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A body of finite size is moving freely inside, and
interacting with, a channel flow. The description of
this unsteady interaction for a comparatively dense
thin body moving slowly relative to flow at medium-
to-high Reynolds number shows that an inviscid core
problem with vorticity determines much, but not all,
of the dominant response. It is found that the lift
induced on a body of length comparable with the
channel width leads to differences in flow direction
upstream and downstream on the body scale which
are smoothed out axially over a longer viscous length
scale; the latter directly affects the change in flow
directions. The change is such that in any symmetric
incident flow the ratio of slopes is found to be
cos(π/7), i.e. approximately 0.900969, independently
of Reynolds number, wall shear stresses and velocity
profile. The two axial scales determine the evolution of
the body and the flow, always yielding instability. This
unusual evolution and linear or nonlinear instability
mechanism arise outside the conventional range of
flow instability and are influenced substantially by
the lateral positioning, length and axial velocity of the
body.

1. Introduction
This study is on the movement of a body within a
viscous fluid flow inside a channel, with the body motion
and the fluid motion interacting with each other. We
are concerned with understanding and predicting the
interactive behaviour from basic dynamics for a single
body of finite size. The theory takes a two-dimensional
setting and starts with the assumption of a solid body of
length comparable with the channel width, free to travel
inside the very long channel, asking the question of how
it and the fluid flow evolve in time.
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Figure 1. Unsteady fluid-body interplay as thin body moves freely in channel flow: non-dimensional sketch, not to scale.

Oncoming velocity profile u0 has no slip at the walls. Typical flow direction abcde shown has zero incidence at a, e,

nonzero at b, d, and is along the body at c; the ratio of slopes at b, d is found in § 4. Axially the body velocity is xc(t) and

the main length scales are of orders 1, Re1/7. Two wall layers are induced on the former scale but only one on the latter,

as shown.

Numerous applications motivate the work. In a biomedical context the interest lies in the
transport of drugs, thrombi or obstructions along blood vessels or through vessel networks and
similarly in the lung airways [1–4]. On industrial applications, the travel of ice shards and other
solid objects into engine intakes or out of exhausts [5–7], the travel of food grains along sorting
chutes [8], and similar situations, motivate the study of fluid-body interaction. These include
the transport of rubble down chutes, plumbing problems and dust movement inside hoovers
as well as sedimentation, light particles or seeds in particle velocimetry, cleaning and washing
processes. There are many different scales here. The emphasis throughout is on high flow rates
corresponding to high Reynolds numbers. Apart from studies at low flow rates [9–11] previous
work in the area is based mostly on direct numerical simulations and few experiments [12–16].
There are recent studies of a more analytical nature on full interactions between the fluid and
the body or multiple bodies [8,17,18] but these are dominated largely by inviscid reasoning with
attached or turbulent boundary layers being assumed ab initio. Little or no other work on a self-
consistent basis accounting for the influences of viscous-inviscid effects appears to have been
published on full fluid-body interaction with rational contributions in the laminar viscous layers.
Moreover, given that the length scales of small bodies or particles which are of much practical
concern frequently lie outside the conventional range for fluid flow instability and transition there
is interest in whether linear or nonlinear growth and /or instability can arise when a two-way
interplay between fluid and body is present. This interest is supported somewhat by recent direct
numerical simulations [19] on delays in relaminarisation of transitional-turbulent channel flow.

The present focus is on linear and nonlinear interactions at medium-to-high Reynolds numbers
in which the body and fluid motions affect each other at leading order. The theory incorporates
different incident forms of the internal fluid flow ahead of the finite body, with no slip at the walls.
Parametric understanding is key overall. Delicate issues surround the channel-flow evolution
here as well as subsequent questions on where a body ends up when travelling in a vessel
network and the influence of a chain of bodies travelling in sequence which develop sheltering
in their wakes. Many issues remain to be clarified; a reasonable start on tackling them is to take
the representative velocity of the body to be relatively small compared with the fluid velocity.
The following sections on the fluid-body interaction for unsteady laminar planar incompressible-
fluid flow consider the body motion and the fluid-flow pressure and velocities in the vessel as
time progresses: see figure 1. § 2 describes the physics, scales and governing equations for the
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body-scale parts of the interaction, covering the core and wall-layer responses, the body motion
and most importantly the far field of the body scale where the flow directions deviate from those
very far upstream. These deviations are responsible for a nontrivial viscous-inviscid interplay
that arises over the two major axial scales. § 3 shows that only a relative core problem remains
inviscid at leading order, whereas the full-core problem is fixed by longer-scale viscous effects
as addressed in § 4. § 5 provides a closer inspection of the body-scale properties. Wall pressure
and wall shear stress (WSS) contributions at the outer walls are included. Further discussion
is presented in § 6 while an appendix considers the response as the body velocity is increased
successively with relation to the local viscous-layer fluid velocity.

2. The fluid-body interaction
The fluid flow and body motion evolve inside an almost straight channel. A non-
dimensionalisation is made in which fluid-flow velocities are measured relative to the typical
axial velocity uD in the channel, lengths are measured with respect to the channel width aD
and the Reynolds number Re is uDaD/νD where νD is the kinematic viscosity of the fluid. A
subscript D denotes a dimensional quantity. The pressure is based on ρDu2D , with ρD being the
fluid density, and time is based on aD/uD . The body is closed and of uniform density ρBD , mass
MD and moment of inertia ID per unit distance perpendicular to the plane of the motion. In
non-dimensional terms therefore the channel width is unity, the body length is L say, the planar
Cartesian coordinates are x, y, sometimes referred to below as horizontal and vertical as in figure
1, the corresponding flow velocity components are u, v, the pressure is p, while t denotes the time.
The characteristic axial flow velocity is of order unity.

