Appendices

Dr Julie Anne Man

MD (Res)

Appendix 1: Using Microsoft Access 2010 to create new tables and forms within an existing database.

You first need to create a table in order to turn it into a form and thus a user-friendly database that is easy to read and query.

1. Creating a table:

- Click the "Create" tab at the top of the screen.
- Click "table design"
- In the first "field name" box write in your identifying piece of data (e.g. PM number)
- In "data type" scroll down to text and double click.

Note 1: the "data type" box creates areas in your form (see later). For all numerical values and letters where you DO NOT need to do any calculations, click text. For numbers that require calculations click "number". For text boxes that allow more than 255 characters, click "memo".

Note 2: The description box allows you to write notes for future users of the system.

- Continue to add your required fields and data types for the information you would like to store.
- Save the table by clicking the "file" tab, then "save object as" and save as a "table" with your designed title.
- You can then use the " X " sign highlighted by a yellow background at the upper right corner of the screen (below the big X close sign) to close that window within access.

2. Creating a form from your table:

- The easiest way to do this is to click the "create" tab and then "form". This should ask you which table you want to make a form out of. Click on the title of the table you have just saved.
- A form will automatically appear in the access window with your initial fields added into it.
- Save this in the same way as the table, however save as a FORM not a table.

3. Adding a form to your database:

- If you have a tabbed database, click onto the main page. Click the "HOME" tab at the top of the page.
- Click "View" at the top left of the ribbon bar and then click "design view".
- Click onto the top of one of your tabs within the main database.
- Under "form design tools" there is a tab for "design" - click this.
- A selection of symbols will appear. If you hover over them their functions appears in a text box.
- Click the one called "insert page" with the symbol of a tabbed file with a star on the tab.
- A new tab should appear in your database.
- You can then use the "tab order" button (on the left hand side of the ribbon) to change the order of your tabs as necessary.
- Save the database by clicking the save symbol at the top of the page (above file).
- To add the form you have created to this new tab, under "form design tools" and "design" there is a symbol called "Subform/Subreport" (looks like a newspaper). Click this and a box will appear asking which table or form you want to add into the database.
- Click on the FORM version of the file you created. It should then appear in your database.
- Save the whole database again as described above.
- Save the database by also going to the "home" tab and clicking "save" - this is under the subheading of "records" in the ribbon at the top of the page.

Appendix 2: How to input data into new tabs: Antenatal; Delivery details, placental details; consent details and classification of cause of loss

Antenatal details:

- PM number: Add in current PM number
- Folic Acid Supplement taken: This is a drop down box - click yes, no or not given. Not given is used when there is no documentation as to whether folic acid was taken or not.
- Maternal Height: Enter this in metres e.g. 1.70
- Maternal weight: Enter in Kilograms
- Maternal BMI: You can calculate it manually in the following way; weight / height ${ }^{2}$
- The weight MUST be in Kg and the height MUST be in metres.
- $\mathrm{BMI}<18.5=$ underweight
- BMI 18.5-24.9 = healthy range
- BMI >25: overweight
- $\quad \mathrm{BMI}>30:$ obese $^{(1)}$
- Anaemia: Drop down box. Click, Yes, No or not given. Not given is used when no information is not supplied.
- Rhesus D status: Drop down box. Click positive, negative or not given. Not given is used when the information is not supplied.
- If Rhesus Negative, was anti \mathbf{D} given: Only complete this section is mother rhesus negative. Drop down box-click yes, no or not given. Not given is used when no information is supplied.
- Sickle Cell: Drop down box. Click yes, no, not given. Not given is used when no information is supplied.
- Thalasaemia: Drop down box. Click yes, no, not given. Not given is used when no information is supplied.
- Rubella Antibody: Drop down box. Click yes for mother is immune, no for not immune or not given Not given is used when no information is supplied.
- Proteinuria: drop down box. Click yes, no, not given. Not given is used when no information is supplied.
- Significant proteinuria is defined as more than 300 mg of protein in a 24 -hour urine collection or more than $30 \mathrm{mg} / \mathrm{mmol}$ in a spot urinary protein: creatinine sample. ${ }^{(2)}$
- Evidence of infection: Drop down box. Click no, urinary infection, vaginal infection, other.
- Details of any infection in this pregnancy: This is a large memo box.
- A positive urinary dipstick test is defined as:
- More than a trace of blood
- More than a trace of protein
- Any positive result for nitrite
- Any positive result for leucocyte esterase ${ }^{(3)}$
- If there is a/many positive high vaginal swab(s) give details of organisms isolated e.g. group B strep etc.
- Provide details of any other infections- acute/chronic, local/systemic.
- Provide details of treatment given if information available.
- Maternal blood pressure: Drop down box- click within normal limits or hypertension.
- Gestational Hypertension is defined as new hypertension presenting after 20 weeks without significant proteinuria;
- Mild: $140 / 90$ to $149 / 99 \mathrm{mmHg}$
- Moderate: $150 / 100$ to $159 / 1090 \mathrm{mmHg}$
- Severe: $160 / 110 \mathrm{mmHg}^{(2)}$
- If the mother has chronic hypertension state as hypertension. Chronic hypertension is described as: hypertension that is present at the booking visit before 20 weeks or if the woman is already taking antihypertensive medication when referred to maternity services. It can be primary or secondary in aetiology. ${ }^{(2)}$
- If hypertension give details: This is a memo box for you to write free text providing details of blood pressure readings/ medication used. Discuss any complications developed e.g. pre-eclampsia etc.
- Pre-eclampsia is defined as "new hypertension presenting after 20 weeks gestation with significant proteinuria" (2)
- Severe pre-eclampsia is defined as "pre-eclampsia with severe hypertension and /or with symptoms and/ or biochemical and/ or haematological impairment." (2)
- Downs Syndrome Screening: Drop down box. Click yes, no or not given. Not given is used when no information is supplied.
- If Yes provide details: Enter the Down 's syndrome screening adjusted risk ratio if provided in the notes and details of any chorionic villous sampling (CVS) or amniocentesis that has been undertaken.
- Dating foetal ultrasound scan: Drop down box. Click either, normal, anomaly, IUGR (intrauterine growth restriction) or intrauterine death. These details should be written on the foetal ultrasound scan reports.
- IUGR is defined as $<10^{\text {th }}$ centile of reference curve. ${ }^{(3)}$
- USS Doppler of uterine artery (dating): This doppler scan may be done at the dating scan and if it was will be recorded with the other details of the scan. Drop down box - click normal, abnormal, not done or not stated.
- If Abnormal (UA (- this is uterine artery)) resistance index? : State the PI and Vmax values.
- USS Doppler of umbilical artery (dating): Drop down box. Click normal, abnormal, not done or not stated.
- If abnormal (UmA (-umbilical artery)) resistance index? : State the PI and Vmax values.
- Gestation of dating scan and details of any anomalies: This is a large memo box for free text.
- The anomaly foetal ultrasound scan boxes and their equivalent Doppler USS boxes are to be completed in the same format as above.
- Mother known to have Diabetes Mellitus prior to pregnancy: Drop down box. Click yes, no or not given. Not given is used when no information is supplied.
- If yes, was insulin routinely taken: Drop down box. Click yes, no or not given. Not given is used when no information is supplied.
- Gestational diabetes: Drop down box. Click yes, no or not given. Not given is used when no information is supplied.
- Gestational diabetes is defined as "carbohydrate intolerance resulting in hyperglycaemia of variable severity with onset or first recognition during pregnancy and with return to normal after birth" ${ }^{(3)}$
- Other current obstetric history: this is a large memo box for free text for any information you feel is relevant to this pregnancy that has not already been recorded elsewhere. This includes any medication the mother is talking during pregnancy and also details leading up to the intrauterine or intrapartum death. Information about the mothers past medical history is also to be included in this memo box, for example if the mother has fibroids.

Delivery details:

- PM number: enter current PM number
- Gestation at delivery: Give as weeks plus days e.g. $32+4$ means 32 weeks and 4 days.
- Tick the correct box for what type of delivery it is. Two boxes can be ticked e.g. if the delivery was induced and vaginal, tick both of these boxes.
- If the delivery was a caesarean delivery tick caesarean and then tick whether it was a planned or emergency caesarean section and provide details in the memo box labelled "if caesarean, provide details". Details should include why the caesarean was carried out e.g. breech presentation.
- Cord pH: This value will be written in the delivery notes if present. Do not enter anything in this box if no cord pH is found in the notes.
- Intrapartum events: Drop down box for intrapartum complications Click either none, cord prolapse, shoulder dystocia, antepartum haemorrhage, twin complications, fetal distress or other. If more than one complication was encountered or one that is not in the drop down list, click other and then enter all the events into the free text box below labelled "if other, provide details.
- Intrapartum fetal death: Intrapartum foetal death is a death that occurs during delivery. Drop down box. Click yes or no.
- If yes, provide details: This is a large memo box for you to add in the details of the intrapartum death. Include the history of events in labour leading to death.
- Foetal maceration: Drop down box. Click mild, moderate, severe or other description. Provide description details in the memo box "if other, provide details".

Placental Details:

- PM number: enter current PM number
- Placental weight: This should be the TRIMMED placental weight and recorded in grams.
- Tick a box to state if this was a single placenta or multiple placentas. If multiple provide details in the box below called "if multiple, provide details". Enter details about if this was a twin or triplet placenta
- Cord length: measured in centimetres
- Coiling index: This is the ratio of coils in the cord per 10 cm of cord.
- Number of vessels in cord: Drop down box. Click, 2,3,4 or other. If other - give details in box below labelled "vessels - if other, details".
- Cord insertion: Drop down box. Click central, eccentric, marginal, membranous, vellomentous, fucarta or other.
- The next set of boxes are all drop down boxes or further detail memo boxes. For the cord, membranes and placenta add in correct details for the macroscopic and microscopic descriptions. If there is more than one abnormality in the same category e.g. there is funisitis and angititis of the cord, click other in the drop down box and write the abnormalities in the free text box for "cord other".

Consent

- PM Number: add in current PM number
- Hospital completing PM: drop down box. Click either, Great Ormond Street or St Georges.
- Tick a box for either complete PM, limited PM or external examination only. If limited state in the "if yes" free text box what the PM was limited to e.g. chest or thorax etc.
- Further examination of organs: Drop down box. Click yes or no.
- Organs examined further - list the organs that parents have stated they consent to be examined further.
- Disposal: Drop down box. Click the description that is ticked on the consent form.
- Tick the relevant boxes indicating "yes" if the parents consented to genetic testing, training and research to be completed on the foetal tissue. If the answer was no to any of these, leave the boxes un-ticked

Classification of cause of loss and risk factors:

- Cause of loss: This is a drop down box. Click the option which classifies the cause of death. The options include:
- Unexplained
- Congenital anomalies
- Infection (any infection except ascending vaginal infection)
- Ascending infection
- Abruption
- Pre-eclampsia
- Known IUGR (intrauterine growth restriction)
- Known cord accident (e.g. cord prolapse)
- Metabolic
- Other
- Risk Factors: These factors are tick boxes - if the mother has one or more of these risk factors, tick the appropriate boxes - leave blank for no. The risk factors include:
- Obesity
- GDM (gestational diabetes mellitus)
- IDDM (insulin dependent diabetes mellitus)
- Post term (i.e. delivery after 40/40 gestation)
- IUG SGA detected at PM (Intrauterine growth small for gestational age detected at post-mortem)
- Previous SB (previous fetal loss either miscarriage or stillbirth)
- Abnormalities detected at PM (post-mortem): Drop down box. Click none, placental abnormalities, cord abnormalities or organ abnormalities.
- Cause of death:
- Pathologists opinion: Write in this memo box the pathologists opinion on the cause of death
- "Does this opinion match our classification?" Tick this box if the pathologist's opinion matching our classification system.
- Review opinion - final cause of death: This is a memo box that should be left blank whilst completing data entry and reviewed when all data has been inputted.

Note 3: 1(a) cause of death on the Diagnosis tab should be classified in the following manner and should be also added into the cause of death memo box and the final other cause of death box at the bottom of the form in the diagnosis tab.

Type of stillbirth	1(a) cause of death to be entered
Antepartum stillbirth with products retained <24 hours in utero	Stillbirth1
Antepartum stillbirth with products retained >24 hours in utero	Stillbirth2
Intrapartum detected stillbirth (Known)	Stillbirth3
Intrapartum undetected "fresh" stillbirth	Stillbirth4

References:

(1) http://www.nhs.uk/Livewell/loseweight/Pages/BodyMassIndex.aspx

Accessed 20.11.14

(2) Royal College of Obstetricians and Gynaecologists. Hypertension in Pregnancy: the management of hypertensive disorders during pregnancy. August 2010. NICE Clinical Guidance. Available online at: http://www.nice.org.uk/nicemedia/live/13098/50475/50475.pdf

Accessed: 27.08.13
(3) National Collaborating Centre for Women's and Children's Health. Antenatal Care routine care for the healthy pregnant woman. March 2008. Available online at:
http://www.nice.org.uk/nicemedia/live/11947/40145/40145.pdf Accessed: 27.08.13

Appendix 3: Statistical Tests

Chapter 3: Population Demographics

Chi-square

Chi-square, df	$0.004082,1$
z	0.06389
P value	0.9491

P value summary ns
One- or two-tailed Two-tailed

Statistically significant? (alpha<0.05) No

Data analyzed	Miscarriage	Stillbirth	Total
Spring/Summer	228	341	569
Autumn/Winter	195	294	489
Total	423	635	1058

Chi-square

Chi-square, df	$0.3138,1$		
z	0.5602		
P value	0.5753		
P value summary	ns		
One- or two-tailed	Two-tailed		
Statistically significant? (alpha<0.05)	No		
Data analyzed	Miscarriage	Stillbirth	Total
Spring	99	140	239

Summer	129	201	330
Total	228	341	569
Chi-square			
Chi-square, df	$0.06642,1$		
z	0.2577		
P value	0.7966		
P value summary	ns		
One- or two-tailed	Two-tailed		
Statistically significant? (alpha<0.05)	No		
Data analyzed	Miscarriage	Stillbirth	Total
Summer	129	201	330
Winter	92	137	229
Total	221	338	559
Chi-square			
Chi-square, df	$1.381 e-007,1$		
z	0.0003716		
P value	0.9997		
P value summary	ns		
One- or two-tailed	Two-tailed		
Statistically significant? (alpha<0.05)	No		
Data analyzed	Stillbirth Miscarriage	Total	
Male	348	221	569
Female	285	181	466
Total	633	402	1035

Table Analyzed	Data 41		
Chi-square			
Chi-square, df	$0.1452,1$		
z	0.3811		
P value	0.7031		
P value summary	ns		
One- or two-tailed	Two-tailed		
Statistically significant? (alpha<0.05)	No		
Data analyzed	Miscarriage	Stillbirth	Total
Observed male	221	348	569
Expected male	213	320	533
Total	434	668	1102
Table Analyzed	Data 42		
Chi-square			
Chi-square, df	$0.1309,1$		
z	0.3618		
P value	0.7175		
P value summary	ns		
One- or two-tailed	Two-tailed		
Statistically significant? (alpha<0.05)	No		
Data analyzed	Miscarriages	Stillbirth	Total
Observed females	181	285	466
Expected females	213	320	533
Total	394	605	999

Column B	
vs.	
Column A	
Mann Whitney test	
P value	
Exact or approximate P value?	
P value summary	
Significantly different? ($\mathrm{P}<0.05$)	
One- or two-tailed P value?	
Sum of ranks in column A,B	
Mann-Whitney U	
Difference between medians	
Median of column A	
Median of column B	
Difference: Actual	
Difference: Hodges-Lehmann	
Column B	Our population
vs.	vs.
Column A	National Data
Mann Whitney test	
P value	0.0012
Exact or approximate P value?	Exact
P value summary	**
Significantly different? ($\mathrm{P}<0.05$)	Yes
One- or two-tailed P value?	Two-tailed
Sum of ranks in column A,B	120, 51

Mann-Whitney U	6
Difference between medians	$30650, \mathrm{n}=9$
Median of column A	$80.00, \mathrm{n}=9$
Median of column B	-30570
Difference: Actual	-30570

Column B	Our population stillbirths
vs.	
vs.	
Column A	National data stillbirths
Mann Whitney test	0.1606
P value	Exact
Exact or approximate P value?	ns
P value summary	No
Significantly different? (P < 0.05)	Two-tailed
One- or two-tailed P value?	102,69
Sum of ranks in column A,B	24
Mann-Whitney U	
Difference between medians	$183.0, \mathrm{n}=9$
Median of column A	$40.00, \mathrm{n}=9$
Median of column B	-143.0
Difference: Actual	-147.0

Table Analyzed

Column B

vs.
Column A
Mann Whitney test
P value
Exact or approximate P value?
P value summary
Significantly different? $(\mathrm{P}<0.05)$
One- or two-tailed P value?
Sum of ranks in column A,B
Mann-Whitney U
Difference between medians
Median of column A
Median of column B
Difference: Actual
Difference: Hodges-Lehmann

Mat age nat vs stil Our Stillbirth maternal age vs.
National data maternal age
0.0003

Exact

Yes
Two-tailed 123, 48

3
30650, n=9
40.00, n=9
-30610
-30610

Column B	Our population - miscarriage
vs.	vs.
Column A	National data - miscarriage
Mann Whitney test	0.0008
P value	Exact
Exact or approximate P value?	$* * *$
P value summary	Yes
Significantly different? (P < 0.05)	Two-tailed
One- or two-tailed P value?	121,50
Sum of ranks in column A,B	5
Mann-Whitney U	
Difference between medians	$3845, \mathrm{n}=9$
Median of column A	$40.00, \mathrm{n}=9$
Median of column B	-3805
Difference: Actual	-3805

Table Analyzed
Column B
vs.
Column A
Mann Whitney test
P value
Exact or approximate P value?
P value summary
Significantly different? $(\mathrm{P}<0.05)$
One- or two-tailed P value?
Sum of ranks in column A,B
Mann-Whitney U
Difference between medians
Median of column A
Median of column B
Difference: Actual
Difference: Hodges-Lehmann

Mat age nat vs mis
Miscarriages
vs.
National data
<0.0001
Exact

Yes
Two-tailed 125, 46

1

30650, n=9
40.00, n=9
-30610
-30610

Chi-square
Chi-square, df
Z
P value
P value summary
One- or two-tailed
Statistically significant? (alpha<0.05)
Data analyzed
White
Non-white
Total

Chi-square
Chi-square
Chi-square, df
Z
P value
P value summary
One- or two-tailed
Statistically significant? (alpha<0.05)
Data analysed
Black- black british African
All other ethnicity
Total

Chi-square
Chi-square, df Z
17.15, 1
4.141
<0.0001

Two-tailed
Yes
No. of stillbirths
311
144
455
455

No. of miscarriages
158
138
296

Total
469
282
751

Chi-square
Chi-square, df
Z
P value
P value summary
One- or two-tailed
Statistically significant? (alpha<0.05)
Data analyzed
Black
Not black
Total
787.4, 1
28.06
<0.0001

Two-tailed
Yes
National data all births Our total population
Total
33105
626974
660079

206

Column B	
vs.	No. of stillbirths vs.
Column A	No of miscarriages
Unpaired t test	
P value	0.3793
P value summary	Ns
Significantly different? (P < 0.05)	No
One- or two-tailed P value?	Two-tailed
t , df	$\mathrm{t}=0.8823 \mathrm{df}=127$
How big is the difference?	
Mean \pm SEM of column A	$3.169 \pm 0.6227, \mathrm{n}=65$
Mean \pm SEM of column B	$4.047 \pm 0.7777, \mathrm{n}=64$
Difference between means	0.8776 ± 0.9947
95\% confidence interval	-1.091 to 2.846
R squared	0.006093
F test to compare variances	
F,DFn, Dfd	$1.536,63,64$
P value	0.0895
P value summary	Ns
Significantly different? $(\mathrm{P}<0.05)$	No

Chi-square
Chi-square, df
0.5787, 1
0.7607

Z
0.4468
P value summary
ns
One- or two-tailed
Two-tailed

Statistically significant? (alpha<0.05)	No		
Data analyzed	Miscarriage	Stillbirth	Total
Overweight	72	81	153
Obese	61	82	143
Total	133	163	296
Chi-square			
Chi-square, df	$0.4367,1$		
z	0.6608		
P value	0.5087		
P value summary	ns		
One- or two-tailed	Two-tailed		
Statistically significant? (alpha<0.05)	No		
Data analyzed	Miscarriage	Stillburth	Total
Normal weight	72	94	166
Overwiehgt	72	81	153
Total	144	175	319
Chi-square			
Chi-square, df	$0.01607,1$		
z	0.1268		
P value	0.8991		
P value summary	ns		166
One- or two-tailed	133	176	309
Statistically significant? (alpha<0.05)	Two-tailed		
Data analyzed	No		
BMI normal	72	94	
BMI obese			
Total			

P value	0.3897		
P value summary	ns		
One- or two-tailed	Two-tailed		
Statistically significant? (alpha<0.05)	No		
Data analyzed	Miscarriage	Stillbirth	Total
BMI underweight	1	4	5
BMI Normal	205	257	462
Total	206	261	467

Fisher's exact test
P value 0.3997

P value summary
ns
One- or two-tailed
Two-tailed
Statistically significant? (alpha<0.05) No

Data analyzed	Miscarriage Stillbirth	Total	
BMI underweight	1	4	5
BMI obese	61	82	143
Total	62	86	148

Chi-square	
Chi-square, df	$12.40,4$
P value	0.0146
P value summary	$*$
One- or two-tailed	NA
Statistically significant? (alpha<0.05)	Yes
Data analyzed	
Number of rows	5
Number of columns	2

Fisher's exact test
P value
P value summary
One- or two-tailed
Statistically significant? (alpha<0.05)
Data analyzed
Normal BMI
Obese
Total
< 0.0001

Two-tailed
Yes
National data Study population Total 275166
$116 \quad 143 \quad 259$
391
309

Chi-square

Chi-square, df	$19.16,1$
z	4.377
P value	<0.0001
P value summary	$* * * *$
One- or two-tailed	Two-tailed
Statistically significant? (alpha<0.05)	Yes

Data analyzed	No of miscarriages No. of stillbirths	Total	
Primigravida	109	247	356
Not primigravida	287	354	641
Total	396	601	997

Chi-square

Chi-square, df	$14.31,1$		
Z	3.782		
P value	0.0002		
P value summary	$* * *$		
One- or two-tailed	Two-tailed		
Statistically significant? (alpha<0.05)	Yes		
Data analysed	Miscarriage	Stillbirth	Total
Primigravida	109	247	356
G1+P0	80	88	168
Total	189	335	524

Chi-square

Chi-square, df	$12.56,1$		
z	3.545		
P value	0.0004		
P value summary	$* * *$		
One- or two-tailed	Two-tailed		
Statistically significant? (alpha<0.05)	Yes		
Data analyzed	Miscarriages	Stillbirth	Total
PV bleeding	42	28	70
No PV bleeding	383	611	994
Total	425	639	1064

Chi-square

Chi-square, df	$13.99,1$
Z	3.740
P value	0.0002
P value summary	$* * *$
One- or two-tailed	Two-tailed

Statistically significant? (alpha<0.05) Yes
Data analyzed Miscarriage
Maternal Fiobroids 30
No maternal fibroids 395
Total

Stillbirth	Total
15	45
624	1019
639	1064

Chi-square

Chi-square, df	$14.48,1$
z	3.805
P value	0.0001
P value summary	$* * *$
One- or two-tailed	Two-tailed
Statistically significant? (alpha<0.05)	Yes

Statistically significant? (alpha<0.05)	Yes		
Data analyzed	Miscarriages	Stillbirth	Total
IVF	27	12	39
Not IVF	398	627	1025
Total	425	639	1064

Chi-square

Chi-square, df	$5.811,1$
z	2.411
P value	0.0159

P value summary
One- or two-tailed
Two-tailed
Statistically significant? (alpha<0.05)
Yes
Data analyzed Miscarriage
No Diabetes 400
Diabetes
Total
Fisher's exact test
P value
1.0000
P value summary ns

One- or two-tailed	Two-tailed			
Statistically significant? (alpha<0.05)	No			
Data analyzed	Miscarriage	Stillbirth	Total	
DM	7	19	26	
Gestastional DM	9	28	37	
Total	16	47	63	
Chi-square				
Chi-square, df	$16.68,1$			
z	4.085			
P value	<0.0001			
P value summary	$* * * *$			
One- or two-tailed	Two-tailed			
Statistically significant? (alpha<0.05)	Yes			
Data analyzed	Miscarriage	Stillbirth	Total	
Normal BP	406	553	959	
Hypertension	17	69	86	
Total	423	622	1045	

Fisher's exact test

P value	0.7731		
P value summary	ns		
One- or two-tailed	Two-tailed		
Statistically significant? (alpha<0.05)	No		
Data analyzed	Miscarriage	Stillbirth	Total
Chronic Hypertension	6	19	25
Pregnancy induced	10	25	35
Total	16	44	60

Fisher's exact test

P value
P value summary
One- or two-tailed
Statistically significant? (alpha<0.05)
Data analysed
Chronic Hypertension
Pre-eclampsia
Total

Fisher's exact test

P value	0.0173
P value summary	$*$

One- or two-tailed Two-tailed
Statistically significant? (alpha<0.05)
Data analyzed
Pregnancy induced
Miscarriage Stillbirth
$10 \quad 25$
$1 \quad 25$
Pre-eclampsia 11

Total
35
26
61

Chi-square

Chi-square, df
0.8830, 1

Z

0.0496

Two-tailed
Yes

Miscarriage Stillbirth Total
$\begin{array}{lll}6 & 19 & 25\end{array}$
$1 \quad 25 \quad 26$
$7 \quad 4451$

Page 33
P value
P value summary
One- or two-tailed
Statistically significant? (alpha<0.05)
Data analyzed
Hypertension
No Hypertension
Total

Chi-square
Chi-square, df
Z
P value
P value summary
One- or two-tailed
Statistically significant? (alpha<0.05)
Data analyzed
No infection
Infection
Total

0.3474

ns

Two-tailed

No
National data Study population Total

34244	60	34304
637011	985	637996

$637011 \quad 985637996$

671255104
672300

Table Analyzed	Data 1	
Chi-square		
Chi-square, df	$49.65,1$	
z	7.046	
P value	<0.0001	
P value summary	$* * * *$	
One- or two-tailed	Two-tailed	
Statistically significant? (alpha<0.05)	Yes	Total
Data analyzed	Ascending Infection Not ascending Infection	137
Black	69	482
Non-Black	63	545
Total	132	619

Chapter 4: Cause of Death

Table Analyzed Data 1
Chi-square
Chi-square, df 5.862, 1
z $\quad 2.421$
P value 0.0155
P value summary *
One- or two-tailed Two-tailed
Statistically significant? (alpha<0.05) Yes
Data analyzed Miscarriages Stillbirths Total
$\begin{array}{llll}\text { Abruption } & 8 & 30 & 38\end{array}$
Not Abruption $417 \quad 6091026$

Total	425	639	1064

Table Analyzed Data 3
Chi-square
Chi-square, df 5.707, 1
Z 2.389
P value 0.0169
P value summary *
One- or two-tailed Two-tailed
Statistically significant? (alpha<0.05) Yes
Data analyzed Miscarriages Stillbirths Total

Infection	1	12	13

$\begin{array}{llll}\text { Not infection } & 424 & 627 & 1051\end{array}$
Total $425 \quad 6391064$

Table Analyzed Data 1
Chi-square
Chi-square, df 61.89, 1
z $\quad 7.867$
P value < 0.0001
P value summary \quad ****
One- or two-tailed Two-tailed
Statistically significant? (alpha<0.05) Yes
Data analyzed Miscarriages Stillbirths Total

AI	117	59	176
Not AI 308	580	888	
Total	425	639	1064

Table Analyzed Data 4
Chi-square
Chi-square, df 0.1693, 1
z $\quad 0.4114$
P value 0.6808
P value summary ns
One- or two-tailed Two-tailed
Statistically significant? (alpha<0.05) No
Data analyzed Miscarriages Stillbirths Total
$\begin{array}{llll}\text { Know CA } & 2 & 2 & 4\end{array}$
$\begin{array}{llll}\text { Not CA } & 423 & 637 & 1060\end{array}$
$\begin{array}{llll}\text { Total } & 425 & 639 & 1064\end{array}$

Table Analyzed Data 2
Chi-square
Chi-square, df 3.120, 1
z 1.766
P value 0.0773
P value summary ns
One- or two-tailed Two-tailed
Statistically significant? (alpha<0.05) No
Data analyzed Miscarriages Stillbirths Total

CA 14	36	50	
Not CA	411	603	1014
Total 425	639	1064	

Table Analyzed Data 5
Chi-square
Chi-square, df 22.33, 1
Z 4.725
P value < 0.0001
P value summary $\quad * * * *$
One- or two-tailed Two-tailed
Statistically significant? (alpha<0.05) Yes
Data analyzed Miscarriages Stillbirths Total
$\begin{array}{llll}\text { Placenta } & 5 & 49 & 54\end{array}$
$\begin{array}{llll}\text { Not Placenta } & 420 & 590 & 1010\end{array}$
Total $425 \quad 639 \quad 1064$
Table Analyzed Data 6
Chi-square
Chi-square, df 2.642, 1
Z $\quad 1.625$
P value 0.1041
P value summary ns
One- or two-tailed Two-tailed
Statistically significant? (alpha<0.05) No
Data analyzed Miscarriages Stillbirths Total
$\begin{array}{llll}\text { Twin complication } & 12 & 9 & 21\end{array}$

Not Twin	413	630	1043
Total	425	639	1064

Table Analyzed Data 7

Chi-square
Chi-square, df 18.66, 1
z 4.32
P value < 0.0001
P value summary $\quad * * * *$
One- or two-tailed Two-tailed
Statistically significant? (alpha<0.05) Yes
Data analyzed Miscarriages Stillbirths Total
$\begin{array}{llll}\text { Unexplained lesion } & 29 & 100 & 129\end{array}$
Other 396539935
$\begin{array}{llll}\text { Total } & 425 & 639 & 1064\end{array}$

Table Analyzed Data 8
Chi-square
Chi-square, df 0.4415, 1
z 0.6644
P value 0.5064
P value summary ns
One- or two-tailed Two-tailed
Statistically significant? (alpha<0.05) No

Data analyzed Miscarriages Stillbirths Total

Unexplained obese	36	47	83

Other 389592981
Total 4256391064

Table Analyzed Data 9
Chi-square
Chi-square, df 16.71, 1
z 4.088
P value< 0.0001
P value summary $\quad * * * *$
One- or two-tailed Two-tailed
Statistically significant? (alpha<0.05) Yes
Data analyzed Miscarriages Stillbirths Total
Unexplained with previous loss 594100
Other 366598964
Total 4256391064

Table Analyzed Data 10
Chi-square
Chi-square, df 0.7971, 1
Z 0.8928
P value 0.372
P value summary ns
One- or two-tailed Two-tailed
Statistically significant? (alpha<0.05) No

Data analyzed Miscarriages	Stillbirths		Total		
Unexplained unexplained	123	169	292		
Other	302	470	772		
Total	425	639	1064		

Table Analyzed Data 11
Chi-square
Chi-square, df 1.189, 1
Z 1.09
P value 0.2756
P value summary ns
One- or two-tailed Two-tailed
Statistically significant? (alpha<0.05) No
Data analyzed Miscarriages Stillbirths Total
$\begin{array}{llll}\text { UE with DM } & 7 & 17 & 24\end{array}$

Other	418	622

$\begin{array}{llll}\text { Total } & 425 & 639 & 1064\end{array}$

Table Analyzed Data 12

Chi-square
Chi-square, df 2.023, 1
Z 1.422
P value 0.1549
P value summary ns
One- or two-tailed Two-tailed
Statistically significant? (alpha<0.05) No

Data analyzed Miscarriages Stillbirths Total

Black AI	49	20	69

$\begin{array}{llll}\text { White AI } & 28 & 20 & 48\end{array}$
$\begin{array}{llll}\text { Total } & 77 & 40 & 117\end{array}$

Table Analyzed
Data 13
Chi-square
Chi-square, df 54.05, 1
z $\quad 7.352$
P value <0.0001
P value summary $\quad * * * *$
One- or two-tailed Two-tailed
Statistically significant? (alpha<0.05) Yes
Data analyzed Black White Total
$\begin{array}{llll}\text { AI } & 69 & 48 & 117\end{array}$
Not AI 137421558
Total 206469675

Table Analyzed Data 14
Chi-square
Chi-square, df 16.82, 1
Z 4.101
P value < 0.0001
P value summary $\quad * * * *$
One- or two-tailed Two-tailed
Statistically significant? (alpha<0.05) Yes

Data analyzed White Other Total
UE 315147462
$\begin{array}{llll}\text { Other COD } & 154 & 135 & 289\end{array}$
Total $469 \quad 282 \quad 751$
Table Analyzed Data 17
Chi-square
Chi-square, df 4.989, 1
Z $\quad 2.234$
P value 0.0255
P value summary *
One- or two-tailed Two-tailed
Statistically significant? (alpha<0.05) Yes
Data analyzed Mothers < 40 years old
Placental COD $50 \quad 6 \quad 56$
$\begin{array}{llll}\text { Other COD } & 941 & 42 & 983\end{array}$
Total 991481039
Table Analyzed Data 18
Chi-square
Chi-square, df 1.767, 1
z $\quad 1.329$
P value 0.1838
P value summary ns
One- or two-tailed Two-tailed
Statistically significant? (alpha<0.05)
Data analyzed Mothers < 40 years old

UE COD	611	25	636
Other COD	380	23	403
Total	991	48	1039

Table Analyzed Data 3
Chi-square
Chi-square, df 6.627, 1
z 2.574
P value $\quad 0.0100$
P value summary *
One- or two-tailed Two-tailed
Statistically significant? (alpha<0.05) Yes
Data analyzed DM No DM Total
$\begin{array}{llll}\text { Twin complication } & 4 & 17 & 21\end{array}$
$\begin{array}{llll}\text { Not Twin } & 59 & 984 & 1043\end{array}$
$\begin{array}{llll}\text { Total } & 63 & 1001 & 1064\end{array}$
Table Analyzed Data 1
Chi-square
Chi-square, df $\quad 1.234,1$
z 1.111
P value $\quad 0.2667$
P value summary ns
One- or two-tailed Two-tailed
Statistically significant? (alpha<0.05) No
Data analyzed DM No DM Total
Unexplained 43613656

Not unexplained	20388	408
Total 631001	1064	
Table Analyzed	Data 2	
Chi-square		
Chi-square, df	0.7164, 1	
z 0.8464		
P value 0.3973		
P value summary	ns	
One- or two-tailed	Two-tailed	
Statistically significant? (alpha<0.05)		
Data analyzed DM	No DM	Total
AI 8168	176	
Not AI 55833	888	
Total 631001	1064	

Table Analyzed Data 4
Chi-square
Chi-square, df 1.448, 1
Z 1.203
P value 0.2288
P value summary ns
One- or two-tailed Two-tailed
Statistically significant? (alpha<0.05) No
Data analyzed DM No DM Total
CA 14950
$\begin{array}{llll}\text { Not CA } & 62 \quad 952 & 1014\end{array}$

Total 6310011064

Table Analyzed Data 5

Chi-square
Chi-square, df $0.1584,1$
Z 0.3980
P value 0.6906
P value summary ns
One- or two-tailed Two-tailed
Statistically significant? (alpha<0.05) No

Data analyzed DM	No DM		Total
Placenta COD 4	52	56	
Not Placenta COD	59	949	1008

Total 6310011064

Table Analyzed Data 6

Chi-square
Chi-square, df $\quad 1.262,1$
Z $\quad 1.123$
P value 0.2612
P value summary ns
One- or two-tailed Two-tailed
Statistically significant? (alpha<0.05) No

Data analyzed DM	Not DM		Total	
Pre eclamp 2	14	16		
Not pre eclamp	61	987	1048	
Total 63	1001	1064		

Table Analyzed Data 7
Chi-square
Chi-square, df 6.501, 1
z $\quad 2.550$
P value 0.0108
P value summary *
One- or two-tailed Two-tailed
Statistically significant? (alpha<0.05) Yes

Data analyzed BP		No BP Total		
UE	42	614	656	
Not UE	44	364	408	
Total 86	978	1064		

Table Analyzed Data 8
Chi-square
Chi-square, df $\quad 3.150,1$
z $\quad 1.775$
P value $\quad 0.0759$
P value summary ns
One- or two-tailed Two-tailed
Statistically significant? (alpha<0.05) No
Data analyzed BP No BP Total
$\begin{array}{llll}\text { Abruption } & 6 & 32 & 38\end{array}$
Not abruption $80 \quad 9461026$
$\begin{array}{llll}\text { Total } & 86 & 978 & 1064\end{array}$
Table Analyzed Data 9

Chi-square		
Chi-square, df	3.552, 1	
z 1.885		
P value 0.0595		
P value summary	ns	
One- or two-tailed Two-tailed		
Statistically significant? (alpha<0.05)		No
Data analyzed BP	No BP Total	
AI 8168	176	
Not AI78 810	888	
Total 86978	1064	
Table Analyzed	Data 10	
Chi-square		
Chi-square, df	1.177, 1	
z 1.085		
P value $\quad 0.2779$		
P value summary ns		
One- or two-tailed Two-tailed		
Statistically significant? (alpha<0.05)		No
Data analyzed BP	No BP Total	
CA 248	50	
Not CA 84	9301014	
Total 86978	1064	
Table Analyzed	Data 11	
Chi-square		
Chi-square, df	0.9445, 1	
z 0.9719		

P value summary $\quad * * * *$

One- or two-tailed Two-tailed
Statistically significant? (alpha<0.05) Yes

Data analyzed Macerated Not macerated Total
UE COD 408128536
$\begin{array}{llll}\text { Other COD } & 162 & 196 & 358\end{array}$
Total 570324894

