded protein correlated with
reduced infection risk, whereas the levels of monomeric IgA Env-specific binding antibodies
correlated with increased risk. In the presence of low levels of Env-specific IgA, ADCC-activity
was inversely correlated with risk of infection, suggesting that IgA might interfere with protec-
tive antibody function, presumed to be mediated via ADCC [8]. The same Env vaccine (gp120
AIDSVAX B/E) and adjuvant (alum) were used in the VAX003 trial, which reported no effi-
cacy [3]. The authors suggested that the seven repeated relatively high doses of 600 μg of gp120
given in VAX003 in comparison to the four doses given in the RV144 trial may have had some
bearing on the different balance in the distribution of antibody isotypes seen, which is assumed
to be relevant to protection [30]. There has been much speculation around whether the co-
administration of AIDSVAX B/E and ALVAC canarypox vaccine contributed to the functional
antibody responses and this remains a possibility. In the recently completed TaMoVac II phase
IIa trial, 198 volunteers in Tanzania and Mozambique have been randomized to receive three
ID HIV-DNA immunizations given with or without electroporation followed by two
HIV-MVA immunizations given with or without CN54rgp140 protein boosts in a factorial
design.

In the present study there were increases both in the frequency and magnitude of Env-spe-
cific IFN-γ ELISpot responses and T-cell proliferative responses to AT-2 treated subtype B MN
and CRF01_AE CM235 antigen after the CN54rgp140/ GLA-AF boosts. We have previously
shown the HIV-DNA and HIV-MVA vaccines to be particularly potent T-cell and B-cell
immunogens resulting in strong balanced Gag and Env-specific T-cell responses [13,14].

This study has some limitations. We did not measure antibody responses by isotype, nor
antibody responses to scaffolded Env V1/V2 protein, and so opportunities for direct compari-
son with findings in the RV144 trial are limited. The titer of binding Ab which we observed
was in the same range as that reported in the RV144 trial. The antibody avidity was not
assessed after recombinant protein boost in this study due to limitations in funding but we
know from our previous study that the DNA/MVA regimen could increase the avidity of
induced antibodies [14].

There was considerable variation in the time between the last HIV-MVA and the first
CN54rgp140 boost (8–17 months) but this did not appear to affect immune response results.
After two CN54gp140/GLA-AF immunizations, we found a trend towards higher median anti-
CN54 rgp140 subtype C titers in vaccinees previously immunized with three HIV-DNA and
two HIV-MVA vaccinations (n = 35) compared to the four unprimed vaccinees who had
received placebo five times before the CN54rgp140/GLA-AF immunizations (p = 0.07). The
findings are inconclusive due to the low number of unprimed vaccinees. The recruitment into
this amendment of the protocol was on a first come first serve basis and the number of volun-
teers having received placebo vaccinations instead of HIV-DNA and HIV-MVA was low.
Therefore, only five placebo recipients were recruited and received CN54rgp140/GLA-AF
immunizations.

In conclusion, we report significantly enhanced and broad binding antibody responses, and
boosted Env-specific cell-mediated immune responses after two immunizations with a subtype
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C rgp140 protein adjuvanted in GLA-AF in individuals previously immunized with HIV-DNA
and HIV-MVA, but no boosting of functional antibody responses.
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