Sufficiently far upstream of the body the incident flow is unidirectional with profiles
u0(y), ψ0(y) for the velocity and stream function (here u0(y) =ψ′0(y)) which are of general O(1)

form with a positive velocity except at the outer walls, with a normalised wall shear stress
u′0(0) = λ− of order unity at the lower wall and similarly at the upper wall u′0(1) =−λ+ say.
Here Re is large. The Froude number is also large. Along with the above incident motion there
is a corresponding pressure gradient dp/dx of order 1/Re. The body length is now taken to be
of order unity. Orders of magnitude as in [20,21] then indicate that the flow structure comprises
mainly a core of quasi-inviscid flow, viscous outer-wall layers near y= 0, 1 and two viscous layers
on the body itself. The core gives all but one of the dominant features and is described in detail
next.
The scales, the core flow and the body motion. The present configuration has a thin moving
body nearly aligned with the containing channel walls, as in figure 1, and in effect both the upper
and the lower surfaces of the body lie at an O(1) height y= y0 say inside the channel. Hence
the typical normal displacement h and typical angle θ on the body are small. The axial length
scale L of the body being comparable with the channel width implies that we focus first on x

of O(1) and so within the majority of the surrounding fluid motion there is significant normal
variation in the pressure as well as across the body itself. Also the viscous outer-wall layers remain
thin compared with the channel width. From an inertial-viscous balance of momentum these
layers have thickness O(Re−1/3) locally, although supplemented by over-riding slightly thicker
but still thin layers due to longer viscous scales, and so the major part or core of the flow where
y is of order unity is expected to be quasi-inviscid. This indicates the order of magnitude of the
disturbance in the core if fluid-body interaction is to take place. Thus for

x=O(1), (2.1)

the flow solution expands in the form

[u, ψ, p] = [u0, ψ0, 0] +Re−m [uE , ψE , 0] +Re−N [u1(x, y, T ), ψ1(x, y, T ), p1(x, y, T )] + . . .

(2.2)
for y of O(1) in the core. Here ψ is the stream function associated with u, v. The effects uE , ψE
are due to longer-scale displacements which are pressure-free and independent of x: thus 0<
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m<N and uE =A0u
′
0(y), ψE =A0u0(y). The relevant powers m,N and function A0(T ) are to

be determined. In contrast the unknown perturbations u1, ψ1, p1 are functions of x, y, T to be
found locally, subject to the perturbations having to match with the incident flow properties.
A comparatively slow axial movement of the body is incorporated by means of a constant
velocity cbody� 1 and the coordinate system is taken to move with that velocity, so that in
effect the channel walls are moving slowly upstream. The constant cbody is discussed further in
Appendix A. The time is scaled as t= γ1T where γ1 is assumed to be suitably large. Substitution
into the Navier-Stokes equations then yields a quasi-steady response in which to leading order
u1 = ∂ψ1/∂y, v1 =−∂ψ1/∂x and the continuity and x-, y-momentum equations yield the steady
linearised Euler system provided that γ1 exceeds O(1). Hence the governing equation of the core
is

u0(y)O2ψ1 = u′′0 (y)ψ1. (2.3a)

This is subject to the conditions of tangential flow on approach to the walls and of matching in
the far-field,

ψ1 = 0 at y= 0, 1, (2.3b)

ψ1 does not grow exponentially as x→±∞, (2.3c)

respectively, as well as tangential flow near the enclosed body. The pressure perturbation is then
given explicitly by

p1(x, y, T ) = p1∞ + u′0(y)ψ1 − u0(y)ψ1y, (2.3d)

where the constant p1∞ is the scaled pressure upstream and downstream over the length scale
(2.1). In general the core flow produces zero pressure variation p1 − p1∞ at the walls as u0, ψ1 are
zero there but a nonzero unknown slip velocity u1 = λ±A±(x, T ) say is produced at the upper
(+) and lower (−) walls in turn.

The enclosed moving body of finite length occupying 0 6 x6L has thickness and orientation
which are compatible with the disturbances in (2.2). The nonzero velocity u0 at height y0 implies
that the zero-normal-flow condition applies on the unknown moving-body surface which is
written as

y= y0 +Re−Nf±(x, T ) [0<x<L]. (2.4)

The fluid flow is separation-free and so the Blasius-like viscous layers on the upper and lower
body surfaces remain negligibly thin [21]. In consequence of the above and the time scale the
kinematic boundary condition becomes

ψ±1 = u0(y0)(−f± +K±) at y= y±0 [0<x<L], (2.5)

where K±(T ) are unknown constants at any specific time. Here the upper (+) and lower (−)

surface shapes in (2.4) are given more explicitly by

f±(x, T ) = ĥ(T ) + (x− L/2)θ̂(T ) + ĉ(x)± t̂(x)/2 [0<x<L] . (2.6)

The known functions ĉ(X), t̂(X) denote respectively the scaled camber and thickness of the
given body shape whereas the variables ĥ, θ̂ acting over the time scale T denote respectively the
unknown normal displacement of the centre of mass of the body and the unknown angle of the
centreline of the body as it moves. Both ĥ, θ̂ are based on the scaleRe−N relative to h, θ because of
(2.4). They vary in time according to the Newtonian balances of normal momentum and angular
momentum, namely

M̂d2ĥ/dT 2 =CL, with CL =

∫L
0
{p1(x, y0−, T )− p1(x, y0+, T )} dx, (2.7a)

Îd2θ̂/dT 2 =CM , with CM =

∫L
0

(x− L/2){p1(x, y0−, T )− p1(x, y0+, T )} dx, (2.7b)

at leading order. The unknowns CL(T ), CM (T ) are respectively the scaled evolving lift and
moment coefficients, while M̂, Î are defined by ReNMD/(a

2
DρDγ

2
1), ReN ID/(a

4
DρDγ

2
1) where



5

rspa.royalsocietypublishing.org
P

hilTrans
R

S
oc

A
0000000

..........................................................

the dimensional massMD and moment of inertia ID of the body are themselves comparable with
Re−Na2DρBD, Re

−Na4DρBD in turn. Thus the time scale is such that

γ1 =O
(

(ρBD/ρD)
1
2

)
(2.7c)

and so the ratio of body density over fluid density must be large here. We suppose M̂, Î are of the
same order throughout. The centre of mass is at the symmetry location x=L/2 since the body
has uniform density, while the body’s orientation with θ being small implies that the pressures p1
at y= y0± are exerted vertically to leading order on either surface of the body. The pressures are
the dominant forces from the fluid flow. In contrast the balance of horizontal or axial momentum
gives simply M̂d2xC/dT

2 = 0 for the horizontal movement of the scaled centre-of-mass position
xC , since the horizontally resolved effects from the flow pressure and surface shear stress are
relatively small, and so the velocity dxC/dT is constant; this is in keeping with the smallness of
cbody described in the previous paragraph.
The wall layers. The viscous wall layers near y= 0, 1 will require consideration since they affect
the induced wall shear stresses and pressures. Their influences on the body movement are found
to be secondary however, and so detailed discussion of them is deferred to § 4. We note here the
estimates