Table Analyzed
Data 2
Chi-square
Chi-square, df
Z
P value
P value summary
One- or two-tailed
Statistically significant? (alpha<0.05)
Data analyzed
Unexplained death
Not UE COD
17.36, 1
4.166
<0.0001

Total 411
Intrapartum stillbirth
Total

11
Total 411

Table Analyzed Data 1

Chi-square
Chi-square, df $12.83,1$
z $\quad 3.581$
P value 0.0003
P value summary

One- or two-tailed Two-tailed

Chapter 5: Intrauterine Growth restriction and SGA

Table Analyzed	Data 6		
Chi-square			
Chi-square, df	$7.818,1$		
z	2.796		
P value	0.0052		
P value summary	$* *$		
One- or two-tailed	Two-tailed		
Statistically significant? (alpha<0.05)	Yes		
Data analyzed	Non SGA	SGA	Total
CA COD	11	17	28
Not CA COD	330	175	505
Total	341	192	533
Table Analyzed	Data 5		
Chi-square			
Chi-square, df	$34.77,1$		
z	5.897		
P value	<0.0001		
P value summary	$* * * *$		
One- or two-tailed	Two-tailed		
Statistically significant? (alpha<0.05)	Yes		
Data analyzed	Non SGA	SGA	Total
Placental COD	12	36	48
Not Placental COD	329	156	485
Total	341	192	533

Chi-square			
Chi-square, df	$31.16,1$		
z	5.582		
P value	<0.0001		
P value summary	$* * * *$		
One- or two-tailed	Two-tailed		
Statistically significant? (alpha<0.05)	Yes		
Data analyzed	Non SGA	SGA	Total
Unexplained death	243	90	333
Not unexplained death	98	102	200
Total	341	192	533
Table Analyzed			
Chi-square			
Chi-square, df	$4.117,1$		
z	2.029		
P value	0.0425		
P value summary	$*$		
One- or two-tailed	Two-tailed		
Statistically significant? (alpha<0.05)	Yes		
Data analyzed	Non SGA	SGA	Total
Normal BMI	43	36	79
Not normal BMI	104	49	153
Total	147	85	232
Table Analyzed	Data		
Chi-square			

Chi-square, df	$1.027,1$		
z	1.013		
P value	0.3109		
P value summary	ns		
One- or two-tailed	Two-tailed		
Statistically significant? (alpha<0.05)	No		
Data analyzed	Non SGA	SGA	Total
Obese	51	24	75
Not obese	96	61	157
Total	147	85	232
Table Analyzed	Data 3		
Chi-square			
Chi-square, df	$2.547,1$		
z	1.596		
P value	0.1105		
P value summary	ns		
One- or two-tailed	Two-tailed		
Statistically significant? (alpha<0.05)	No		
Data analyzed	Non SGA	SGA	Total
Overweight	53	22	75
Not overweight	94	63	157
Total	147	85	232
Table Analyzed	Data 17		
Chi-square			
Chi-square, df	$5.256,1$		
z	2.293		
P value	0.0219		

P value summary	$*$		
One- or two-tailed	Two-tailed		
Statistically significant? (alpha<0.05)	Yes		
Data analyzed	Non SGA	SGA	Total
Underweight	0	3	3
Not underweight	147	82	229
Total	147	85	232
Table Analyzed			
Chi-square	Data 8		
Chi-square, df	$0.09829,1$		
z	0.3135		
P value	0.7539		
P value summary	ns		
One- or two-tailed	Two-tailed		
Statistically significant? (alpha<0.05)	No		
Data analyzed	Non SGA	SGA	Total
Black	57	32	89
Not black	201	122	323
Total	258	154	412
Table Analyzed	Data 10		
Chi-square			
Chi-square, df	$1.363,1$		
z	1.167		
P value	0.2430		
P value summary	ns		
One- or two-tailed	Two-tailed		
Statistically significant? (alpha<0.05)	No		

Data analyzed	Non SGA	SGA	Total
DM	29	11	40
No DM	312	181	493
Total	341	192	533
Table Analyzed	Data 11		
Chi-square			
Chi-square, df	$0.1881,1$		
z	0.4337		
P value	0.6645		
P value summary	ns		
One- or two-tailed	Two-tailed		
Statistically significant? (alpha<0.05)	No		
Data analyzed	Non SGA	SGA	Total
Gest DM	18	6	24
Other DM	11	5	16
Total	29	11	40
Table Analyzed	Data 12		
Chi-square			
Chi-square, df	$0.1770,1$		
z	0.4207		
P value	0.6740		
P value summary	ns		
One- or two-tailed	Two-tailed		
Statistically significant? (alpha<0.05)	No		
Data analyzed	Non SGA	SGA	Total
Hypertension	34	17	51

No hypertension	307	175	482
Total	341	192	533
Table Analyzed	Data 13		
Chi-square			
Chi-square, df	$3.279,1$		
z	1.811		
P value	0.0702		
P value summary	ns		
One- or two-tailed	Two-tailed		
Statistically significant? (alpha<0.05)	No		
Data analyzed	Non SGA	SGA	Total
Preeclampsia	11	10	21
Other hypertension	23	7	30
Total	34	17	51
Table Analyzed	Data 14		
Chi-square			
Chi-square, df	$0.01724,1$		
z	0.1313		
P value	0.8955		
P value summary	ns		
One- or two-tailed	Two-tailed		
Statistically significant? (alpha<0.05)	No		
Data analyzed	Non SGA	SGA	Total
age < 35	253	139	392
Age equal to or greater than 35	85	48	133
Total	338	187	525

Table Analyzed

Chi-square
Chi-square, df
Z
P value
P value summary
One- or two-tailed
Statistically significant? (alpha<0.05)
Data analyzed
Maceration
No maceration
Total

Table Analyzed
Chi-square
Chi-square, df
Z
P value
P value summary
One- or two-tailed
Statistically significant? (alpha<0.05)
Data analyzed
Daceration excluding AI
No maceration excluding AI
Total

Data 16
4.081, 1
2.020
0.0434

Two-tailed
Yes Non SGA 241
56
297

Data 15

6.608, 1

2.571
0.0102

Two-tailed Yes

Non SGA SGA Total
$\begin{array}{lll}256 & 163 & 419\end{array}$
$\begin{array}{lll}79 & 27 & 106\end{array}$
$335 \quad 190 \quad 525$

SGA Total
157398
$21 \quad 77$
\qquad

Table Analyzed
Chi-square
Chi-square, df
Z
P value
P value summary
One- or two-tailed
Statistically significant? (alpha<0.05)

IUI 1 or fewer days	202	24	226
IUI >1 day	13	136	149
Total	215	160	375

Data 1
238.8, 1
15.45
< 0.0001

Two-tailed
Yes
x^{2} 160

Polynomial regression

Intercept $\quad \mathrm{b} 0=-0.494843 \quad \mathrm{t}=-4.186782 \mathrm{P}<0.0001$
Intrauterine interval $\quad \mathrm{b} 1=-0.117993 \mathrm{r}=-0.205311 \mathrm{t}=-3.663653 \mathrm{P}=0.0003$
Intrauterine interval^2b2 $=0.001016 \mathrm{r}=0.084641 \quad \mathrm{t}=1.483518 \mathrm{P}=0.139$
$=-0.494843-0.117993$ Intrauterine interval +0.001016 Intrauterine interval^$\wedge 2$
Simple linear regression
Equation: Delat Value Birthweight $=-0.07535$ Intrauterine interval -0.581278
Standard Error of slope $=0.014554$
$95 \% \mathrm{CI}$ for population value of slope $=-0.103989$ to -0.046711

Correlation coefficient $(\mathrm{r})=-0.28379\left(\mathrm{r}^{2}=0.080537\right)$
95% CI for r (Fisher's z transformed) $=-0.383389$ to -0.177667
t with $306 \mathrm{DF}=-5.177154$
Two sided $\mathrm{P}<0.0001$
Power (for 5\% significance) $=99.91 \%$
Correlation coefficient is significantly different from zero

Table Analyzed
Chi-square
Chi-square, df
z
P value
P value summary
One- or two-tailed
Statistically significant?
(alpha<0.05)

Data analyzed
0 days
>2 days
Total

Data 2
11.05,

1
3.324
0.0009

Two-
tailed
Yes
Non
SGA SGA Total
$16 \quad 76$
$52 \quad 117$

Simple linear regression

Equation: $\mathrm{B}=-1.108091 \mathrm{~A}-3.506909$
Standard Error of slope $=0.16928$
95% CI for population value of slope $=-1.49103$ to -
0.725152

Correlation coefficient $(r)=-0.909075\left(\mathrm{r}^{2}=0.826418\right)$
95\% CI for $\mathrm{r}($ Fisher's z transformed $)=-0.976457$ to -
0.680057
t with $9 \mathrm{DF}=-6.545893$
Two sided $\mathrm{P}=0.0001$
Power (for 5\% significance) $=98.77 \%$
Correlation coefficient is significantly different from zero

Chapter 6 Organ Weights:

Females:

Mann-Whitney U test
Observations (x) in Normal Delta Female combined adrenal weight $=56$ median $=-0.172591$ rank sum = 3,338.5
Observations (y) in Overweight Delta Female combined adrenal weight $=70$ median $=-0.082449$

$\mathrm{U}=1,742.5 \quad \mathrm{U}^{\prime}=2,177.5$

Exact probability (adjusted for ties):
Lower side $\mathrm{P}=0.1436$ (H1: x tends to be less than y)
Upper side $\mathrm{P}=0.8564(\mathrm{H} 1: \mathrm{x}$ tends to be greater than y$)$

Two sided $\mathrm{P}=0.2872$ (H1: x tends to be distributed differently to y)
Theta $\left(\mathrm{U}^{\prime} / \mathrm{mn}\right)=0.555485(95 \%$ CI: 0.454167 to 0.651551$)$
95\% confidence interval for difference between medians or means:
Median difference $=-0.12903$ (CI: -0.39045 to 0.10843)
Mann-Whitney U test
Observations (x) in Normal Delta Female combined adrenal weight $=56$ median $=-0.172591$ rank sum $=2,664$
Observations (y) in Obese Delta Female combined adrenal weight $=48$ median $=-0.051566$
$\mathrm{U}=1,068 \quad \mathrm{U}^{\prime}=1,620$
Exact probability (adjusted for ties):
Lower side $\mathrm{P}=0.036$ ($\mathrm{H} 1: \mathrm{x}$ tends to be less than y)
Upper side $\mathrm{P}=0.964$ (H : x tends to be greater than y)
Two sided $\mathrm{P}=0.0721$ ($\mathrm{H} 1: \mathrm{x}$ tends to be distributed differently to y)
Theta $(\mathrm{U} / \mathrm{mn})=0.602679$ (95% CI: 0.490877 to 0.703003)
95\% confidence interval for difference between medians or means:
Median difference $=-0.291715$ (CI: -0.67878 to 0.02994)

Mann-Whitney U test not signif
Observations (x) in Overweight Delta Female combined adrenal weight $=70$ median $=-0.082449$ rank sum $=3,992.5$
Observations (y) in Obese Delta Female combined adrenal weight $=48$ median $=-0.051566$
$\mathrm{U}=1,507.5 \quad \mathrm{U}^{\prime}=1,852.5$

Exact probability (adjusted for ties):
Lower side $\mathrm{P}=0.1734(\mathrm{H} 1: \mathrm{x}$ tends to be less than y$)$
Upper side $\mathrm{P}=0.8266$ ($\mathrm{H} 1: \mathrm{x}$ tends to be greater than y)
Two sided $\mathrm{P}=0.3467$ (H1: x tends to be distributed differently to y)
Theta $\left(\mathrm{U}^{\prime} / \mathrm{mn}\right)=0.551339(95 \%$ CI: 0.445628 to 0.651766$)$
95\% confidence interval for difference between medians or means:
Median difference $=-0.123145(\mathrm{CI}:-0.41642$ to 0.12314$)$

Mann-Whitney U test- not signif
Observations (x) in Obese Delta Female combined adrenal weight $=48$ median $=-0.051566$ rank sum
$=1,317$
Observations (y) in Underweight Delta Female combined adrenal weight $=7$ median $=0.467499$
$\mathrm{U}=141 \quad \mathrm{U}^{\prime}=195$
Exact probability:
Lower side $\mathrm{P}=0.2557(\mathrm{H} 1: \mathrm{x}$ tends to be less than y$)$
Upper side $\mathrm{P}=0.7443$ ($\mathrm{H} 1: \mathrm{x}$ tends to be greater than y)
Two sided $\mathrm{P}=0.5115$ (H1: x tends to be distributed differently to y)
Theta $\left(\mathrm{U}^{\prime} / \mathrm{mn}\right)=0.580357$ (95% CI: 0.3604 to 0.768881)
95.1% confidence interval for difference between medians or means:
Median difference $=-0.28512(\mathrm{CI}:-0.90202$ to 0.35381$)$

Mann-Whitney U test not signif

Observations (x) in Hypertension Delta Female combined adrenal weight $=32$ median $=-0.26252$ rank sum $=5,183.5$
Observations (y) in No Hypertension Delta Female combined adrenal weight $=361$ median $=-0.069463$
$\mathrm{U}=4,655.5 \quad \mathrm{U}^{\prime}=6,896.5$
Exact probability (adjusted for ties):
Lower side $\mathrm{P}=0.0344$ (H 1 : x tends to be less than y)
Upper side $\mathrm{P}=0.9656(\mathrm{H} 1$: x tends to be greater than y$)$
Two sided $\mathrm{P}=0.0688$ (H 1 : x tends to be distributed differently to y)
Theta $\left(\mathrm{U}^{\prime} / \mathrm{mn}\right)=0.596996(95 \% \mathrm{CI}: 0.49252$ to 0.69188$)$
95% confidence interval for difference between medians or means:
Median difference $=-0.286455(\mathrm{CI}:-0.60687$ to 0.02167)
Mann-Whitney U test DM vs no DM - SIGNIFICANT!
Observations (x) in DM Delta Female combined adrenal weight $=26$ median $=0.124918$ rank sum $=$ 6,393
Observations (y) in No DM Delta Female combined adrenal weight $=374$ median $=-0.090509$
$U=6,042 \quad U^{\prime}=3,682$

Exact probability (adjusted for ties):
Lower side $\mathrm{P}=0.019$ (H1: x tends to be less than y)
Upper side $\mathrm{P}=0.981(\mathrm{H} 1: \mathrm{x}$ tends to be greater than y$)$
Two sided $\mathrm{P}=0.038$ ($\mathrm{H} 1: \mathrm{x}$ tends to be distributed differently to y)
Theta $\left(\mathrm{U}^{\prime} / \mathrm{mn}\right)=0.378651(95 \% \mathrm{CI}: 0.278013$ to 0.493536$)$
95% confidence interval for difference between medians or means:
Median difference $=0.34291(\mathrm{CI}: 0.01708$ to 0.70087$)$

Mann-Whitney U test significant!
Observations (x) in SGA Delta Female combined adrenal weight $=77$ median $=-0.70161$ rank sum $=$ 6,032.5
Observations (y) in Non SGA Delta Female combined adrenal weight $=140$ median $=0.152456$
$\mathrm{U}=3,029.5 \quad \mathrm{U}^{\prime}=7,750.5$

Exact probability (adjusted for ties):
Lower side $\mathrm{P}<0.0001$ (H1: x tends to be less than y)
Upper side $\mathrm{P}>0.9999$ (H1: x tends to be greater than y)
Two sided $\mathrm{P}<0.0001$ (H1: x tends to be distributed differently to y)
Theta $\left(\mathrm{U}^{\prime} / \mathrm{mn}\right)=0.71897(95 \% \mathrm{CI}: 0.642546$ to 0.782859$)$
95\% confidence interval for difference between medians or means:
Median difference $=-0.81702(\mathrm{CI}:-1.09755$ to -0.54071$)$
Mann-Whitney U test UE vs Placenta SIGNIFICANT!
Observations (x) in COD UE Delta Female combined adrenal weight $=243$ median $=-0.102677$ rank sum $=33,352.5$
Observations (y) in COD Placenta Delta Female combined adrenal weight $=19$ median $=-0.840703$
$\mathrm{U}=3,706.5 \quad \mathrm{U}^{\prime}=910.5$
Normalised statistic $=4.394824$ (adjusted for ties)
Lower side $\mathrm{P}>0.9999$ (H1: x tends to be less than y)
Upper side $\mathrm{P}<0.0001$ (H1: x tends to be greater than y)
Two sided $\mathrm{P}<0.0001$ (H1: x tends to be distributed differently to y)
Theta $\left(\mathrm{U}^{\prime} / \mathrm{mn}\right)=0.197206$ (95% CI: 0.116704 to 0.321547)
95% confidence interval for difference between medians or means:

Median difference $=0.74169$ (CI: 0.4646 to 1.02246)
Mann-Whitney U test UE vs AI SIGNIFICANT!
Observations (x) in COD AI Delta Female combined adrenal weight $=71$ median $=0.301883$ rank sum $=14,202.5$
Observations (y) in COD UE Delta Female combined adrenal weight $=243$ median $=-0.102677$
$\mathrm{U}=11,646.5 \quad \mathrm{U}^{\prime}=5,606.5$
Normalised statistic $=4.48757$ (adjusted for ties)
Lower side $\mathrm{P}>0.9999$ (H 1 : x tends to be less than y)
Upper side $\mathrm{P}<0.0001$ ($\mathrm{H} 1: \mathrm{x}$ tends to be greater than y)
Two sided $\mathrm{P}<0.0001$ (H1: x tends to be distributed differently to y)
Theta $\left(\mathrm{U}^{\prime} / \mathrm{mn}\right)=0.324958(95 \% \mathrm{CI}: 0.259689$ to 0.399514$)$
95\% confidence interval for difference between medians or means:
Median difference $=0.42986$ (CI: 0.24684 to 0.6228)
Mann-Whitney U test
Observations (x) in Normal Delta Female Brain weight $=51$ median $=0.063564$ rank sum $=2,671$
Observations (y) in Ow Delta Female Brain weight $=62$ median $=0.029946$
$\mathrm{U}=1,345 \quad \mathrm{U}^{\prime}=1,817$
Exact probability (adjusted for ties):
Lower side $\mathrm{P}=0.0872(\mathrm{H} 1: \mathrm{x}$ tends to be less than y$)$
Upper side $\mathrm{P}=0.9128$ ($\mathrm{H} 1: \mathrm{x}$ tends to be greater than y)
Two sided $\mathrm{P}=0.1744$ (H1: x tends to be distributed differently to y)
Theta $\left(\mathrm{U}^{\prime} / \mathrm{mn}\right)=0.574636(95 \%$ CI: 0.467482 to 0.674005$)$

95\% confidence interval for difference between medians or means:
Median difference $=-0.219975$ (CI: -0.53589 to 0.10011)
Mann-Whitney U test - OW vs obese - not signif
Observations (x) in Overweight Delta Female Brain weight $=62$ median $=0.029946$ rank sum $=3,566$
Observations (y) in Obese Delta Female Brain weight $=49$ median $=0.10659$
$\mathrm{U}=1,613 \quad \mathrm{U}^{\prime}=1,425$
Exact probability (adjusted for ties):
Lower side $\mathrm{P}=0.2896$ (H1: x tends to be less than y)
Upper side $\mathrm{P}=0.7104$ (H1: x tends to be greater than y)
Two sided $\mathrm{P}=0.5791$ ($\mathrm{H} 1: \mathrm{x}$ tends to be distributed differently to y)
Theta $\left(\mathrm{U}^{\prime} / \mathrm{mn}\right)=0.469059(95 \%$ CI: 0.365272 to 0.576156$)$
95.1% confidence interval for difference between medians or means:
Median difference $=0.089495$ (CI: -0.21913 to 0.37218)

Mann-Whitney U test
Observations (x) in Normal Delta Female Brain weight $=51$ median $=0.063564$ rank sum $=2,439$
Observations (y) in Obese Delta Female Brain weight $=49$ median $=0.10659$
$\mathrm{U}=1,113 \quad \mathrm{U}^{\prime}=1,386$
Exact probability:
Lower side $\mathrm{P}=0.175$ ($\mathrm{H} 1: \mathrm{x}$ tends to be less than y)
Upper side $\mathrm{P}=0.825$ (H 1 : x tends to be greater than y)
Two sided $\mathrm{P}=0.3499$ ($\mathrm{H} 1: \mathrm{x}$ tends to be distributed differently to y)
Theta $\left(\mathrm{U}^{\prime} / \mathrm{mn}\right)=0.554622(95 \%$ CI: 0.441814 to 0.661078$)$

95\% confidence interval for difference between medians or means:
Median difference $=-0.13872(\mathrm{CI}:-0.52784$ to 0.14719$)$

Mann-Whitney U test - UW vs obese - not signif
Observations (x) in Obese Delta Female Brain weight $=49$ median $=0.10659$ rank sum $=1,367$
Observations (y) in Underweight Delta Female Brain weight $=6$ median $=0.021449$
$\mathrm{U}=142 \quad \mathrm{U}^{\prime}=152$
Exact probability:
Lower side $\mathrm{P}=0.4529$ (H 1 : x tends to be less than y)
Upper side $\mathrm{P}=0.5471(\mathrm{H} 1: \mathrm{x}$ tends to be greater than y$)$
Two sided $\mathrm{P}=0.9058(\mathrm{H} 1$: x tends to be distributed differently to y$)$
Theta $\left(\mathrm{U}^{\prime} / \mathrm{mn}\right)=0.517007(95 \% \mathrm{CI}: 0.295697$ to 0.730932$)$
95.1% confidence interval for difference between medians or means:
Median difference $=-0.0299(\mathrm{CI}:-0.60158$ to 0.6677$)$

Mann-Whitney U test BP vs no BP - Not signif

Observations (x) in Hypertension Delta Female Brain weight $=32$ median $=-0.26092$ rank sum $=$ 4,913
Observations (y) in No Hypertension Delta Female Brain weight $=339$ median $=0.103008$
$\mathrm{U}=4,385 \quad \mathrm{U}^{\prime}=6,463$

Exact probability (adjusted for ties):
Lower side $\mathrm{P}=0.0366$ (H 1 : x tends to be less than y)
Upper side $\mathrm{P}=0.9634(\mathrm{H} 1: \mathrm{x}$ tends to be greater than y$)$
Two sided $\mathrm{P}=0.0732$ (H 1 : x tends to be distributed differently to y)

Theta $\left(\mathrm{U}^{\prime} / \mathrm{mn}\right)=0.595778(95 \% \mathrm{CI}: 0.491024$ to 0.691009$)$

95\% confidence interval for difference between medians or means:
Median difference $=-0.312325(\mathrm{CI}:-0.60533$ to 0.02843$)$
Mann-Whitney U test - DM vs No DM - not signif

Observations (x) in DM Delta Female Brain weight $=25$ median $=0.143121$ rank sum $=4,981.5$
Observations (y) in No DM Delta Female Brain weight $=353$ median $=0.074711$
$\mathrm{U}=4,656.5 \quad \mathrm{U}^{\prime}=4,168.5$
Exact probability (adjusted for ties):
Lower side $\mathrm{P}=0.323$ (H 1 : x tends to be less than y)
Upper side $\mathrm{P}=0.677$ (H 1 : x tends to be greater than y)
Two sided $\mathrm{P}=0.6461$ (H1: x tends to be distributed differently to y)
Theta $\left(\mathrm{U}^{\prime} / \mathrm{mn}\right)=0.472351(95 \% \mathrm{CI}: 0.360716$ to 0.587407$)$
95% confidence interval for difference between medians or means:
Median difference $=0.10196(\mathrm{CI}:-0.32015$ to 0.50549$)$

Mann-Whitney U test - SIGNIFICANT!

Observations (x) in SGA Delta Female Brain weight $=74$ median $=-0.638087$ rank sum $=4,627.5$
Observations (y) in Non SGA Delta Female Brain weight $=136$ median $=0.331463$
$\mathrm{U}=1,852.5 \quad \mathrm{U}^{\prime}=8,211.5$

Exact probability (adjusted for ties):
Lower side $\mathrm{P}<0.0001$ (H1: x tends to be less than y)

Upper side $\mathrm{P}>0.9999(\mathrm{H} 1: \mathrm{x}$ tends to be greater than y$)$
Two sided $\mathrm{P}<0.0001$ (H1: x tends to be distributed differently to y)
Theta $\left(\mathrm{U}^{\prime} / \mathrm{mn}\right)=0.815928(95 \%$ CI: 0.746644 to 0.867806$)$
95% confidence interval for difference between medians or means:
Median difference $=-1.04984(\mathrm{CI}:-1.3141$ to -0.79584$)$

Mann-Whitney U test AI vs UE - SIGNIFICANT

Observations (x) in AI COD Delta Female Brain weight $=67$ median $=0.280978$ rank sum $=12,236$
Observations (y) in UE COD Delta Female Brain weight $=229$ median $=-0.030258$
$\mathrm{U}=9,958 \quad \mathrm{U}^{\prime}=5,385$
Normalised statistic $=3.710468$ (adjusted for ties)
Lower side $\mathrm{P}=0.9999(\mathrm{H} 1: \mathrm{x}$ tends to be less than y$)$
Upper side $\mathrm{P}=0.0001$ ($\mathrm{H} 1: \mathrm{x}$ tends to be greater than y)
Two sided $\mathrm{P}=0.0002$ (H1: x tends to be distributed differently to y)
Theta $\left(\mathrm{U}^{\prime} / \mathrm{mn}\right)=0.350974$ ($95 \% \mathrm{CI}: 0.281689$ to 0.428715)
95% confidence interval for difference between medians or means:
Median difference $=0.31601$ (CI: 0.15341 to 0.47237)

Mann-Whitney U test UE vs Placenta - SIGNIFICANT!
Observations (x) in UE COD Delta Female Brain weight $=229$ median $=-0.030258$ rank sum $=29,390$
Observations (y) in Placenta COD Delta Female Brain weight $=18$ median $=-0.890347$
$\mathrm{U}=3,055 \quad \mathrm{U}^{\prime}=1,067$

Normalised statistic $=3.405628$ (adjusted for ties)
Lower side $\mathrm{P}=0.9997$ ($\mathrm{H} 1: \mathrm{x}$ tends to be less than y)
Upper side $\mathrm{P}=0.0003$ (H1: x tends to be greater than y)
Two sided $\mathrm{P}=0.0007$ (H1: x tends to be distributed differently to y)
Theta $(\mathrm{U} / \mathrm{mn})=0.258855(95 \%$ CI: 0.162111 to 0.393792$)$

95\% confidence interval for difference between medians or means:
Median difference $=0.7991$ (CI: 0.35673 to 1.20795)

Mann-Whitney U test AI vs UE - SIGNIFICANT

Observations (x) in AI COD Delta Female Heart Weight $=71$ median $=0.230766$ rank sum $=14,099$
Observations (y) in UE COD Delta Female Heart Weight $=245$ median $=-0.088788$
$\mathrm{U}=11,543 \quad \mathrm{U}^{\prime}=5,852$
Normalised statistic $=4.197672$ (adjusted for ties)
Lower side $\mathrm{P}>0.9999$ (H1: x tends to be less than y)
Upper side $\mathrm{P}<0.0001$ (H1: x tends to be greater than y)
Two sided $\mathrm{P}<0.0001$ (H1: x tends to be distributed differently to y)
Theta $\left(\mathrm{U}^{\prime} / \mathrm{mn}\right)=0.336419$ (95% CI: 0.270217 to 0.411325)
95% confidence interval for difference between medians or means:
Median difference $=0.30866$ (CI: 0.17215 to 0.44183)

Mann-Whitney U test UE vs placenta - SIGNIFICANT!

Observations (x) in UE COD Delta Female Heart Weight $=245$ median $=-0.088788$ rank sum $=$ 33,556
Observations (y) in Placenta COD Delta Female Heart Weight $=19$ median $=-0.839286$
$\mathrm{U}=3,421 \quad \mathrm{U}^{\prime}=1,234$
Normalised statistic $=3.410572($ adjusted for ties $)$
Lower side $\mathrm{P}=0.9997$ (H1: x tends to be less than y)
Upper side $\mathrm{P}=0.0003$ ($\mathrm{H} 1: \mathrm{x}$ tends to be greater than y)
Two sided $\mathrm{P}=0.0006$ (H 1 : x tends to be distributed differently to y)
Theta $\left(\mathrm{U}^{\prime} / \mathrm{mn}\right)=0.265091(95 \%$ CI: 0.169134 to 0.39654$)$
95\% confidence interval for difference between medians or means:
Median difference $=0.66969$ (CI: 0.26217 to 1.02774)
Mann-Whitney U test- significant!
Observations (x) in SGA Delta Female Heart Weight $=79$ median $=-0.836017$ rank sum $=5,534.5$
Observations (y) in Non SGA Delta Female Heart Weight $=142$ median $=0.156719$
$\mathrm{U}=2,374.5 \quad \mathrm{U}^{\prime}=8,843.5$

Normalised statistic $=-7.100095($ adjusted for ties $)$
Lower side $\mathrm{P}<0.0001$ (H1: x tends to be less than y)
Upper side $\mathrm{P}>0.9999$ (H1: x tends to be greater than y)
Two sided $\mathrm{P}<0.0001$ (H1: x tends to be distributed differently to y)
Theta $\left(\mathrm{U}^{\prime} / \mathrm{mn}\right)=0.788331(95 \%$ CI: 0.718267 to 0.843001$)$
95\% confidence interval for difference between medians or means:
Median difference $=-0.953105$ (CI: -1.19299 to -0.70379)

Mann-Whitney U test not signif

Observations (x) in Overweight Delta Female Heart Weight $=70$ median $=-0.050529$ rank sum $=$ 4,278.5
Observations (y) in Obese Delta Female Heart Weight $=49$ median $=-0.059402$
$\mathrm{U}=1,793.5 \quad \mathrm{U}^{\prime}=1,636.5$

Exact probability (adjusted for ties):
Lower side $\mathrm{P}=0.3369$ (H 1 : x tends to be less than y)
Upper side $\mathrm{P}=0.6631$ (H 1 : x tends to be greater than y)
Two sided $\mathrm{P}=0.6738(\mathrm{H} 1: \mathrm{x}$ tends to be distributed differently to y$)$

Theta $\left(\mathrm{U}^{\prime} / \mathrm{mn}\right)=0.477114(95 \% \mathrm{CI}: 0.375326$ to 0.581236$)$
95.1% confidence interval for difference between medians or means:
Median difference $=0.038985(\mathrm{CI}:-0.13798$ to 0.26509$)$

Mann-Whitney U test- significant

Observations (x) in Normal Delta Female Heart Weight $=58$ median $=-0.152206$ rank sum $=3,318$
Observations (y) in Overweight Delta Female Heart Weight $=70$ median $=-0.050529$
$\mathrm{U}=1,607 \quad \mathrm{U}^{\prime}=2,453$
Exact probability (adjusted for ties):
Lower side $\mathrm{P}=0.0214$ (H 1 : x tends to be less than y)
Upper side $\mathrm{P}=0.9786$ ($\mathrm{H} 1: \mathrm{x}$ tends to be greater than y)
Two sided $\mathrm{P}=0.0427$ (H 1 : x tends to be distributed differently to y)
Theta $\left(\mathrm{U}^{\prime} / \mathrm{mn}\right)=0.604187(95 \% \mathrm{CI}: 0.503337$ to 0.695438$)$
95% confidence interval for difference between medians or means:
Median difference $=-0.21717(\mathrm{CI}:-0.48458$ to -0.00679$)$

Mann-Whitney U test

Observations (x) in Normal Delta Female Heart Weight $=58$ median $=-0.152206$ rank sum $=2,898$
Observations (y) in Obese Delta Female Heart Weight $=49$ median $=-0.059402$

$$
\mathrm{U}=1,187 \quad \mathrm{U}^{\prime}=1,655
$$

Exact probability (adjusted for ties):
Lower side $\mathrm{P}=0.0722(\mathrm{H} 1: \mathrm{x}$ tends to be less than y$)$
Upper side $\mathrm{P}=0.9278$ ($\mathrm{H} 1: \mathrm{x}$ tends to be greater than y)
Two sided $\mathrm{P}=0.1444$ (H 1 : x tends to be distributed differently to y)
Theta $\left(\mathrm{U}^{\prime} / \mathrm{mn}\right)=0.582336$ (95% CI: 0.472248 to 0.683417)
95\% confidence interval for difference between medians or means:
Median difference $=-0.172455$ (CI: -0.42931 to 0.0666)

Mann-Whitney U test not signif

Observations (x) in Obese Delta Female Heart Weight $=49$ median $=-0.059402$ rank sum $=1,401$
Observations (y) in Underweight Delta Female Heart Weight $=7$ median $=-0.040636$

$\mathrm{U}=176$
 ```U'=167```

Exact probability:
Lower side $\mathrm{P}=0.4614(\mathrm{H} 1: \mathrm{x}$ tends to be less than y$)$
Upper side $\mathrm{P}=0.5386$ (H1: x tends to be greater than y)
Two sided $\mathrm{P}=0.9228$ ($\mathrm{H} 1: \mathrm{x}$ tends to be distributed differently to y)
Theta $\left(\mathrm{U}^{\prime} / \mathrm{mn}\right)=0.48688(95 \%$ CI: 0.28327 to 0.695631$)$
95.1% confidence interval for difference between medians or means:
Median difference $=0.02455(\mathrm{CI}:-0.4854$ to 0.49493)

Mann-Whitney U test not signif
Observations (x) in Hypertension Delta Female Heart Weight $=32$ median $=-0.282429$ rank sum $=$ 5,576
Observations (y) in No Hypertension Delta Female Heart Weight $=365$ median $=-0.03416$
$\mathrm{U}=5,048 \quad \mathrm{U}^{\prime}=6,632$
Exact probability (adjusted for ties):
Lower side $\mathrm{P}=0.1022$ (H1: x tends to be less than y)
Upper side $\mathrm{P}=0.8978$ ($\mathrm{H} 1: \mathrm{x}$ tends to be greater than y)
Two sided $\mathrm{P}=0.2043$ (H1: x tends to be distributed differently to y)
Theta $\left(\mathrm{U}^{\prime} / \mathrm{mn}\right)=0.567808(95 \%$ CI: 0.463702 to 0.665179$)$
95% confidence interval for difference between medians or means:
Median difference $=-0.18936($ CI: -0.4617 to 0.1014$)$

Mann-Whitney U test - not significant
Observations (x) in DM Delta Female Heart Weight $=26$ median $=0.223645$ rank sum $=6,288.5$
Observations (y) in No DM Delta Female Heart Weight $=372$ median $=-0.052107$
$\mathrm{U}=5,937.5 \quad \mathrm{U}^{\prime}=3,734.5$
Exact probability (adjusted for ties):
Lower side $\mathrm{P}=0.0259$ (H1: x tends to be less than y)
Upper side $\mathrm{P}=0.9741$ (H1: x tends to be greater than y)
Two sided $\mathrm{P}=0.0518$ (H1: x tends to be distributed differently to y)

Theta $\left(\mathrm{U}^{\prime} / \mathrm{mn}\right)=0.386115(95 \% \mathrm{CI}: 0.284598$ to 0.501032$)$
95% confidence interval for difference between medians or means:
Median difference $=0.2722$ (CI: -0.00208 to 0.56195)

Mann-Whitney U test - SGA vs no SGA - SIGNIFICANT!
SGA lighter kidneys
Observations (x) in SGA Delta Female Combined Kidney weight $=25$ median $=-0.635751$ rank sum $=$ 633.5

Observations (y) in Non SGA Delta Female Combined Kidney weight $=53$ median $=0.146467$
$\mathrm{U}=308.5 \quad \mathrm{U}^{\prime}=1,016.5$

Exact probability (adjusted for ties):
Lower side $\mathrm{P}<0.0001$ (H 1 : x tends to be less than y)
Upper side $\mathrm{P}>0.9999(\mathrm{H} 1: \mathrm{x}$ tends to be greater than y$)$
Two sided $\mathrm{P}<0.0001$ (H1: x tends to be distributed differently to y)
Theta $\left(\mathrm{U}^{\prime} / \mathrm{mn}\right)=0.76717(95 \%$ CI: 0.635216 to 0.857875$)$
95% confidence interval for difference between medians or means:
Median difference $=-0.89608(\mathrm{CI}:-1.41407$ to -0.40342$)$

Mann-Whitney U test UE vs AI SIGNIFICANT!
UE LIGHTER kidneys
Observations (x) in COD AI Delta Female Combined Kidney weight $=34$ median $=0.193943$ rank
sum $=3,122$
Observations (y) in COD UE Delta Female Combined Kidney weight $=101$ median $=-0.146857$
$\mathrm{U}=2,527 \quad \mathrm{U}^{\prime}=907$

Exact probability (adjusted for ties):
Lower side $\mathrm{P}<0.0001$ (H 1 : x tends to be less than y)
Upper side $\mathrm{P}>0.9999$ ($\mathrm{H} 1: \mathrm{x}$ tends to be greater than y)
Two sided $\mathrm{P}<0.0001$ (H1: x tends to be distributed differently to y)
Theta $\left(\mathrm{U}^{\prime} / \mathrm{mn}\right)=0.264123$ (95% CI: 0.181443 to 0.372199)
95\% confidence interval for difference between medians or means:
Median difference $=0.408495$ (CI: 0.24186 to 0.61641)

Mann-Whitney U test NOT SIGNIF

Observations (x) in COD UE Delta Female Combined Kidney weight $=101$ median $=-0.146857$ rank sum $=5,564$
Observations (y) in COD placenta Delta Female Combined Kidney weight $=6$ median $=-0.622944$
$\mathrm{U}=413 \quad \mathrm{U}^{\prime}=193$
Exact probability (adjusted for ties):
Lower side $\mathrm{P}=0.0704(\mathrm{H} 1: \mathrm{x}$ tends to be less than y$)$
Upper side $\mathrm{P}=0.9296$ (H 1 : x tends to be greater than y)
Two sided $\mathrm{P}=0.1407$ (H1: x tends to be distributed differently to y)
Theta $\left(\mathrm{U}^{\prime} / \mathrm{mn}\right)=0.318482(95 \%$ CI: 0.155171 to 0.555541$)$
95.1% confidence interval for difference between medians or means:
Median difference $=0.460715(\mathrm{CI}:-0.20035$ to 1.31992$)$

Mann-Whitney U test not signif

Observations (x) in Overweight Delta Female Combined Kidney weight $=21$ median $=-0.047563$ rank sum $=462.5$
Observations (y) in Obese Delta Female Combined Kidney weight $=22$ median $=-0.075647$
$\mathrm{U}=231.5 \quad \mathrm{U}^{\prime}=230.5$
Exact probability (adjusted for ties):
Lower side $\mathrm{P}=0.4976$ (H 1 : x tends to be less than y)
Upper side $\mathrm{P}=0.5024(\mathrm{H} 1$: x tends to be greater than y$)$
Two sided $\mathrm{P}=0.9952$ ($\mathrm{H} 1: \mathrm{x}$ tends to be distributed differently to y)
Theta $\left(\mathrm{U}^{\prime} / \mathrm{mn}\right)=0.498918(95 \%$ CI: 0.33586 to 0.662245$)$

95\% confidence interval for difference between medians or means:
Median difference $=0.00465(\mathrm{CI}:-0.38905$ to 0.32497$)$
Mann-Whitney U test

Observations (x) in Overweight Delta Female Combined Kidney weight $=21$ median $=-0.047563$ rank sum $=461$
Observations (y) in Normal Delta Female Combined Kidney weight $=18$ median $=-0.176295$
$\mathrm{U}=230 \quad \mathrm{U}^{\prime}=148$

Exact probability (adjusted for ties):
Lower side $\mathrm{P}=0.1271$ (H1: x tends to be less than y)
Upper side $\mathrm{P}=0.8729(\mathrm{H} 1$: x tends to be greater than y$)$
Two sided $\mathrm{P}=0.2541$ (H 1 : x tends to be distributed differently to y)

Theta $\left(\mathrm{U}^{\prime} / \mathrm{mn}\right)=0.391534(95 \% \mathrm{CI}: 0.239119$ to 0.573201$)$
95.1% confidence interval for difference between medians or means:
Median difference $=0.174135(\mathrm{CI}:-0.12053$ to 0.49912)

Mann-Whitney U test

Observations (x) in Normal Delta Female Combined Kidney weight $=18$ median $=-0.176295$ rank sum = 326
Observations (y) in Obese Delta Female Combined Kidney weight $=22$ median $=-0.075647$

$$
\mathrm{U}=155 \quad \mathrm{U}^{\prime}=241
$$

Exact probability:
Lower side $\mathrm{P}=0.1255$ (H 1 : x tends to be less than y)
Upper side $\mathrm{P}=0.8745(\mathrm{H}: \mathrm{x}$ tends to be greater than y$)$
Two sided $\mathrm{P}=0.251$ (H1: x tends to be distributed differently to y)
Theta $\left(\mathrm{U}^{\prime} / \mathrm{mn}\right)=0.608586$ (95% CI: 0.428766 to 0.759649)
95.2\% confidence interval for difference between medians or means:

Median difference $=-0.19761$ (CI: -0.82082 to 0.15592)

Mann-Whitney U test not signif

Observations (x) in Obese Delta Female Combined Kidney weight $=22$ median $=-0.075647$ rank sum = 302
Observations (y) in Underweight Delta Female Combined Kidney weight $=4$ median $=-0.12436$

$\mathrm{U}=49$
 $$
\mathrm{U}^{\prime}=39
$$

Exact probability:
Lower side $\mathrm{P}=0.3789(\mathrm{H} 1: \mathrm{x}$ tends to be less than y$)$
Upper side $\mathrm{P}=0.6211$ (H1: x tends to be greater than y)
Two sided $\mathrm{P}=0.7579$ ($\mathrm{H} 1: \mathrm{x}$ tends to be distributed differently to y)
Theta $\left(U^{\prime} / \mathrm{mn}\right)=0.443182(95 \%$ CI: 0.20127 to 0.719305$)$
95.2% confidence interval for difference between medians or means:
Median difference $=0.130725$ (CI: -0.43335 to 1.2048)
Mann-Whitney U test not signif
Observations (x) in Hypertension Delta Female Combined Kidney weight $=12$ median $=-0.177341$
rank sum $=881$
Observations (y) in No Hypertension Delta Female Combined Kidney weight $=148$ median $=-0.075385$
$\mathrm{U}=803 \quad \mathrm{U}^{\prime}=973$
Exact probability (adjusted for ties):
Lower side $\mathrm{P}=0.2938$ ($\mathrm{H} 1: \mathrm{x}$ tends to be less than y)
Upper side $\mathrm{P}=0.7062(\mathrm{H} 1: \mathrm{x}$ tends to be greater than y$)$
Two sided $\mathrm{P}=0.5876$ ($\mathrm{H} 1: \mathrm{x}$ tends to be distributed differently to y)
Theta $\left(\mathrm{U}^{\prime} / \mathrm{mn}\right)=0.54786(95 \%$ CI: 0.383214 to 0.701015$)$
95% confidence interval for difference between medians or means:
Median difference $=-0.10496$ (CI: -0.5165 to 0.30811)
Mann-Whitney U test not signif
Observations (x) in DM Delta Female Combined Kidney weight $=9$ median $=0.23063$ rank sum $=$ 894.5

Observations (y) in No DM Delta Female Combined Kidney weight $=150$ median $=-0.079417$
$\mathrm{U}=849.5 \quad \mathrm{U}^{\prime}=500.5$
Exact probability (adjusted for ties):
Lower side $\mathrm{P}=0.0987$ ($\mathrm{H} 1: \mathrm{x}$ tends to be less than y)
Upper side $\mathrm{P}=0.9013$ (H1: x tends to be greater than y)
Two sided $\mathrm{P}=0.1973$ (H1: x tends to be distributed differently to y)

Theta $\left(\mathrm{U}^{\prime} / \mathrm{mn}\right)=0.370741(95 \% \mathrm{CI}: 0.216298$ to 0.5636$)$
95.1\% confidence interval for difference between medians or means:

Median difference $=0.25271$ (CI: -0.15278 to 0.6188)
Mann-Whitney U test OW vs Obese - not signif
Observations (x) in Overweight Delta Female Liver weight $=70$ median $=-0.071169$ rank sum $=4,193$
Observations (y) in Obese Delta Female Liver weight $=48$ median $=-0.101251$
$\mathrm{U}=1,708 \quad \mathrm{U}^{\prime}=1,652$
Exact probability:
Lower side $\mathrm{P}=0.4404$ (H1: x tends to be less than y)
Upper side $\mathrm{P}=0.5596$ (H1: x tends to be greater than y)
Two sided $\mathrm{P}=0.8807$ (H 1 : x tends to be distributed differently to y)
Theta $\left(\mathrm{U}^{\prime} / \mathrm{mn}\right)=0.491667(95 \%$ CI: 0.388437 to 0.595756$)$
95% confidence interval for difference between medians or means:
Median difference $=0.014775$ (CI: -0.2209 to 0.2634)

Mann-Whitney U test

Observations (x) in OW Delta Female Liver weight $=70$ median $=-0.071169$ rank sum $=4,847.5$
Observations (y) in Normal Delta Female Liver weight $=57$ median $=-0.172186$
$\mathrm{U}=2,362.5 \quad \mathrm{U}^{\prime}=1,627.5$
Exact probability (adjusted for ties):
Lower side $\mathrm{P}=0.0375$ (H1: x tends to be less than y)
Upper side $\mathrm{P}=0.9625$ ($\mathrm{H} 1: \mathrm{x}$ tends to be greater than y)
Two sided $\mathrm{P}=0.075$ (H1: x tends to be distributed differently to y)

Theta $\left(\mathrm{U}^{\prime} / \mathrm{mn}\right)=0.407895(95 \% \mathrm{CI}: 0.315163$ to 0.509213$)$
95% confidence interval for difference between medians or means
Median difference $=0.211075(\mathrm{CI}:-0.02094$ to 0.47607)

Mann-Whitney U test

Observations (x) in Normal Delta Female Liver weight $=57$ median $=-0.172186$ rank sum $=2,800$
Observations (y) in Obese Delta Female Liver weight $=48$ median $=-0.101251$
$\mathrm{U}=1,147 \quad \mathrm{U}^{\prime}=1,589$
Exact probability:
Lower side $\mathrm{P}=0.0783$ (H 1 : x tends to be less than y)
Upper side $\mathrm{P}=0.9217(\mathrm{H} 1: \mathrm{x}$ tends to be greater than y$)$
Two sided $\mathrm{P}=0.1567$ (H1: x tends to be distributed differently to y)
Theta $\left(\mathrm{U}^{\prime} / \mathrm{mn}\right)=0.580775(95 \% \mathrm{CI}: 0.469658$ to 0.682892$)$
95% confidence interval for difference between medians or means:
Median difference $=-0.204305(\mathrm{CI}:-0.51985$ to 0.07187$)$

Mann-Whitney U test - UW vs obese - not signif
Observations (x) in Obese Delta Female Liver weight $=48$ median $=-0.101251$ rank sum $=1,347$
Observations (y) in Underweight Delta Female Liver weight $=7$ median $=0.037788$

$\mathrm{U}=171 \quad \mathrm{U}^{\prime}=165$

Exact probability:
Lower side $\mathrm{P}=0.4754$ (H1: x tends to be less than y)

Upper side $\mathrm{P}=0.5246(\mathrm{H} 1: \mathrm{x}$ tends to be greater than y$)$
Two sided $\mathrm{P}=0.9508$ (H 1 : x tends to be distributed differently to y)
Theta $\left(\mathrm{U}^{\prime} / \mathrm{mn}\right)=0.491071(95 \% \mathrm{CI}: 0.286366$ to 0.699282$)$
95.1% confidence interval for difference between medians or means:
Median difference $=0.041015(\mathrm{CI}:-0.50678$ to 0.95118$)$

Mann-Whitney U test - BP vs no BP not signif.
Observations (x) in Hypertension Delta Female Liver weight $=32$ median $=-0.373011$ rank sum $=$ 5,678
Observations (y) in No Hypertension Delta Female Liver weight $=363$ median $=-0.053425$
$\mathrm{U}=5,150 \quad \mathrm{U}^{\prime}=6,466$
Exact probability:
Lower side $\mathrm{P}=0.1448$ (H 1 : x tends to be less than y)
Upper side $\mathrm{P}=0.8552$ ($\mathrm{H} 1: \mathrm{x}$ tends to be greater than y)
Two sided $\mathrm{P}=0.2897$ (H 1 : x tends to be distributed differently to y)
Theta $\left(\mathrm{U}^{\prime} / \mathrm{mn}\right)=0.556646(95 \% \mathrm{CI}: 0.45275$ to 0.654904$)$
95% confidence interval for difference between medians or means:
Median difference $=-0.176975(\mathrm{CI}:-0.47067$ to 0.20638$)$

Mann-Whitney U test DM vs no DM - not signif
Observations (x) in DM Delta Female Liver weight $=26$ median $=0.296685$ rank sum $=6,134$
Observations (y) in No DM Delta Female Liver weight $=370$ median $=-0.064725$
$\mathrm{U}=5,783 \quad \mathrm{U}^{\prime}=3,837$

Exact probability (adjusted for ties):
Lower side $\mathrm{P}=0.0424(\mathrm{H} 1: \mathrm{x}$ tends to be less than y$)$
Upper side $\mathrm{P}=0.9576$ ($\mathrm{H} 1: \mathrm{x}$ tends to be greater than y)
Two sided $\mathrm{P}=0.0847$ (H1: x tends to be distributed differently to y)
Theta $\left(\mathrm{U}^{\prime} / \mathrm{mn}\right)=0.398857(95 \%$ CI: 0.295912 to 0.513742$)$
95\% confidence interval for difference between medians or means:
Median difference $=0.30592$ (CI: -0.04932 to 0.66489)
Mann-Whitney U test SGA vs Non SGA - SIGNIFICANT!
Observations (x) in SGA Delta Female Liver weight $=78$ median $=-0.725493$ rank sum $=5,203$
Observations (y) in Non SGA Delta Female Liver weight $=141$ median $=0.200112$
$\mathrm{U}=2,122 \quad \mathrm{U}^{\prime}=8,876$
Exact probability:
Lower side $\mathrm{P}<0.0001$ (H 1 : x tends to be less than y)
Upper side $\mathrm{P}>0.9999$ ($\mathrm{H} 1: \mathrm{x}$ tends to be greater than y)
Two sided $\mathrm{P}<0.0001$ (H1: x tends to be distributed differently to y)
Theta $\left(\mathrm{U}^{\prime} / \mathrm{mn}\right)=0.807056$ ($95 \% \mathrm{CI}: 0.738552$ to 0.859264)
95\% confidence interval for difference between medians or means:
Median difference $=-1.07867$ (CI: -1.36389 to -0.81145)

Mann-Whitney U test - AI vs UE - SIGNIFICANT!

Observations (x) in AI COD Delta Female Liver weight $=72$ median $=0.212789$ rank sum $=15,045$
Observations (y) in UE COD Delta Female Liver weight $=243$ median $=-0.114714$
$\mathrm{U}=12,417 \quad \mathrm{U}^{\prime}=5,079$
Normalised statistic $=5.40537$ (adjusted for ties)
Lower side $\mathrm{P}>0.9999$ (H 1 : x tends to be less than y)
Upper side $\mathrm{P}<0.0001(\mathrm{H} 1: \mathrm{x}$ tends to be greater than y$)$
Two sided $\mathrm{P}<0.0001$ (H1: x tends to be distributed differently to y)
Theta $\left(\mathrm{U}^{\prime} / \mathrm{mn}\right)=0.290295(95 \%$ CI: 0.22861 to 0.362801$)$
95\% confidence interval for difference between medians or means:
Median difference $=0.40625$ (CI: 0.27037 to 0.56788)

Mann-Whitney U test UE vs placenta - SIGNIFICANT!

Observations (x) in UE COD Delta Female Liver weight $=243$ median $=-0.114714$ rank sum $=33,199$
Observations (y) in Placenta COD Delta Female Liver weight $=19$ median $=-0.867218$
$\mathrm{U}=3,553 \quad \mathrm{U}^{\prime}=1,064$
Normalised statistic $=3.912261$ (adjusted for ties)
Lower side $\mathrm{P}>0.9999$ ($\mathrm{H} 1: \mathrm{x}$ tends to be less than y)
Upper side $\mathrm{P}<0.0001$ (H 1 : x tends to be greater than y)
Two sided $\mathrm{P}<0.0001$ (H1: x tends to be distributed differently to y)
Theta $\left(\mathrm{U}^{\prime} / \mathrm{mn}\right)=0.230453(95 \% \mathrm{CI}: 0.141993$ to 0.358849$)$
95% confidence interval for difference between medians or means:
Median difference $=0.76036$ (CI: 0.41272 to 1.13375)
Mann-Whitney U test SGA vs non SGA - significant
SGA lungs lighter
Observations (x) in SGA Delta Female Combined lung weight $=19$ median $=-0.888811$ rank sum $=$

331

Observations (y) in Non SGA Delta Female Combined lung weight $=49$ median $=0.072513$
$\mathrm{U}=141 \quad \mathrm{U}^{\prime}=790$
Exact probability:
Lower side $\mathrm{P}<0.0001$ (H 1 : x tends to be less than y)
Upper side $\mathrm{P}>0.9999$ ($\mathrm{H} 1: \mathrm{x}$ tends to be greater than y)
Two sided $\mathrm{P}<0.0001$ (H1: x tends to be distributed differently to y)
Theta $\left(\mathrm{U}^{\prime} / \mathrm{mn}\right)=0.84855(95 \%$ CI: 0.711756 to 0.923393$)$
95.2% confidence interval for difference between medians or means:
Median difference $=-1.09147$ (CI: -1.61693 to -0.66596)

Mann-Whitney U test AI vs UE -SIGNIFICANT!
AI lungs heavier
Observations (x) in COD AI Delta Female Combined lung weight $=24$ median $=0.514076$ rank sum $=$ 1,825.5
Observations (y) in COD UE Delta Female Combined lung weight $=80$ median $=-0.197505$
$\mathrm{U}=1,525.5 \quad \mathrm{U}^{\prime}=394.5$
Exact probability (adjusted for ties):
Lower side $\mathrm{P}<0.0001$ (H1: x tends to be less than y)
Upper side $\mathrm{P}>0.9999$ ($\mathrm{H} 1: \mathrm{x}$ tends to be greater than y)
Two sided $\mathrm{P}<0.0001$ (H1: x tends to be distributed differently to y)
Theta $(\mathrm{U} / \mathrm{mn})=0.205469$ (95% CI: 0.1241 to 0.328099)
95.1% confidence interval for difference between medians or means:
Median difference $=0.7622$ (CI: 0.42674 to 1.07766)

Mann-Whitney U test not signif
Observations (x) in COD UE Delta Female Combined lung weight $=80$ median $=-0.197505$ rank sum = 3,510
Observations (y) in COD Placenta Delta Female Combined lung weight $=5$ median $=-0.734496$
$\mathrm{U}=270 \quad \mathrm{U}^{\prime}=130$
Exact probability (adjusted for ties):
Lower side $\mathrm{P}=0.1003$ (H1: x tends to be less than y)
Upper side $\mathrm{P}=0.8997$ (H1: x tends to be greater than y)
Two sided $\mathrm{P}=0.2006$ (H1: x tends to be distributed differently to y)
Theta $\left(\mathrm{U}^{\prime} / \mathrm{mn}\right)=0.325(95 \% \mathrm{CI}: 0.148947$ to 0.582945$)$
95.1\% confidence interval for difference between medians or means:

Median difference $=0.54767$ (CI: -0.27318 to 1.45151)
Mann-Whitney U test not signif
Observations (x) in Overweight Delta Female Combined lung weight $=14$ median $=-0.043932$ rank sum $=243$
Observations (y) in Obese Delta Female Combined lung weight $=17$ median $=-0.133709$

$\mathrm{U}=138$
 $\mathrm{U}^{\prime}=100$

Exact probability:
Lower side $\mathrm{P}=0.2341(\mathrm{H} 1: \mathrm{x}$ tends to be less than y$)$
Upper side $\mathrm{P}=0.7659$ ($\mathrm{H} 1: \mathrm{x}$ tends to be greater than y)
Two sided $\mathrm{P}=0.4683$ (H1: x tends to be distributed differently to y)
Theta $\left(\mathrm{U}^{\prime} / \mathrm{mn}\right)=0.420168(95 \%$ CI: 0.246245 to 0.620348$)$
95.2% confidence interval for difference between medians or means:
Median difference $=0.19114$ (CI: -0.38766 to 0.67943)

Mann-Whitney U test

Observations (x) in Normal Delta Female Combined lung weight $=15$ median $=-0.253646$ rank sum $=$ 234
Observations (y) in Obese Delta Female Combined lung weight $=17$ median $=-0.133709$
$\mathrm{U}=114$
$\mathrm{U}^{\prime}=141$
Exact probability:
Lower side $\mathrm{P}=0.314$ (H 1 : x tends to be less than y)
Upper side $\mathrm{P}=0.686$ ($\mathrm{H} 1: \mathrm{x}$ tends to be greater than y)
Two sided $\mathrm{P}=0.6281$ ($\mathrm{H} 1: \mathrm{x}$ tends to be distributed differently to y)
Theta $\left(\mathrm{U}^{\prime} / \mathrm{mn}\right)=0.552941(95 \% \mathrm{CI}: 0.359222$ to 0.729731$)$
95.1\% confidence interval for difference between medians or means:

Median difference $=-0.2043$ (CI: -1.21901 to 0.44754)
Mann-Whitney U test
Observations (x) in Overweight Delta Female Combined lung weight $=14$ median $=-0.043932$ rank sum $=232$
Observations (y) in Normal Delta Female Combined lung weight $=15$ median $=-0.253646$

$\mathrm{U}=127 \quad \mathrm{U}^{\prime}=83$

Exact probability:
Lower side $\mathrm{P}=0.1768(\mathrm{H} 1: \mathrm{x}$ tends to be less than y$)$
Upper side $\mathrm{P}=0.8232(\mathrm{H} 1: \mathrm{x}$ tends to be greater than y$)$
Two sided $\mathrm{P}=0.3536$ (H1: x tends to be distributed differently to y)

Theta $\left(\mathrm{U}^{\prime} / \mathrm{mn}\right)=0.395238(95 \%$ CI: 0.222966 to 0.603548$)$
95.4\% confidence interval for difference between medians or means:

Median difference $=0.230345$ (CI: -0.24936 to 1.04792)

Mann-Whitney U test not signif
Observations (x) in Hypertension Delta Female Combined lung weight $=12$ median $=-0.321799$ rank sum $=608$
Observations (y) in No Hypertension Delta Female Combined lung weight $=112$ median $=-0.043932$
$\mathrm{U}=530 \quad \mathrm{U}^{\prime}=814$
Exact probability (adjusted for ties):
Lower side $\mathrm{P}=0.1172(\mathrm{H} 1: \mathrm{x}$ tends to be less than y$)$
Upper side $\mathrm{P}=0.8828$ ($\mathrm{H} 1: \mathrm{x}$ tends to be greater than y)
Two sided $\mathrm{P}=0.2345$ (H1: x tends to be distributed differently to y)
Theta $\left(\mathrm{U}^{\prime} / \mathrm{mn}\right)=0.605655(95 \% \mathrm{CI}: 0.43489$ to 0.7507$)$
95\% confidence interval for difference between medians or means:
Median difference $=-0.28581$ (CI: -0.78401 to 0.23871)

Mann-Whitney U test not signif

Observations (x) in DM Delta Female Combined lung weight $=10$ median $=0.073135$ rank sum $=705$
Observations (y) in No DM Delta Female Combined lung weight $=115$ median $=-0.102485$
$\mathrm{U}=650 \quad \mathrm{U}=500$
Exact probability (adjusted for ties):
Lower side $\mathrm{P}=0.2513(\mathrm{H} 1: \mathrm{x}$ tends to be less than y$)$

Upper side $\mathrm{P}=0.7487$ (H1: x tends to be greater than y)
Two sided $\mathrm{P}=0.5026$ (H1: x tends to be distributed differently to y)
Theta $\left(\mathrm{U}^{\prime} / \mathrm{mn}\right)=0.434783(95 \%$ CI: 0.272 to 0.615892$)$
95% confidence interval for difference between medians or means:
Median difference $=0.130185$ (CI: -0.35275 to 0.53443)

Mann-Whitney U test- significant!
Observations (x) in SGA Delta Female Pancreas weight $=59$ median $=-0.465091$ rank sum $=3,914.5$
Observations (y) in Non SGA Delta Female Pancreas weight $=110$ median $=-0.028319$
$\mathrm{U}=2,144.5 \quad \mathrm{U}^{\prime}=4,345.5$
Exact probability (adjusted for ties):
Lower side $\mathrm{P}=0.0001$ (H1: x tends to be less than y)
Upper side $\mathrm{P}=0.9999$ ($\mathrm{H} 1: \mathrm{x}$ tends to be greater than y)
Two sided $\mathrm{P}=0.0002$ (H1: x tends to be distributed differently to y)
Theta $\left(\mathrm{U}^{\prime} / \mathrm{mn}\right)=0.669569(95 \%$ CI: 0.579409 to 0.746978$)$
95% confidence interval for difference between medians or means:
Median difference $=-0.521015$ (CI: -0.82058 to -0.24264

Mann-Whitney U test AI vs UE - SIGNIFICANT
AI pancreas heavier
Observations (x) in COD AI Delta Female Pancreas weight $=64$ median $=0.018439$ rank sum $=$ 9,609.5
Observations (y) in COD UE Delta Female Pancreas weight $=180$ median $=-0.168846$
$\mathrm{U}=7,529.5 \quad \mathrm{U}^{\prime}=3,990.5$

Exact probability (adjusted for ties):
Lower side $\mathrm{P}=0.0001$ (H1: x tends to be less than y)
Upper side $\mathrm{P}=0.9999(\mathrm{H} 1: \mathrm{x}$ tends to be greater than y$)$
Two sided $\mathrm{P}=0.0002$ ($\mathrm{H} 1: \mathrm{x}$ tends to be distributed differently to y)
Theta $\left(\mathrm{U}^{\prime} / \mathrm{mn}\right)=0.346398$ (95% CI: 0.27446 to 0.427858)
95% confidence interval for difference between medians or means:
Median difference $=0.31854$ (CI: 0.14773 to 0.50377)

Mann-Whitney U test not signif
Observations (x) in COD UE Delta Female Pancreas weight $=180$ median $=-0.168846$ rank sum $=$ 17,741.5
Observations (y) in COD Placenta Delta Female Pancreas weight $=15$ median $=-0.351594$
$\mathrm{U}=1,451.5 \quad \mathrm{U}^{\prime}=1,248.5$
Normalised statistic $=0.483338$ (adjusted for ties)
Lower side $\mathrm{P}=0.6856$ (H1: x tends to be less than y)
Upper side $\mathrm{P}=0.3144$ ($\mathrm{H} 1: \mathrm{x}$ tends to be greater than y)
Two sided $\mathrm{P}=0.6289(\mathrm{H} 1$: x tends to be distributed differently to y$)$
Theta $(\mathrm{U} / \mathrm{mn})=0.462407(95 \%$ CI: 0.321974 to 0.610296$)$
95\% confidence interval for difference between medians or means:
Median difference $=0.085075$ (CI: -0.30046 to 0.44363)

Mann-Whitney U test -not signif
Observations (x) in Overweight Delta Female Pancreas weight $=58$ median $=-0.150167$ rank sum $=$

2,695.5

Observations (y) in Obese Delta Female Pancreas weight $=36$ median $=-0.042537$
$\mathrm{U}=984.5 \quad \mathrm{U}^{\prime}=1,103.5$
Exact probability (adjusted for ties):
Lower side $\mathrm{P}=0.3232(\mathrm{H} 1: \mathrm{x}$ tends to be less than y$)$
Upper side $\mathrm{P}=0.6768$ ($\mathrm{H} 1: \mathrm{x}$ tends to be greater than y)
Two sided $\mathrm{P}=0.6465$ (H1: x tends to be distributed differently to y)
Theta $(\mathrm{U} / \mathrm{mn})=0.528496$ (95% CI: 0.410188 to 0.6431)
95.1\% confidence interval for difference between medians or means:

Median difference $=-0.05875$ (CI: -0.27818 to 0.21034)

Mann-Whitney U test
Observations (x) in Overweight Delta Female Pancreas weight $=58$ median $=-0.150167$ rank sum $=$ 3,070.5
Observations (y) in Normal Delta Female Pancreas weight $=48$ median $=-0.116253$
$\mathrm{U}=1,359.5 \quad \mathrm{U}^{\prime}=1,424.5$
Exact probability (adjusted for ties):
Lower side $\mathrm{P}=0.4192$ (H 1 : x tends to be less than y)
Upper side $\mathrm{P}=0.5808$ ($\mathrm{H} 1: \mathrm{x}$ tends to be greater than y)
Two sided $\mathrm{P}=0.8385$ ($\mathrm{H} 1: \mathrm{x}$ tends to be distributed differently to y)
Theta $\left(\mathrm{U}^{\prime} / \mathrm{mn}\right)=0.511674(95 \%$ CI: 0.40329 to 0.618758$)$
95\% confidence interval for difference between medians or means:
Median difference $=-0.01926$ (CI: -0.24965 to 0.21556)

Mann-Whitney U test
Observations (x) in Normal Delta Female Pancreas weight $=48$ median $=-0.116253$ rank sum $=2,006$
Observations (y) in Obese Delta Female Pancreas weight $=36$ median $=-0.042537$
$\mathrm{U}=830 \quad \mathrm{U}^{\prime}=898$
Exact probability (adjusted for ties):
Lower side $\mathrm{P}=0.3808$ ($\mathrm{H} 1: \mathrm{x}$ tends to be less than y)
Upper side $\mathrm{P}=0.6192$ (H1: x tends to be greater than y)
Two sided $\mathrm{P}=0.7616$ (H 1 : x tends to be distributed differently to y)
Theta $\left(\mathrm{U}^{\prime} / \mathrm{mn}\right)=0.519676$ (95% CI: 0.397417 to 0.639188)
95\% confidence interval for difference between medians or means:
Median difference $=-0.044665$ (CI: -0.25401 to 0.27276)

Mann-Whitney U test not signif
Observations (x) in Obese Delta Female Pancreas weight $=36$ median $=-0.042537$ rank sum $=756.5$
Observations (y) in underweight Delta Female Pancreas weight $=6$ median $=0.06459$
$\mathrm{U}=90.5 \quad \mathrm{U}^{\prime}=125.5$
Exact probability (adjusted for ties):
Lower side $\mathrm{P}=0.2717$ (H1: x tends to be less than y)
Upper side $\mathrm{P}=0.7283$ ($\mathrm{H} 1: \mathrm{x}$ tends to be greater than y)
Two sided $\mathrm{P}=0.5434$ ($\mathrm{H} 1: \mathrm{x}$ tends to be distributed differently to y)
Theta $(\mathrm{U} / \mathrm{mn})=0.581019$ (95% CI: 0.343689 to 0.78218)
95.2% confidence interval for difference between medians or means:
Median difference $=-0.14657$ (CI: -0.55538 to 0.29318)

Mann-Whitney U test not signif
Observations (x) in Hypertension Delta Female Pancreas weight $=24$ median $=-0.125028$ rank sum $=$ 3,405
Observations (y) in No Hypertension Delta Female Pancreas weight $=282$ median $=-0.119266$

$$
\mathrm{U}=3,105 \quad \mathrm{U}^{\prime}=3,663
$$

Exact probability (adjusted for ties):
Lower side $\mathrm{P}=0.2526$ (H1: x tends to be less than y)
Upper side $\mathrm{P}=0.7474$ (H 1 : x tends to be greater than y)
Two sided $\mathrm{P}=0.5052$ (H 1 : x tends to be distributed differently to y)
Theta $\left(\mathrm{U}^{\prime} / \mathrm{mn}\right)=0.541223(95 \%$ CI: 0.422493 to 0.654596$)$
95% confidence interval for difference between medians or means:
Median difference $=-0.089(\mathrm{CI}:-0.38878$ to 0.16258$)$
Mann-Whitney U test not signif
Observations (x) in DM Delta Female Pancreas weight $=16$ median $=0.008992$ rank sum $=2,564.5$
Observations (y) in No DM Delta Female Pancreas weight $=291$ median $=-0.122041$
$\mathrm{U}=2,428.5 \quad \mathrm{U}^{\prime}=2,227.5$
Exact probability (adjusted for ties):
Lower side $P=0.3869$ (H1: x tends to be less than y)
Upper side $\mathrm{P}=0.6131$ (H 1 : x tends to be greater than y)
Two sided $\mathrm{P}=0.7739$ (H 1 : x tends to be distributed differently to y)
Theta $\left(\mathrm{U}^{\prime} / \mathrm{mn}\right)=0.478415(95 \% \mathrm{CI}: 0.341904$ to 0.618876$)$

95\% confidence interval for difference between medians or means:
Median difference $=0.065305$ (CI: -0.32895 to 0.44648)

Mann-Whitney U test- significant!
Observations (x) in SGA Delta Female spleen weight $=80$ median $=-0.443789$ rank sum $=6,174.5$
Observations (y) in Non SGA Delta Female spleen weight $=136$ median $=0.15425$
$\mathrm{U}=2,934.5 \quad \mathrm{U}^{\prime}=7,945.5$
Normalised statistic $=-5.648632($ adjusted for ties $)$
Lower side $\mathrm{P}<0.0001$ (H1: x tends to be less than y)
Upper side $\mathrm{P}>0.9999$ (H1: x tends to be greater than y)