O(Re−1/3), O(Re−N ), O(Re−1/3−N ) (2.8)

for the thicknesses, the velocity disturbances and the pressure variations inside the upper and
lower wall layers based on (2.2)-(2.3d) and on orders of magnitude. The pressure variations are
much less than in the core.
Other contributions. The final pieces of the interactive structure occur close to the leading edge
X = 0 and upstream and downstream of the body. First, a tiny zone of extent O(Re−N ) at most
which is of Navier-Stokes or Euler type is produced near the leading edge. The type depends
on the particular local shape of the thin body in general but in the present cases the evolution
with time puts the emphasis on flat plates, for which the former type applies. The global effects
from this zone are negligible. Second, ψ1 must be continuous everywhere on the body in (2.5) and
continuous at X = 0+. This leads to the relation

K̂+ = K̂− =K, (2.9a)

say. The presence of K(T ) arises in a sense from properties at the trailing edge X = 1 where a
Kutta-like condition applies in order to keep the flow separation-free and continuity of pressure
holds across the wake, requiring

p1(1, y0−, T ) = p1(1, y0+, T ) for all T. (2.9b)

The flux required by K(T ) in (2.9a) based on the stream function has to adjust or be adjusted to
ensure that (2.9b) is satisfied, a requirement which accentuates the spatial ellipticity of the flow-
body interaction at each time level. Third, significant upstream and downstream influence occurs
over a longer length scale O(Re1/7) (see [22,23] and figure 1) as described later.
The far field of the core. The constraints upstream and downstream in (2.3c) require specifically
that

ψ1 ∼ (Au − βux)u0(y) as x→−∞, ψ1 ∼ (Ad − βdx)u0(y) as x→+∞, (2.10a)

where Au, βu, Ad, βd are unknown functions of time. The right-hand sides in (2.10a) are
exact solutions of the governing equation (2.3a) giving nonparallel flow directions or nonzero
streamline slopes. The suggestion of nonzero streamline slope βu, βd emerging upstream and /or
downstream is perhaps surprising. It agrees however with an integral of the governing equation
(2.3a) over the flow domain which enables the differences in streamline slope to be related to the
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scaled lift, giving

βu − βd =CL/J, with J =

∫1
0
u20(y)dy, (2.10b)

from the divergence theorem. The growing displacement effects proportional to βu, βd on the
present length scale (2.1) are smoothed out over the longer length scale studied in § 4. The prime
system appears to be (2.3a, b, d) with (2.5)-(2.7b) and (2.9a)-(2.10b) for the evolving core flow and
body motion but this is subject to considerable adjustments below.

3. Core flow solutions in their relative form
The time dependence. A central problem is that of zero thickness t̂ and zero camber ĉ. The reason
for addressing it lies in the finding of exact linear and nonlinear solutions for the fluid-body
interactions with only height ĥ and angle θ̂ present. The complete solution of the evolutionary
system can then be expressed in terms of exponential responses in time T such that[

ψ1, p1, f
±, ĥ, θ̂,K, βd . . .

]
=
∑
Q

[
ψ11(x, y), p11(x, y), f±11(x), h11, θ11,K11, β11d . . .

]
eQT (3.1)

takes effect. The admissible values of the real or complex constant factor Q are to be found. The
system remains as before in the new variables but with (2.7a,c) replaced by

M̂Q2h11 =C11L, ÎQ
2θ11 =C11M , (3.2a)

respectively. The values of ĥ, θ̂ are set by the original initial conditions at time T zero. Now
effectively p1∞, ĉ, t̂ are zero and in addition the new system is as if steady.
Normalised relative-core problem. To identify the core contribution we write

ψ11 = (A11u − β11ux)u0(y) + ψ12, p11 = p12. (3.3)

We also put H12 = h11 − β11uL/2 +A11u, φ12 = θ11 − β11u as the relative heights and slopes, to
obtain the very same system except that (2.5)-(2.6) and (2.10a) are replaced by

ψ±12 = u0(y0)(K12 −H12 − (x− L/2)φ12) at y= y±0 [0<x<L] , (3.4a)

and ψ12→ 0 as x→−∞, ψ12 ∼ (A12d −A12u + [β12u − β12d]x)u0(y) as x→+∞, (3.4b)

in turn. The dependence on the difference in slopes (θ11 − β11u) makes physical sense. A
normalisation is applied next to account for the influence of φ12, namely

[ψ12, p12,K12, H12, φ12, β12d, . . .] = φ12
[
ψ∗, p∗,K∗, H∗, 1, β∗d , . . .

]
. (3.5)

The relative problem becomes, as a ‘First Step’, a purely fluid-dynamical one in normalised form:

u0(y)O2ψ∗ = u′′0 (y)ψ∗. (3.6a)

ψ∗ = 0 at y= 0, 1, (3.6b)

p∗(x, y) = u′0(y)ψ∗ − u0(y)ψ∗y , (3.6c)

ψ∗± = u0(y0)(KH − (x− L/2)) at y= y0 ± [0<x<L] , (3.6d)

p∗(L, y0−) = p∗(L, y0+). (3.6e)

ψ∗→ 0 as x→−∞, ∂ψ∗/∂x→Dsu0(y) as x→+∞, (3.6f )

Ds =C∗L/J, with C∗L =

∫L
0
{p∗(x, y0−)− p∗(x, y0+)} dx. (3.6g)

Here the closed inviscid problem (3.6a-g) is found to fix the slope-difference Ds = [β∗u −
β∗d ] as well as KH =K∗ −H∗ (even though the individual slopes β∗d , β

∗
u themselves remain

undetermined: they are fixed by longer-scale effects of § 4, representing the ‘Second Step’).
Solutions have been obtained numerically and analytically as follows.
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Figure 2. Streamline perturbations for relative-core problem for Poiseuille flow. Here L= 3 and y0 = 0.5.
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Figure 3. A detail of figure 2

Solutions. Numerical solutions were obtained for the basic example of the velocity profile

u0 = y − y2 (3.7)

of plane Poiseuille flow by means of a finite-difference procedure. The infinite channel is truncated
to a finite length in X and approximated, including boundary points, by a uniform mesh of
N = nx × ny points. The field equation (3.6a) is approximated at interior points by standard
central differencing and Dirichlet conditions (3.6b), (3.6d) add further linear equations at the
corresponding boundary points, withKH becoming an additional unknown. Normal derivatives
at boundaries are approximated by three-point one-sided derivatives and thus (3.6c), (3.6e) give an
additional linear equation, determining KH , while (3.6f ) determines the downstream boundary
values of ψ∗ with Ds also becoming an unknown. Equation (3.6g) furnishes the additional
equation to determine Ds, where the integral is evaluated along the plate away from the leading
edge using the trapezium rule. The integral over the mesh interval on the plate commencing
at the leading edge is evaluated analytically by taking the pressure to be proportional to x−1/2

within the interval. It remains to treat the upstream boundary. All eigenfunctions of the unforced
governing equations decay exponentially except u0(y) and xu0(y). The eigenfunction xu0(y) is
eliminated by requiring that ∂ψ∗/∂x vanishes at the upstream boundary and the eigenfunction
u0(y) is eliminated by further requiring that ψ∗ is orthogonal to u0(y) there. The problem thus
reduces toN + 3 linear equations in theN + 2 unknowns of the ψ∗ mesh values andKH andDs.
A least-squares solution of this system is found numerically directly using the MATLAB backslash
operator for sparse matrices.

All results presented here (except those for L= 0.1) are for a computational grid with −5≤
x≤ 6 and 2201× 201 points, giving along-channel and cross-channel grid-spacings of 1/200
and maximum error, over all grid points, in the linear equations of order 10−4. Halving the
grid spacing in each direction altered the solution by less than 10−4 (except for L= 0.1) as did
doubling the length of the computational domain. ForL= 0.1 the grid is 4401× 401 to ensure that
the pressure is sufficiently smooth along the plate to maintain an accuracy of 10−4. Figure 2 shows
perturbation streamlines in the whole computational domain for a plate of length L= 3 in the
centre of the channel, y0 = 0.5. The perturbations here and in figures 3 – 6 appear to intersect the
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Figure 4. A plate at y0 = 0.5 as in figure 3 but for L= 1.
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(a) (b)

Figure 5. A plate at y0 = 0.5 as in figures 3 and 4 but for (a) L= 0.3, (b) L= 0.1.
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Figure 6. A plate of length L= 1 as in figure 4 but at (a) y0 = 0.3, (b) y0 = 0.1.

body simply because of the linearisation present in the core motion. Figure 3 shows perturbation
streamlines for the flow near the plate for L= 3 and figures 4 and 5 show the changes in the flow
for the progressively shorter bodies withL= 1, 0.3 and 0.1. Figure 3 and figure 6 show the changes
in the flow for a unit length plate located progressively closer to the lower boundary, y0 = 0.5, 0.3
and 0.1. Figures 7 and 8 show the corresponding pressure distributions on the plate and the
tangential speed along the lower wall with parts (a) showing the effects of plate shortening and
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Figure 7. The pressure above and below the plate as a function of x/L. (a) For figures 3, 4 and 5 so y0 = 0.5 and (i)

L= 3, (ii) L= 1, (iii) L= 0.3, (iv) L= 0.1. Since the plate lies at the centre of the channel the pressure is odd across

the plate and so plots of the pressure below the plate are omitted. (b) For figures 4 and 6 so L= 1 and (i) y0 = 0.5, (ii)

y0 = 0.3, (iii) (dashed lines) y0 = 0.1.
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Figure 8. The tangential speed along the wall y= 0. (a) For figures 3, 4 and 5 so y0 = 0.5 and (i) L= 3, (ii) L= 1,

(iii) L= 0.3, (iv) L= 0.1. The curves for L= 1 and L= 3 are indistinguishable and thus the label (ii) is omitted. (b) For

figures 4 and 6 so L= 1 and (i) y0 = 0.5, (ii) y0 = 0.3, (iii) y0 = 0.1.

parts (b) showing the effects of a given plate approaching the wall. More physical insights into
the results are given in subsequent sections.

Analytical solutions are obtainable for near-plug incident profiles such that

u0 = 1 across the majority of the relative core, (3.8a)

supplemented by thin layers near the walls y= 0, 1 where the profile reduces to zero. The majority
of the core is thus governed by Laplace’s equation from (3.6a) with (3.8a) but the thin layers of
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thickness δ� 1 say play an important role as they lead to the boundary conditions becoming

∂ψ∗/∂y→ 0 as y→ 0, 1. (3.8b)

This non-standard form follows from the leading-order balance of (3.6a) in the lower thin
layer becoming u0(y)∂2ψ∗/∂y′2 = u′′0 (y′)ψ∗ since y= δy′ is small there, with the solution being
ψ∗ =AP (x)u0(y′). Here AP (x), which is the unknown O(1) value of ψ∗ at y= 0+ resulting from
application of (3.8b), gives a relative slip velocity δ−1AP (x)du0/dy

′(0) which is comparatively
large. Similar reasoning holds in the upper thin layer and both layers are of thickness larger than
that of the typical viscous wall layers. Solutions for the near-plug case follow from mapping
techniques. In particular if the body is midway between the walls so that y0 = 1

2 a solution
symmetric about the midway line can be sought with, at y= 1

2 , ∂ψ
∗/∂y= 0 for x< 0, x > L but

ψ∗ = (−x+ χ) for 0<x<L from (3.6d). The constant χ=−(L/2 +KH). We map the channel
interior in terms of the complex coordinate z = x+ iy to an upper half-plane in ¯̄z = ¯̄x+ i¯̄y by the
conformal transformation

¯̄z = exp(2πz) (3.9a)

which takes∞ downstream to vertical∞ in ¯̄z and∞ upstream to the origin in ¯̄z. We then work
with u∗, v∗ since the boundary conditions on the ¯̄x-axis are u∗ = 0 everywhere except in ¯̄x1 < ¯̄x<
¯̄x2 wherein v∗ = 1. Here ¯̄x1 =− exp(2πL), ¯̄x2 =−1 are both negative. So

u∗ − iv∗ =−iΓ (¯̄z − ¯̄x1)1/2/ (¯̄z − ¯̄x2)1/2 − i (3.9b)

for some real constant Γ . Note that as ¯̄z→ 0 we have v∗→ Γ exp(πL) + 1. From (3.9a,b) along the
symmetry line

at y=
1

2
: v∗ − 1 =


Γ ((e2πL − e2πx)/(1− e2πx))1/2 x< 0;

0 0<x<L;

Γ ((e2πx − e2πL)/(e2πx − 1))1/2 x>L.