Two sided $\mathrm{P}<0.0001$ (H1: x tends to be distributed differently to y)
Theta $\left(\mathrm{U}^{\prime} / \mathrm{mn}\right)=0.730285(95 \%$ CI: 0.655138 to 0.792511$)$
95\% confidence interval for difference between medians or means:
Median difference $=-0.80475$ (CI: -1.08358 to -0.5187)

Mann-Whitney U test AI vs UE SIGNIFICANT

Observations (x) in COD AI Delta Female spleen weight $=71$ median $=0.03679$ rank sum $=12,545$
Observations (y) in COD UE Delta Female spleen weight $=227$ median $=-0.048525$
$\mathrm{U}=9,989 \quad \mathrm{U}^{\prime}=6,128$
Normalised statistic $=3.046392$ (adjusted for ties)
Lower side $\mathrm{P}=0.9988$ (H1: x tends to be less than y)
Upper side $\mathrm{P}=0.0012$ ($\mathrm{H} 1: \mathrm{x}$ tends to be greater than y)
Two sided $\mathrm{P}=0.0023$ (H1: x tends to be distributed differently to y)

Theta $\left(\mathrm{U}^{\prime} / \mathrm{mn}\right)=0.38022(95 \% \mathrm{CI}: 0.31009$ to 0.456934$)$
95\% confidence interval for difference between medians or means:
Median difference $=0.1714$ (CI: 0.05684 to 0.37611)

Mann-Whitney U test UE vs Placenta - SIGNIFICANT!
Observations (x) in COD UE Delta Female spleen weight $=227$ median $=-0.048525$ rank sum $=$ 29,108
Observations (y) in COD placenta Delta Female spleen weight $=19$ median $=-0.595127$
$\mathrm{U}=3,230 \quad \mathrm{U}^{\prime}=1,083$
Normalised statistic $=3.602943$ (adjusted for ties)
Lower side $\mathrm{P}=0.9998$ (H1: x tends to be less than y)
Upper side $\mathrm{P}=0.0002$ (H 1 : x tends to be greater than y)
Two sided $\mathrm{P}=0.0003$ (H1: x tends to be distributed differently to y)
Theta $\left(\mathrm{U}^{\prime} / \mathrm{mn}\right)=0.251101(95 \%$ CI: 0.15787 to 0.381852$)$
95% confidence interval for difference between medians or means:
Median difference $=0.59978$ (CI: 0.25252 to 0.99483)

Mann-Whitney U test Not signif

Observations (x) in Overweight Delta Female spleen weight $=62$ median $=-0.046106$ rank sum $=$ 3,312.5
Observations (y) in Obese Delta Female spleen weight $=45$ median $=0.004359$
$\mathrm{U}=1,359.5 \quad \mathrm{U}^{\prime}=1,430.5$
Exact probability (adjusted for ties):

Lower side $\mathrm{P}=0.4124(\mathrm{H} 1: \mathrm{x}$ tends to be less than y$)$
Upper side $\mathrm{P}=0.5876$ ($\mathrm{H} 1: \mathrm{x}$ tends to be greater than y)
Two sided $\mathrm{P}=0.8247$ ($\mathrm{H} 1: \mathrm{x}$ tends to be distributed differently to y)
Theta $(\mathrm{U} / \mathrm{mn})=0.512724$ (95% CI: 0.403919 to 0.620103)
95\% confidence interval for difference between medians or means:
Median difference $=-0.0132$ (CI: -0.13938 to 0.15646)

Mann-Whitney U test

Observations (x) in Overweight Delta Female spleen weight $=62$ median $=-0.046106$ rank sum $=$ 3,748.5
Observations (y) in Normal Delta Female spleen weight $=55$ median $=-0.062801$
$\mathrm{U}=1,795.5 \quad \mathrm{U}=1,614.5$
Exact probability (adjusted for ties):
Lower side $\mathrm{P}=0.3117$ (H1: x tends to be less than y)
Upper side $\mathrm{P}=0.6883$ (H1: x tends to be greater than y)
Two sided $\mathrm{P}=0.6233$ (H1: x tends to be distributed differently to y)
Theta $\left(\mathrm{U}^{\prime} / \mathrm{mn}\right)=0.47346(95 \% \mathrm{CI}: 0.37242$ to 0.577179$)$
95.1% confidence interval for difference between medians or means:
Median difference $=0.036605$ (CI: -0.10336 to 0.2064)

Mann-Whitney U test

Observations (x) in Normal Delta Female spleen weight $=55$ median $=-0.062801$ rank sum $=2,703$
Observations (y) in Obese Delta Female spleen weight $=45$ median $=0.004359$
$\mathrm{U}=1,163 \quad \mathrm{U}^{\prime}=1,312$

Exact probability (adjusted for ties):
Lower side $\mathrm{P}=0.3042(\mathrm{H} 1: \mathrm{x}$ tends to be less than y$)$
Upper side $\mathrm{P}=0.6958$ ($\mathrm{H} 1: \mathrm{x}$ tends to be greater than y)
Two sided $\mathrm{P}=0.6084$ (H1: x tends to be distributed differently to y)
Theta $\left(\mathrm{U}^{\prime} / \mathrm{mn}\right)=0.530101(95 \%$ CI: 0.417695 to 0.638967$)$
95\% confidence interval for difference between medians or means:
Median difference $=-0.04308(\mathrm{CI}:-0.22994$ to 0.14615$)$

Mann-Whitney U test not signif
Observations (x) in Obese Delta Female spleen weight $=45$ median $=0.004359$ rank sum $=1,141.5$
Observations (y) in Underweight Delta Female spleen weight $=6$ median $=0.039662$
$\mathrm{U}=106.5 \quad \mathrm{U}^{\prime}=163.5$
Exact probability (adjusted for ties):
Lower side $\mathrm{P}=0.2085$ (H1: x tends to be less than y)
Upper side $\mathrm{P}=0.7915$ ($\mathrm{H} 1: \mathrm{x}$ tends to be greater than y)
Two sided $\mathrm{P}=0.417$ ($\mathrm{H} 1: \mathrm{x}$ tends to be distributed differently to y)
Theta $\left(\mathrm{U}^{\prime} / \mathrm{mn}\right)=0.605556(95 \%$ CI: 0.367855 to 0.797334$)$
95.3\% confidence interval for difference between medians or means:

Median difference $=-0.17346$ (CI: -1.07653 to 0.16739)

Mann-Whitney U test - BP vs no BP - SIGNIFICANT!

Observations (x) in Hypertension Delta Female spleen weight $=31$ median $=-0.327009$ rank sum $=$

4,352.5

Observations (y) in No Hypertension Delta Female spleen weight $=346$ median $=-0.036444$
$\mathrm{U}=3,856.5 \quad \mathrm{U}^{\prime}=6,869.5$
Exact probability (adjusted for ties):
Lower side $\mathrm{P}=0.0046$ ($\mathrm{H} 1: \mathrm{x}$ tends to be less than y)
Upper side $\mathrm{P}=0.9954$ (H1: x tends to be greater than y)
Two sided $\mathrm{P}=0.0091$ (H1: x tends to be distributed differently to y)
Theta $\left(\mathrm{U}^{\prime} / \mathrm{mn}\right)=0.640453$ ($95 \% \mathrm{CI}: 0.534548$ to 0.7322)
95\% confidence interval for difference between medians or means:
Median difference $=-0.350795$ (CI: -0.64331 to -0.10523)

Mann-Whitney U test not signif
Observations (x) in DM Delta Female spleen weight $=26$ median $=-0.032553$ rank sum $=5,029.5$
Observations (y) in No DM Delta Female spleen weight $=352$ median $=-0.043434$
$\mathrm{U}=4,678.5 \quad \mathrm{U}^{\prime}=4,473.5$
Exact probability (adjusted for ties):
Lower side $\mathrm{P}=0.425$ ($\mathrm{H} 1: \mathrm{x}$ tends to be less than y)
Upper side $\mathrm{P}=0.575$ (H 1 : x tends to be greater than y)
Two sided $\mathrm{P}=0.85$ (H1: x tends to be distributed differently to y)
Theta $\left(\mathrm{U}^{\prime} / \mathrm{mn}\right)=0.4888(95 \%$ CI: 0.37789 to 0.601051$)$
95% confidence interval for difference between medians or means:
Median difference $=0.01858$ (CI: -0.26452 to 0.30102)

Mann-Whitney U test OW vs Obese - not signif

Observations (x) in Overweight Delta Female Thymus weight $=67$ median $=-0.011791$ rank sum $=$ 4,097
Observations (y) in Obese Delta Female Thymus weight $=47$ median $=-0.041299$

$\mathrm{U}=1,819 \quad \mathrm{U}^{\prime}=1,330$

Exact probability (adjusted for ties):
Lower side $\mathrm{P}=0.0802$ (H 1 : x tends to be less than y)
Upper side $\mathrm{P}=0.9198(\mathrm{H} 1$: x tends to be greater than y$)$
Two sided $\mathrm{P}=0.1603(\mathrm{H} 1$: x tends to be distributed differently to y$)$

Theta $\left(\mathrm{U}^{\prime} / \mathrm{mn}\right)=0.422356(95 \% \mathrm{CI}: 0.322667$ to 0.530239$)$
95.1\% confidence interval for difference between medians or means:

Median difference $=0.11956(\mathrm{CI}:-0.03763$ to 0.36219$)$
"Mann-Whitney U test
Observations (x) in OW Delta Female Thymus weight $=67$ median $=-0.011791$ rank sum $=4,476$
Observations (y) in Normal Delta Female Thymus weight $=55$ median $=-0.069681$
$\mathrm{U}=2,198 \quad \mathrm{U}^{\prime}=1,487$
Exact probability (adjusted for ties):
Lower side $\mathrm{P}=0.0337$ (H 1 : x tends to be less than y)
Upper side $\mathrm{P}=0.9663$ ($\mathrm{H} 1: \mathrm{x}$ tends to be greater than y)
Two sided $\mathrm{P}=0.0674$ (H1: x tends to be distributed differently to y$)$
Theta $\left(\mathrm{U}^{\prime} / \mathrm{mn}\right)=0.403528(95 \%$ CI: 0.309497 to 0.506885$)$
95% confidence interval for difference between medians or means:
Median difference $=0.14312(\mathrm{CI}:-0.01026$ to 0.38319$)$

Mann-Whitney U test

Observations (x) in Normal Delta Female Thymus weight $=55$ median $=-0.069681$ rank sum $=2,788.5$
Observations (y) in Obese Delta Female Thymus weight $=47$ median $=-0.041299$
$\mathrm{U}=1,248.5 \quad \mathrm{U}^{\prime}=1,336.5$
Exact probability (adjusted for ties):
Lower side $\mathrm{P}=0.385(\mathrm{H} 1: \mathrm{x}$ tends to be less than y$)$
Upper side $\mathrm{P}=0.615(\mathrm{H} 1: \mathrm{x}$ tends to be greater than y)
Two sided $\mathrm{P}=0.77$ (H1: x tends to be distributed differently to y)
Theta $\left(\mathrm{U}^{\prime} / \mathrm{mn}\right)=0.517021$ (95% CI: 0.406495 to 0.625588)
95\% confidence interval for difference between medians or means:
Median difference $=-0.02326$ (CI: -0.23033 to 0.18242)
Mann-Whitney U test UW vs obese - not signif
Observations (x) in Obese Delta Female Thymus weight $=47$ median $=-0.041299$ rank sum $=1,295$
Observations (y) in Underweight Delta Female Thymus weight $=7$ median $=-0.084561$
$\mathrm{U}=167 \quad \mathrm{U}^{\prime}=162$
Exact probability:
Lower side $\mathrm{P}=0.4799$ (H1: x tends to be less than y)
Upper side $\mathrm{P}=0.5201$ (H1: x tends to be greater than y)
Two sided $\mathrm{P}=0.9598$ ($\mathrm{H} 1: \mathrm{x}$ tends to be distributed differently to y)
Theta $\left(\mathrm{U}^{\prime} / \mathrm{mn}\right)=0.492401(95 \%$ CI: 0.287175 to 0.700617$)$
95.1% confidence interval for difference between medians or means:
Median difference $=0.02643$ (CI: -0.3982 to 0.45768)

Mann-Whitney U test BP vs no BP - not signif
Observations (x) in Hypertension Delta Female Thymus weight $=32$ median $=-0.211463$ rank sum $=$ 5,427
Observations (y) in No Hypertension Delta Female Thymus weight $=353$ median $=-0.043143$
$\mathrm{U}=4,899 \quad \mathrm{U}^{\prime}=6,397$
Exact probability (adjusted for ties):
Lower side $\mathrm{P}=0.1076$ (H1: x tends to be less than y)
Upper side $\mathrm{P}=0.8924$ (H 1 : x tends to be greater than y)
Two sided $\mathrm{P}=0.2152$ (H 1 : x tends to be distributed differently to y)
Theta $\left(\mathrm{U}^{\prime} / \mathrm{mn}\right)=0.566307(95 \% \mathrm{CI}: 0.462084$ to 0.663924$)$
95% confidence interval for difference between medians or means:
Median difference $=-0.153465(\mathrm{CI}:-0.45652$ to 0.12008)

Mann-Whitney U test DM vs no DM - not signif.
Observations (x) in DM Delta Female Thymus weight $=27$ median $=-0.145675$ rank sum $=4,688$
Observations (y) in No DM Delta Female Thymus weight $=359$ median $=-0.041299$
$\mathrm{U}=4,310 \quad \mathrm{U}^{\prime}=5,383$
Exact probability (adjusted for ties):
Lower side $\mathrm{P}=0.1697$ (H1: x tends to be less than y)
Upper side $\mathrm{P}=0.8303$ (H 1 : x tends to be greater than y)
Two sided $\mathrm{P}=0.3394$ (H 1 : x tends to be distributed differently to y)
Theta $\left(\mathrm{U}^{\prime} / \mathrm{mn}\right)=0.555349(95 \% \mathrm{CI}: 0.443188$ to 0.661125$)$

95\% confidence interval for difference between medians or means:
Median difference $=-0.12278(\mathrm{CI}:-0.40795$ to 0.11371$)$

Mann-Whitney U test SGA vs Non SGA - SIGNIFICANT!

Observations (x) in SGA Delta Female Thymus weight $=76$ median $=-0.630227$ rank sum $=5,130.5$
Observations (y) in Non SGA Delta Female Thymus weight $=141$ median $=0.125081$
$\mathrm{U}=2,204.5 \quad \mathrm{U}^{\prime}=8,511.5$

Exact probability (adjusted for ties):
Lower side $\mathrm{P}<0.0001$ (H1: x tends to be less than y)
Upper side $\mathrm{P}>0.9999$ (H1: x tends to be greater than y)
Two sided $\mathrm{P}<0.0001$ (H1: x tends to be distributed differently to y)
Theta $(\mathrm{U} ' / \mathrm{mn})=0.79428(95 \% \mathrm{CI}: 0.72375$ to 0.848751$)$
95% confidence interval for difference between medians or means:
Median difference $=-1.00172$ (CI: -1.30505 to -0.72859)

Mann-Whitney U test - AI vs UE - SIGNIFICANT!

Observations (x) in AI COD Delta Female Thymus weight $=72$ median $=0.035993$ rank sum $=12,670$
Observations (y) in UE COD Delta Female Thymus weight $=233$ median $=-0.043543$
$\mathrm{U}=10,042 \quad \mathrm{U}^{\prime}=6,734$
Normalised statistic $=2.528853$ (adjusted for ties)
Lower side $\mathrm{P}=0.9943$ (H1: x tends to be less than y)
Upper side $\mathrm{P}=0.0057(\mathrm{H} 1: \mathrm{x}$ tends to be greater than y$)$
Two sided $\mathrm{P}=0.0114$ (H1: x tends to be distributed differently to y)

Theta $\left(\mathrm{U}^{\prime} / \mathrm{mn}\right)=0.401407$ ($95 \% \mathrm{CI}: 0.330447$ to 0.477728)
95% confidence interval for difference between medians or means:
Median difference $=0.11959$ (CI: 0.02451 to 0.23959)

Mann-Whitney U test UE vs Placenta - SIGNIFICANT!

Observations (x) in UE COD Delta Female Thymus weight $=233$ median $=-0.043543$ rank sum $=$ 30,300.5
Observations (y) in Placenta COD Delta Female Thymus weight $=19$ median $=-0.553919$
$\mathrm{U}=3,039.5 \quad \mathrm{U}^{\prime}=1,387.5$

Normalised statistic $=2.703697$ (adjusted for ties)
Lower side $\mathrm{P}=0.9966$ (H 1 : x tends to be less than y)
Upper side $\mathrm{P}=0.0034(\mathrm{H} 1: \mathrm{x}$ tends to be greater than y$)$
Two sided $\mathrm{P}=0.0069(\mathrm{H} 1$: x tends to be distributed differently to y$)$
Theta $\left(\mathrm{U}^{\prime} / \mathrm{mn}\right)=0.313418(95 \% \mathrm{CI}: 0.207985$ to 0.447774$)$
95% confidence interval for difference between medians or means:
Median difference $=0.47687(\mathrm{CI}: 0.12452$ to 0.84408$)$

Mann-Whitney U test- significant!
Observations (x) in SGA Delta Female Thyroid weight $=14$ median $=-0.574747$ rank sum $=244$
Observations (y) in Non SGA Delta Female Thyroid weight $=42$ median $=-0.086259$
$\mathrm{U}=139 \quad \mathrm{U}^{\prime}=449$

Exact probability:
Lower side $\mathrm{P}=0.0014(\mathrm{H} 1: \mathrm{x}$ tends to be less than y$)$
Upper side $\mathrm{P}=0.9986$ (H1: x tends to be greater than y)
Two sided $\mathrm{P}=0.0027$ (H 1 : x tends to be distributed differently to y)
Theta $\left(\mathrm{U}^{\prime} / \mathrm{mn}\right)=0.763605(95 \%$ CI: 0.590995 to 0.873247$)$
95.1% confidence interval for difference between medians or means:
Median difference $=-0.481225(\mathrm{CI}:-0.81294$ to -0.1744$)$

Mann-Whitney U test not signif
Observations (x) in COD AI Delta Female Thyroid weight $=6$ median $=-0.075033$ rank sum $=165$
Observations (y) in COD UE Delta Female Thyroid weight $=43$ median $=-0.11505$
$\mathrm{U}=144 \quad \mathrm{U}^{\prime}=114$
Exact probability (adjusted for ties):
Lower side $\mathrm{P}=0.3319$ ($\mathrm{H} 1: \mathrm{x}$ tends to be less than y)
Upper side $\mathrm{P}=0.6681(\mathrm{H} 1: \mathrm{x}$ tends to be greater than y$)$
Two sided $\mathrm{P}=0.6639$ (H1: x tends to be distributed differently to y)
Theta $\left(\mathrm{U}^{\prime} / \mathrm{mn}\right)=0.44186(95 \% \mathrm{CI}: 0.236583$ to 0.672648$)$
95.3% confidence interval for difference between medians or means:
Median difference $=0.114125(\mathrm{CI}:-0.37416$ to 0.65643$)$
Mann-Whitney U test Mac vs non mac - SIGNIFICANT!
Observations (x) in Macerated Delta Female Brain weight $=264$ median $=-0.147302$ rank sum $=$ 42,842
Observations (y) in Non macerated Delta Female Brain weight $=108$ median $=0.370243$

$$
U=7,862 \quad U '=20,650
$$

Normalised statistic $=-6.79196($ adjusted for ties $)$
Lower side $\mathrm{P}<0.0001$ (H1: x tends to be less than y)
Upper side $\mathrm{P}>0.9999$ ($\mathrm{H} 1: \mathrm{x}$ tends to be greater than y)
Two sided $\mathrm{P}<0.0001$ (H1: x tends to be distributed differently to y)
Theta $\left(\mathrm{U}^{\prime} / \mathrm{mn}\right)=0.724256$ (95% CI: 0.663853 to 0.776281)
95\% confidence interval for difference between medians or means:
Median difference $=-0.52287(\mathrm{CI}:-0.65466$ to -0.38524$)$

Mann-Whitney U test mac vs non mac - SIGNIFICANT!
Observations (x) in Macerated Delta Female Liver weight $=280$ median $=-0.229789$ rank sum $=$ 46,908.5
Observations (y) in Non macerated Delta Female Liver weight $=116$ median $=0.19691$
$\mathrm{U}=7,568.5 \quad \mathrm{U}^{\prime}=24,911.5$

Normalised statistic $=-8.365302$ (adjusted for ties)
Lower side P < 0.0001 (H1: x tends to be less than y)
Upper side $\mathrm{P}>0.9999$ (H1: x tends to be greater than y)
Two sided $\mathrm{P}<0.0001$ (H1: x tends to be distributed differently to y)
Theta $\left(\mathrm{U}^{\prime} / \mathrm{mn}\right)=0.76698(95 \%$ CI: 0.711448 to 0.813453$)$
95% confidence interval for difference between medians or means:
Median difference $=-0.58066$ (CI: -0.74022 to -0.44799)
Mann-Whitney U test Mac vs non Mac - SIGNIFICANT!
Observations (x) in Macerated Delta Female Thymus weight $=275$ median $=-0.094157$ rank sum $=$

47,697
Observations (y) in Non macerated Delta Female Thymus weight $=111$ median $=0.085735$
$\mathrm{U}=9,747$
$\mathrm{U}^{\prime}=20,778$
Normalised statistic $=-5.558961($ adjusted for ties $)$
Lower side $\mathrm{P}<0.0001$ (H 1 : x tends to be less than y)
Upper side $\mathrm{P}>0.9999$ ($\mathrm{H} 1: \mathrm{x}$ tends to be greater than y)
Two sided $\mathrm{P}<0.0001$ (H1: x tends to be distributed differently to y)
Theta $\left(\mathrm{U}^{\prime} / \mathrm{mn}\right)=0.680688(95 \%$ CI: 0.61921 to 0.735461$)$
95\% confidence interval for difference between medians or means:
Median difference $=-0.26446$ (CI: -0.3982 to -0.15951)

Mann-Whitney U test- SIGNIFICANT!

Macerated lighter
Observations (x) in Mace ratedDelta Female combined adrenal weight $=279$ median $=-0.237005$ rank sum $=48,480$
Observations (y) in Non Macertaed Delta Female combined adrenal weight $=115$ median $=0.258435$
$\mathrm{U}=9,420 \quad \mathrm{U}^{\prime}=22,665$
Normalised statistic $=-6.444125($ adjusted for ties $)$
Lower side $\mathrm{P}<0.0001$ (H1: x tends to be less than y)
Upper side $\mathrm{P}>0.9999$ ($\mathrm{H} 1: \mathrm{x}$ tends to be greater than y)
Two sided $\mathrm{P}<0.0001$ (H1: x tends to be distributed differently to y)
Theta $\left(\mathrm{U}^{\prime} / \mathrm{mn}\right)=0.706405$ (95% CI: 0.646981 to 0.758485)
95% confidence interval for difference between medians or means:
Median difference $=-0.5329$ (CI: -0.68894 to -0.37746)

Mann-Whitney U test- significant!
Mac heart lighter
Observations (x) in Mac Delta Female Heart Weight $=283$ median $=-0.165992$ rank sum $=49,280$
Observations (y) in Non Mac Delta Female Heart Weight $=115$ median $=0.265336$
$\mathrm{U}=9,094 \quad \mathrm{U}^{\prime}=23,451$
Normalised statistic $=-6.900751$ (adjusted for ties)
Lower side $\mathrm{P}<0.0001$ (H 1 : x tends to be less than y)
Upper side $\mathrm{P}>0.9999$ (H 1 : x tends to be greater than y)
Two sided $\mathrm{P}<0.0001$ (H1: x tends to be distributed differently to y)
Theta $\left(\mathrm{U}^{\prime} / \mathrm{mn}\right)=0.720572(95 \%$ CI: 0.662002 to 0.771389$)$
95\% confidence interval for difference between medians or means:
Median difference $=-0.46401$ (CI: -0.58699 to -0.34379)

Mann-Whitney U test SOGNIFICANT!

Mac lighter
Observations (x) in Mac Delta Female Combined Kidney weight $=109$ median $=-0.222355$ rank sum $=7,224.5$
Observations (y) in Non Mac Delta Female Combined Kidney weight $=50$ median $=0.22309$
$\mathrm{U}=1,229.5 \quad \mathrm{U}^{\prime}=4,220.5$
Normalised statistic $=-5.547795($ adjusted for ties $)$
Lower side $\mathrm{P}<0.0001$ (H 1 : x tends to be less than y)
Upper side $\mathrm{P}>0.9999$ ($\mathrm{H} 1: \mathrm{x}$ tends to be greater than y)
Two sided $\mathrm{P}<0.0001$ (H1: x tends to be distributed differently to y)
Theta $\left(\mathrm{U}^{\prime} / \mathrm{mn}\right)=0.774404(95 \%$ CI: 0.685788 to 0.841339$)$
95% confidence interval for difference between medians or means:

Median difference $=-0.56456($ CI: -0.76703 to -0.3707$)$

Mann-Whitney U test- SIGNIFICANT!

Mac lighter
Observations (x) in Mac Delta Female Combined lung weight $=86$ median $=-0.236588$ rank sum $=$ 4,490
Observations (y) in Non Mac Delta Female Combined lung weight $=37$ median $=0.372205$
$\mathrm{U}=749 \quad \mathrm{U}^{\prime}=2,433$
Exact probability (adjusted for ties):
Lower side $\mathrm{P}<0.0001$ (H 1 : x tends to be less than y)
Upper side $\mathrm{P}>0.9999$ (H1: x tends to be greater than y)
Two sided $\mathrm{P}<0.0001$ (H1: x tends to be distributed differently to y)
Theta $\left(\mathrm{U}^{\prime} / \mathrm{mn}\right)=0.764613(95 \%$ CI: 0.65999 to 0.84168$)$
95\% confidence interval for difference between medians or means:
Median difference $=-0.675965$ (CI: -0.97324 to -0.41908)
Mann-Whitney U test SIGNIFICANT!
Mac lighter
Observations (x) in Mac Delta Female Pancreas weight $=213$ median $=-0.210185$ rank sum $=30,200.5$
Observations (y) in Non Mac Delta Female Pancreas weight $=96$ median $=-0.014669$
$\mathrm{U}=7,409.5 \quad \mathrm{U}^{\prime}=13,038.5$
Normalised statistic $=-3.872481$ (adjusted for ties)
Lower side $\mathrm{P}<0.0001$ (H1: x tends to be less than y)
Upper side $\mathrm{P}>0.9999$ ($\mathrm{H} 1: \mathrm{x}$ tends to be greater than y)
Two sided $\mathrm{P}=0.0001$ (H1: x tends to be distributed differently to y)
Theta $\left(\mathrm{U}^{\prime} / \mathrm{mn}\right)=0.637642(95 \%$ CI: 0.568784 to 0.700313$)$
95% confidence interval for difference between medians or means
Median difference $=-0.29729(\mathrm{CI}:-0.4511$ to -0.14845$)$

Mann-Whitney U test SIGNIFICANT!

Mac lighter
Observations (x) in M acDelta Female spleen weight $=262$ median $=-0.124109$ rank sum $=44,472.5$
Observations (y) in Non Mac Delta Female spleen weight $=116$ median $=0.039413$
$\mathrm{U}=10,019.5 \quad \mathrm{U}^{\prime}=20,372.5$
Normalised statistic $=-5.283596$ (adjusted for ties)
Lower side $\mathrm{P}<0.0001$ ($\mathrm{H} 1: \mathrm{x}$ tends to be less than y)
Upper side $P>0.9999$ (H1: x tends to be greater than y)
Two sided $\mathrm{P}<0.0001$ (H1: x tends to be distributed differently to y)
Theta $\left(\mathrm{U}^{\prime} / \mathrm{mn}\right)=0.670324(95 \%$ CI: 0.608987 to 0.725414$)$
95\% confidence interval for difference between medians or means:
Median difference $=-0.30755(\mathrm{CI}:-0.47971$ to -0.1753$)$

Mann-Whitney U test- SIGNIFICANT

Mac lighter
Observations (x) in Mac Delta Female Thyroid weight $=56$ median $=-0.292981$ rank sum $=1,767$
Observations (y) in Non Mac Delta Female Thyroid weight $=12$ median $=0.157634$
$\mathrm{U}=171$
$\mathrm{U}^{\prime}=501$
Exact probability (adjusted for ties):
Lower side $\mathrm{P}=0.0035$ (H1: x tends to be less than y)
Upper side $\mathrm{P}=0.9965$ (H1: x tends to be greater than y)
Two sided $\mathrm{P}=0.0069$ (H1: x tends to be distributed differently to y)

Theta $\left(\mathrm{U}^{\prime} / \mathrm{mn}\right)=0.745536(95 \% \mathrm{CI}: 0.566166$ to 0.862688$)$
95% confidence interval for difference between medians or means:
Median difference $=-0.499985(\mathrm{CI}:-0.90954$ to -0.1391$)$

Males:

Mann-Whitney U test not signif
Observations (x) in Overweight Delta Male combined Adrenal weight $=28$ median $=0.42937$ rank sum = 1,150
Observations (y) in Obese Delta Male combined Adrenal weight $=42$ median $=-0.058551$
$\mathrm{U}=744 \quad \mathrm{U}^{\prime}=432$
Exact probability (adjusted for ties):
Lower side $\mathrm{P}=0.0308$ ($\mathrm{H} 1: \mathrm{x}$ tends to be less than y)
Upper side $\mathrm{P}=0.9692(\mathrm{H} 1: \mathrm{x}$ tends to be greater than y$)$
Two sided $\mathrm{P}=0.0616$ (H1: x tends to be distributed differently to y)
Theta $\left(\mathrm{U}^{\prime} / \mathrm{mn}\right)=0.367347(95 \% \mathrm{CI}: 0.250246$ to 0.506355$)$

95\% confidence interval for difference between medians or means:
Median difference $=0.555495(\mathrm{CI}:-0.03986$ to 1.14704$)$
Mann-Whitney U test
Observations (x) in Overweight Delta Male combined Adrenal weight $=28$ median $=0.42937$ rank sum = $1,028.5$
Observations (y) in Normal Delta Male combined Adrenal weight $=35$ median $=-0.045902$
$\mathrm{U}=622.5 \quad \mathrm{U}^{\prime}=357.5$

Exact probability (adjusted for ties):
Lower side $\mathrm{P}=0.0336(\mathrm{H} 1: \mathrm{x}$ tends to be less than y$)$
Upper side $\mathrm{P}=0.9664$ ($\mathrm{H} 1: \mathrm{x}$ tends to be greater than y)
Two sided $\mathrm{P}=0.0671$ (H1: x tends to be distributed differently to y)
Theta $\left(\mathrm{U}^{\prime} / \mathrm{mn}\right)=0.364796$ (95% CI: 0.244167 to 0.509354)
95\% confidence interval for difference between medians or means:
Median difference $=0.45256$ (CI: -0.05463 to 0.8824)

Mann-Whitney U test
Observations (x) in Normal Delta Male combined Adrenal weight $=35$ median $=-0.045902$ rank sum $=$ 1,404.5
Observations (y) in Obese Delta Male combined Adrenal weight $=42$ median $=-0.058551$
$\mathrm{U}=774.5 \quad \mathrm{U}^{\prime}=695.5$
Exact probability (adjusted for ties):
Lower side $\mathrm{P}=0.3448(\mathrm{H} 1: \mathrm{x}$ tends to be less than y$)$
Upper side $\mathrm{P}=0.6552$ (H 1 : x tends to be greater than y)
Two sided $\mathrm{P}=0.6897$ (H1: x tends to be distributed differently to y)
Theta $\left(\mathrm{U}^{\prime} / \mathrm{mn}\right)=0.473129(95 \%$ CI: 0.350014 to 0.600261$)$
95\% confidence interval for difference between medians or means:
Median difference $=0.11731$ (CI: -0.43501 to 0.69942)
Mann-Whitney U test not signif
Observations (x) in Obese Delta Male combined Adrenal weight $=42$ median $=-0.058551$ rank sum $=$

1,100

Observations (y) in Underweight Delta Male combined Adrenal weight $=9$ median $=-0.356813$

$$
\mathrm{U}=197 \quad \mathrm{U}^{\prime}=181
$$

Exact probability (adjusted for ties):
Lower side $\mathrm{P}=0.4263(\mathrm{H} 1: \mathrm{x}$ tends to be less than y$)$
Upper side $\mathrm{P}=0.5737$ ($\mathrm{H} 1: \mathrm{x}$ tends to be greater than y)
Two sided $\mathrm{P}=0.8525$ (H1: x tends to be distributed differently to y)
Theta $(\mathrm{U} / \mathrm{mnn})=0.478836$ (95% CI: 0.291643 to 0.673177)
95.2% confidence interval for difference between medians or means:
Median difference $=0.051595$ (CI: -0.8332 to 0.89855)
Mann-Whitney U test- significant!
Observations (x) in SGA Delta Male combined Adrenal weight $=99$ median $=-0.620872$ rank sum $=$ 8,170.5
Observations (y) in Non SGA Delta Male combined Adrenal weight $=153$ median $=0.384822$
$\mathrm{U}=3,220.5 \quad \mathrm{U}^{\prime}=11,926.5$
Normalised statistic $=-7.702937$ (adjusted for ties)
Lower side $\mathrm{P}<0.0001$ (H1: x tends to be less than y)
Upper side $\mathrm{P}>0.9999$ (H1: x tends to be greater than y)
Two sided $\mathrm{P}<0.0001$ (H1: x tends to be distributed differently to y)
Theta $\left(\mathrm{U}^{\prime} / \mathrm{mn}\right)=0.787384(95 \%$ CI: 0.723453 to 0.838297$)$
95% confidence interval for difference between medians or means:
Median difference $=-0.97399(\mathrm{CI}:-1.21408$ to -0.75092$)$

Mann-Whitney U test Mac vs Non Mac - significant!
Macerated smaller adrenals
Observations (x) in Macerated Delta Male combined Adrenal weight $=205$ median $=-0.214898$ rank sum $=24,621.5$
Observations (y) in Non Macerated Delta Male combined Adrenal weight $=46$ median $=0.429215$
$\mathrm{U}=3,506.5 \quad \mathrm{U}^{\prime}=5,923.5$
Normalised statistic $=-2.7157$ (adjusted for ties)
Lower side $\mathrm{P}=0.0033$ (H1: x tends to be less than y)
Upper side $\mathrm{P}=0.9967(\mathrm{H} 1: \mathrm{x}$ tends to be greater than y$)$
Two sided $\mathrm{P}=0.0066$ (H1: x tends to be distributed differently to y$)$
Theta $\left(\mathrm{U}^{\prime} / \mathrm{mn}\right)=0.628155(95 \% \mathrm{CI}: 0.535955$ to 0.71038$)$
95% confidence interval for difference between medians or means:
Median difference $=-0.49879(\mathrm{CI}:-0.8334$ to -0.144$)$

Mann-Whitney U test not signif

Observations (x) in Hypertension Delta Male combined Adrenal weight $=26$ median $=-0.178382$ rank sum $=3,057$
Observations (y) in No Hypertension Delta Male combined Adrenal weight $=225$ median $=-0.136815$ $\mathrm{U}=2,706 \quad \mathrm{U}^{\prime}=3,144$

Exact probability (adjusted for ties):
Lower side $\mathrm{P}=0.2673$ (H1: x tends to be less than y)
Upper side $\mathrm{P}=0.7327$ (H 1 : x tends to be greater than y)
Two sided $\mathrm{P}=0.5347$ (H 1 : x tends to be distributed differently to y)
Theta $\left(\mathrm{U}^{\prime} / \mathrm{mn}\right)=0.537436(95 \%$ CI: 0.421765 to 0.648468$)$

95\% confidence interval for difference between medians or means:
Median difference $=-0.139795(\mathrm{CI}:-0.59594$ to 0.29106)

Mann-Whitney U test DM vs No DM - Significant!
DM have heavier adrenals
Observations (x) in DM Delta Male combined Adrenal weight $=15$ median $=0.152678$ rank sum $=$ 2,496
Observations (y) in No DM Delta Male combined Adrenal weight $=237$ median $=-0.178754$
$\mathrm{U}=2,376 \quad \mathrm{U}=1,179$
Exact probability (adjusted for ties):
Lower side $\mathrm{P}=0.0139$ ($\mathrm{H} 1: \mathrm{x}$ tends to be less than y)
Upper side $\mathrm{P}=0.9861(\mathrm{H}: \mathrm{x}$ tends to be greater than y$)$
Two sided $\mathrm{P}=0.0279$ ($\mathrm{H} 1: \mathrm{x}$ tends to be distributed differently to y)
Theta $\left(\mathrm{U}^{\prime} / \mathrm{mn}\right)=0.331646(95 \%$ CI: 0.212823 to 0.48247$)$
95\% confidence interval for difference between medians or means:
Median difference $=0.50511$ (CI: 0.04496 to 0.96234)

Mann-Whitney U test - UE vs placenta SIGNIFICANT!

COD placenta have smaller adrenals than UE
Observations (x) in COD UE Delta Male combined Adrenal weight $=154$ median $=-0.015904$ rank sum $=15,219$
Observations (y) in COD placenta Delta Male combined Adrenal weight $=30$ median $=-0.74802$