(3.10a)

Making v∗→ 0 upstream thus gives Γ =− exp(−πL); hence then v∗→ 1− exp(−πL)

downstream; hence the result C∗L = (exp(−πL)− 1) would be expected from (3.6g). Similarly we
find

at y=
1

2
: u∗ =


0 x< 0;

−Γ ((e2πL − e2πx)/(e2πx − 1))1/2 0<x<L;

0 x>L.

(3.10b)

Therefore the pressure on the underside of the body is (see figure 9)

at y=
1

2
− : p∗ = Γ (e2πL − e2πx)/(e2πx − 1))1/2 for 0<x<L. (3.10c)

So then the scaled lift on the body, taking into account antisymmetry of u, p about y= 1
2 , is (see

figure 9)

C∗L = 2Γ

∫L
0

((e2πL − e2πx)/(e2πx − 1))1/2 dx= exp(−πL)− 1, (3.10d)

on integration. This agrees with the value anticipated just after (3.10a) and also with a direct
numerical evaluation of (3.10d).

The body motion in the sense of Q in (3.2a, b) is determined by virtue of viscous effects in
the next section. The added effects of nonzero thickness t̂ and camber ĉ are much less than those
associated with the scaled height and angle wheneverQr is positive, corresponding to significant
temporal growth of these (ĥ, θ̂) compared with the steady thickness and camber (t̂, ĉ).
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Figure 9. Core properties for plug-flow case. (a) L= 1, 3 (with L= 1 results curtailed at x= 3 to reveal L= 3 results

more clearly). (b) L= 0.1, 0.3.

4. Viscous effects and the body motion
Over a longer viscous length scale. The ‘Second Step’, to complete the fluid-body-interaction
solution and hence find the temporal power Q and streamline slope βNd , relies on viscous effects.
These act mainly over a length scale

x=Re1/7X, with X of O(1), (4.1)

[22]. The expansion of the core flow then is

[u, ψ, p] = [u0, ψ0, 0] +Re−2/7
[
ũ1(X, y, T ), ψ̃1(X, y, T ), p̃1(X, y, T )

]
+ . . . (4.2a)

while in the wall layers where y=Re−2/7Y (lower layer) and 1−Re−2/7Ỹ (upper layer)

[u, ψ, p] = [Re−2/7U,Re−4/7Ψ,Re−4/7P±] + . . . . (4.2b)

The core solution is dominated by inviscid displacement effects but has ∂p̃1/∂y being nonzero
which yields a relationship between the scaled upper- and lower-wall pressures P±(X,T ),
namely

P+ − P− = JAXX . (4.3a)

(The definition of J is in (2.10c).) Those pressures in turn affect the viscous wall layers which have
nonlinear governing equations; in the lower layer

U = ΨY , V =−ΨX , UUX + V UY =−P−X + UY Y . (4.3b)

This is subject to the requirement of matching with (2.10a,b) at small |X|, together with

U = V = 0 at Y = 0, and U ∼ λ(Y +A(X,T )) as Y →∞, (4.3c)

at all O(1)X values for zero relative slip at the channel wall and for matching with the core
solution respectively. For the balance in (4.3a) to hold the time scale γ1�Re3/7 which exceeds
O(1) as assumed earlier: in fact coupling with (2.7e) indicates that the density ratio ρBD/ρD
must exceed the order of Re6/7. The upper viscous wall layer is similar, essentially having (4.3a-
c) again but with ψ=−Re−4/7Ψ̃ and U ∼ λ+Y − λ+A(X,T ) as Y →∞, as well as P+ instead
of P−, with Ỹ replacing Y . The unknown pressures P± and core displacement A here yield
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viscous-inviscid interaction. The axial matching with the shorter-scale responses in the previous
two sections imposes the local conditions

A∼O(1)− βd,uX as X→ 0± (4.4)

in view of (2.10a,b). This also serves to show thatm= 2/7, N = 3/7 in (2.2) and thatA0 =A(0, T ).
To help understand the whole interaction more we consider small disturbances in which

A,P±, f±, ĥ, θ̂,K are of order ε where ε is a small amplitude parameter. Then the system of
interest in the first step remains (3.6a-i) whereas the present second step involves the linearised
relations

U± = Ψ±Y , V
± =−Ψ±X , λ

±Y U±X + V ±λ± =−P±X + U±Y Y (4.5a)

from the upper and lower viscous wall layers subject to the requirements

U± = V ± = 0 at Y = 0, and U±→∓λ±A(X,T ) as Y →∞, (4.5b)

in view of (4.3a-c) and its upper-wall counterpart. The solution then has the form of a free
interaction [22] in which, for equal λ±(= λ) values, P+ =−P− and, using p̄= 2P+, b̄=−2λA

for convenience, the upstream response has

p̄=−(J/2λ)Gκ2eκX , b̄=GeκX for X < 0. (4.6a)

The constant G is unknown, while the real positive eigenvalue κ=
{
−6 Ai′(0)/J

}3/7
λ5/7. The

corresponding downstream response is

p̄= (J/2λ)
[
Γ̄ κ21 exp(κ1X) + cc

]
, b̄=−[Γ̄ exp(κ1X) + cc] for X > 0, (4.6b)

with unknown complex constant Γ̄ along with complex eigenvalues κ1 = κ exp(6iπ/7) and its
complex conjugate (cc). The decaying exponentials above are to ensure negligible influence far
upstream and far downstream from the body. On the other hand p̄, b̄ must be continuous across
X = 0, giving values that agree with the Re−m contribution in (2.2), and (4.4) requires b̄− b̄(0)∼
2λβd,uX as X→ 0± to accommodate the point discontinuity due to matching with the shorter-
scale response of the previous section. The conditions are sufficient to fix the four unknown real
constants G, Γ̄r, Γ̄i in addition to βd, yielding in particular

−Gκ2 = 2(Γ̄ κ21)r;G=−2Γ̄r;−2λ[βu − βd] =−2(Γ̄ κ1)r −Gκ. (4.6c)