```
U =3,284 U'=1,336
```

Normalised statistic $=3.649586$ (adjusted for ties)
Lower side $\mathrm{P}=0.9999$ ($\mathrm{H} 1: \mathrm{x}$ tends to be less than y)

Upper side $\mathrm{P}=0.0001(\mathrm{H} 1: \mathrm{x}$ tends to be greater than y$)$
Two sided $\mathrm{P}=0.0003(\mathrm{H} 1: \mathrm{x}$ tends to be distributed differently to y$)$
Theta $\left(\mathrm{U}^{\prime} / \mathrm{mn}\right)=0.289177(95 \% \mathrm{CI}: 0.202014$ to 0.399599$)$
95% confidence interval for difference between medians or means:
Median difference $=0.64852(\mathrm{CI}: 0.30939$ to 0.98154$)$

Mann-Whitney U test UE vs AI - SIGNIFICANT!

UE smaller adrenals than AI
Observations (x) in COD AI Delta Male combined Adrenal weight $=21$ median $=0.586726$ rank sum = 2,346.5
Observations (y) in COD UE Delta Male combined Adrenal weight $=154$ median $=-0.015904$
$\mathrm{U}=2,115.5 \quad \mathrm{U}^{\prime}=1,118.5$

Exact probability (adjusted for ties):
Lower side $\mathrm{P}=0.0107$ (H1: x tends to be less than y)
Upper side $\mathrm{P}=0.9893(\mathrm{H} 1$: x tends to be greater than y$)$
Two sided $\mathrm{P}=0.0214(\mathrm{H} 1: \mathrm{x}$ tends to be distributed differently to y$)$

Theta $\left(\mathrm{U}^{\prime} / \mathrm{mn}\right)=0.345857(95 \% \mathrm{CI}: 0.237132$ to 0.477687$)$
95% confidence interval for difference between medians or means:
Median difference $=0.56649(\mathrm{CI}: 0.0906$ to 1.02011$)$

Mann-Whitney U test- Overweight vs Obese - not signif
Observations (x) in Overweight Delta Male Brain weight $=27$ median $=0.04204$ rank sum $=929$
Observations (y) in Obese Delta Male Brain weight $=39$ median $=-0.118765$

$$
\mathrm{U}=551 \quad \mathrm{U}^{\prime}=502
$$

Exact probability:
Lower side $\mathrm{P}=0.378$ (H 1 : x tends to be less than y)
Upper side $\mathrm{P}=0.622$ ($\mathrm{H} 1: \mathrm{x}$ tends to be greater than y)
Two sided $\mathrm{P}=0.7559$ (H1: x tends to be distributed differently to y)
Theta $\left(\mathrm{U}^{\prime} / \mathrm{mn}\right)=0.476733$ (95% CI: 0.342707 to 0.614851)
95\% confidence interval for difference between medians or means:
Median difference $=0.09793$ (CI: -0.36834 to 0.56321)

Observations (x) in OW Delta Male Brain weight $=27$ median $=0.04204$ rank sum $=812$
Observations (y) in Normal Delta Male Brain weight $=34$ median $=0.315838$
$\mathrm{U}=434 \quad \mathrm{U}^{\prime}=484$
Exact probability:
Lower side $\mathrm{P}=0.362$ (H1: x tends to be less than y)
Upper side $\mathrm{P}=0.638$ ($\mathrm{H} 1: \mathrm{x}$ tends to be greater than y)
Two sided $\mathrm{P}=0.724$ (H1: x tends to be distributed differently to y)
Theta $\left(\mathrm{U}^{\prime} / \mathrm{mn}\right)=0.527233(95 \%$ CI: 0.384948 to 0.664472$)$
95.1% confidence interval for difference between medians or means:
Median difference $=-0.07288$ (CI: -0.56471 to 0.39073)
Mann-Whitney U test
Observations (x) in Normal Delta Male Brain weight $=34$ median $=0.315838$ rank sum $=1,324$
Observations (y) in Obese Delta Male Brain weight $=39$ median $=-0.118765$

$\mathrm{U}=729$
 $\mathrm{U}^{\prime}=597$

Exact probability:
Lower side $\mathrm{P}=0.2356$ (H1: x tends to be less than y)
Upper side $\mathrm{P}=0.7644$ (H1: x tends to be greater than y)
Two sided $\mathrm{P}=0.4712$ (H1: x tends to be distributed differently to y)
Theta $\left(\mathrm{U}^{\prime} / \mathrm{mn}\right)=0.450226$ (95% CI: 0.326511 to 0.581712)
95.1% confidence interval for difference between medians or means:
Median difference $=0.192455$ (CI: -0.33868 to 0.65432)

Mann-Whitney U test - BP vs no BP - not signif
Observations (x) in Hypertension Delta Male Brain weight $=24$ median $=-0.055009$ rank sum $=3,122$
Observations (y) in No hypertension Delta Male Brain weight $=222$ median $=-0.026093$
$\mathrm{U}=2,822 \quad \mathrm{U}^{\prime}=2,506$
Exact probability (adjusted for ties):
Lower side $\mathrm{P}=0.318$ ($\mathrm{H} 1: \mathrm{x}$ tends to be less than y)
Upper side $\mathrm{P}=0.682(\mathrm{H} 1: \mathrm{x}$ tends to be greater than y$)$
Two sided $\mathrm{P}=0.6359$ (H1: x tends to be distributed differently to y)
Theta $\left(\mathrm{U}^{\prime} / \mathrm{mn}\right)=0.470345(95 \%$ CI: 0.354863 to 0.589761$)$
95% confidence interval for difference between medians or means:
Median difference $=0.102155(\mathrm{CI}:-0.30545$ to 0.5186)

Mann-Whitney U test - DM vs no DM - No signif

Observations (x) in DM Delta Male Brain weight $=17$ median $=0.211132$ rank sum $=2,457$
Observations (y) in No DM Delta Male Brain weight $=231$ median $=-0.041591$
$\mathrm{U}=2,304 \quad \mathrm{U}^{\prime}=1,623$
Exact probability (adjusted for ties):
Lower side $\mathrm{P}=0.1178(\mathrm{H} 1: \mathrm{x}$ tends to be less than y$)$
Upper side $\mathrm{P}=0.8822(\mathrm{H} 1: \mathrm{x}$ tends to be greater than y$)$
Two sided $\mathrm{P}=0.2357$ (H1: x tends to be distributed differently to y)
Theta $\left(\mathrm{U}^{\prime} / \mathrm{mn}\right)=0.413293$ (95% CI: 0.287038 to 0.554721)
95\% confidence interval for difference between medians or means:
Median difference $=0.25918$ (CI: -0.16843 to 0.68579)

Mann-Whitney U test- significant!
Observations (x) in SGA Delta Male Brain weight $=94$ median $=-0.522619$ rank sum $=8,016$
Observations (y) in Non SGA Delta Male Brain weight $=158$ median $=0.308405$
$\mathrm{U}=3,551 \quad \mathrm{U}^{\prime}=11,301$
Normalised statistic $=-6.924844($ adjusted for ties $)$
Lower side $\mathrm{P}<0.0001$ (H1: x tends to be less than y)
Upper side $\mathrm{P}>0.9999$ (H1: x tends to be greater than y)
Two sided $\mathrm{P}<0.0001$ (H1: x tends to be distributed differently to y)
Theta $\left(\mathrm{U}^{\prime} / \mathrm{mn}\right)=0.760908$ (95% CI: 0.694001 to 0.815511)
95% confidence interval for difference between medians or means:
Median difference $=-0.847475$ (CI: -1.07173 to -0.63514)

Mann-Whitney U test AI vs UE - not signif
Observations (x) in AI Delta Male Brain weight $=21$ median $=0.243145$ rank sum $=2,049$
Observations (y) in UE Delta Male Brain weight $=155$ median $=0.105088$
$\mathrm{U}=1,818 \quad \mathrm{U}^{\prime}=1,437$

Exact probability (adjusted for ties):
Lower side $\mathrm{P}=0.194$ (H1: x tends to be less than y)
Upper side $\mathrm{P}=0.806(\mathrm{H} 1: \mathrm{x}$ tends to be greater than y$)$
Two sided $\mathrm{P}=0.3879(\mathrm{H} 1$: x tends to be distributed differently to y$)$
Theta $\left(\mathrm{U}^{\prime} / \mathrm{mn}\right)=0.441475(95 \% \mathrm{CI}: 0.320146$ to 0.571752$)$
95% confidence interval for difference between medians or means:
Median difference $=0.16139(\mathrm{CI}:-0.18363$ to 0.48329$)$

Mann-Whitney U test - UE vs Placenta - SIGNIFICANT!!
Observations (x) in UE Delta Male Brain weight $=155$ median $=0.105088$ rank sum $=15,439$
Observations (y) in Placenta Delta Male Brain weight $=29$ median $=-0.744089$
$\mathrm{U}=3,349 \quad \mathrm{U}^{\prime}=1,146$

Normalised statistic $=4.184321$ (adjusted for ties)
Lower side $\mathrm{P}>0.9999$ (H1: x tends to be less than y)
Upper side $\mathrm{P}<0.0001$ (H1: x tends to be greater than y)
Two sided $\mathrm{P}<0.0001$ (H1: x tends to be distributed differently to y)
Theta $\left(\mathrm{U}^{\prime} / \mathrm{mn}\right)=0.25495(95 \%$ CI: 0.172581 to 0.364543$)$
95% confidence interval for difference between medians or means:

Median difference $=0.83034$ (CI: 0.47391 to 1.18526)
Mann-Whitney U test- Mac vs non mac - SIGNIFICANT!
Observations (x) in Macerated Delta Male Brain weight $=206$ median $=-0.137634$ rank sum $=$ 24,141.5
Observations (y) in Non Macerated Delta Male Brain weight $=41$ median $=0.388433$
$\mathrm{U}=2,820.5 \quad \mathrm{U}^{\prime}=5,625.5$
Normalised statistic $=-3.356931($ adjusted for ties $)$
Lower side $\mathrm{P}=0.0004$ ($\mathrm{H} 1: \mathrm{x}$ tends to be less than y)
Upper side $\mathrm{P}=0.9996$ ($\mathrm{H} 1: \mathrm{x}$ tends to be greater than y)
Two sided $\mathrm{P}=0.0008$ (H1: x tends to be distributed differently to y)
Theta $\left(\mathrm{U}^{\prime} / \mathrm{mn}\right)=0.666055(95 \%$ CI: 0.570274 to 0.747885$)$
95\% confidence interval for difference between medians or means:
Median difference $=-0.534965$ (CI: -0.82958 to -0.24123)

Mann-Whitney U test UE vs Placenta - significant
Placenta COD have lighter kidneys than UE
Observations (x) in COD UE Delta male combined kidney weight $=56$ median $=0.213252$ rank sum $=$ 2,206
Observations (y) in COD Placenta Delta male combined kidney weight $=13$ median $=-0.884312$
$\mathrm{U}=610 \quad \mathrm{U}^{\prime}=118$

Exact probability:
Lower side $\mathrm{P}<0.0001$ ($\mathrm{H} 1: \mathrm{x}$ tends to be less than y)
Upper side $\mathrm{P}>0.9999(\mathrm{H} 1: \mathrm{x}$ tends to be greater than y$)$
Two sided $\mathrm{P}<0.0001$ (H1: x tends to be distributed differently to y)

Theta $\left(\mathrm{U}^{\prime} / \mathrm{mn}\right)=0.162088(95 \% \mathrm{CI}: 0.076761$ to 0.324113$)$
95% confidence interval for difference between medians or means:
Median difference $=1.037785$ (CI: 0.59994 to 1.71626)

Mann-Whitney U test AI vs UE not signif
Observations (x) in COD AI Delta male combined kidney weight $=8$ median $=0.600033$ rank sum $=$ 269
Observations (y) in COD UE Delta male combined kidney weight $=56$ median $=0.213252$
$\mathrm{U}=233 \quad \mathrm{U}^{\prime}=215$

Exact probability:
Lower side $\mathrm{P}=0.4328$ (H 1 : x tends to be less than y)
Upper side $\mathrm{P}=0.5672(\mathrm{H} 1$: x tends to be greater than y$)$
Two sided $\mathrm{P}=0.8656$ (H1: x tends to be distributed differently to y)
Theta $\left(\mathrm{U}^{\prime} / \mathrm{mn}\right)=0.479911(95 \% \mathrm{CI}: 0.288454$ to 0.678455$)$
95.1% confidence interval for difference between medians or means:
Median difference $=0.103065(\mathrm{CI}:-0.82889$ to 0.95323)

Mann-Whitney U test SGA vs No SGA - significant!
SGA kidneys lighter
Observations (x) in SGA Delta male combined kidney weight $=42$ median $=-0.443889$ rank sum $=$ 1,342
Observations (y) in Non SGA Delta male combined kidney weight $=53$ median $=0.619412$
$\mathrm{U}=439 \quad \mathrm{U}^{\prime}=1,787$

Exact probability (adjusted for ties):
Lower side $\mathrm{P}<0.0001$ (H 1 : x tends to be less than y)
Upper side $\mathrm{P}>0.9999(\mathrm{H} 1: \mathrm{x}$ tends to be greater than y$)$
Two sided $\mathrm{P}<0.0001$ (H 1 : x tends to be distributed differently to y)

Theta $(\mathrm{U} ' / \mathrm{mn})=0.802785(95 \% \mathrm{CI}: 0.696596$ to 0.875242$)$
95% confidence interval for difference between medians or means:
Median difference $=-1.037385(\mathrm{CI}:-1.4824$ to -0.72745)

Mann-Whitney U test mac vs no mac - not signif
Observations (x) in Macerated Delta male combined kidney weight $=72$ median $=-0.26661$ rank sum $=3,115.5$
Observations (y) in Non Macerated Delta male combined kidney weight $=19$ median $=0.419309$
$\mathrm{U}=487.5 \quad \mathrm{U}^{\prime}=880.5$

Exact probability (adjusted for ties):
Lower side $\mathrm{P}=0.0274$ (H1: x tends to be less than y)
Upper side $\mathrm{P}=0.9726(\mathrm{H} 1: \mathrm{x}$ tends to be greater than y$)$
Two sided $\mathrm{P}=0.0547$ (H1: x tends to be distributed differently to y)
Theta $\left(\mathrm{U}^{\prime} / \mathrm{mn}\right)=0.64364(95 \%$ CI: 0.496917 to 0.764275$)$

95\% confidence interval for difference between medians or means:
Median difference $=-0.56449(\mathrm{CI}:-1.13366$ to 0.01103$)$

Mann-Whitney U test- significant!
Observations (x) in SGA Delta male combined kidney weight $=39$ median $=-0.548555$ rank sum $=$

1,130.5
Observations (y) in Non SGA Delta male combined kidney weight $=53$ median $=0.619412$
$\mathrm{U}=350.5 \quad \mathrm{U}=1,716.5$
Exact probability (adjusted for ties):
Lower side P < 0.0001 (H1: x tends to be less than y)
Upper side $P>0.9999$ (H1: x tends to be greater than y)
Two sided $\mathrm{P}<0.0001$ (H1: x tends to be distributed differently to y)
Theta $\left(\mathrm{U}^{\prime} / \mathrm{mn}\right)=0.830431(95 \%$ CI: 0.72578 to 0.897652$)$
95\% confidence interval for difference between medians or means:
Median difference $=-1.13325(\mathrm{CI}:-1.55607$ to -0.82276)

Mann-Whitney U test BP vs no BP not signif
Observations (x) in Hypertension Delta male combined kidney weight $=11$ median $=-0.272127$ rank sum $=468.5$
Observations (y) in No Hypertension Delta male combined kidney weight $=81$ median $=-0.108915$
$\mathrm{U}=402.5 \quad \mathrm{U}^{\prime}=488.5$
Exact probability (adjusted for ties):
Lower side $\mathrm{P}=0.3052(\mathrm{H} 1: \mathrm{x}$ tends to be less than y$)$
Upper side $\mathrm{P}=0.6948$ ($\mathrm{H} 1: \mathrm{x}$ tends to be greater than y)
Two sided $\mathrm{P}=0.6104$ (H1: x tends to be distributed differently to y)
Theta $\left(\mathrm{U}^{\prime} / \mathrm{mn}\right)=0.54826$ (95% CI: 0.372733 to 0.710758)
95.1\% confidence interval for difference between medians or means:

Median difference $=-0.16428$ (CI: -0.89242 to 0.50501)

Mann-Whitney U test DM vs no DM not signif

Observations (x) in DM Delta male combined kidney weight $=3$ median $=1.375557$ rank sum $=208.5$
Observations (y) in No DM Delta male combined kidney weight $=89$ median $=-0.112607$
$\mathrm{U}=202.5 \quad \mathrm{U}^{\prime}=64.5$
Exact probability (adjusted for ties):
Lower side $\mathrm{P}=0.068$ ($\mathrm{H} 1: \mathrm{x}$ tends to be less than y)
Upper side $\mathrm{P}=0.932$ (H 1 : x tends to be greater than y)
Two sided $\mathrm{P}=0.1361$ (H 1 : x tends to be distributed differently to y)
Theta $\left(\mathrm{U}^{\prime} / \mathrm{mn}\right)=0.241573(95 \%$ CI: 0.078025 to 0.57135$)$
confidence interval not calculated if n 1 or $\mathrm{n} 2<4$

Mann-Whitney U test not signif

Observations (x) in Normal Delta male combined kidney weight $=16$ median $=-0.355366$ rank sum $=$ 227
Observations (y) in Overweight Delta male combined kidney weight $=13$ median $=-0.108915$
$\mathrm{U}=91 \quad \mathrm{U}^{\prime}=117$

Exact probability:
Lower side $\mathrm{P}=0.2945$ (H 1 : x tends to be less than y)
Upper side $\mathrm{P}=0.7055(\mathrm{H} 1: \mathrm{x}$ tends to be greater than y$)$
Two sided $\mathrm{P}=0.589$ ($\mathrm{H} 1: \mathrm{x}$ tends to be distributed differently to y)
Theta $\left(\mathrm{U}^{\prime} / \mathrm{mn}\right)=0.5625(95 \% \mathrm{CI}: 0.358136$ to 0.745104$)$
95% confidence interval for difference between medians or means:

Median difference $=-0.2058(\mathrm{CI}:-0.80691$ to 0.65528$)$

Mann-Whitney U test not signif

Observations (x) in Overweight Delta male combined kidney weight $=13$ median $=-0.108915$ rank sum $=212$
Observations (y) in Obese Delta male combined kidney weight $=15$ median $=-0.405046$

$$
\mathrm{U}=121 \quad \mathrm{U}^{\prime}=74
$$

Exact probability:
Lower side $\mathrm{P}=0.1472(\mathrm{H} 1: \mathrm{x}$ tends to be less than y$)$
Upper side $\mathrm{P}=0.8528$ ($\mathrm{H} 1: \mathrm{x}$ tends to be greater than y)
Two sided $\mathrm{P}=0.2945$ (H1: x tends to be distributed differently to y)
Theta $\left(\mathrm{U}^{\prime} / \mathrm{mn}\right)=0.379487(95 \%$ CI: 0.208547 to 0.593117$)$
95.4\% confidence interval for difference between medians or means:

Median difference $=0.41527$ (CI: -0.41953 to 1.19765)

Mann-Whitney U test not signif
Observations (x) in Obese Delta male combined kidney weight $=15$ median $=-0.405046$ rank sum $=$ 222
Observations (y) in Normal Delta male combined kidney weight $=16$ median $=-0.355366$
$\mathrm{U}=102 \quad \mathrm{U}=138$
Exact probability:
Lower side $\mathrm{P}=0.2473$ (H 1 : x tends to be less than y)
Upper side $\mathrm{P}=0.7527$ (H1: x tends to be greater than y)
Two sided $\mathrm{P}=0.4945$ (H1: x tends to be distributed differently to y)

Theta $\left(\mathrm{U}^{\prime} / \mathrm{mn}\right)=0.575(95 \% \mathrm{CI}: 0.376096$ to 0.74939$)$
95.1% confidence interval for difference between medians or means:
Median difference $=-0.231545(\mathrm{CI}:-1.07055$ to 0.45024$)$

Mann-Whitney U test

Observations (x) in OW Delta Male liver weight $=28$ median $=0.251838$ rank sum $=969$
Observations (y) in Normal Delta Male liver weight $=36$ median $=-0.114175$
$\mathrm{U}=563 \quad \mathrm{U}^{\prime}=445$
Exact probability:
Lower side $\mathrm{P}=0.2156$ (H1: x tends to be less than y)
Upper side $\mathrm{P}=0.7844(\mathrm{H} 1: \mathrm{x}$ tends to be greater than y$)$
Two sided $\mathrm{P}=0.4312$ (H1: x tends to be distributed differently to y)
Theta $\left(\mathrm{U}^{\prime} / \mathrm{mn}\right)=0.441468(95 \% \mathrm{CI}: 0.310574$ to 0.58275$)$
95.2% confidence interval for difference between medians or means:
Median difference $=0.176145(\mathrm{CI}:-0.28492$ to 0.70849$)$

Mann-Whitney U test OW vs obese - not signif
Observations (x) in Overweight Delta Male liver weight $=28$ median $=0.251838$ rank sum $=1,102$
Observations (y) in Obese Delta Male liver weight $=44$ median $=-0.360678$
$\mathrm{U}=696 \quad \mathrm{U}^{\prime}=536$

Exact probability:
Lower side $\mathrm{P}=0.1804$ (H1: x tends to be less than y)

Upper side $\mathrm{P}=0.8196(\mathrm{H} 1$: x tends to be greater than y$)$
Two sided $\mathrm{P}=0.3608$ (H 1 : x tends to be distributed differently to y)
Theta $\left(\mathrm{U}^{\prime} / \mathrm{mn}\right)=0.435065(95 \% \mathrm{CI}: 0.309716$ to 0.571096$)$
95% confidence interval for difference between medians or means
Median difference $=0.305035(\mathrm{CI}:-0.29965$ to 0.91391$)$
Mann-Whitney U test

Observations (x) in Normal Delta Male liver weight $=36$ median $=-0.114175$ rank sum $=1,515$
Observations (y) in Obese Delta Male liver weight $=44$ median $=-0.360678$
$\mathrm{U}=849 \quad \mathrm{U}^{\prime}=735$

Exact probability:
Lower side $\mathrm{P}=0.2934$ (H 1 : x tends to be less than y)
Upper side $\mathrm{P}=0.7066(\mathrm{H} 1$: x tends to be greater than y$)$
Two sided $\mathrm{P}=0.5867(\mathrm{H} 1: \mathrm{x}$ tends to be distributed differently to y$)$

Theta $\left(\mathrm{U}^{\prime} / \mathrm{mn}\right)=0.464015(95 \% \mathrm{CI}: 0.343767$ to 0.589462$)$
95% confidence interval for difference between medians or means:
Median difference $=0.1369(\mathrm{CI}:-0.33098$ to 0.59722$)$

Mann-Whitney U test - UW vs obese - not signif

Observations (x) in Obese Delta Male liver weight $=44$ median $=-0.360678$ rank sum $=1,187$
Observations (y) in Underweight Delta Male liver weight $=9$ median $=-0.257219$
$\mathrm{U}=197 \quad \mathrm{U}^{\prime}=199$

Exact probability:

Lower side $\mathrm{P}=0.4954(\mathrm{H} 1: \mathrm{x}$ tends to be less than y$)$
Upper side $\mathrm{P}=0.5046$ ($\mathrm{H} 1: \mathrm{x}$ tends to be greater than y)
Two sided $\mathrm{P}=0.9907$ ($\mathrm{H} 1: \mathrm{x}$ tends to be distributed differently to y)
Theta $(\mathrm{U} / \mathrm{mn})=0.502525$ (95% CI: 0.311887 to 0.692316)
95.1% confidence interval for difference between medians or means:
Median difference $=-0.01118$ (CI: -0.67584 to 0.87492)

Mann-Whitney U test- BP vs np BP not signif
Observations (x) in Hypertension Delta Male liver weight $=26$ median $=-0.226221$ rank sum $=3,293.5$
Observations (y) in No Hypertension Delta Male liver weight $=231$ median $=-0.230568$
$\mathrm{U}=2,942.5 \quad \mathrm{U}^{\prime}=3,063.5$
Exact probability (adjusted for ties):
Lower side $\mathrm{P}=0.4337$ (H1: x tends to be less than y)
Upper side $\mathrm{P}=0.5663$ ($\mathrm{H} 1: \mathrm{x}$ tends to be greater than y)
Two sided $\mathrm{P}=0.8675$ ($\mathrm{H} 1: \mathrm{x}$ tends to be distributed differently to y)
Theta $\left(\mathrm{U}^{\prime} / \mathrm{mn}\right)=0.510073(95 \%$ CI: 0.395925 to 0.622975$)$
95\% confidence interval for difference between medians or means:
Median difference $=-0.034835$ (CI: -0.42563 to 0.32673)
Mann-Whitney U test- DM vs no DM not signif
Observations (x) in DM Delta Male liver weight $=16$ median $=0.383175$ rank sum $=2,583.5$
Observations (y) in No DM Delta Male liver weight $=242$ median $=-0.249047$
$\mathrm{U}=2,447.5 \quad \mathrm{U}^{\prime}=1,424.5$

Exact probability (adjusted for ties):
Lower side $\mathrm{P}=0.0384$ (H1: x tends to be less than y)
Upper side $\mathrm{P}=0.9616$ (H1: x tends to be greater than y)
Two sided $\mathrm{P}=0.0768(\mathrm{H} 1: \mathrm{x}$ tends to be distributed differently to y$)$
Theta $(\mathrm{U} / \mathrm{mn})=0.367898$ (95% CI: 0.245655 to 0.514158)

95\% confidence interval for difference between medians or means:
Median difference $=0.55513$ (CI: -0.05712 to 1.13528)
Mann-Whitney U test- significant!
Observations (x) in SGA Delta Male liver weight $=100$ median $=-0.596779$ rank sum $=8,671$
Observations (y) in Non SGA Delta Male liver weight $=162$ median $=0.195342$
$\mathrm{U}=3,621 \quad \mathrm{U}^{\prime}=12,579$
Normalised statistic $=-7.516864($ adjusted for ties $)$
Lower side P < 0.0001 (H1: x tends to be less than y)
Upper side $\mathrm{P}>0.9999$ (H1: x tends to be greater than y)
Two sided $\mathrm{P}<0.0001$ (H 1 : x tends to be distributed differently to y)
Theta $\left(\mathrm{U}^{\prime} / \mathrm{mn}\right)=0.776481(95 \%$ CI: 0.712566 to 0.828106$)$
95\% confidence interval for difference between medians or means:
Median difference $=-0.902745$ (CI: -1.14799 to -0.66763)
Mann-Whitney U test- AI vs UE - SIGNIFICANT!
Observations (x) in AI Delta Male liver weight $=21$ median $=0.589701$ rank sum $=2,568$
Observations (y) in UE Delta Male liver weight $=160$ median $=-0.171968$
$\mathrm{U}=2,337 \quad \mathrm{U}^{\prime}=1,023$

Exact probability:
Lower side $\mathrm{P}=0.0016$ (H 1 : x tends to be less than y)
Upper side $\mathrm{P}=0.9984$ (H1: x tends to be greater than y)
Two sided $\mathrm{P}=0.0032$ (H1: x tends to be distributed differently to y)
Theta $\left(\mathrm{U}^{\prime} / \mathrm{mn}\right)=0.304464(95 \%$ CI: 0.202894 to 0.434777$)$
95.1\% confidence interval for difference between medians or means:

Median difference $=0.71866$ (CI: 0.23435 to 1.1939)
Mann-Whitney U test UE vs Placenta - SIGNIFICANT!
Observations (x) in UE Delta Male liver weight $=160$ median $=-0.171968$ rank sum $=16,330$
Observations (y) in Placenta Delta Male liver weight $=29$ median $=-0.738443$
$\mathrm{U}=3,450 \quad \mathrm{U}^{\prime}=1,190$
Exact probability:
Lower side $\mathrm{P}<0.0001$ (H1: x tends to be less than y)
Upper side $\mathrm{P}>0.9999$ ($\mathrm{H} 1: \mathrm{x}$ tends to be greater than y)
Two sided $\mathrm{P}<0.0001$ (H1: x tends to be distributed differently to y)
Theta $\left(\mathrm{U}^{\prime} / \mathrm{mn}\right)=0.256466$ (95% CI: 0.174 to 0.365884)
95\% confidence interval for difference between medians or means:
Median difference $=0.661225$ (CI: 0.34839 to 1.01854)
Mann-Whitney U test mac vs non mac - SIGNIFICANT!!
Observations (x) in Macerated Delta Male liver weight $=209$ median $=-0.394742$ rank sum $=23,865$
Observations (y) in Non Macerated Delta Male liver weight $=48$ median $=0.730075$
$\mathrm{U}=1,920 \quad \mathrm{U}^{\prime}=8,112$

Normalised statistic $=-6.666351($ adjusted for ties $)$
Lower side $\mathrm{P}<0.0001$ (H 1 : x tends to be less than y)
Upper side $\mathrm{P}>0.9999$ (H1: x tends to be greater than y)
Two sided $\mathrm{P}<0.0001$ (H1: x tends to be distributed differently to y)
Theta $\left(\mathrm{U}^{\prime} / \mathrm{mn}\right)=0.808612(95 \%$ CI: 0.729986 to 0.866359$)$
95\% confidence interval for difference between medians or means:
Median difference $=-1.17368$ (CI: -1.52276 to -0.87376)

Mann-Whitney U test not signif
Observations (x) in Overweight Delta Male Combined Lung weight $=8$ median $=0.117854$ rank sum $=$ 81
Observations (y) in Obese Delta Male Combined Lung weight $=9$ median $=-0.615264$
$\mathrm{U}=45 \quad \mathrm{U}^{\prime}=27$

Exact probability:

Lower side $\mathrm{P}=0.2117(\mathrm{H} 1: \mathrm{x}$ tends to be less than y$)$
Upper side $\mathrm{P}=0.7883$ (H 1 : x tends to be greater than y)
Two sided $\mathrm{P}=0.4234$ (H1: x tends to be distributed differently to y)
Theta $\left(\mathrm{U}^{\prime} / \mathrm{mn}\right)=0.375(95 \%$ CI: 0.171093 to 0.643835$)$
95.4% confidence interval for difference between medians or means:
Median difference $=0.43327$ (CI: -1.00187 to 1.59761)

Mann-Whitney U test not signif

Observations (x) in Normal Delta Male Combined Lung weight $=12$ median $=-0.242466$ rank sum $=$ 125
Observations (y) in Overweight Delta Male Combined Lung weight $=8$ median $=0.117854$
$\mathrm{U}=47 \quad \mathrm{U}^{\prime}=49$
Exact probability:
Lower side $\mathrm{P}=0.485$ ($\mathrm{H} 1: \mathrm{x}$ tends to be less than y)
Upper side $\mathrm{P}=0.515$ (H1: x tends to be greater than y)
Two sided $\mathrm{P}=0.9699$ (H1: x tends to be distributed differently to y)
Theta $\left(\mathrm{U}^{\prime} / \mathrm{mn}\right)=0.510417$ ($95 \% \mathrm{CI}: 0.277924$ to 0.737947)
95.3% confidence interval for difference between medians or means:
Median difference $=-0.05914$ (CI: -1.06206 to 1.45268)

Mann-Whitney U test not signif
Observations (x) in Normal Delta Male Combined Lung weight $=12$ median $=-0.242466$ rank sum $=$ 145
Observations (y) in Obese Delta Male Combined Lung weight $=9$ median $=-0.615264$
$\mathrm{U}=67 \quad \mathrm{U}$ ' $=41$
Exact probability:
Lower side $\mathrm{P}=0.1912$ (H1: x tends to be less than y)
Upper side $\mathrm{P}=0.8088(\mathrm{H} 1: \mathrm{x}$ tends to be greater than y$)$
Two sided $\mathrm{P}=0.3824$ (H1: x tends to be distributed differently to y)
Theta $\left(\mathrm{U}^{\prime} / \mathrm{mn}\right)=0.37963(95 \%$ CI: 0.188024 to 0.625334$)$
95.1% confidence interval for difference between medians or means:

Median difference $=0.436445$ (CI: -0.689 to 2.04233)

Mann-Whitney U test not signif

Observations (x) in Hypertension Delta Male Combined Lung weight $=9$ median $=-0.328659$ rank sum $=321$
Observations (y) in No Hypertension Delta Male Combined Lung weight $=65$ median $=-0.315802$ $\mathrm{U}=276 \quad \mathrm{U}=309$

Exact probability:
Lower side $\mathrm{P}=0.3974(\mathrm{H} 1: \mathrm{x}$ tends to be less than y$)$
Upper side $\mathrm{P}=0.6026$ (H1: x tends to be greater than y)
Two sided $\mathrm{P}=0.7947$ (H1: x tends to be distributed differently to y)
Theta $\left(\mathrm{U}^{\prime} / \mathrm{mn}\right)=0.528205(95 \%$ CI: 0.338628 to 0.708764$)$
95\% confidence interval for difference between medians or means:
Median difference $=-0.15596$ (CI: -0.88229 to 0.67075)

Mann-Whitney U test not signif. Number too small.
Observations (x) in DM Delta Male Combined Lung weight $=3$ median $=0.059094$ rank sum $=124$
Observations (y) in No DM Delta Male Combined Lung weight $=70$ median $=-0.322231$
$\mathrm{U}=118 \quad \mathrm{U}^{\prime}=92$
Exact probability:
Lower side $\mathrm{P}=0.3715(\mathrm{H} 1: \mathrm{x}$ tends to be less than y$)$
Upper side $\mathrm{P}=0.6285$ ($\mathrm{H} 1: \mathrm{x}$ tends to be greater than y)
Two sided $\mathrm{P}=0.743$ (H1: x tends to be distributed differently to y)

Theta $\left(\mathrm{U}^{\prime} / \mathrm{mn}\right)=0.438095(95 \% \mathrm{CI}: 0.187553$ to 0.729533$)$
confidence interval not calculated if n 1 or $\mathrm{n} 2<4$

Mann-Whitney U test- significant!
Observations (x) in SGA Delta Male Combined Lung weight $=34$ median $=-0.671579$ rank sum $=885$
Observations (y) in Non SGA Delta Male Combined Lung weight $=41$ median $=0.360341$
$\mathrm{U}=290$

$$
\mathrm{U}^{\prime}=1,104
$$

Exact probability (adjusted for ties):
Lower side $\mathrm{P}<0.0001$ (H1: x tends to be less than y)
Upper side $\mathrm{P}>0.9999$ (H 1 : x tends to be greater than y)
Two sided $\mathrm{P}<0.0001$ (H1: x tends to be distributed differently to y)
Theta $\left(\mathrm{U}^{\prime} / \mathrm{mn}\right)=0.791966(95 \% \mathrm{CI}: 0.669199$ to 0.873904$)$
95.1% confidence interval for difference between medians or means:
Median difference $=-1.103295(\mathrm{CI}:-1.60737$ to -0.61546$)$

Mann-Whitney U test UE vs Placenta - SIGNIFICANT!

Placenta COD lungs lighter
Observations (x) in COD UE Delta Male Combined Lung weight $=43$ median $=-0.104404$ rank sum $=$ 1,305
Observations (y) in COD Placenta Delta Male Combined Lung weight $=10$ median $=-0.898292$
$\mathrm{U}=359 \quad \mathrm{U}^{\prime}=71$
Exact probability:
Lower side $\mathrm{P}=0.0003(\mathrm{H} 1: \mathrm{x}$ tends to be less than y$)$

Upper side $\mathrm{P}=0.9997$ (H1: x tends to be greater than y)
Two sided $\mathrm{P}=0.0006$ ($\mathrm{H} 1: \mathrm{x}$ tends to be distributed differently to y)
Theta $\left(\mathrm{U}^{\prime} / \mathrm{mn}\right)=0.165116$ (95% CI: 0.071116 to 0.355334)
95.2% confidence interval for difference between medians or means:
Median difference $=0.93111$ (CI: 0.38415 to 1.59828)

Mann-Whitney U test AI vs UE - not signif
Observations (x) in COD AI Delta Male Combined Lung weight $=8$ median $=0.383541$ rank sum $=$ 234
Observations (y) in COD UE Delta Male Combined Lung weight $=43$ median $=-0.104404$
$\mathrm{U}=198 \quad \mathrm{U}^{\prime}=146$
Exact probability:
Lower side $\mathrm{P}=0.2581$ (H1: x tends to be less than y)
Upper side $\mathrm{P}=0.7419$ ($\mathrm{H} 1: \mathrm{x}$ tends to be greater than y)
Two sided $\mathrm{P}=0.5161$ (H1: x tends to be distributed differently to y)
Theta $\left(\mathrm{U}^{\prime} / \mathrm{mn}\right)=0.424419(95 \%$ CI: 0.241601 to 0.634643$)$
95.1% confidence interval for difference between medians or means:
Median difference $=0.320955$ (CI: -0.92306 to 1.03681)

Mann-Whitney U test Mac vs no Mac - SIGNIFICANT!
Mac lungs lighter
Observations (x) in Macerated Delta Male Combined Lung weight $=55$ median $=-0.442166$ rank sum = 1,810
Observations (y) in No maceration Delta Male Combined Lung weight $=17$ median $=0.488464$

$$
\mathrm{U}=270 \quad \mathrm{U}^{\prime}=665
$$

Exact probability:
Lower side $\mathrm{P}=0.0041(\mathrm{H} 1$: x tends to be less than y$)$
Upper side $\mathrm{P}=0.9959(\mathrm{H}: \mathrm{x}$ tends to be greater than y$)$
Two sided $\mathrm{P}=0.0081$ (H1: x tends to be distributed differently to y)
Theta $\left(\mathrm{U}^{\prime} / \mathrm{mn}\right)=0.71123(95 \%$ CI: 0.554268 to 0.825428$)$
95.1\% confidence interval for difference between medians or means:

Median difference $=-0.91325(\mathrm{CI}:-1.53991$ to -0.34834$)$

Mann-Whitney U test obs vs OW not signif
Observations (x) in Overweight Delta Male pancreas weight $=27$ median $=0.240314$ rank sum $=924.5$
Observations (y) in Obese Delta Male pancreas weight $=38$ median $=0.327697$
$\mathrm{U}=546.5 \quad \mathrm{U}^{\prime}=479.5$
Exact probability (adjusted for ties):
Lower side $\mathrm{P}=0.3301(\mathrm{H} 1: \mathrm{x}$ tends to be less than y$)$
Upper side $\mathrm{P}=0.6699$ ($\mathrm{H} 1: \mathrm{x}$ tends to be greater than y)
Two sided $\mathrm{P}=0.6602$ (H1: x tends to be distributed differently to y)
Theta $\left(\mathrm{U}^{\prime} / \mathrm{mn}\right)=0.467349(95 \% \mathrm{CI}: 0.333642$ to 0.606851$)$
95.1% confidence interval for difference between medians or means:
Median difference $=0.237375$ (CI: -1.06097 to 1.65486)

Mann-Whitney U test

Observations (x) in Overweight Delta Male pancreas weight $=27$ median $=0.240314$ rank sum $=811$
Observations (y) in Normal Delta Male pancreas weight $=29$ median $=0.087264$
$\mathrm{U}=433 \quad \mathrm{U}^{\prime}=350$

Exact probability:
Lower side $\mathrm{P}=0.2522$ (H 1 : x tends to be less than y)
Upper side $\mathrm{P}=0.7478(\mathrm{H} 1$: x tends to be greater than y$)$
Two sided $\mathrm{P}=0.5044$ (H 1 : x tends to be distributed differently to y)

Theta $\left(\mathrm{U}^{\prime} / \mathrm{mn}\right)=0.446999(95 \% \mathrm{CI}: 0.308251$ to 0.596214$)$
95.1% confidence interval for difference between medians or means:
Median difference $=0.47056(\mathrm{CI}:-0.95847$ to 2.11519$)$

Mann-Whitney U test

Observations (x) in Normal Delta Male pancreas weight $=29$ median $=0.087264$ rank sum $=966.5$
Observations (y) in Obese Delta Male pancreas weight $=38$ median $=0.327697$
$\mathrm{U}=531.5 \quad \mathrm{U}^{\prime}=570.5$
Exact probability (adjusted for ties):
Lower side $\mathrm{P}=0.4044$ ($\mathrm{H} 1: \mathrm{x}$ tends to be less than y)
Upper side $\mathrm{P}=0.5956$ (H 1 : x tends to be greater than y)
Two sided $\mathrm{P}=0.8088$ (H 1 : x tends to be distributed differently to y)
Theta $\left(\mathrm{U}^{\prime} / \mathrm{mn}\right)=0.517695(95 \% \mathrm{CI}: 0.381939$ to 0.650423$)$
95.1% confidence interval for difference between medians or means:
Median difference $=-0.26711(\mathrm{CI}:-1.81849$ to 1.31777)
Mann-Whitney U test DM vs no DM - not signif

Observations (x) in DM Delta Male pancreas weight $=13$ median $=1.699648$ rank sum $=1,710$ Observations (y) in No DM Delta Male pancreas weight $=192$ median $=0.035684$
$\mathrm{U}=1,619 \quad \mathrm{U}^{\prime}=877$
Exact probability (adjusted for ties):
Lower side $\mathrm{P}=0.0365$ (H1: x tends to be less than y)
Upper side $\mathrm{P}=0.9635$ (H1: x tends to be greater than y)
Two sided $\mathrm{P}=0.073$ (H1: x tends to be distributed differently to y)
Theta $\left(\mathrm{U}^{\prime} / \mathrm{mn}\right)=0.351362(95 \%$ CI: 0.221263 to 0.51383$)$
95\% confidence interval for difference between medians or means:
Median difference $=1.578585$ (CI: -0.16675 to 3.71604)

Mann-Whitney U test not signif
Observations (x) in Hypertension Delta Male pancreas weight $=23$ median $=0.660844$ rank sum $=$ 2,684.5
Observations (y) in No Hypertension Delta Male pancreas weight $=181$ median $=0.045412$
$\mathrm{U}=2,408.5 \quad \mathrm{U}^{\prime}=1,754.5$
Exact probability (adjusted for ties):
Lower side $\mathrm{P}=0.111$ (H 1 : x tends to be less than y)
Upper side $\mathrm{P}=0.889(\mathrm{H} 1: \mathrm{x}$ tends to be greater than y$)$
Two sided $\mathrm{P}=0.222$ (H1: x tends to be distributed differently to y)
Theta $\left(\mathrm{U}^{\prime} / \mathrm{mn}\right)=0.421451(95 \%$ CI: 0.307503 to 0.546347$)$
95% confidence interval for difference between medians or means:
Median difference $=0.70512$ (CI: -0.47865 to 1.86818)

Mann-Whitney U test- not signif
Observations (x) in SGA Delta Male pancreas weight $=71$ median $=0.541467$ rank sum $=7,822$
Observations (y) in Non SGA Delta Male pancreas weight $=135$ median $=-0.188047$
$\mathrm{U}=5,266$

$$
\mathrm{U}^{\prime}=4,319
$$

Exact probability (adjusted for ties):
Lower side $\mathrm{P}=0.1226$ (H 1 : x tends to be less than y)
Upper side $\mathrm{P}=0.8774(\mathrm{H} 1: \mathrm{x}$ tends to be greater than y$)$
Two sided $\mathrm{P}=0.2451$ (H 1 : x tends to be distributed differently to y)

Theta $(\mathrm{U} ' / \mathrm{mn})=0.4506(95 \% \mathrm{CI}: 0.370867$ to 0.533519$)$
95% confidence interval for difference between medians or means:
Median difference $=0.42066(\mathrm{CI}:-0.28504$ to 1.0537)

Mann-Whitney U test mac vs non mac - not signif
Observations (x) in Macerated Delta Male pancreas weight $=165$ median $=0.111087$ rank sum $=$ 17,073
Observations (y) in Non Macerated Delta Male pancreas weight $=39$ median $=-0.136472$
$\mathrm{U}=3,378 \quad \mathrm{U}^{\prime}=3,057$
Normalised statistic $=0.484079($ adjusted for ties $)$
Lower side $\mathrm{P}=0.6858(\mathrm{H} 1: \mathrm{x}$ tends to be less than y$)$
Upper side $\mathrm{P}=0.3142$ ($\mathrm{H} 1: \mathrm{x}$ tends to be greater than y)
Two sided $\mathrm{P}=0.6283(\mathrm{H} 1$: x tends to be distributed differently to y$)$
Theta $\left(\mathrm{U}^{\prime} / \mathrm{mn}\right)=0.475058(95 \%$ CI: 0.377783 to 0.574667$)$
95% confidence interval for difference between medians or means:

Median difference $=0.19336$ (CI: -0.66823 to 1.05045)
Mann-Whitney U test AI vs UE not signif
Observations (x) in COD AI Delta Male pancreas weight $=14$ median $=0.476463$ rank sum $=1,255.5$
Observations (y) in COD UE Delta Male pancreas weight $=136$ median $=-0.16226$
$\mathrm{U}=1,150.5 \quad \mathrm{U}^{\prime}=753.5$
Exact probability (adjusted for ties):
Lower side $\mathrm{P}=0.1013$ (H1: x tends to be less than y)
Upper side $\mathrm{P}=0.8987$ (H1: x tends to be greater than y)
Two sided $\mathrm{P}=0.2025$ (H1: x tends to be distributed differently to y)
Theta $\left(\mathrm{U}^{\prime} / \mathrm{mn}\right)=0.395746$ (95% CI: 0.259678 to 0.55395)
$\mathbf{9 5 \%}$ confidence interval for difference between medians or means:
Median difference $=0.755065$ (CI: -0.37925 to 2.09186)

Mann-Whitney U test Placent vs UE not signif
Observations (x) in COD UE Delta Male pancreas weight $=136$ median $=-0.16226$ rank sum $=$ 10,435.5
Observations (y) in COD Placenta Delta Male pancreas weight $=19$ median $=0.579237$
$\mathrm{U}=1,119.5 \quad \mathrm{U}=1,464.5$
Normalised statistic $=-0.941182$ (adjusted for ties)
Lower side $\mathrm{P}=0.1733$ ($\mathrm{H} 1: \mathrm{x}$ tends to be less than y)
Upper side $\mathrm{P}=0.8267(\mathrm{H} 1: \mathrm{x}$ tends to be greater than y$)$
Two sided $\mathrm{P}=0.3466$ ($\mathrm{H} 1: \mathrm{x}$ tends to be distributed differently to y)
Theta $\left(\mathrm{U}^{\prime} / \mathrm{mn}\right)=0.566757(95 \%$ CI: 0.42943 to 0.692883$)$

95\% confidence interval for difference between medians or means:
Median difference $=-0.502135(\mathrm{CI}:-1.54838$ to 0.61704$)$

Mann-Whitney U test not signif

Observations (x) in Overweight Delta Male spleen weight $=28$ median $=-0.06735$ rank sum $=929.5$
Observations (y) in Obese Delta Male spleen weight $=49$ median $=0.408361$
$\mathrm{U}=523.5 \quad \mathrm{U}^{\prime}=848.5$
Exact probability (adjusted for ties):
Lower side $\mathrm{P}=0.0429$ (H1: x tends to be less than y)
Upper side $\mathrm{P}=0.9571$ (H1: x tends to be greater than y)
Two sided $\mathrm{P}=0.0858$ ($\mathrm{H} 1: \mathrm{x}$ tends to be distributed differently to y)
Theta $\left(\mathrm{U}^{\prime} / \mathrm{mn}\right)=0.61844(95 \%$ CI: 0.483623 to 0.734657$)$
95.1% confidence interval for difference between medians or means:
Median difference $=-0.66701(\mathrm{CI}:-1.56858$ to 0.076$)$
Mann-Whitney U test
Observations (x) in Overweight Delta Male spleen weight $=28$ median $=-0.06735$ rank sum $=811.5$
Observations (y) in normal Delta Male spleen weight $=36$ median $=0.278793$
$\mathrm{U}=405.5 \quad \mathrm{U}^{\prime}=602.5$

Exact probability (adjusted for ties):
Lower side $\mathrm{P}=0.0925(\mathrm{H} 1: \mathrm{x}$ tends to be less than y$)$
Upper side $\mathrm{P}=0.9075$ (H1: x tends to be greater than y)
Two sided $\mathrm{P}=0.1849$ (H1: x tends to be distributed differently to y)

Theta $\left(\mathrm{U}^{\prime} / \mathrm{mn}\right)=0.597718(95 \% \mathrm{CI}: 0.454756$ to 0.723437$)$
95.2% confidence interval for difference between medians or means:
Median difference $=-0.38666(\mathrm{CI}:-1.12329$ to 0.21872)
Mann-Whitney U test

Observations (x) in normal Delta Male spleen weight $=36$ median $=0.278793$ rank sum $=1,475$
Observations (y) in Obese Delta Male spleen weight $=49$ median $=0.408361$
$\mathrm{U}=809 \quad \mathrm{U}^{\prime}=955$
Exact probability (adjusted for ties):
Lower side $\mathrm{P}=0.2598$ (H 1 : x tends to be less than y)
Upper side $\mathrm{P}=0.7402(\mathrm{H} 1$: x tends to be greater than y$)$
Two sided $\mathrm{P}=0.5196$ (H1: x tends to be distributed differently to y)
Theta $\left(\mathrm{U}^{\prime} / \mathrm{mn}\right)=0.541383(95 \% \mathrm{CI}: 0.41848$ to 0.658563$)$
95% confidence interval for difference between medians or means:
Median difference $=-0.215145(\mathrm{CI}:-0.89159$ to 0.48281$)$

Mann-Whitney U test not signif

Observations (x) in Obese Delta Male spleen weight $=49$ median $=0.408361$ rank sum $=1,404$
Observations (y) in Underweight Delta Male spleen weight $=9$ median $=1.107053$
$\mathrm{U}=179 \quad \mathrm{U}^{\prime}=262$
Exact probability:
Lower side $\mathrm{P}=0.1924$ (H 1 : x tends to be less than y)
Upper side $\mathrm{P}=0.8076$ (H 1 : x tends to be greater than y)
Two sided $\mathrm{P}=0.3848$ (H 1 : x tends to be distributed differently to y)

Theta $\left(\mathrm{U}^{\prime} / \mathrm{mn}\right)=0.594104(95 \%$ CI: 0.392939 to 0.76434$)$
95% confidence interval for difference between medians or means
Median difference $=-0.70157(\mathrm{CI}:-2.28531$ to 1.0366$)$

Mann-Whitney U test not signif

Observations (x) in Hypertension Delta Male spleen weight $=25$ median $=0.279869$ rank sum $=$ 3,352.5
Observations (y) in No Hypertension Delta Male spleen weight $=228$ median $=0.139803$
$\mathrm{U}=3,027.5 \quad \mathrm{U}^{\prime}=2,672.5$

Exact probability (adjusted for ties):
Lower side $\mathrm{P}=0.3059$ (H 1 : x tends to be less than y)
Upper side $\mathrm{P}=0.6941(\mathrm{H} 1: \mathrm{x}$ tends to be greater than y$)$
Two sided $\mathrm{P}=0.6118(\mathrm{H} 1: \mathrm{x}$ tends to be distributed differently to y$)$

Theta $\left(\mathrm{U}^{\prime} / \mathrm{mn}\right)=0.46886(95 \%$ CI: 0.355576 to 0.586126$)$
95% confidence interval for difference between medians or means:
Median difference $=0.187735(\mathrm{CI}:-0.60815$ to 0.97859$)$

Mann-Whitney U test not signif

Observations (x) in DM Delta Male spleen weight $=16$ median $=0.286342$ rank sum $=2,155$
Observations (y) in No DM Delta Male spleen weight $=241$ median $=0.126829$
$\mathrm{U}=2,019 \quad \mathrm{U}^{\prime}=1,837$
Exact probability (adjusted for ties):

Lower side $\mathrm{P}=0.3774(\mathrm{H} 1: \mathrm{x}$ tends to be less than y$)$
Upper side $\mathrm{P}=0.6226(\mathrm{H} 1: \mathrm{x}$ tends to be greater than y$)$
Two sided $\mathrm{P}=0.7549$ (H 1 : x tends to be distributed differently to y)
Theta $\left(\mathrm{U}^{\prime} / \mathrm{mn}\right)=0.4764$ (95% CI: 0.339401 to 0.617761)
95% confidence interval for difference between medians or means:
Median difference $=0.09818$ (CI: -0.67191 to 0.76362)
Mann-Whitney U test mac vs non mac - not signif
Observations (x) in Macerated Delta Male spleen weight $=206$ median $=0.212711$ rank sum $=26,839$
Observations (y) in Non Macerated Delta Male spleen weight $=47$ median $=-0.07122$
$\mathrm{U}=5,518 \quad \mathrm{U}^{\prime}=4,164$
Normalised statistic $=1.495481($ adjusted for ties $)$
Lower side $\mathrm{P}=0.9326$ (H1: x tends to be less than y)
Upper side $\mathrm{P}=0.0674$ ($\mathrm{H} 1: \mathrm{x}$ tends to be greater than y)
Two sided $\mathrm{P}=0.1348$ ($\mathrm{H} 1: \mathrm{x}$ tends to be distributed differently to y)
Theta $\left(\mathrm{U}^{\prime} / \mathrm{mn}\right)=0.430076$ ($95 \% \mathrm{CI}: 0.343958$ to 0.521613)
95% confidence interval for difference between medians or means:
Median difference $=0.335085$ (CI: -0.11553 to 0.77038)
Mann-Whitney U test- not signif
Observations (x) in SGA Delta Male spleen weight $=101$ median $=0.277716$ rank sum $=13,672.5$
Observations (y) in Non SGA Delta Male spleen weight $=156$ median $=-0.040245$
$\mathrm{U}=8,521.5 \quad \mathrm{U}^{\prime}=7,234.5$
Normalised statistic $=1.105624($ adjusted for ties $)$

Lower side $\mathrm{P}=0.8656$ (H1: x tends to be less than y)
Upper side $\mathrm{P}=0.1344$ (H1: x tends to be greater than y)
Two sided $\mathrm{P}=0.2689$ (H1: x tends to be distributed differently to y)
Theta $(\mathrm{U} / \mathrm{mn})=0.459158$ (95% CI: 0.388951 to 0.531385)
95\% confidence interval for difference between medians or means:
Median difference $=0.210425$ (CI: -0.17974 to 0.54974)

Mann-Whitney U test not signif
Observations (x) in COD AI Delta Male spleen weight $=19$ median $=-0.373458$ rank sum $=1,446.5$
Observations (y) in COD UE Delta Male spleen weight $=158$ median $=0.05783$
$\mathrm{U}=1,256.5 \quad \mathrm{U}=1,745.5$
Exact probability (adjusted for ties):
Lower side $\mathrm{P}=0.1245$ (H1: x tends to be less than y)
Upper side $\mathrm{P}=0.8755$ ($\mathrm{H} 1: \mathrm{x}$ tends to be greater than y)
Two sided $\mathrm{P}=0.2491(\mathrm{H} 1$: x tends to be distributed differently to y)
Theta $\left(\mathrm{U}^{\prime} / \mathrm{mn}\right)=0.581446(95 \%$ CI: 0.444702 to 0.704766$)$
95\% confidence interval for difference between medians or means:
Median difference $=-0.31631$ (CI: -0.83502 to 0.26412)

Mann-Whitney U test not signif
Observations (x) in COD UE Delta Male spleen weight $=158$ median $=0.05783$ rank sum $=14,489.5$
Observations (y) in COD placenta Delta Male spleen weight $=29$ median $=0.676528$
$\mathrm{U}=1,928.5 \quad \mathrm{U}^{\prime}=2,653.5$
Normalised statistic $=-1.352985$ (adjusted for ties)
Lower side $\mathrm{P}=0.088$ ($\mathrm{H} 1: \mathrm{x}$ tends to be less than y)
Upper side $\mathrm{P}=0.912(\mathrm{H} 1: \mathrm{x}$ tends to be greater than y$)$
Two sided $\mathrm{P}=0.1761$ (H1: x tends to be distributed differently to y)
Theta $\left(\mathrm{U}^{\prime} / \mathrm{mn}\right)=0.579114$ (95% CI: 0.464853 to 0.684058)
95\% confidence interval for difference between medians or means:
Median difference $=-0.41911$ (CI: -0.98335 to 0.23775)
Mann-Whitney U test
Observations (x) in OW Delta Male Thymus weight $=28$ median $=-0.147124$ rank sum $=875.5$
Observations (y) in Normal Delta Male Thymus weight $=36$ median $=-0.091578$
$\mathrm{U}=469.5 \quad \mathrm{U}^{\prime}=538.5$
Exact probability (adjusted for ties):
Lower side $\mathrm{P}=0.3226$ ($\mathrm{H} 1: \mathrm{x}$ tends to be less than y)
Upper side $\mathrm{P}=0.6774(\mathrm{H} 1: \mathrm{x}$ tends to be greater than y$)$
Two sided $\mathrm{P}=0.6452$ (H1: x tends to be distributed differently to y)
Theta $\left(\mathrm{U}^{\prime} / \mathrm{mn}\right)=0.534226(95 \%$ CI: 0.394456 to 0.66791$)$
95.2% confidence interval for difference between medians or means:
Median difference $=-0.11705$ (CI: -0.53744 to 0.27225)

Mann-Whitney U test overweight vs obese - not signif
Observations (x) in Overweight Delta Male Thymus weight $=28$ median $=-0.147124$ rank sum $=$ 1,013

Observations (y) in Obese Delta Male Thymus weight $=43$ median $=-0.201964$
$U=607$

$$
\mathrm{U}^{\prime}=597
$$

Exact probability (adjusted for ties):
Lower side $\mathrm{P}=0.4779$ ($\mathrm{H} 1: \mathrm{x}$ tends to be less than y)
Upper side $\mathrm{P}=0.5221$ ($\mathrm{H} 1: \mathrm{x}$ tends to be greater than y)
Two sided $\mathrm{P}=0.9558$ (H1: x tends to be distributed differently to y)
Theta $(\mathrm{U} / \mathrm{mn})=0.495847(95 \% \mathrm{CI}: 0.363786$ to 0.6286$)$
95% confidence interval for difference between medians or means:
Median difference $=0.00723(\mathrm{CI}:-0.5499$ to 0.52068$)$
Mann-Whitney U test

Observations (x) in Normal Delta Male Thymus weight $=36$ median $=-0.091578$ rank sum $=1,506$
Observations (y) in Obese Delta Male Thymus weight $=43$ median $=-0.201964$
$\mathrm{U}=840 \quad \mathrm{U}^{\prime}=708$

Exact probability (adjusted for ties):
Lower side $\mathrm{P}=0.2598$ (H 1 : x tends to be less than y)
Upper side $\mathrm{P}=0.7402(\mathrm{H} 1: \mathrm{x}$ tends to be greater than y$)$
Two sided $\mathrm{P}=0.5196$ (H 1 : x tends to be distributed differently to y)
Theta $(\mathrm{U} ' / \mathrm{mn})=0.457364(95 \% \mathrm{CI}: 0.337158$ to 0.583786$)$
95.1% confidence interval for difference between medians or means:
Median difference $=0.17357(\mathrm{CI}:-0.30562$ to 0.66209$)$

Mann-Whitney U test- UW vs obese - not signif

Observations (x) in Obese Delta Male Thymus weight $=43$ median $=-0.201964$ rank sum $=1,117$
Observations (y) in Underweight Delta Male Thymus weight $=9$ median $=0.042587$
$\mathrm{U}=171$
$\mathrm{U}^{\prime}=216$

Exact probability:
Lower side $\mathrm{P}=0.3003(\mathrm{H} 1: \mathrm{x}$ tends to be less than y$)$
Upper side $\mathrm{P}=0.6997$ (H1: x tends to be greater than y)
Two sided $\mathrm{P}=0.6005$ (H1: x tends to be distributed differently to y)
Theta $\left(\mathrm{U}^{\prime} / \mathrm{mn}\right)=0.55814(95 \%$ CI: 0.358958 to 0.737792$)$
95.1% confidence interval for difference between medians or means:
Median difference $=-0.29185$ (CI: -1.09456 to 0.69096)

Mann-Whitney U test BP vs no BP - Not signif
Observations (x) in Hypertension Delta Male Thymus weight $=26$ median $=-0.275827$ rank sum $=$ 2,967
Observations (y) in No Hypertension Delta Male Thymus weight $=229$ median $=-0.144582$
$\mathrm{U}=2,616$

$\mathrm{U}^{\prime}=3,338$

Exact probability (adjusted for ties):
Lower side $\mathrm{P}=0.1567$ (H1: x tends to be less than y)
Upper side $\mathrm{P}=0.8433$ ($\mathrm{H} 1: \mathrm{x}$ tends to be greater than y)
Two sided $\mathrm{P}=0.3133$ (H1: x tends to be distributed differently to y)
Theta $(\mathrm{U} / \mathrm{mn})=0.560632$ ($95 \% \mathrm{CI}: 0.444204$ to 0.669577)
95% confidence interval for difference between medians or means:
Median difference $=-0.15815$ (CI: -0.47784 to 0.15396)

Mann-Whitney U test- DM vs no DM not signif.
Observations (x) in DM Delta Male Thymus weight $=16$ median $=0.170297$ rank sum $=2,458$
Observations (y) in No DM Delta Male Thymus weight $=240$ median $=-0.192419$
$\mathrm{U}=2,322 \quad \mathrm{U}^{\prime}=1,518$

Exact probability (adjusted for ties):
Lower side $\mathrm{P}=0.0813$ (H 1 : x tends to be less than y)
Upper side $\mathrm{P}=0.9187(\mathrm{H} 1: \mathrm{x}$ tends to be greater than y$)$
Two sided $\mathrm{P}=0.1627(\mathrm{H} 1: \mathrm{x}$ tends to be distributed differently to y$)$

Theta $\left(\mathrm{U}^{\prime} / \mathrm{mn}\right)=0.395313(95 \% \mathrm{CI}: 0.268705$ to 0.541081$)$
95% confidence interval for difference between medians or means:
Median difference $=0.325805(\mathrm{CI}:-0.14941$ to 0.77685$)$

Mann-Whitney U test- significant!
Observations (x) in SGA Delta Male Thymus weight $=98$ median $=-0.467297$ rank sum $=8,383.5$
Observations (y) in Non SGA Delta Male Thymus weight $=161$ median $=0.156998$
$\mathrm{U}=3,532.5 \quad \mathrm{U}^{\prime}=12,245.5$
Normalised statistic $=-7.451032$ (adjusted for ties)
Lower side $\mathrm{P}<0.0001$ (H1: x tends to be less than y)
Upper side $\mathrm{P}>0.9999(\mathrm{H} 1$: x tends to be greater than y$)$
Two sided $\mathrm{P}<0.0001$ (H1: x tends to be distributed differently to y)
Theta $\left(\mathrm{U}^{\prime} / \mathrm{mn}\right)=0.776112(95 \% \mathrm{CI}: 0.711644$ to 0.828122$)$
95% confidence interval for difference between medians or means:

Median difference $=-0.749705(\mathrm{CI}:-0.96449$ to -0.55176$)$
Mann-Whitney U test AI vs UE not signif
Observations (x) in AI Delta Male Thymus weight $=21$ median $=0.158441$ rank sum $=2,273.5$
Observations (y) in UE Delta Male Thymus weight $=158$ median $=-0.109444$
$\mathrm{U}=2,042.5 \quad \mathrm{U}^{\prime}=1,275.5$
Exact probability (adjusted for ties):
Lower side $\mathrm{P}=0.0429(\mathrm{H} 1: \mathrm{x}$ tends to be less than y$)$
Upper side $\mathrm{P}=0.9571$ (H1: x tends to be greater than y)
Two sided $\mathrm{P}=0.0858$ ($\mathrm{H} 1: \mathrm{x}$ tends to be distributed differently to y)
Theta $\left(\mathrm{U}^{\prime} / \mathrm{mn}\right)=0.384418(95 \%$ CI: 0.270182 to 0.516117$)$
95% confidence interval for difference between medians or means:
Median difference $=0.29269$ (CI: -0.05022 to 0.67844)
Mann-Whitney U test- UE vs Placenta - SIGNIFICANT!!
Observations (x) in UE Delta Male Thymus weight $=158$ median $=-0.109444$ rank sum $=15,983$
Observations (y) in Placenta Delta Male Thymus weight $=30$ median $=-0.614358$
$\mathrm{U}=3,422 \quad \mathrm{U}^{\prime}=1,318$
Normalised statistic $=3.850234$ (adjusted for ties)
Lower side $\mathrm{P}>0.9999$ ($\mathrm{H} 1: \mathrm{x}$ tends to be less than y)
Upper side $\mathrm{P}<0.0001$ ($\mathrm{H} 1: \mathrm{x}$ tends to be greater than y)
Two sided $\mathrm{P}=0.0001$ (H1: x tends to be distributed differently to y)
Theta $\left(\mathrm{U}^{\prime} / \mathrm{mn}\right)=0.278059(95 \%$ CI: 0.192838 to 0.387529$)$
95% confidence interval for difference between medians or means:

Median difference $=0.574685$ (CI: 0.29707 to 0.90223)

Mann-Whitney U test Mac vs non Mac - SIGNIFICANT!

Observations (x) in Macerated Delta Male Thymus weight $=208$ median $=-0.235497$ rank sum $=$ 24,726
Observations (y) in Non Macerated Delta Male Thymus weight $=47$ median $=0.158441$
$\mathrm{U}=2,990 \quad \mathrm{U}^{\prime}=6,786$
Normalised statistic $=-4.156109$ (adjusted for ties)
Lower side $\mathrm{P}<0.0001$ (H1: x tends to be less than y)
Upper side $\mathrm{P}>0.9999(\mathrm{H} 1$: x tends to be greater than y$)$
Two sided $\mathrm{P}<0.0001$ (H1: x tends to be distributed differently to y)
Theta $\left(\mathrm{U}^{\prime} / \mathrm{mn}\right)=0.694149(95 \%$ CI: 0.605073 to 0.768779$)$

95\% confidence interval for difference between medians or means:
Median difference $=-0.60182(\mathrm{CI}:-0.92829$ to -0.32375)

Mann-Whitney U test - significant!
Observations (x) in SGA Delta Male Thyroid weight $=16$ median $=-0.379526$ rank sum $=386$
Observations (y) in Non SGA Delta Male Thyroid weight $=49$ median $=-0.078426$
$\mathrm{U}=250 \quad \mathrm{U}^{\prime}=534$

Exact probability (adjusted for ties):
Lower side $P=0.0149$ (H1: x tends to be less than y)
Upper side $\mathrm{P}=0.9851$ (H 1 : x tends to be greater than y)
Two sided $\mathrm{P}=0.0299$ (H 1 : x tends to be distributed differently to y)

Theta $\left(\mathrm{U}^{\prime} / \mathrm{mn}\right)=0.681122(95 \% \mathrm{CI}: 0.517077$ to 0.805573$)$
95% confidence interval for difference between medians or means:
Median difference $=-0.34822(\mathrm{CI}:-0.69926$ to -0.03807$)$

Mann-Whitney U test mac vs no mac - SIGNIFICANT!
Mac thyroids lighter
Observations (x) in Macerated Delta Male Thyroid weight $=53$ median $=-0.196028$ rank sum $=1,591$
Observations (y) in Non Macerated Delta Male Thyroid weight $=12$ median $=0.491753$
$\mathrm{U}=160 \quad \mathrm{U}^{\prime}=476$

Exact probability (adjusted for ties):
Lower side $\mathrm{P}=0.0033$ (H 1 : x tends to be less than y)
Upper side $\mathrm{P}=0.9967(\mathrm{H} 1$: x tends to be greater than y$)$
Two sided $\mathrm{P}=0.0065$ (H 1 : x tends to be distributed differently to y)

Theta $\left(\mathrm{U}^{\prime} / \mathrm{mn}\right)=0.748428(95 \% \mathrm{CI}: 0.568226$ to 0.865193$)$

95\% confidence interval for difference between medians or means:
Median difference $=-0.749105(\mathrm{CI}:-1.3263$ to -0.22065)

Mann-Whitney U test - AI vs UE not signif

Observations (x) in AI Delta Male Heart Weight $=21$ median $=0.194275$ rank sum $=2,093$
Observations (y) in UE Delta Male Heart Weight $=158$ median $=-0.024829$
$\mathrm{U}=1,862 \quad \mathrm{U}^{\prime}=1,456$
Exact probability (adjusted for ties):
Lower side $\mathrm{P}=0.1831$ (H 1 : x tends to be less than y)
Upper side $\mathrm{P}=0.8169$ (H 1 : x tends to be greater than y)

Two sided $\mathrm{P}=0.3662$ (H1: x tends to be distributed differently to y)
Theta $(\mathrm{U} / \mathrm{mn})=0.438819$ (95% CI: 0.317905 to 0.569064)
95\% confidence interval for difference between medians or means:
Median difference $=0.20704$ (CI: -0.28489 to 0.64288)

Mann-Whitney U test UE vs Placenta - SIGNIFICANT

Observations (x) in UE Delta Male Heart Weight $=158$ median $=-0.024829$ rank sum $=16,084.5$
Observations (y) in Placenta Delta Male Heart Weight $=30$ median $=-0.941285$
$\mathrm{U}=3,523.5 \quad \mathrm{U}=1,216.5$
Normalised statistic $=4.221713$ (adjusted for ties)
Lower side $\mathrm{P}>0.9999$ (H1: x tends to be less than y)
Upper side $\mathrm{P}<0.0001$ (H1: x tends to be greater than y)
Two sided $\mathrm{P}<0.0001$ (H1: x tends to be distributed differently to y)
Theta $(\mathrm{U} / \mathrm{mn})=0.256646$ (95% CI: 0.175047 to 0.364514)
95% confidence interval for difference between medians or means:
Median difference $=0.775425$ (CI: 0.45569 to 1.11425)
Mann-Whitney U test BP vs no BP not signif
Observations (x) in Hypertension Delta Male Heart Weight $=26$ median $=-0.070624$ rank sum $=3,517$
Observations (y) in No Hypertension Delta Male Heart Weight $=230$ median $=-0.225605$
$\mathrm{U}=3,166 \quad \mathrm{U}^{\prime}=2,814$
Exact probability (adjusted for ties):
Lower side $\mathrm{P}=0.3127$ (H1: x tends to be less than y)

Upper side $\mathrm{P}=0.6873(\mathrm{H} 1$: x tends to be greater than y$)$
Two sided $\mathrm{P}=0.6253$ (H1: x tends to be distributed differently to y)
Theta $\left(\mathrm{U}^{\prime} / \mathrm{mn}\right)=0.470569(95 \% \mathrm{CI}: 0.359029$ to 0.585749$)$
95% confidence interval for difference between medians or means:
Median difference $=0.110275(\mathrm{CI}:-0.32556$ to 0.5496$)$
Mann-Whitney U test DM vs no DM not signif

Observations (x) in DM Delta Male Heart Weight $=16$ median $=0.184524$ rank sum $=2,480.5$
Observations (y) in No DM Delta Male Heart Weight $=241$ median $=-0.226315$
$\mathrm{U}=2,344.5 \quad \mathrm{U}^{\prime}=1,511.5$

Exact probability (adjusted for ties):
Lower side $\mathrm{P}=0.0747$ (H1: x tends to be less than y)
Upper side $\mathrm{P}=0.9253(\mathrm{H} 1$: x tends to be greater than y$)$
Two sided $\mathrm{P}=0.1494(\mathrm{H} 1$: x tends to be distributed differently to y$)$

Theta $\left(\mathrm{U}^{\prime} / \mathrm{mn}\right)=0.391987(95 \% \mathrm{CI}: 0.265898$ to 0.537827$)$
95% confidence interval for difference between medians or means:
Median difference $=0.41116(\mathrm{CI}:-0.14795$ to 1.02994$)$

Mann-Whitney U test Mac vs Non Mac - SIGNIFICANT!
Macerated hearts lighter
Observations (x) in Macerated Delta Male Heart Weight $=208$ median $=-0.296937$ rank sum $=25,048$
Observations (y) in Non Macerated Delta Male Heart Weight $=48$ median $=0.34349$