Here the subscripts r, i denote real and imaginary parts respectively. Hence we find{
(κ/λ)G, (κ/λ)Γ̄r, (κ/λ)Γ̄i, βd

}
= {2 cos(π/7),− cos(π/7),− sin(π/7),−1} βu − βd

1 + cos(π/7)
,

(4.6d)
which determines the four coefficients since the difference [βu − βd] is prescribed by the relative-
core solutions of § 3. See figure 10. A potentially useful overall result here is

βu =−µ̄βd (4.7)

where µ̄= cos(π/7) = 0.900969 (approx.) gives the ratio of the streamline slopes for the short-
scale behaviour in (2.10a,b) in the linear range whereas numerical work is required on (4.3a)-(4.4)
to give µ̄ for the nonlinear range. A similar result holds for unequal λ± values.
The determination of temporal growth and body motion. The result (4.7) combines with two
inviscid ones in the previous section, namely (3.2a,b) in the form

M̂Q2(H∗ +
1

2
β∗uL−A∗u) =C∗L, (4.8a)

ÎQ2(1 + β∗u) =C∗M , with C∗M =

∫L
0

(x− 1

2
L)
{
p∗(x, y0−)− p∗(x, y0+)

}
dx, (4.8b)

to yield the entire body-scale solution, not just the relative version (3.6a-i). Thus the differenceDs
(calculated from (3.6a-g) as in earlier figures) when coupled with (4.7) yields

β∗u = µ̄Ds/(1 + µ̄) (4.9a)
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over long viscous length scale
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Figure 10. The behaviour over the longer viscous scale, showing scaled pressure and displacement effects pV =

p̄/(JκB), and bV = κb̄/(λB) as a function of XV = κX , where B = βu − βd.
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Figure 11. Influence of the body length L on (a) scaled lift and moment, (b) growth factor Q2 (with Î normalised to 1),

for oncoming Poiseuille and plug flows.

and so (4.8b) yields the temporal power Q explicitly as

Q=±{C∗M (1 + µ̄)Î−1(1 + µ̄+Ds)
−1}1/2. (4.9b)

Recall that Ds is proportional to the lift, see (3.6g). It follows that the normalised height H∗ +
1
2β
∗
uL−A∗u is then fixed by (4.8a), after which KH can be used to give the K∗ value. Hence the

body motion is determined. See figure 11 which confirms that one root Q is real and positive
yielding instability in every case. This is sensible physically as θ being positive induces negative
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lift which, through the body motion, then enhances the positivity of θ and so leads to a self-
sustaining growth.
Over the O(1) length scale. Distinct viscous effects also arise on the shorter axial scale of
(2.1). In the current scenario these are mainly secondary effects as regards body movement and
occur mostly in the wall layers. Near the lower wall there are two layers. The thicker one is a
continuation of the wall layer in (4.2c) in which y=Re−2/7Y ,

[u, ψ, p] = [Re−2/7U0 +Re−3/7U1, Re
−4/7Ψ0 +Re−5/7Ψ1,

Re−4/7P0 +Re−5/7P1 +Re−16/21P11] + . . . (4.10a)

and P1 = π̃(T )x. Here the profile U0 is U evaluated at X = 0, where it is continuous, likewise
P0 = P− at zero X , the function π̃(T ) =U ′′0 (0, T ), and U0 ∼ λ−Y + uE(0, T ) at large Y . The
contribution U1 tends to λ−A−(x, T ) at large Y to match with the core of § 2. The core produces
a slip velocity Re−2/7uE(0, T ) +Re−3/7λ−A− due to (2.2); the first term feeds into the layer
of (4.10a) while the second term feeds into the layer (4.10b) below. The displacement effect
proportional to A− continues unaltered down through the layer (4.10a). The thinner wall layer
then has y=Re−1/3Y1,

[u, ψ, p] =

[
Re−1/3λ−Y1 +

1

2
Re−8/21π̃Y 2

1 +Re−3/7U11,

1

2
Re−2/3λ−Y 2

1 + (1/6)Re−5/7π̃Y 3
1 +Re−16/21Ψ11,

Re−4/7P0 +Re−5/7π̃x+Re−16/21P11

]
+ . . . (4.10b)

The π̃ factors cancel out in the resulting axial-momentum balance to leave the linearised viscous-
inviscid equations as in (4.5a,b) with (λ±, Y, U±, Ψ ,X, V, P±) replaced by (λ−, Y1, U11, Ψ11, x, V11, P11).
The boundary conditions impose (4.5b) with the same replacements; in particular U11→
λ−A−(x, T ) as Y1→∞, matching with the thicker wall layer above. There is a similar two-layered
response near the upper wall. The scaled local pressure and WSS contributions on each wall then
follow from the direct relations [24]

P±11(x, T ) =−γ±
∫x
−∞

A±(s, T )(x− s)−2/3 ds, (4.11a)

∂U±11/∂Y1(x, 0, T ) = δ±
∫x
−∞

∂sA
±(s, T )(x− s)−1/3 ds, (4.11b)

where γ± =−3 Ai′(0)(λ±)5/3/Γ(1/3) = 0.289838(λ±)5/3,

and δ± = 3 Ai(0)(λ±)4/3/Γ(2/3) = 0.786552(λ±)4/3,

are positive constants. We remark that the A± functions in (4.11a,b) include the contribution
(Au − βux) in (2.10a) as well as the relative contributions from (3.6a-g). The parabolic nature of
(4.11a,b) on their own in the positive x-direction is noted, although the entire system remains
elliptic. The predictions for the pressure and WSS can thus be evaluated once the scaled
displacement is determined by the relative-core and viscous solutions as in the previous two
sections. See figure 12 (in which PE denotes −P±/γ±).

5. Influence of body length and location
The responses to changes in body size and position are controlled first by (3.6a-g) as regards a
normalised form and second by (4.7)-(4.9b) as regards orientation and temporal behaviour. The
latter has a universal format but the former, i.e. (3.6a-g), depends on certain details.
Short bodies. When L is small two distinct length scales operate within the body-scale response
(3.6a-g). The first is in an inner zone (x, y − y0)∼L(ξ, η) surrounding the body. There the
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Figure 12. Scaled wall pressure P against x for a representative A(x) on the body scale.

governing equation (3.6a) reduces to Laplace’s equation in ξ, η for ψ∗ at leading order in L since
u0(y) is approximately u0(y0) +O(L) locally. So the local flow is that of an unbounded uniform
stream past a thin body at incidence. This satisfies (3.6d,e) but yields a nonzero circulation in
which ψ∗ is proportional to C∗Lln(ξ2 + η2) at large ξ, η.

The second, outer, zone is for (x, y) of O(1) and here the relative problem (3.6a-i) applies in
full except that matching with the inner zone requires

ψ∗ ∼ (4π)−1C∗L ln(x2 + (y − y0)2) as (x, y)→ (x, y0), (5.1)

instead of (3.6d,e), and the lift factor C∗L is known from the inner solution. The approach towards
this point-circulation or point-vortex limit problem in the outer zone can be seen in the results of
figure 2-4 as L is decreased.

The above is for a general incoming profile u0(y) such as in (3.7). In the near-plug case (3.8a)
however the reduction within the inner zone is exact. For the inner expansion ψ∗ =Lψ∗1 + . . .

yields

ψ∗1ξ = 1 on η= 0 for 0< ξ < 1, (5.2a)

and an appropriate solution exhibiting symmetry of ψ1 in η such that

ψ∗1η = 0 on η= 0 for ξ < 0, ξ > 1, (5.2b)

follows. Inverse square root behaviour in the scaled p, u is acceptable at the leading edge ξ = 0

but only a square root at the trailing edge ξ = 1 by virtue of the Kutta condition. Therefore the
complex velocity is

u− iv= i(Z − 1)1/2/Z1/2 − i where Z = ξ + iη. (5.2c)

This is O(Z−1) at infinity, indicating decaying velocities, while along η= 0 we see the values
u= 0 for ξ < 0, ξ > 1 and v= 1 for 0< ξ < 1, as required. The scaled complex potential is

W ∗1 = φ∗1 + iψ∗1 = i

∫ [
(Z − 1)1/2/Z1/2 − 1

]
dZ + constant; (5.2d)

and so φ∗1 + iψ1 ∼− 1
2 i ln(Z) at infinity. Thus at infinity a vortex-like effect occurs,

ψ∗1 ∼ (−1

2
) ln(R), φ∗1 ∼

1

2
tan−1(η/ξ), circ→ π, with R2 = ξ2 + η2, (5.2e)

which provides the matching condition mentioned just above; circ denotes the scaled circulation.
The outer expansion ψ∗ =L ln(L) + Lψ∗2 + . . . then gives Laplace’s equation again but subject to
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ψ∗2 ∼ (−1

2
) ln(r) as r= {x2 + (y − y0)2}1/2→ 0. (5.3a)

This corresponds to the point-vortex effect at (0, y0). The whole channel interior is now mapped
to the upper half plane in ˜̃z = exp(πz) similarly to (3.9a) but such that the upper and lower walls
are respectively at ˜̃x< 0 and ˜̃x> 0 along ˜̃y= 0. The small body is at ˜̃z = ˜̃z0 = exp(πiy0). For the
earlier example y0 = 1

2 with the body midway across the channel ˜̃z0 = i. Addition of the image at
˜̃z =−i and use of symmetry then shows the scaled complex potential to be

W ∗2 + constant= (−1

2
)i ln

[
(˜̃z − i)(˜̃z + i)

]
= (−1

2
)i ln

[
e2πz + 1

]
, (5.3b)

to satisfy (3.8b). In particular along ŷ= 0, ϕ∗2 = 0, ψ∗2 = (− 1
2 ) ln

[
e2πx + 1

]
, which yields the

downwash

ψ∗2 ∼−πx as x→∞ downstream, whereas ψ∗2→ 0 as x→−∞ upstream. (5.3c)

We may also add i(A+Bz) to (5.3c) with A,B real constants to allow for condition (2.10a)
upstream. The result (5.3d) is in keeping with (2.10c) since here C∗L = πL to leading order (see
also (3.10d)) and (3.8a) holds.
Long bodies. When L is large, the body-scale response on the O(1) length scale in x (zone 1 say)
remains as in (3.6a-g) to leading order except that the conditions (3.6f,g) are not met directly since
the trailing edge is far downstream. Instead at large positive x the pressure p decays exponentially
and ψ∗ approaches−u0(y)x. Far downstream theO(L) length scale (zone 2) then enters play with
x=Lx3, ψ

∗ =Lψ∗3 + . . ., so that the x derivatives in (3.6a) become negligible andψ∗3 =−u0(y0)x3
at y= y0± from (3.6d) while (3.6b,c,e,f,g) mostly remain intact. The solution is

ψ∗3 =−u0(y)x3 (5.4)

at leading order. This also satisfies the Kutta condition (3.6e) at x3 = 1 since the pressure is
exponentially small; the trailing streamline here just continues at the same incidence as the thin
body. The form (5.4) then carries on for all x3 > 1, yielding the required slope condition (3.6g) at
large x3. This slope effect emergent in zone 2 and the dominant scaled lift which is determined
entirely by zone 1 are related in the same way as in (3.6h). The near-plug behaviour (3.8a)-(3.10d)
also supports the large-L structure above. Thus for zone 1 at leading order (3.10a-c) give the
normalised form

ψ∗ =−π−1 cosh−1(e−πx)− x+ π−1ln(2) for x< 0;−x+ π−1ln(2) for x> 0, (5.5a)

p∗ =−(e2πx − 1)−1/2 for x> 0, (5.5b)