```
\(\mathrm{U}=3,312\)
\(U^{\prime}=6,672\)
```

Normalised statistic $=-3.633134($ adjusted for ties $)$
Lower side $\mathrm{P}=0.0001$ (H 1 : x tends to be less than y)

Upper side $\mathrm{P}=0.9999(\mathrm{H} 1$: x tends to be greater than y$)$
Two sided $\mathrm{P}=0.0003(\mathrm{H} 1: \mathrm{x}$ tends to be distributed differently to y$)$
Theta $\left(\mathrm{U}^{\prime} / \mathrm{mn}\right)=0.668269(95 \% \mathrm{CI}: 0.578876$ to 0.745203$)$
95% confidence interval for difference between medians or means:
Median difference $=-0.65319$ (CI: -0.97886 to -0.31635)
Mann-Whitney U test- significant!

Observations (x) in SGA Delta Male Heart Weight $=98$ median $=-0.753485$ rank sum $=7,886$
Observations (y) in Non SGA Delta Male Heart Weight $=159$ median $=0.216153$
$\mathrm{U}=3,035 \quad \mathrm{U}^{\prime}=12,547$
Normalised statistic $=-8.216963($ adjusted for ties $)$
Lower side $\mathrm{P}<0.0001$ (H1: x tends to be less than y)
Upper side $\mathrm{P}>0.9999(\mathrm{H} 1: \mathrm{x}$ tends to be greater than y$)$
Two sided $\mathrm{P}<0.0001$ (H1: x tends to be distributed differently to y$)$

Theta $\left(\mathrm{U}^{\prime} / \mathrm{mn}\right)=0.805224(95 \%$ CI: 0.743347 to 0.85361$)$
95% confidence interval for difference between medians or means:
Median difference $=-1.028145$ (CI: -1.26696 to -0.79483)

Mann-Whitney U test not signif
Observations (x) in Overweight Delta Male Heart Weight $=27$ median $=-0.018186$ rank sum $=1,161.5$
Observations (y) in Obese Delta Male Heart Weight $=51$ median $=-0.1815$
$\mathrm{U}=783.5 \quad \mathrm{U}^{\prime}=593.5$

Exact probability (adjusted for ties):
Lower side $\mathrm{P}=0.1609$ (H1: x tends to be less than y)

Upper side $\mathrm{P}=0.8391(\mathrm{H} 1: \mathrm{x}$ tends to be greater than y$)$
Two sided $\mathrm{P}=0.3218$ (H 1 : x tends to be distributed differently to y)
Theta $\left(\mathrm{U}^{\prime} / \mathrm{mn}\right)=0.431009(95 \% \mathrm{CI}: 0.307912$ to 0.565131$)$
95.1% confidence interval for difference between medians or means:
Median difference $=0.29703(\mathrm{CI}:-0.25266$ to 0.90969)

Mann-Whitney U test

Observations (x) in Overweight Delta Male Heart Weight $=27$ median $=-0.018186$ rank sum $=947$
Observations (y) in Normal Delta Male Heart Weight $=36$ median $=-0.227532$
$\mathrm{U}=569 \quad \mathrm{U}^{\prime}=403$
Exact probability:
Lower side $\mathrm{P}=0.1269$ (H 1 : x tends to be less than y)
Upper side $\mathrm{P}=0.8731(\mathrm{H} 1: \mathrm{x}$ tends to be greater than y$)$
Two sided $\mathrm{P}=0.2539(\mathrm{H} 1$: x tends to be distributed differently to y$)$

Theta $\left(\mathrm{U}^{\prime} / \mathrm{mn}\right)=0.414609(95 \% \mathrm{CI}: 0.286018$ to 0.558582$)$
95.1% confidence interval for difference between medians or means:
Median difference $=0.25893(\mathrm{CI}:-0.21247$ to 0.73554$)$

Mann-Whitney U test
Observations (x) in Normal Delta Male Heart Weight $=36$ median $=-0.227532$ rank sum $=1,618$
Observations (y) in Obese Delta Male Heart Weight $=51$ median $=-0.1815$
$\mathrm{U}=952 \quad \mathrm{U}^{\prime}=884$

Exact probability:
Lower side $\mathrm{P}=0.387(\mathrm{H} 1: \mathrm{x}$ tends to be less than y$)$
Upper side $\mathrm{P}=0.613$ ($\mathrm{H} 1: \mathrm{x}$ tends to be greater than y)
Two sided $\mathrm{P}=0.774$ (H1: x tends to be distributed differently to y)
Theta $\left(\mathrm{U}^{\prime} / \mathrm{mn}\right)=0.481481(95 \% \mathrm{CI}: 0.3633$ to 0.602189$)$
95\% confidence interval for difference between medians or means:
Median difference $=0.07442$ (CI: -0.40828 to 0.52325)

Body:Organ ratios:

Females:

Mann-Whitney U test AI vs UE - SIGNIFICANT!

Observations (x) in AI COD Female Body: Brain wt ratio $=68$ median $=6.517746$ rank sum $=8,308.5$
Observations (y) in UE COD Female Body: Brain wt ratio $=234$ median $=7.279039$
$\mathrm{U}=5,962.5 \quad \mathrm{U}^{\prime}=9,949.5$
Normalised statistic $=-3.145019$ (adjusted for ties)
Lower side $\mathrm{P}=0.0008$ ($\mathrm{H} 1: \mathrm{x}$ tends to be less than y)
Upper side $\mathrm{P}=0.9992$ (H1: x tends to be greater than y)
Two sided $\mathrm{P}=0.0017$ ($\mathrm{H} 1: \mathrm{x}$ tends to be distributed differently to y)
Theta $\left(\mathrm{U}^{\prime} / \mathrm{mn}\right)=0.625283(95 \%$ CI: 0.54764 to 0.695874$)$
95% confidence interval for difference between medians or means:
Median difference $=-0.72644(\mathrm{CI}:-1.18532$ to -0.27514$)$

Mann-Whitney U test- UE vs Placenta not signif

Observations (x) in UE COD Female Body: Brain wt ratio $=234$ median $=7.279039$ rank sum $=$
30,159
Observations (y) in Placenta COD Female Body: Brain wt ratio $=18$ median $=6.80043$
$\mathrm{U}=2,664 \quad \mathrm{U}^{\prime}=1,548$

Exact probability:
Lower side $\mathrm{P}=0.0305$ (H 1 : x tends to be less than y)
Upper side $\mathrm{P}=0.9695$ (H 1 : x tends to be greater than y)
Two sided $\mathrm{P}=0.061(\mathrm{H} 1: \mathrm{x}$ tends to be distributed differently to y$)$

Theta $\left(\mathrm{U}^{\prime} / \mathrm{mn}\right)=0.367521(95 \% \mathrm{CI}: 0.250736$ to 0.506176$)$

95\% confidence interval for difference between medians or means:
Median difference $=0.91207(\mathrm{CI}:-0.04177$ to 1.94335$)$

Mann-Whitney U test Mac vs non Mac - SIGNIFICANT

Observations (x) in Macerated Female Body: Brain wt ratio $=269$ median $=7.125984$ rank sum $=$ 54,002
Observations (y) in Non Macerated Female Body: Brain wt ratio $=109$ median $=6.509828$

$\mathrm{U}=17,687 \quad \mathrm{U}^{\prime}=11,634$

Normalised statistic $=3.145012$
Lower side $\mathrm{P}=0.9992$ ($\mathrm{H} 1: \mathrm{x}$ tends to be less than y)
Upper side $\mathrm{P}=0.0008$ ($\mathrm{H} 1: \mathrm{x}$ tends to be greater than y)
Two sided $\mathrm{P}=0.0017(\mathrm{H} 1$: x tends to be distributed differently to y$)$
Theta $\left(\mathrm{U}^{\prime} / \mathrm{mn}\right)=0.39678(95 \%$ CI: 0.336709 to 0.460866$)$

95\% confidence interval for difference between medians or means:
Median difference $=0.61243$ (CI: 0.23616 to 0.97708)
Mann-Whitney U test- significant!
Observations (x) in SGA Female Body: Brain wt ratio $=75$ median $=6.931818$ rank sum $=6,380$
Observations (y) in Non SGA Female Body: Brain wt ratio $=137$ median $=7.665877$
$\mathrm{U}=3,530 \quad \mathrm{U}^{\prime}=6,745$
Exact probability:
Lower side P < 0.0001 (H1: x tends to be less than y)
Upper side $\mathrm{P}>0.9999$ (H1: x tends to be greater than y)
Two sided $\mathrm{P}=0.0001$ (H1: x tends to be distributed differently to y)
Theta $\left(\mathrm{U}^{\prime} / \mathrm{mn}\right)=0.656448$ (95% CI: 0.576141 to 0.727304)
95\% confidence interval for difference between medians or means:
Median difference $=-0.87647(\mathrm{CI}:-1.36074$ to -0.42595$)$
Mann-Whitney U test - not signif
Observations (x) in UE UE Non SGA Female Body: Brain wt ratio $=45$ median $=7.458034$ rank sum = 1,160
Observations (y) in UE Placenta Non SGA Female Body: Brain wt ratio = 8 median $=7.686119$
$\mathrm{U}=125 \quad \mathrm{U}^{\prime}=235$
Exact probability:
Lower side $\mathrm{P}=0.0896$ (H1: x tends to be less than y)
Upper side $\mathrm{P}=0.9104$ (H1: x tends to be greater than y)
Two sided $\mathrm{P}=0.1792$ (H1: x tends to be distributed differently to y)
Theta $\left(\mathrm{U}^{\prime} / \mathrm{mn}\right)=0.652778(95 \%$ CI: 0.435836 to 0.815266$)$

95\% confidence interval for difference between medians or means:
Median difference $=-0.710285(\mathrm{CI}:-1.91641$ to 0.37688$)$

Mann-Whitney U test Mac vs Non Mac - SIGNIFICANT!!
Observations (x) in Macerated Female Body:Thymus Ratio $=275$ median $=517.857143$ rank sum $=$ 56,002
Observations (y) in Non macerated Female Body:Thymus Ratio $=111$ median $=385.571429$
$\mathrm{U}=18,052 \quad \mathrm{U}^{\prime}=12,473$
Normalised statistic $=2.811472($ adjusted for ties $)$
Lower side $\mathrm{P}=0.9975$ (H1: x tends to be less than y)
Upper side $\mathrm{P}=0.0025$ ($\mathrm{H} 1: \mathrm{x}$ tends to be greater than y)
Two sided $\mathrm{P}=0.0049(\mathrm{H} 1: \mathrm{x}$ tends to be distributed differently to y$)$
Theta $\left(\mathrm{U}^{\prime} / \mathrm{mn}\right)=0.408616(95 \%$ CI: 0.348527 to 0.472202$)$
95% confidence interval for difference between medians or means:
Median difference $=90.2198$ (CI: 26.6578 to 156.015)

Mann-Whitney U test AI vs UR - not signif.
Observations (x) in COD AI Female Body:Thymus Ratio $=72$ median $=415.734807$ rank sum $=$ 11,086
Observations (y) in Unexplained Female Body:Thymus Ratio $=233$ median $=463.4$
$\mathrm{U}=8,458 \quad \mathrm{U}^{\prime}=8,318$
Exact probability:
Lower side $\mathrm{P}=0.4578$ (H1: x tends to be less than y)
Upper side $\mathrm{P}=0.5422$ (H1: x tends to be greater than y)

Two sided $\mathrm{P}=0.9156$ (H1: x tends to be distributed differently to y)
Theta $\left(\mathrm{U}^{\prime} / \mathrm{mn}\right)=0.495827$ (95% CI: 0.420593 to 0.571291)
95\% confidence interval for difference between medians or means:
Median difference $=3.5956$ (CI: -74.2451 to 76.5653)

Mann-Whitney U test Placenta vs UE - SIGNIFICANT!

Observations (x) in Unexplained Female Body:Thymus Ratio $=233$ median $=463.4$ rank sum $=28,494$
Observations (y) in Placenta Female Body:Thymus Ratio $=19$ median $=982.089552$
$\mathrm{U}=1,233 \quad \mathrm{U}^{\prime}=3,194$
Exact probability:
Lower side $\mathrm{P}=0.0005(\mathrm{H} 1: \mathrm{x}$ tends to be less than y$)$
Upper side $\mathrm{P}=0.9995$ (H1: x tends to be greater than y)
Two sided $\mathrm{P}=0.001$ (H1: x tends to be distributed differently to y)
Theta $\left(\mathrm{U}^{\prime} / \mathrm{mn}\right)=0.721482(95 \%$ CI: 0.58884 to 0.820315$)$
95\% confidence interval for difference between medians or means:
Median difference $=-398.3342(\mathrm{CI}:-840$ to -155.9596$)$

Mann-Whitney U test- significant!
Observations (x) in SGA Female Body:Thymus Ratio $=76$ median $=528.673724$ rank sum $=10,476$
Observations (y) in Non SGA Female Body:Thymus Ratio $=140$ median $=333.824199$
$\mathrm{U}=7,550 \quad \mathrm{U}^{\prime}=3,090$
Exact probability:

Lower side $\mathrm{P}<0.0001(\mathrm{H} 1: \mathrm{x}$ tends to be less than y$)$
Upper side $\mathrm{P}>0.9999$ ($\mathrm{H} 1: \mathrm{x}$ tends to be greater than y)
Two sided $\mathrm{P}<0.0001$ (H1: x tends to be distributed differently to y)
Theta $(\mathrm{U} / \mathrm{mn})=0.290414$ (95% CI: 0.225256 to 0.367731)
95\% confidence interval for difference between medians or means:
Median difference $=173.2328$ (CI: 107.7621 to 240.6687)
Mann-Whitney U test not signif
Observations (x) in UEUE Non SGA Female Body:Thymus Ratio $=47$ median $=356.23053$ rank sum
$=1,308$
Observations (y) in UE Placenta Non SGA Female Body:Thymus Ratio $=7$ median $=337.15847$

$$
\mathrm{U}=180 \quad \mathrm{U}^{\prime}=149
$$

Exact probability:
Lower side $\mathrm{P}=0.3527$ ($\mathrm{H} 1: \mathrm{x}$ tends to be less than y)
Upper side $\mathrm{P}=0.6473$ (H1: x tends to be greater than y)
Two sided $\mathrm{P}=0.7053$ ($\mathrm{H} 1: \mathrm{x}$ tends to be distributed differently to y)
Theta $\left(\mathrm{U}^{\prime} / \mathrm{mn}\right)=0.452888(95 \%$ CI: 0.256174 to 0.668117$)$
95.1% confidence interval for difference between medians or means:
Median difference $=32.8125$ (CI: -70.4918 to 180.6986)

Mann-Whitney U test AI vs UE - SIGNIFICANT!

Observations (x) in COD AI Female Body:heart ratio $=71$ median $=139.344262$ rank sum $=9,274$
Observations (y) in Unexplained Female Body:heart ratio $=245$ median $=159.558011$
$\mathrm{U}=6,718 \quad \mathrm{U}^{\prime}=10,677$

Normalised statistic $=-2.920144$ (adjusted for ties)
Lower side $\mathrm{P}=0.0017$ ($\mathrm{H} 1: \mathrm{x}$ tends to be less than y)
Upper side $\mathrm{P}=0.9983$ (H1: x tends to be greater than y)
Two sided $\mathrm{P}=0.0035$ (H1: x tends to be distributed differently to y)
Theta $\left(\mathrm{U}^{\prime} / \mathrm{mn}\right)=0.613797(95 \%$ CI: 0.537683 to 0.683751$)$

95\% confidence interval for difference between medians or means:
Median difference $=-15.31992$ (CI: -25.48157 to -5.28337)

Mann-Whitney U test Placenta vs UE - not signif.
Observations (x) in Unexplained Female Body:heart ratio $=245$ median $=159.558011$ rank sum $=$ 32,378
Observations (y) in Placenta Female Body:heart ratio $=19$ median $=157.391304$
$\mathrm{U}=2,243 \quad \mathrm{U}^{\prime}=2,412$
Normalised statistic $=-0.263551$ (adjusted for ties)
Lower side $\mathrm{P}=0.3961$ (H1: x tends to be less than y)
Upper side $\mathrm{P}=0.6039$ ($\mathrm{H} 1: \mathrm{x}$ tends to be greater than y)
Two sided $\mathrm{P}=0.7921$ (H1: x tends to be distributed differently to y)
Theta $\left(\mathrm{U}^{\prime} / \mathrm{mn}\right)=0.518153(95 \%$ CI: 0.387366 to 0.646035$)$
95\% confidence interval for difference between medians or means:
Median difference $=-2.29$ (CI: -20.29524 to 16.29791)

Mann-Whitney U test

Observations (x) in Macerated Female Body:heart ratio $=283$ median $=160.973684$ rank sum $=$ 60,522.5
Observations (y) in Non Macerated Female Body:heart ratio $=115$ median $=138$
$\mathrm{U}=20,336.5 \quad \mathrm{U}^{\prime}=12,208.5$
Normalised statistic $=3.906751$ (adjusted for ties)
Lower side $\mathrm{P}>0.9999$ (H 1 : x tends to be less than y)
Upper side $\mathrm{P}<0.0001$ (H 1 : x tends to be greater than y)
Two sided $\mathrm{P}<0.0001$ ($\mathrm{H} 1: \mathrm{x}$ tends to be distributed differently to y)
Theta $\left(\mathrm{U}^{\prime} / \mathrm{mn}\right)=0.375127(95 \% \mathrm{CI}: 0.317668$ to 0.437169$)$

95\% confidence interval for difference between medians or means:
Median difference $=17.3589(\mathrm{CI}: 8.82902$ to 25.51432 $)$
Mann-Whitney U test not significant anymore!

Observations (x) in Normal BMI Female Body:heart ratio $=52$ median $=156.284382$ rank sum $=3,153$
Observations (y) in Overweight Female Body:heart ratio $=70$ median $=150.593168$
$\mathrm{U}=1,775 \quad \mathrm{U}^{\prime}=1,865$
Exact probability:
Lower side $\mathrm{P}=0.4092$ ($\mathrm{H} 1: \mathrm{x}$ tends to be less than y)
Upper side $\mathrm{P}=0.5908$ (H 1 : x tends to be greater than y)
Two sided $\mathrm{P}=0.8185$ (H1: x tends to be distributed differently to y)
Theta $\left(\mathrm{U}^{\prime} / \mathrm{mn}\right)=0.512363(95 \% \mathrm{CI}: 0.410398$ to 0.613106$)$
95% confidence interval for difference between medians or means:
Median difference $=-2.036855(\mathrm{CI}:-21.48674$ to 16.92632)

Mann-Whitney U test Normal vs OW - Not signif
Observations (x) in Normal Female Body:liver wt ratio $=51$ median $=25.671642$ rank sum $=3,275$
Observations (y) in Overweight Female Body:liver wt ratio $=71$ median $=25.883069$
$\mathrm{U}=1,949 \quad \mathrm{U}^{\prime}=1,672$
Exact probability:
Lower side $\mathrm{P}=0.2376$ (H 1 : x tends to be less than y)
Upper side $\mathrm{P}=0.7624(\mathrm{H} 1: \mathrm{x}$ tends to be greater than y$)$
Two sided $\mathrm{P}=0.4752$ (H1: x tends to be distributed differently to y)
Theta $\left(\mathrm{U}^{\prime} / \mathrm{mn}\right)=0.461751(95 \%$ CI: 0.362337 to 0.564956$)$
95\% confidence interval for difference between medians or means:
Median difference $=1.24683$ (CI: -2.57505 to 5.41824)
Mann-Whitney U test Mac vs Non Mac - SIGNIFICANT!
Observations (x) in Macerated Female Body:liver wt ratio $=281$ median $=27.684564$ rank sum $=$ 64,383.5
Observations (y) in Non Macerated Female Body:liver wt ratio $=116$ median $=18.544441$
$\mathrm{U}=24,762.5 \quad \mathrm{U}^{\prime}=7,833.5$
Normalised statistic $=8.140822$ (adjusted for ties)
Lower side $\mathrm{P}>0.9999$ (H 1 : x tends to be less than y)
Upper side $\mathrm{P}<0.0001$ ($\mathrm{H} 1: \mathrm{x}$ tends to be greater than y)
Two sided $\mathrm{P}<0.0001$ (H1: x tends to be distributed differently to y)
Theta $\left(\mathrm{U}^{\prime} / \mathrm{mn}\right)=0.240321(95 \%$ CI: 0.193148 to 0.296345$)$
95\% confidence interval for difference between medians or means:

Median difference $=8.22891$ (CI: 6.45631 to 9.98003)

Mann-Whitney U test AI vs UE - SIGNIFICANT!

Observations (x) in AI Female Body:liver wt ratio $=72$ median $=16.938061$ rank sum $=6,032.5$
Observations (y) in Unexplained Female Body:liver wt ratio $=244$ median $=26.537896$
$\mathrm{U}=3,404.5 \quad \mathrm{U}^{\prime}=14,163.5$
Normalised statistic $=-7.89663($ adjusted for ties $)$
Lower side $\mathrm{P}<0.0001$ ($\mathrm{H} 1: \mathrm{x}$ tends to be less than y)
Upper side $\mathrm{P}>0.9999$ (H1: x tends to be greater than y)
Two sided $\mathrm{P}<0.0001$ (H1: x tends to be distributed differently to y)
Theta $\left(\mathrm{U}^{\prime} / \mathrm{mn}\right)=0.80621(95 \%$ CI: 0.741432 to 0.856277$)$
95\% confidence interval for difference between medians or means:
Median difference $=-9.047525(\mathrm{CI}:-10.99924$ to -6.96404$)$
Mann-Whitney U test - Placenta vs UE - SIGNIFICANT!
Observations (x) in Unexplained Female Body:liver wt ratio $=244$ median $=26.537896$ rank sum $=$ 30,985
Observations (y) in Placenta Female Body:liver wt ratio $=19$ median $=44.461404$
$\mathrm{U}=1,095 \quad \mathrm{U}^{\prime}=3,541$
Exact probability:
Lower side $\mathrm{P}<0.0001$ (H1: x tends to be less than y)
Upper side $\mathrm{P}>0.9999$ (H1: x tends to be greater than y$)$
Two sided $\mathrm{P}<0.0001$ (H1: x tends to be distributed differently to y)
Theta $\left(\mathrm{U}^{\prime} / \mathrm{mn}\right)=0.763805(95 \%$ CI: 0.634842 to 0.853553$)$

95\% confidence interval for difference between medians or means:
Median difference $=-15.134685$ (CI: -22.55231 to -7.27148)

Mann-Whitney U test- significant!
Observations (x) in SGA Female Body:liver wt ratio $=78$ median $=31.241029$ rank sum $=10,356$
Observations (y) in Non SGA Female Body:liver wt ratio $=141$ median $=25.81262$
$\mathrm{U}=7,275 \quad \mathrm{U}^{\prime}=3,723$
Exact probability:
Lower side $\mathrm{P}<0.0001$ (H1: x tends to be less than y)
Upper side $\mathrm{P}>0.9999$ (H1: x tends to be greater than y)
Two sided $\mathrm{P}<0.0001$ (H1: x tends to be distributed differently to y)
Theta $\left(\mathrm{U}^{\prime} / \mathrm{mn}\right)=0.338516$ (95% CI: 0.269244 to 0.417195)
95% confidence interval for difference between medians or means:
Median difference $=5.826265$ (CI: 2.93504 to 8.82651)
Mann-Whitney U test not signif.
Observations (x) in UE UE Non SGA Female Body:liver wt ratio $=48$ median $=27.755862$ rank sum $=$ 1,366
Observations (y) in UE Placenta Non SGAFemale Body:liver wt ratio $=8$ median $=26.218964$
$\mathrm{U}=190 \quad \mathrm{U}^{\prime}=194$
Exact probability:
Lower side $\mathrm{P}=0.4863$ (H1: x tends to be less than y)
Upper side $\mathrm{P}=0.5137$ ($\mathrm{H} 1: \mathrm{x}$ tends to be greater than y)
Two sided $\mathrm{P}=0.9725$ (H1: x tends to be distributed differently to y)

Theta $\left(\mathrm{U}^{\prime} / \mathrm{mn}\right)=0.505208(95 \% \mathrm{CI}: 0.307288$ to 0.701259$)$
95.1% confidence interval for difference between medians or means:
Median difference $=-0.20646(\mathrm{CI}:-6.86144$ to 7.25001$)$

Males:

Mann-Whitney U test Mac vs non Mac - noty signif

Observations (x) in Macerated Male Body: brain wt ratio $=331$ median $=6.941772$ rank sum $=78,768$
Observations (y) in Non Macerated Male Body: brain wt ratio $=135$ median $=6.714286$
$\mathrm{U}=23,822 \quad \mathrm{U}^{\prime}=20,863$
Normalised statistic $=1.121931$ (adjusted for ties)
Lower side $P=0.8691$ (H1: x tends to be less than y)
Upper side $\mathrm{P}=0.1309(\mathrm{H} 1: \mathrm{x}$ tends to be greater than y$)$
Two sided $\mathrm{P}=0.2619$ (H1: x tends to be distributed differently to y)
Theta $\left(\mathrm{U}^{\prime} / \mathrm{mn}\right)=0.46689(95 \%$ CI: 0.410194 to 0.524646$)$
95% confidence interval for difference between medians or means:
Median difference $=0.20089(\mathrm{CI}:-0.14465$ to 0.55453$)$

Mann-Whitney U test- AI Vs UE - SIGNIFICANT!

Observations (x) in AI Male Body: brain wt ratio $=73$ median $=6.514658$ rank sum $=10,834$
Observations (y) in Unexplained Male Body: brain wt ratio $=292$ median $=7.171119$
$\mathrm{U}=8,133 \quad \mathrm{U}^{\prime}=13,183$

Normalised statistic $=-3.131545($ adjusted for ties $)$
Lower side $\mathrm{P}=0.0009$ ($\mathrm{H} 1: \mathrm{x}$ tends to be less than y)
Upper side $\mathrm{P}=0.9991$ ($\mathrm{H} 1: \mathrm{x}$ tends to be greater than y)
Two sided $\mathrm{P}=0.0017$ ($\mathrm{H} 1: \mathrm{x}$ tends to be distributed differently to y)
Theta $(\mathrm{U} / \mathrm{mn})=0.618456$ (95% CI: 0.544679 to 0.686186)
95\% confidence interval for difference between medians or means:
Median difference $=-0.626595$ (CI: -1.03791 to -0.23658)

Mann-Whitney U test UE vs Placenta - SIGNIFICANT!

Observations (x) in Unexplained Male Body: brain wt ratio $=292$ median $=7.171119$ rank sum $=$ 48,700
Observations (y) in Placenta Male Body: brain wt ratio $=31$ median $=6.146667$
$\mathrm{U}=5,922 \quad \mathrm{U}^{\prime}=3,130$
Normalised statistic $=2.823783$ (adjusted for ties)
Lower side $\mathrm{P}=0.9976$ ($\mathrm{H} 1: \mathrm{x}$ tends to be less than y)
Upper side $\mathrm{P}=0.0024$ (H 1 : x tends to be greater than y)
Two sided $\mathrm{P}=0.0047$ (H1: x tends to be distributed differently to y)
Theta $\left(\mathrm{U}^{\prime} / \mathrm{mn}\right)=0.34578$ ($95 \% \mathrm{CI}: 0.255033$ to 0.452226)
95% confidence interval for difference between medians or means:
Median difference $=1.042805$ (CI: 0.34498 to 1.7605)
ann-Whitney U test- significant!

Observations (x) in SGA Male Body: brain wt ratio $=95$ median $=6.062016$ rank sum $=8,010$ Observations (y) in Non SGA Male Body: brain wt ratio $=153$ median $=7.78872$
$\mathrm{U}=3,450 \quad \mathrm{U}^{\prime}=11,085$
Normalised statistic $=-6.951244$ (adjusted for ties)
Lower side $\mathrm{P}<0.0001$ (H1: x tends to be less than y)
Upper side $\mathrm{P}>0.9999$ (H1: x tends to be greater than y)
Two sided $\mathrm{P}<0.0001$ (H1: x tends to be distributed differently to y)
Theta $\left(\mathrm{U}^{\prime} / \mathrm{mn}\right)=0.762642(95 \%$ CI: 0.695669 to 0.817178$)$
95\% confidence interval for difference between medians or means:
Median difference $=-1.7849$ (CI: -2.24572 to -1.32711)
Mann-Whitney U test UE vs UE placenta - not signif.
Observations (x) in UE UE Non SGA Male Body: brain wt ratio $=45$ median $=7.583832$ rank sum $=$ 1,262
Observations (y) in UE placenta non SGA Male Body: brain wt ratio $=14$ median $=8.168087$
$\mathrm{U}=227 \quad \mathrm{U}^{\prime}=403$

Exact probability:
Lower side $\mathrm{P}=0.0599(\mathrm{H} 1: \mathrm{x}$ tends to be less than y$)$
Upper side $\mathrm{P}=0.9401(\mathrm{H} 1: \mathrm{x}$ tends to be greater than y)
Two sided $\mathrm{P}=0.1198$ (H 1 : x tends to be distributed differently to y)
Theta $\left(\mathrm{U}^{\prime} / \mathrm{mn}\right)=0.639683$ (95% CI: 0.465577 to 0.779442)
95.2% confidence interval for difference between medians or means:
Median difference $=-0.722055$ (CI: -1.70802 to 0.10417)

Mann-Whitney U test - AI vs UE - SIGNIFICANT!

Observations (x) in COD AI Male Body:heart ratio $=74$ median $=145.237395$ rank sum $=12,478$
Observations (y) in Unexplained Male Body:heart ratio $=309$ median $=155$
$\mathrm{U}=9,703 \quad \mathrm{U}^{\prime}=13,163$
Exact probability:
Lower side $\mathrm{P}=0.0215$ (H 1 : x tends to be less than y)
Upper side $\mathrm{P}=0.9785(\mathrm{H}: \mathrm{x}$ tends to be greater than y$)$
Two sided $\mathrm{P}=0.043$ (H1: x tends to be distributed differently to y)
Theta $\left(\mathrm{U}^{\prime} / \mathrm{mn}\right)=0.575658(95 \%$ CI: 0.502338 to 0.64516$)$
95\% confidence interval for difference between medians or means:
Median difference $=-10.39899($ CI: -20.91667 to -0.37287$)$

Mann-Whitney U test UE vs Placenta - not signif

Observations (x) in Unexplained Male Body:heart ratio $=309$ median $=155$ rank sum $=52,226$
Observations (y) in Placenta Male Body:heart ratio $=32$ median $=164.043528$
$\mathrm{U}=4,331 \quad \mathrm{U}^{\prime}=5,557$

Exact probability:
Lower side $\mathrm{P}=0.1249(\mathrm{H} 1: \mathrm{x}$ tends to be less than y$)$
Upper side $\mathrm{P}=0.8751$ ($\mathrm{H} 1: \mathrm{x}$ tends to be greater than y)
Two sided $\mathrm{P}=0.2498$ (H1: x tends to be distributed differently to y)
Theta $\left(U^{\prime} / \mathrm{mn}\right)=0.561994$ (95% CI: 0.45724 to 0.660499)
95% confidence interval for difference between medians or means:

Median difference $=-8.52036$ (CI: -23.5155 to 6.39194$)$

Mann-Whitney U test

Observations (x) in Macerated Male Body:heart ratio $=347$ median $=160.144928$ rank sum $=89,067$
Observations (y) in Non Macerated Male Body:heart ratio $=144$ median $=146.554945$
$U=28,689 \quad U^{\prime}=21,279$
Normalised statistic $=2.588513$
Lower side $\mathrm{P}=0.9952(\mathrm{H} 1: \mathrm{x}$ tends to be less than y$)$
Upper side $\mathrm{P}=0.0048$ ($\mathrm{H} 1: \mathrm{x}$ tends to be greater than y)
Two sided $\mathrm{P}=0.0096$ (H1: x tends to be distributed differently to y)
Theta $\left(\mathrm{U}^{\prime} / \mathrm{mn}\right)=0.425853(95 \%$ CI: 0.371978 to 0.481951$)$
95\% confidence interval for difference between medians or means:
Median difference $=10.52107$ (CI: 2.55735 to 18.74356)
Mann-Whitney U test OW vs Obese - not signif
Observations (x) in Overweight Male Body:Liver ratio $=57$ median $=24.242424$ rank sum $=3,746$
Observations (y) in Obese Male Body:Liver ratio $=74$ median $=24.89169$

$$
\mathrm{U}=2,093 \quad \mathrm{U}^{\prime}=2,125
$$

Exact probability:
Lower side $\mathrm{P}=0.4714$ (H 1 : x tends to be less than y)
Upper side $\mathrm{P}=0.5286$ ($\mathrm{H} 1: \mathrm{x}$ tends to be greater than y)
Two sided $\mathrm{P}=0.9428$ ($\mathrm{H} 1: \mathrm{x}$ tends to be distributed differently to y)
Theta $\left(\mathrm{U}^{\prime} / \mathrm{mn}\right)=0.503793(95 \% \mathrm{CI}: 0.405873$ to 0.601365$)$

95\% confidence interval for difference between medians or means:
Median difference $=-0.12115$ (CI: -3.15185 to 2.92824)
Mann-Whitney U test Normal vs OW - not signif
Observations (x) in Normal Male Body:Liver ratio $=54$ median $=26.263601$ rank sum $=3,118$
Observations (y) in Overweight Male Body:Liver ratio $=57$ median $=24.242424$
$\mathrm{U}=1,633 \quad \mathrm{U}^{\prime}=1,445$
Exact probability:
Lower side $\mathrm{P}=0.2913$ (H1: x tends to be less than y)
Upper side $\mathrm{P}=0.7087$ (H1: x tends to be greater than y)
Two sided $\mathrm{P}=0.5826$ ($\mathrm{H} 1: \mathrm{x}$ tends to be distributed differently to y)
Theta $(\mathrm{U} / \mathrm{mn})=0.469461(95 \%$ CI: 0.366279 to 0.575872$)$
95\% confidence interval for difference between medians or means:
Median difference $=1.104355$ (CI: -2.73587 to 5.56955)
Mann-Whitney U test N vs Obese - not signif
Observations (x) in Normal Male Body:Liver ratio $=54$ median $=26.263601$ rank sum $=3,583$
Observations (y) in Obese Male Body:Liver ratio $=74$ median $=24.89169$
$\mathrm{U}=2,098 \quad \mathrm{U}^{\prime}=1,898$
Exact probability:
Lower side $\mathrm{P}=0.3162$ ($\mathrm{H} 1: \mathrm{x}$ tends to be less than y)
Upper side $\mathrm{P}=0.6838$ (H1: x tends to be greater than y)
Two sided $\mathrm{P}=0.6323$ (H1: x tends to be distributed differently to y)
Theta $\left(\mathrm{U}^{\prime} / \mathrm{mn}\right)=0.474975(95 \%$ CI: 0.37709 to 0.575228$)$

95\% confidence interval for difference between medians or means:
Median difference $=1.033775$ (CI: -3.0301 to 5.1103)

Mann-Whitney U test UW vs obese - not signif
Observations (x) in Obese Male Body:Liver ratio $=74$ median $=24.89169$ rank sum $=3,150$
Observations (y) in Underweight Male Body:Liver ratio $=12$ median $=31.302593$
$\mathrm{U}=375 \quad \mathrm{U}^{\prime}=513$
Exact probability:
Lower side $\mathrm{P}=0.199$ (H 1 : x tends to be less than y)
Upper side $\mathrm{P}=0.801(\mathrm{H} 1: \mathrm{x}$ tends to be greater than y$)$
Two sided $\mathrm{P}=0.3979$ (H 1 : x tends to be distributed differently to y)
Theta $\left(\mathrm{U}^{\prime} / \mathrm{mn}\right)=0.577703(95 \%$ CI: 0.404547 to 0.731031$)$
95.1\% confidence interval for difference between medians or means:

Median difference $=-4.05259(\mathrm{CI}:-11.11828$ to 5.31515$)$

Mann-Whitney U test Mac vs non mac - SIGNIFICANT!
Observations (x) in Macerated Male Body:Liver ratio $=341$ median $=30.659091$ rank sum $=98,181.5$
Observations (y) in Non Macerated Male Body:Liver ratio $=142$ median $=19.232869$
$\mathrm{U}=39,870.5 \quad \mathrm{U}=8,551.5$

Normalised statistic $=11.205326$ (adjusted for ties)
Lower side $\mathrm{P}>0.9999$ ($\mathrm{H} 1: \mathrm{x}$ tends to be less than y)
Upper side $\mathrm{P}<0.0001$ (H1: x tends to be greater than y)
Two sided $\mathrm{P}<0.0001$ (H1: x tends to be distributed differently to y)

Theta $\left(\mathrm{U}^{\prime} / \mathrm{mn}\right)=0.176604(95 \% \mathrm{CI}: 0.139831$ to 0.221921$)$
95% confidence interval for difference between medians or means:
Median difference $=10.96272$ (CI: 9.25447 to 12.68958)
Mann-Whitney U test - AI vs UE - SIGNIFICANT!

Observations (x) in AI Male Body:Liver ratio $=73$ median $=18.085106$ rank sum $=7,118.5$
Observations (y) in Unexplained Male Body:Liver ratio $=305$ median $=27.25$
$\mathrm{U}=4,417.5 \quad \mathrm{U}^{\prime}=17,847.5$

Normalised statistic $=-8.007662($ adjusted for ties $)$
Lower side $\mathrm{P}<0.0001$ (H1: x tends to be less than y)
Upper side $\mathrm{P}>0.9999(\mathrm{H} 1$: x tends to be greater than y$)$
Two sided $\mathrm{P}<0.0001$ (H1: x tends to be distributed differently to y)
Theta $\left(\mathrm{U}^{\prime} / \mathrm{mn}\right)=0.801594(95 \%$ CI: 0.738397 to 0.851046$)$
95% confidence interval for difference between medians or means:
Median difference $=-8.56738(\mathrm{CI}:-10.77617$ to -6.48248$)$
Mann-Whitney U test - UE vs Placenta _ SIGNIFICANT!
Observations (x) in Unexplained Male Body:Liver ratio $=305$ median $=27.25$ rank sum $=49,103$
Observations (y) in Placenta Male Body:Liver ratio $=31$ median $=39.255618$
$\mathrm{U}=2,438 \quad \mathrm{U}^{\prime}=7,017$

Exact probability:
Lower side $\mathrm{P}<0.0001$ (H1: x tends to be less than y)
Upper side $\mathrm{P}>0.9999$ (H 1 : x tends to be greater than y)
Two sided $\mathrm{P}<0.0001$ (H1: x tends to be distributed differently to y)

Theta $\left(\mathrm{U}^{\prime} / \mathrm{mn}\right)=0.742147(95 \%$ CI: 0.64054 to 0.820207$)$
95\% confidence interval for difference between medians or means:
Median difference $=-10.67016$ (CI: -14.48734 to -6.30504)
Mann-Whitney U test- significant!
Observations (x) in SGA Male Body:Liver ratio $=99$ median $=34.201031$ rank sum $=15,428.5$
Observations (y) in Non SGA Male Body:Liver ratio $=159$ median $=27.785185$
$\mathrm{U}=10,478.5 \quad \mathrm{U}=5,262.5$
Normalised statistic $=4.474374($ adjusted for ties $)$
Lower side $\mathrm{P}>0.9999$ (H1: x tends to be less than y)
Upper side $\mathrm{P}<0.0001$ (H1: x tends to be greater than y)
Two sided $\mathrm{P}<0.0001$ (H1: x tends to be distributed differently to y)
Theta $\left(\mathrm{U}^{\prime} / \mathrm{mn}\right)=0.334318$ (95% CI: 0.271315 to 0.405298)
95\% confidence interval for difference between medians or means:
Median difference $=6.96029$ (CI: 3.89095 to 9.95167)
Mann-Whitney U test UE UE vs UE placenta - SIGNIFICANT!
Observations (x) in UE UE Non SGAMale Body:Liver ratio $=44$ median $=26.172804$ rank sum $=$ 1,100
Observations (y) in UE placenta Non SGA Male Body:Liver ratio $=14$ median $=34.139936$
$\mathrm{U}=110 \quad \mathrm{U}^{\prime}=506$
Exact probability:
Lower side $\mathrm{P}<0.0001$ (H1: x tends to be less than y)
Upper side $\mathrm{P}>0.9999$ (H1: x tends to be greater than y)
Two sided $\mathrm{P}=0.0002$ (H1: x tends to be distributed differently to y)

Theta $\left(\mathrm{U}^{\prime} / \mathrm{mn}\right)=0.821429(95 \% \mathrm{CI}: 0.656929$ to 0.912419$)$
95.2% confidence interval for difference between medians or means:
Median difference $=-8.103225(\mathrm{CI}:-11.91533$ to -4.12121$)$

Mann-Whitney U test - Mac vs non Mac - SIGNIFICANT!
Observations (x) in Macerated Male Body:thymus wt $=330$ median $=542.242798$ rank sum $=81,906$
Observations (y) in Non Macerated Male Body:thymus wt $=142$ median $=429.054054$
$\mathrm{U}=27,291 \quad \mathrm{U}^{\prime}=19,569$
Normalised statistic $=2.840919$ (adjusted for ties)
Lower side $\mathrm{P}=0.9978$ (H 1 : x tends to be less than y)
Upper side $\mathrm{P}=0.0022(\mathrm{H} 1: \mathrm{x}$ tends to be greater than y$)$
Two sided $\mathrm{P}=0.0045$ (H1: x tends to be distributed differently to y)
Theta $\left(\mathrm{U}^{\prime} / \mathrm{mn}\right)=0.417606(95 \% \mathrm{CI}: 0.363381$ to 0.474359$)$
95% confidence interval for difference between medians or means:
Median difference $=90.27285(\mathrm{CI}: 27.7108$ to 155.0521$)$

Mann-Whitney U test AI vs UE - not signif
Observations (x) in AI Male Body:thymus wt $=73$ median $=542.941176$ rank sum $=14,394$
Observations (y) in Unexplained Male Body:thymus wt $=295$ median $=471.09375$
$\mathrm{U}=11,693 \quad \mathrm{U}^{\prime}=9,842$

Normalised statistic $=1.137317$ (adjusted for ties)
Lower side $\mathrm{P}=0.8723$ (H1: x tends to be less than y)

Upper side $\mathrm{P}=0.1277(\mathrm{H} 1$: x tends to be greater than y$)$
Two sided $\mathrm{P}=0.2554$ (H 1 : x tends to be distributed differently to y)
Theta $\left(\mathrm{U}^{\prime} / \mathrm{mn}\right)=0.457023(95 \% \mathrm{CI}: 0.385355$ to 0.530913$)$
95% confidence interval for difference between medians or means
Median difference $=46.8571$ (CI: -34.0659 to 131.6687)

Mann-Whitney U test UE vs placenta - SIGNIFICANT

Observations (x) in Unexplained Male Body:thymus wt $=295$ median $=471.09375$ rank sum $=46,670$