C∗L =−1, (5.5c)

along y= 1/2. For zone 2 we have the velocity ∼ 1 +O(exp) from (3.10a), which ties in with (5.4)
in terms of ψ∗. The asymptotes agree with the trends of the computational findings, for example
in terms of the lift in (5.5c) compared with figure 9 and the value π−1 ln(2) of ψ∗ at the leading
edge compared with that in figure 9.
Positioning. If the body is close to one of the walls, say y0 is small, then we have a small-
daughter case [21]. Again two axial length scales govern the response. One is O(y0) surrounding
the leading edge where in scaled form the system (3.6a-i) applies but with u0(y) replaced by λ−y,
with 0, 1 in (3.6b) replaced by 0,∞, withKH − (x− L/2) replaced by kH − x for all x> 0(kH
unknown) and with (3.6f) abandoned downstream. The solution here is essentially that for
uniform vorticity in [21] and shows the pressure decaying exponentially downstream in the small
gap and algebraically in sink-like fashion in the rest of the far field, such that the main lift factor
C∗L is created in this O(y0) zone. The other axial length scale is O(1) where the smaller gap
produces negligible pressure throughout and the larger gap flow is forced solely by the sink-
like effect at the origin. Far downstream on this scale the trend (3.6f,g) emerges. See figures 6,
7.
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6. Further discussion
The study has shown instability occurring at low amplitudes of body thickness and incidence due
to fluid-body interaction in the channel. The presence of the finite free body is vital in this self-
sustaining response, in particular producing the streamline-slope ratio cos(π/7) during the whole
evolution. Nonlinear interactions at increased amplitudes, where the slope ratio alters and the
decomposition exp(QT ) no longer applies throughout, are expected to yield significant growth
also. Compared with a constriction (which is in essence a body at the wall) of similar length
comparable with the channel width, the free body in the core of the flow causes a surprising
viscous response involving interaction of two axial scales, one that of the body and the other a
long viscous scale. This response in turn is brought about by an effective point discontinuity over
the longer scale and a direct connection between body lift and far-field directions in the body-scale
problem which, due to the no-slip incident profile, is quite distinct from the classical problem of
an airfoil in a wind tunnel.

The evolution that leads to instability here lies in an unconventional range. There is an analogy
with the direct simulations in [19] where a delay in relaminarisation is observed when particles are
present. The time scale in our case is such that the flow behaviour is quasi-steady, unlike the body
motion. Self-consistency then requires the density ratio ρBD/ρD (density of the body over that
of the fluid) to exceed the order of Re6/7 where Re is a Reynolds number based on the channel
width. If we take a typical Re range of interest about 20-100 then ρBD/ρD has to be greater than
about 13-50. For water as the fluid few elements satisfy the above restriction but for air many
do. Faster evolution would lead to a time derivative first appearing in the longer-scale wall layers
of § 5 which would then yield conventional channel-flow instability. Nonlinear effects first emerge
in those layers as well, arising from continuation of the exponential instability and making quasi-
steady separation a possibility [22]. Increased axial velocity of the body as in Appendix A first
has significant effect in the body-scale wall layers where the wall-pressure variation is gradually
altered from an integrated form to a form directly proportional to the local displacement.

Other body lengths lead to distinct interactions as inferred from the properties found (§ 5) for
a decreased or increased length factor. The former leads to a point-vortex effect while the latter
produces a focussed leading-edge effect with little further variation downstream, both indicating
substantial changes in interactive structure. Tiny bodies of O(1) aspect ratio are expected to
induce circulation as if at a point within the core flow. Other lateral positions of the body likewise
herald structural change as the body approaches the wall-layer scale, pressure and lift become
concentrated near the leading edge and the wake direction becomes identical with the body
direction at the trailing edge. Faster downstream axial movement of the body producing a switch
in the wall response towards that of a classical boundary layer with the influence of basic shear
diminished acts as a springboard for modelling of a much wider parameter range. Inflectional and
critical-layer properties may then come into play. The body could even travel upstream against
the flow, implying yet another form of instability, or [18] lie within the viscous wall layer as part
of touchdown upon or lift off from the wall.

It would be helpful to compare the theory quantitatively with experiments or direct numerical
simulations on finite bodies or both. None of relevance to the present basic problem have been
found yet. It may be that instead the modelling should move on to examine many bodies
[17], either of finite size as here or tiny (where solutions can be superposed) to seek further
connections with studies such as [19]. A qualitative connection exists in terms of instability
and relaminarisation as mentioned earlier, and understanding of the length scales as in figure
1 is clearly of importance. Meanwhile the potential application to boundary layers and three-
dimensional interactions is noted. Both three-dimensionality and the flow separation mentioned
above occur in many of the applications described in the introduction and these important aspects
still require considerable study.
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Dashed curves: the asymptotes for real(F), imag(F)
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Figure 13. The real and imaginary parts of the Tietjens function F plotted against C̄
{

=Cα1/3/(λ±)2/3
}

. Asymptotes

for large C̄ are shown as dashed curves.

A. Effect of increased axial velocity of the body
The free-body movement in the axial direction first becomes significant when cbody is increased
to the order Re−1/3, say Re−1/3C. This is then a primary effect in the viscous wall layers over
the body scale. It remains secondary in the Blasius-like layers on the divider, in the structure over
the O(Re−1/7) axial scale and elsewhere.

In the lower viscous layer (4.10b) the scaled velocity λ−Y1 now becomes λ−Y1 − C and
similarly in the governing equations (4.5a,b) modified as described just after (4.10b). Taking a
Fourier transform axially with transformed variable α converts (4.5a-c) to Airy’s equation for the
transformed shear stress,

(λ−Y − C)iατ−(F ) = τ
−(F )
Y Y ( where τ− =U−Y ), (A 1)

[25] with (F ) denoting the Fourier transform and Y standing for Y1. We then apply the boundary
conditions on τ−(F )

Y at Y = 0 and on the integral of τ−(F ) with respect to Y from 0 to∞ to obtain
the pressure-transform and WSS-transform solutions

P−(F )(α, T ) =Cλ−A−(F )(α, T )/F (α), (A 2)

τ−(F )(α, 0, T ) = (iα)2/3/(λ−)1/3P−(F )(α, T ) Ai(ξ0)/Ai′(ξ0), (A 3)

F (α) =−ξ0
∫∞
ξ0

Ai(ξ)dξ/Ai′(ξ0), (A 4)

and the constant ξ0 =−C(iα)1/3(λ−)−2/3. Here F is the Tietjens function [26,27]; see figure 13.
The forms (A2), (A3) allow the pressure and WSS responses to be expressed explicitly in terms of
the displacement effect, or vice versa, as the responses develop in time.

For small C with α, λ− of O(1) the results (A2)-(A3) retrieve (4.11a,b) on inversion. For large
C with α, λ− of O(1) on the other hand we obtain

P−(x, T ) =Cλ−A−(x, T ), (A 5)

for the pressure at leading order. This stems from the asymptotes in figure 13 and agrees with the
wall layer becoming a classical boundary layer in effect since λ−Y in (A1) then becomes negligible
as Y scales with C−1/2. The point-by-point result (A5) contrasts with the integral result (4.11a).
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