Observations (y) in Placenta Male Body:thymus wt $=32$ median $=758.217593$

$$
\mathrm{U}=3,010 \quad \mathrm{U}^{\prime}=6,430
$$

Normalised statistic $=-3.366386($ adjusted for ties $)$
Lower side $\mathrm{P}=0.0004$ (H 1 : x tends to be less than y)
Upper side $\mathrm{P}=0.9996(\mathrm{H} 1: \mathrm{x}$ tends to be greater than y$)$
Two sided $\mathrm{P}=0.0008(\mathrm{H} 1$: x tends to be distributed differently to y$)$

Theta $\left(\mathrm{U}^{\prime} / \mathrm{mn}\right)=0.681144(95 \% \mathrm{CI}: 0.577219$ to 0.767324$)$
95% confidence interval for difference between medians or means:
Median difference $=-261.7823(\mathrm{CI}:-434.5812$ to -107.9678$)$

Mann-Whitney U test- significant!
Observations (x) in SGA Male Body:thymus wt $=99$ median $=776.5$ rank sum $=17,205.5$
Observations (y) in Non SGA Male Body:thymus wt $=160$ median $=356.890681$
$\mathrm{U}=12,255.5 \quad \mathrm{U}^{\prime}=3,584.5$

Normalised statistic $=7.400582$ (adjusted for ties)
Lower side $\mathrm{P}>0.9999$ ($\mathrm{H} 1: \mathrm{x}$ tends to be less than y)
Upper side $\mathrm{P}<0.0001$ (H1: x tends to be greater than y)
Two sided $\mathrm{P}<0.0001$ (H1: x tends to be distributed differently to y)
Theta $\left(\mathrm{U}^{\prime} / \mathrm{mn}\right)=0.226294$ (95% CI: 0.174084 to 0.290831)
95% confidence interval for difference between medians or means:
Median difference $=342.73945$ (CI: 239.6276 to 462.25)
Mann-Whitney U test - SIGNIFICANT!
Observations (x) in UE UE Non SGA Male Body:thymus wt $=45$ median $=322.64$ rank sum $=1,204$
Observations (y) in UE Placenta Non SGA Male Body:thymus wt $=14$ median $=472.003434$
$\mathrm{U}=169 \quad \mathrm{U}^{\prime}=461$
Exact probability:
Lower side $\mathrm{P}=0.0042$ ($\mathrm{H} 1: \mathrm{x}$ tends to be less than y)
Upper side $\mathrm{P}=0.9958$ (H1: x tends to be greater than y)
Two sided $\mathrm{P}=0.0084$ (H1: x tends to be distributed differently to y)
Theta $\left(\mathrm{U}^{\prime} / \mathrm{mn}\right)=0.731746$ (95% CI: 0.558594 to 0.849577)
95.2% confidence interval for difference between medians or means:
Median difference $=-128.88809$ (CI: -256.2 to -39.80501)

Brain:Liver ratio

Mann-Whitney U test- Mac vs Non Mac significant!

Macerated fetuses have proportioanlly smaller livers compared to non macerated
Observations (x) in Macerated Male B:L Ratio $=300$ median $=4.097955$ rank sum $=76,230$
Observations (y) in Non Macerated Male B:L Ratio $=132$ median $=2.825432$

$$
\mathrm{U}=31,080 \quad \mathrm{U}^{\prime}=8,520
$$

Normalised statistic $=9.436441$ (adjusted for ties)
Lower side $\mathrm{P}>0.9999$ (H 1 : x tends to be less than y)
Upper side $\mathrm{P}<0.0001(\mathrm{H} 1: \mathrm{x}$ tends to be greater than y$)$
Two sided $\mathrm{P}<0.0001$ (H1: x tends to be distributed differently to y)
Theta $\left(\mathrm{U}^{\prime} / \mathrm{mn}\right)=0.215152(95 \%$ CI: 0.172703 to 0.266134$)$
95\% confidence interval for difference between medians or means:
Median difference $=1.264175$ (CI: 1.02163 to 1.52224)
Mann-Whitney U test Mac vs non mac - SIGNIFICANT!
Macerated fetus' have smaller livers propotionally to brain in macerated
Observations (x) in Macerated Female B:L ratio $=260$ median $=3.879037$ rank sum $=53,639$
Observations (y) in Non Macerated Female B:L ratio $=108$ median $=2.771078$
$\mathrm{U}=19,709 \quad \mathrm{U}^{\prime}=8,371$
Normalised statistic $=6.10078$ (adjusted for ties)
Lower side $\mathrm{P}>0.9999$ ($\mathrm{H} 1: \mathrm{x}$ tends to be less than y)
Upper side $\mathrm{P}<0.0001$ ($\mathrm{H} 1: \mathrm{x}$ tends to be greater than y)
Two sided $\mathrm{P}<0.0001$ (H1: x tends to be distributed differently to y)
Theta $\left(\mathrm{U}^{\prime} / \mathrm{mn}\right)=0.298113(95 \%$ CI: 0.244076 to 0.359824$)$
95% confidence interval for difference between medians or means:
Median difference $=0.937745$ (CI: 0.65036 to 1.23189)
Mann-Whitney U test
Observations (x) in Macerated B:L ratio $=549$ median $=3.936508$ rank sum $=248,716$
Observations (y) in Non Macerated B:L ratio $=239$ median $=2.778947$

$$
\mathrm{U}=97,741 \quad \mathrm{U}^{\prime}=33,470
$$

Normalised statistic $=10.940875$ (adjusted for ties)
Lower side $\mathrm{P}>0.9999$ (H 1 : x tends to be less than y)
Upper side $\mathrm{P}<0.0001$ (H1: x tends to be greater than y)
Two sided $\mathrm{P}<0.0001$ (H1: x tends to be distributed differently to y)
Theta $\left(\mathrm{U}^{\prime} / \mathrm{mn}\right)=0.255085$ (95% CI: 0.220063 to 0.294304)
95\% confidence interval for difference between medians or means:
Median difference $=1.08778$ (CI: 0.90203 to 1.27323)

Mann-Whitney U test
Observations (x) in UE Mac B:L ratio $=420$ median $=3.848701$ rank sum $=116,771.5$
Observations (y) in UE No mac B:L ratio $=99$ median $=3.054518$
$\mathrm{U}=28,361.5 \quad \mathrm{U}^{\prime}=13,218.5$
Normalised statistic $=5.640644($ adjusted for ties $)$
Lower side $\mathrm{P}>0.9999$ (H1: x tends to be less than y)
Upper side $\mathrm{P}<0.0001$ (H1: x tends to be greater than y)
Two sided $\mathrm{P}<0.0001$ (H1: x tends to be distributed differently to y)
Theta $\left(\mathrm{U}^{\prime} / \mathrm{mn}\right)=0.317905(95 \% \mathrm{CI}: 0.263583$ to 0.378892$)$
95% confidence interval for difference between medians or means:
Median difference $=0.774085$ (CI: 0.51914 to 1.04332)

Mann-Whitney U test

Observations (x) in UE non mac B:L ratio $=99$ median $=3.054518$ rank sum $=11,403$

Observations (y) in AI non mac $\mathrm{B}: \mathrm{L}$ ratio $=101$ median $=2.654867$
$\mathrm{U}=6,453 \quad \mathrm{U}^{\prime}=3,546$
Exact probability:
Lower side $\mathrm{P}=0.0002$ ($\mathrm{H} 1: \mathrm{x}$ tends to be less than y)
Upper side $\mathrm{P}=0.9998(\mathrm{H} 1: \mathrm{x}$ tends to be greater than y$)$
Two sided $\mathrm{P}=0.0003(\mathrm{H} 1$: x tends to be distributed differently to y$)$
Theta $\left(\mathrm{U}^{\prime} / \mathrm{mn}\right)=0.354635(95 \%$ CI: 0.283829 to 0.434$)$

95\% confidence interval for difference between medians or means:
Median difference $=0.40401(\mathrm{CI}: 0.18803$ to 0.62111$)$

Mann-Whitney U test

Observations (x) in SGA B:L ratio $=150$ median $=4.84182$ rank sum $=42,522.5$
Observations (y) in non SGA B:L ratio $=285$ median $=3.427812$
$\mathrm{U}=31,197.5 \quad \mathrm{U}^{\prime}=11,552.5$

Normalised statistic $=7.881364$ (adjusted for ties)
Lower side $\mathrm{P}>0.9999$ (H1: x tends to be less than y)
Upper side $\mathrm{P}<0.0001(\mathrm{H} 1: \mathrm{x}$ tends to be greater than y$)$
Two sided $\mathrm{P}<0.0001$ (H1: x tends to be distributed differently to y)
Theta $\left(\mathrm{U}^{\prime} / \mathrm{mn}\right)=0.270234(95 \% \mathrm{CI}: 0.224255$ to 0.322914$)$
95% confidence interval for difference between medians or means:
Median difference $=1.375605(\mathrm{CI}: 1.03239$ to 1.72505$)$

Mann-Whitney U test
Observations (x) in SGA with placenta COD B:L ratio $=51$ median $=6.03681$ rank sum $=4,976$
Observations (y) in SGA -non placenta COD B:L ratio $=101$ median $=4.271914$
$\mathrm{U}=3,650 \quad \mathrm{U}^{\prime}=1,501$
Exact probability:
Lower side $\mathrm{P}<0.0001(\mathrm{H} 1: \mathrm{x}$ tends to be less than y$)$
Upper side $\mathrm{P}>0.9999$ ($\mathrm{H} 1: \mathrm{x}$ tends to be greater than y)
Two sided $\mathrm{P}<0.0001$ (H1: x tends to be distributed differently to y)
Theta $\left(\mathrm{U}^{\prime} / \mathrm{mn}\right)=0.2914$ ($95 \% \mathrm{CI}: 0.214373$ to 0.385789)
95\% confidence interval for difference between medians or means:
Median difference $=1.55218$ (CI: 0.86473 to 2.21303)
Mann-Whitney U test
Observations (x) in SGA -non placenta COD B:L ratio $=101$ median $=4.271914$ rank sum $=19,301$
Observations (y) in Non SGA UE deaths $=209$ median $=3.45077$
$\mathrm{U}=14,150 \quad \mathrm{U}^{\prime}=6,959$
Normalised statistic $=4.861115$
Lower side $\mathrm{P}>0.9999$ (H1: x tends to be less than y)
Upper side $\mathrm{P}<0.0001$ (H1: x tends to be greater than y)
Two sided $\mathrm{P}<0.0001$ (H1: x tends to be distributed differently to y)
Theta $\left(\mathrm{U}^{\prime} / \mathrm{mn}\right)=0.32967(95 \%$ CI: 0.270151 to 0.396541$)$
95\% confidence interval for difference between medians or means:
Median difference $=0.85527$ (CI: 0.51013 to 1.20767)

Mann-Whitney U test
Observations (x) in SGA placenta COD B:L ratio $=49$ median $=6.101583$ rank sum $=16,727$
Observations (y) in SGA and non SGA non placental B:L ratio $=389$ median $=3.587145$
$\mathrm{U}=15,502 \quad \mathrm{U}^{\prime}=3,559$
Exact probability (adjusted for ties):
Lower side $\mathrm{P}<0.0001$ (H1: x tends to be less than y)
Upper side $\mathrm{P}>0.9999$ ($\mathrm{H} 1: \mathrm{x}$ tends to be greater than y)
Two sided $\mathrm{P}<0.0001$ (H1: x tends to be distributed differently to y)
Theta $\left(\mathrm{U}^{\prime} / \mathrm{mn}\right)=0.186716(95 \%$ CI: 0.132343 to 0.260058$)$
95\% confidence interval for difference between medians or means:
Median difference $=2.37658$ (CI: 1.83316 to 2.93634)

Body:Thymus weight ratio

Mann-Whitney U test
Observations (x) in No Mac Body:Tyhymus weight ratio $=272$ median $=405.75$ rank sum $=108,053$
Observations (y) in Any Mac Body:Tyhymus weight ratio $=638$ median $=532.694915$
$\mathrm{U}=70,925 \quad \mathrm{U}^{\prime}=102,611$
Normalised statistic $=-4.364898$ (adjusted for ties)
Lower side $\mathrm{P}<0.0001$ ($\mathrm{H} 1: \mathrm{x}$ tends to be less than y)
Upper side $\mathrm{P}>0.9999$ ($\mathrm{H} 1: \mathrm{x}$ tends to be greater than y)
Two sided $\mathrm{P}<0.0001$ (H1: x tends to be distributed differently to y)
Theta $\left(\mathrm{U}^{\prime} / \mathrm{mn}\right)=0.591295(95 \%$ CI: 0.550557 to 0.630565$)$

95\% confidence interval for difference between medians or means:
Median difference $=-95.06185(\mathrm{CI}:-140.2528$ to -52.0771$)$

Mann-Whitney U test

Observations (x) in SGA Body:Tyhymus weight ratio $=174$ median $=638.890244$ rank sum $=$
53,667.5
Observations (y) in NON SGA Body:Tyhymus weight ratio $=298$ median $=355.144983$
$\mathrm{U}=38,442.5 \quad \mathrm{U}^{\prime}=13,409.5$
Normalised statistic $=8.755082$ (adjusted for ties)
Lower side $\mathrm{P}>0.9999$ (H1: x tends to be less than y)
Upper side $\mathrm{P}<0.0001$ (H1: x tends to be greater than y)
Two sided $\mathrm{P}<0.0001$ (H1: x tends to be distributed differently to y)
Theta $\left(\mathrm{U}^{\prime} / \mathrm{mn}\right)=0.258611(95 \%$ CI: 0.215825 to 0.307656$)$
95% confidence interval for difference between medians or means:
Median difference $=242.87845$ (CI: 184.825 to 313.8454)

Mann-Whitney U test

Observations (x) in SGA Placental COD Body:Tyhymus weight ratio $=64$ median $=830.555556$ rank sum $=6,487$
Observations (y) in SGA non placental COD Body:Tyhymus weight ratio $=110$ median $=551.425502$
$\mathrm{U}=4,407 \quad \mathrm{U}^{\prime}=2,633$
Exact probability (adjusted for ties):
Lower side $\mathrm{P}=0.0027$ (H1: x tends to be less than y)
Upper side $\mathrm{P}=0.9973$ (H1: x tends to be greater than y)

Two sided $\mathrm{P}=0.0054$ (H1: x tends to be distributed differently to y)
Theta $\left(\mathrm{U}^{\prime} / \mathrm{mn}\right)=0.374006$ (95% CI: 0.29425 to 0.462912)
95\% confidence interval for difference between medians or means:
Median difference $=208.66465$ (CI: 70.0966 to 386.9472)
Mann-Whitney U test
Observations (x) in SGA Placental COD Body:Tyhymus weight ratio $=64$ median $=830.555556$ rank sum $=21,376.5$
Observations (y) in SGA non placental and non SGA all other COD Body:Thymus weight ratio $=408$
median $=394.707273$
$\mathrm{U}=19,296.5 \quad \mathrm{U}^{\prime}=6,815.5$
Normalised statistic $=6.151194($ adjusted for ties $)$
Lower side $\mathrm{P}>0.9999$ (H1: x tends to be less than y)
Upper side $\mathrm{P}<0.0001$ (H1: x tends to be greater than y)
Two sided $\mathrm{P}<0.0001$ (H1: x tends to be distributed differently to y)
Theta $\left(U^{\prime} / \mathrm{mn}\right)=0.26101(95 \%$ CI: 0.202367 to 0.331809$)$
95% confidence interval for difference between medians or means:
Median difference $=369.4722$ (CI: 247.4765 to 530.805)

Chapter 7 The Placenta

Significant!
Mann-Whitney U test
Observations (x) in Black Placental weight $(\mathrm{g})=109$ median $=179$ rank sum $=21,488$

Observations (y) in White Placental weight $(\mathrm{g})=337$ median $=243$
$\mathrm{U}=15,493 \quad \mathrm{U}^{\prime}=21,240$
Normalised statistic $=-2.45653($ adjusted for ties $)$
Lower side $\mathrm{P}=0.007$ ($\mathrm{H} 1: \mathrm{x}$ tends to be less than y)
Upper side $\mathrm{P}=0.993$ ($\mathrm{H} 1: \mathrm{x}$ tends to be greater than y)
Two sided $\mathrm{P}=0.014$ (H1: x tends to be distributed differently to y)
Theta $\left(\mathrm{U}^{\prime} / \mathrm{mn}\right)=0.578227(95 \%$ CI: 0.515851 to 0.637718$)$
95\% confidence interval for difference between medians or means:
Median difference $=-39$ (CI: -73 to -7.6)

Mann-Whitney U test
Observations (x) in Asian Placental weight $(\mathrm{g})=44$ median $=217.5$ rank sum $=3,735$
Observations (y) in Black Placental weight $(\mathrm{g})=109$ median $=179$
$\mathrm{U}=2,745 \quad \mathrm{U}^{\prime}=2,051$
Exact probability (adjusted for ties):
Lower side $\mathrm{P}=0.0814$ (H1: x tends to be less than y)
Upper side $\mathrm{P}=0.9186$ (H1: x tends to be greater than y)
Two sided $\mathrm{P}=0.1628$ (H 1 : x tends to be distributed differently to y)
Theta $\left(\mathrm{U}^{\prime} / \mathrm{mn}\right)=0.427648(95 \%$ CI: 0.333247 to 0.528829$)$
95\% confidence interval for difference between medians or means:
Median difference $=31.5$ (CI: -11 to 79.6)
Mann-Whitney U test

Observations (x) in White Placental weight $(\mathrm{g})=337$ median $=243 \mathrm{rank}$ sum $=59,476.5$
Observations (y) in Mixed/Oriental Placental weight $(\mathrm{g})=12$ median $=200.95$
$\mathrm{U}=2,523.5 \quad \mathrm{U}^{\prime}=1,520.5$
Normalised statistic $=1.460238($ adjusted for ties $)$
Lower side $\mathrm{P}=0.9279$ (H1: x tends to be less than y)
Upper side $\mathrm{P}=0.0721(\mathrm{H} 1: \mathrm{x}$ tends to be greater than y$)$
Two sided $\mathrm{P}=0.1442$ ($\mathrm{H} 1: \mathrm{x}$ tends to be distributed differently to y)
Theta $(\mathrm{U} / \mathrm{mn})=0.375989$ (95% CI: 0.238579 to 0.541732)
95\% confidence interval for difference between medians or means:
Median difference $=60.75$ (CI: -21 to 148.3)

Mann-Whitney U test

Observations (x) in Black Placental weight $(\mathrm{g})=109$ median $=179$ rank sum $=6,684$
Observations (y) in Mixed/Oriental Placental weight $(\mathrm{g})=12$ median $=200.95$
$\mathrm{U}=689$

$$
\mathrm{U}^{\prime}=619
$$

Exact probability (adjusted for ties):
Lower side $\mathrm{P}=0.3831$ (H1: x tends to be less than y)
Upper side $\mathrm{P}=0.6169(\mathrm{H} 1: \mathrm{x}$ tends to be greater than y$)$
Two sided $\mathrm{P}=0.7662$ (H1: x tends to be distributed differently to y)
Theta $\left(\mathrm{U}^{\prime} / \mathrm{mn}\right)=0.473242(95 \% \mathrm{CI}: 0.315125$ to 0.637944$)$
$\mathbf{9 5 \%}$ confidence interval for difference between medians or means:

Median difference $=8.3(\mathrm{CI}:-45$ to 72.2 $)$

Table Analyzed Data 1
Chi-square
Chi-square, df 6.364, 1
z 2.523
P value 0.0116
P value summary *
One- or two-tailed Two-tailed
Statistically significant? (alpha<0.05) Yes
Data analyzed Study population Reference population Total
Central Cord $252 \quad 239491$
$\begin{array}{llll}\text { Other cord insertion } & 499 & 622 & 1121\end{array}$
$\begin{array}{llll}\text { Total } & 751 & 861 & 1612\end{array}$
Table Analyzed Data 2
Chi-square
Chi-square, df 20.04, 1
Z 4.477
P value <0.0001
P value summary ****
One- or two-tailed Two-tailed
Statistically significant? (alpha<0.05) Yes

Data analyzed Study population	Reference population Total		
Eccentric cord 398 551	949		
All other cord insertions	353	310	663

Total 7518611612

Table Analyzed Data 3

Chi-square
Chi-square, df 33.89, 1
Z 5.822
P value< 0.0001
P value summary $\quad * * * *$
One- or two-tailed Two-tailed
Statistically significant? (alpha<0.05) Yes
Data analyzed Study population Reference population Total
Vellementous cord 34236
all other cord insertions $717 \quad 859 \quad 1576$
Total $751 \quad 861 \quad 1612$

Table Analyzed Data 1
Chi-square
Chi-square, df 32.36, 1
Z $\quad 5.689$
P value <0.0001
P value summary $\quad * * * *$
One- or two-tailed Two-tailed
Statistically significant? (alpha<0.05) Yes

Data analyzed Miscarriages stillbirth Total
Plac abnoormal cord and membranes N $\quad 164 \quad 172$
Place, cord and mem normal $69 \quad 196 \quad 265$

Total 233368601

Mann-Whitney U test
Observations (x) in Mums Age in cases of $\mathrm{AI}=174$ median $=31$ rank sum $=87,789$
Observations (y) in Mums Age in all other cases $=866$ median $=31$
$\mathrm{U}=72,564 \quad \mathrm{U}^{\prime}=78,120$
Normalised statistic $=-0.769314$ (adjusted for ties)
Lower side $\mathrm{P}=0.2209$ (H 1 : x tends to be less than y)
Upper side $\mathrm{P}=0.7791$ (H1: x tends to be greater than y)
Two sided $\mathrm{P}=0.4417$ ($\mathrm{H} 1: \mathrm{x}$ tends to be distributed differently to y)
Theta $\left(\mathrm{U}^{\prime} / \mathrm{mn}\right)=0.518436(95 \%$ CI: 0.471502 to 0.564977$)$
95% confidence interval for difference between medians or means:
Median difference $=0(\mathrm{CI}:-1$ to 1$)$

Mann-Whitney U test
Observations (x) in Maternal BMI AI cases $=85$ median $=26.4$ rank sum $=19,038$
Observations (y) in Maternal BMIcases minus AI $=383$ median $=26.8$
$\mathrm{U}=15,383 \quad \mathrm{U}^{\prime}=17,172$
Normalised statistic $=-0.793129$ (adjusted for ties)
Lower side $\mathrm{P}=0.2139$ (H 1 : x tends to be less than y)
Upper side $\mathrm{P}=0.7861$ (H1: x tends to be greater than y)
Two sided $\mathrm{P}=0.4277$ (H1: x tends to be distributed differently to y)
Theta $\left(\mathrm{U}^{\prime} / \mathrm{mn}\right)=0.527477(95 \%$ CI: 0.459834 to 0.593917$)$
95% confidence interval for difference between medians or means:
Median difference $=-0.5($ CI: -2 to 0.9$)$

Mann-Whitney U test

Observations (x) in Uteroplacental Insufficiency Mums Age $=41$ median $=29$ rank sum $=18,643.5$
Observations (y) in Mums Age all causes of death except placental $=987$ median $=31$
$\mathrm{U}=17,782.5 \quad \mathrm{U}^{\prime}=22,684.5$
Normalised statistic $=-1.317406$ (adjusted for ties)
Lower side $\mathrm{P}=0.0939$ (H1: x tends to be less than y)
Upper side $\mathrm{P}=0.9061$ (H1: x tends to be greater than y)
Two sided $\mathrm{P}=0.1877$ (H 1 : x tends to be distributed differently to y)
Theta $\left(\mathrm{U}^{\prime} / \mathrm{mn}\right)=0.560568$ (95% CI: 0.470537 to 0.646029)
95% confidence interval for difference between medians or means:
Median difference $=-2($ CI: -4 to 1$)$
Mann-Whitney U test
Observations (x) in Maternal BMI Pacental COD $=16$ median $=26.1$ rank sum $=3,108.5$
Observations (y) in Maternal BMI ecept Placenta $=445$ median $=26.9$

$\mathrm{U}=2,972.5 \quad \mathrm{U}^{\prime}=4,147.5$

Exact probability (adjusted for ties):
Lower side $\mathrm{P}=0.1323$ (H1: x tends to be less than y)
Upper side $\mathrm{P}=0.8677$ ($\mathrm{H} 1: \mathrm{x}$ tends to be greater than y)
Two sided $\mathrm{P}=0.2646$ (H1: x tends to be distributed differently to y)
Theta $\left(\mathrm{U}^{\prime} / \mathrm{mn}\right)=0.582514$ (95% CI: 0.439673 to 0.710593)

95\% confidence interval for difference between medians or means:
Median difference $=-1.55(\mathrm{CI}:-4.5$ to 1.2$)$

Mann-Whitney U test
Observations (x) in UE lesion Mums Age $=91$ median $=30$ rank sum $=6,709$
Observations (y) in COD Placenta Mums Age $=54$ median $=30$
$\mathrm{U}=2,523 \quad \mathrm{U}^{\prime}=2,391$
Exact probability (adjusted for ties):
Lower side $\mathrm{P}=0.3942$ ($\mathrm{H} 1: \mathrm{x}$ tends to be less than y)
Upper side $\mathrm{P}=0.6058$ (H1: x tends to be greater than y)
Two sided $\mathrm{P}=0.7884$ (H 1 : x tends to be distributed differently to y)
Theta $\left(\mathrm{U}^{\prime} / \mathrm{mn}\right)=0.486569(95 \%$ CI: 0.391842 to 0.582472$)$
95% confidence interval for difference between medians or means:
Median difference $=0$ (CI: -2 to 3)

Mann-Whitney U test
Observations (x) in UE lesion placenta Gestation $=91$ median $=32$ rank sum $=6,851.5$
Observations (y) in COD Placenta Gestation $=56$ median $=29$
$\mathrm{U}=2,665.5 \quad \mathrm{U}^{\prime}=2,430.5$
Exact probability (adjusted for ties):
Lower side $\mathrm{P}=0.3202$ (H1: x tends to be less than y)
Upper side $\mathrm{P}=0.6798$ ($\mathrm{H} 1: \mathrm{x}$ tends to be greater than y)
Two sided $\mathrm{P}=0.6405$ (H1: x tends to be distributed differently to y)

Theta $\left(\mathrm{U}^{\prime} / \mathrm{mn}\right)=0.476943$ ($95 \% \mathrm{CI}: 0.383722$ to 0.572138)
95% confidence interval for difference between medians or means
Median difference $=1(\mathrm{CI}:-2$ to 3$)$

Mann-Whitney U test

Observations (x) in Unexplained Unexplaiend mums age $=284$ median $=32$ rank sum $=54,594$
Observations (y) in UE lesion Mums Age $=91$ median $=30$
$\mathrm{U}=14,124 \quad \mathrm{U}^{\prime}=11,720$

Normalised statistic $=1.337647$ (adjusted for ties)
Lower side $\mathrm{P}=0.9095$ (H 1 : x tends to be less than y)
Upper side $\mathrm{P}=0.0905(\mathrm{H} 1: \mathrm{x}$ tends to be greater than y$)$
Two sided $\mathrm{P}=0.181(\mathrm{H} 1: \mathrm{x}$ tends to be distributed differently to y$)$
Theta $\left(\mathrm{U}^{\prime} / \mathrm{mn}\right)=0.45349(95 \%$ CI: 0.387374 to 0.521657$)$
95% confidence interval for difference between medians or means:
Median difference $=1(\mathrm{CI}: 0$ to 2$)$

Mann-Whitney U test
Observations (x) in UE lesion placenta Gestation $=91$ median $=32$ rank sum $=19,412$
Observations (y) in Unexplained Unexplained fetal gestation $=283$ median $=26$
$\mathrm{U}=15,226 \quad \mathrm{U}^{\prime}=10,527$

Normalised statistic $=2.62274$ (adjusted for ties)
Lower side $\mathrm{P}=0.9956$ (H1: x tends to be less than y)

Upper side $\mathrm{P}=0.0044(\mathrm{H} 1: \mathrm{x}$ tends to be greater than y$)$
Two sided $\mathrm{P}=0.0087$ (H 1 : x tends to be distributed differently to y)
Theta $\left(\mathrm{U}^{\prime} / \mathrm{mn}\right)=0.408768(95 \%$ CI: 0.344578 to 0.476954$)$
95% confidence interval for difference between medians or means
Median difference $=2$ (CI: 1 to 5)

Chapter 9 Thymus Histology

Mann-Whitney U test- significant!

Observations (x) in SGA Ab Placenta Corticomedullary ratio $=13$ median $=1.631179$ rank sum $=151$
Observations (y) in Controls Corticomedullary ratio $=18$ median $=3.31558$
$\mathrm{U}=60 \quad \mathrm{U}^{\prime}=174$
Exact probability:
Lower side $\mathrm{P}=0.011$ (H 1 : x tends to be less than y)
Upper side $\mathrm{P}=0.989(\mathrm{H} 1$: x tends to be greater than y$)$
Two sided $\mathrm{P}=0.0221(\mathrm{H} 1: \mathrm{x}$ tends to be distributed differently to y$)$
Theta $\left(\mathrm{U}^{\prime} / \mathrm{mn}\right)=0.74359(95 \%$ CI: 0.534975 to 0.873897$)$
95.4% confidence interval for difference between medians or means:
Median difference $=-1.24191$ (CI: -2.39728 to -0.20602)

Mann-Whitney U test- not signif
Observations (x) in Controls Corticomedullary ratio $=18$ median $=3.31558$ rank sum $=301$

Observations (y) in UE N Placenta Corticomedullary ratio $=11$ median $=2.427386$
$\mathrm{U}=130 \quad \mathrm{U}^{\prime}=68$
Exact probability:
Lower side $\mathrm{P}=0.0866$ (H 1 : x tends to be less than y)
Upper side $\mathrm{P}=0.9134(\mathrm{H} 1$: x tends to be greater than y$)$
Two sided $\mathrm{P}=0.1733$ (H1: x tends to be distributed differently to y)
Theta $\left(\mathrm{U}^{\prime} / \mathrm{mn}\right)=0.343434(95 \%$ CI: 0.181169 to 0.561655$)$
95.1% confidence interval for difference between medians or means:
Median difference $=0.887015$ (CI: -0.57642 to 2.19635)
Mann-Whitney U test- not signif

Observations (x) in UE N Placenta Corticomedullary ratio $=11$ median $=2.427386$ rank sum $=145$
Observations (y) in SGA Ab Placenta Corticomedullary ratio $=13$ median $=1.631179$
$\mathrm{U}=79 \quad \mathrm{U}^{\prime}=64$

Exact probability:
Lower side $\mathrm{P}=0.3453$ (H 1 : x tends to be less than y)
Upper side $\mathrm{P}=0.6547(\mathrm{H} 1: \mathrm{x}$ tends to be greater than y$)$
Two sided $\mathrm{P}=0.6905$ (H 1 : x tends to be distributed differently to y)
Theta $\left(\mathrm{U}^{\prime} / \mathrm{mn}\right)=0.447552(95 \% \mathrm{CI}: 0.248394$ to 0.667886$)$
95.3% confidence interval for difference between medians or means:
Median difference $=0.29962(\mathrm{CI}:-0.49101$ to 1.42708$)$

Mann-Whitney U test- not signif
Observations (x) in SGA Ab Placenta Number of $\mathrm{HC}(6$ fields at x 4$)=14$ median $=115.5$ rank sum $=$

245.5

Observations (y) in Controls Number of HC (6 fields at x 4$)=20$ median $=95$
$\mathrm{U}=140.5 \quad \mathrm{U}^{\prime}=139.5$
Exact probability (adjusted for ties):
Lower side $\mathrm{P}=0.4966$ ($\mathrm{H} 1: \mathrm{x}$ tends to be less than y)
Upper side $\mathrm{P}=0.5034$ ($\mathrm{H} 1: \mathrm{x}$ tends to be greater than y)
Two sided $\mathrm{P}=0.9931$ (H1: x tends to be distributed differently to y)
Theta $\left(\mathrm{U}^{\prime} / \mathrm{mn}\right)=0.498214$ ($95 \% \mathrm{CI}: 0.315013$ to 0.681972)
95.3% confidence interval for difference between medians or means:
Median difference $=0.5$ (CI: -36 to 49)
Mann-Whitney U test- not signif
Observations (x) in Controls Number of HC (6 fields at x 4) $=20$ median $=95$ rank sum $=348.5$ Observations (y) in UE N Placenta Number of HC (6 fields at $x 4$) $=12$ median $=94.5$
$\mathrm{U}=138.5 \quad \mathrm{U}^{\prime}=101.5$
Exact probability (adjusted for ties):
Lower side $\mathrm{P}=0.2415(\mathrm{H} 1: x$ tends to be less than y$)$
Upper side $\mathrm{P}=0.7585(\mathrm{H} 1: \mathrm{x}$ tends to be greater than y$)$
Two sided $\mathrm{P}=0.483$ (H1: x tends to be distributed differently to y)
Theta $\left(\mathrm{U}^{\prime} / \mathrm{mn}\right)=0.422917(95 \% \mathrm{CI}: 0.246874$ to 0.624788$)$
95.2% confidence interval for difference between medians or means:
Median difference $=15$ (CI: -21 to 51)
Mann-Whitney U test- not significant

Observations (x) in UE N Placenta Number of HC (6 fields at x 4$)=12$ median $=94.5$ rank sum $=148$
Observations (y) in SGA Ab Placenta Number of HC (6 fields at x 4$)=14$ median $=115.5$
$\mathrm{U}=70$

$$
\mathrm{U}^{\prime}=98
$$

Exact probability (adjusted for ties):
Lower side $\mathrm{P}=0.243$ (H1: x tends to be less than y)
Upper side $\mathrm{P}=0.757$ ($\mathrm{H} 1: \mathrm{x}$ tends to be greater than y)
Two sided $\mathrm{P}=0.486$ (H1: x tends to be distributed differently to y)
Theta $\left(\mathrm{U}^{\prime} / \mathrm{mn}\right)=0.583333$ ($95 \% \mathrm{CI}: 0.366328$ to 0.768848)
95.4% confidence interval for difference between medians or means:
Median difference $=-18$ (CI: -78 to 31)

Mann-Whitney U test= not significant
Observations (x) in SGA Ab placenta Distance between lobules (6 fields at $x 4)($ Micro meters $)=14$
median $=86.258333$ rank sum $=230$
Observations (y) in Controls Distance between lobules (6 fields at x 4$)($ Micro meters $)=20$ median $=$ 98.3
$\mathrm{U}=125 \quad \mathrm{U}^{\prime}=155$
Exact probability:
Lower side $\mathrm{P}=0.3082(\mathrm{H} 1$: x tends to be less than y$)$
Upper side $\mathrm{P}=0.6918$ (H1: x tends to be greater than y)
Two sided $\mathrm{P}=0.6165$ (H1: x tends to be distributed differently to y)
Theta $\left(\mathrm{U}^{\prime} / \mathrm{mn}\right)=0.553571(95 \%$ CI: 0.362713 to 0.727765$)$
95.3% confidence interval for difference between medians or means:
Median difference $=-5.01667(\mathrm{CI}:-22.46666$ to 13.55$)$

Mann-Whitney U test- not significant
Observations (x) in Controls Distance between lobules (6 fields at $x 4)($ Micro meters $)=20$ median $=$ 98.3 rank sum $=340.5$

Observations (y) in UE N Placenta Distance between lobules (6 fields at x4) (Micro meters) = 12 median $=88.658333$
$\mathrm{U}=130.5 \quad \mathrm{U}^{\prime}=109.5$
Exact probability (adjusted for ties):
Lower side $\mathrm{P}=0.347$ (H1: x tends to be less than y)
Upper side $\mathrm{P}=0.653(\mathrm{H} 1: \mathrm{x}$ tends to be greater than y$)$
Two sided $\mathrm{P}=0.6939$ (H1: x tends to be distributed differently to y)
Theta $\left(\mathrm{U}^{\prime} / \mathrm{mn}\right)=0.45625(95 \%$ CI: 0.273275 to 0.653922$)$
95.2% confidence interval for difference between medians or means:
Median difference $=5.225(\mathrm{CI}:-20.98333$ to 23.48333 $)$

Mann-Whitney U test- not significant
Observations (x) in UE N Placenta Distance between lobules (6 fields at $x 4$) (Micro meters) $=12$ median $=88.658333$ rank sum $=163$
Observations (y) in SGA Ab placenta Distance between lobules (6 fields at x4) (Micro meters) $=14$
median $=86.258333$
$\mathrm{U}=85 \quad \mathrm{U}^{\prime}=83$
Exact probability:
Lower side $\mathrm{P}=0.4899$ ($\mathrm{H} 1: \mathrm{x}$ tends to be less than y)
Upper side $\mathrm{P}=0.5101$ (H1: x tends to be greater than y)

Two sided $\mathrm{P}=0.9798(\mathrm{H} 1: \mathrm{x}$ tends to be distributed differently to y$)$
Theta $\left(\mathrm{U}^{\prime} / \mathrm{mn}\right)=0.494048(95 \%$ CI: 0.291525 to 0.698829$)$
95.4\% confidence interval for difference between medians or means:

Median difference $=1.18333$ (CI: -22.38333 to 22.46666)
Mann-Whitney U test- not significant
Observations (x) in SGA Ab Placenta Number of tingible body macrophages (1 xHPF) = 13 median $=36$ rank sum $=222.5$
Observations (y) in Controls Number of tingible body macrophages (1 xHPF) $=20$ median $=41$
$\mathrm{U}=131.5 \quad \mathrm{U}^{\prime}=128.5$
Exact probability (adjusted for ties):
Lower side $\mathrm{P}=0.4819$ (H1: x tends to be less than y$)$
Upper side $\mathrm{P}=0.5181$ ($\mathrm{H} 1: \mathrm{x}$ tends to be greater than y)
Two sided $\mathrm{P}=0.9638$ (H1: x tends to be distributed differently to y)
Theta $\left(\mathrm{U}^{\prime} / \mathrm{mn}\right)=0.494231(95 \%$ CI: 0.308172 to 0.682154$)$
95.2% confidence interval for difference between medians or means:
Median difference $=1(\mathrm{CI}:-10$ to 15)

Mann-Whitney U test - not significant
Observations (x) in Controls Number of tingible body macrophages (1 xHPF) $=20$ median $=41$ rank sum $=357$
Observations (y) in UE N Placenta Number of tingible body macrophages $(1 \mathrm{xHPF})=12$ median $=35$

$$
\mathrm{U}=147 \quad \mathrm{U}^{\prime}=93
$$

Exact probability (adjusted for ties):
Lower side $\mathrm{P}=0.1511$ ($\mathrm{H} 1: \mathrm{x}$ tends to be less than y)
Upper side $\mathrm{P}=0.8489$ (H1: x tends to be greater than y)
Two sided $\mathrm{P}=0.3021$ (H1: x tends to be distributed differently to y)
Theta $\left(\mathrm{U}^{\prime} / \mathrm{mn}\right)=0.3875(95 \% \mathrm{CI}: 0.219607$ to 0.592923$)$
95.2% confidence interval for difference between medians or means:
Median difference $=5.5$ (CI: -4 to 14)
Mann-Whitney U test- not significant
Observations (x) in UE N Placenta Number of tingible body macrophages $(1 x H P F)=12$ median $=35$ rank sum $=137.5$
Observations (y) in SGA Ab Placenta Number of tingible body macrophages (1 xHPF) = 13 median $=36$
$\mathrm{U}=59.5$

$$
U^{\prime}=96.5
$$

Exact probability (adjusted for ties):
Lower side $\mathrm{P}=0.1633$ ($\mathrm{H} 1: \mathrm{x}$ tends to be less than y)
Upper side $\mathrm{P}=0.8367(\mathrm{H} 1: \mathrm{x}$ tends to be greater than y$)$
Two sided $\mathrm{P}=0.3266$ (H1: x tends to be distributed differently to y)
Theta $\left(\mathrm{U}^{\prime} / \mathrm{mn}\right)=0.61859(95 \%$ CI: 0.393875 to 0.797418$)$
95.4\% confidence interval for difference between medians or means:

Median difference $=-6$ (CI: -24 to 6)
Mann-Whitney U test - not different
Observations (x) in Control Gestation $=20$ median $=36$ rank sum $=345.5$
Observations (y) in SGA Normal Placenta Gestation $=12$ median $=29.5$
$\mathrm{U}=135.5 \quad \mathrm{U}^{\prime}=104.5$

Exact probability (adjusted for ties):
Lower side $\mathrm{P}=0.2783(\mathrm{H} 1: \mathrm{x}$ tends to be less than y$)$
Upper side $\mathrm{P}=0.7217$ ($\mathrm{H} 1: \mathrm{x}$ tends to be greater than y)
Two sided $\mathrm{P}=0.5566$ (H1: x tends to be distributed differently to y)
Theta $\left(\mathrm{U}^{\prime} / \mathrm{mn}\right)=0.435417$ (95% CI: 0.25669 to 0.635808)
95.2% confidence interval for difference between medians or means:
Median difference $=1$ (CI: -2 to 9$)$
Mann-Whitney U test- not different
Observations (x) in SGA Normal Placenta Gestation $=12$ median $=29.5$ rank sum $=197.5$
Observations (y) in SGA Ab placenta Gestation $=16$ median $=28$
$\mathrm{U}=119.5 \quad \mathrm{U}^{\prime}=72.5$
Exact probability (adjusted for ties):
Lower side $\mathrm{P}=0.1415$ ($\mathrm{H} 1: \mathrm{x}$ tends to be less than y)
Upper side $\mathrm{P}=0.8585(\mathrm{H} 1: \mathrm{x}$ tends to be greater than y$)$
Two sided $\mathrm{P}=0.2829$ (H1: x tends to be distributed differently to y)
Theta $\left(\mathrm{U}^{\prime} / \mathrm{mn}\right)=0.377604$ ($95 \% \mathrm{CI}: 0.206172$ to 0.592917)
95.3% confidence interval for difference between medians or means:
Median difference $=2$ (CI: -2 to 9)
Mann-Whitney U test- significantly different
Observations (x) in SGA Ab placenta Gestation $=16$ median $=28$ rank sum $=214$
Observations (y) in Control Gestation $=20$ median $=36$
$\mathrm{U}=78 \quad \mathrm{U}^{\prime}=242$

Exact probability (adjusted for ties):
Lower side $\mathrm{P}=0.0039$ ($\mathrm{H} 1: \mathrm{x}$ tends to be less than y)
Upper side $\mathrm{P}=0.9961(\mathrm{H}: \mathrm{x}$ tends to be greater than y$)$
Two sided $\mathrm{P}=0.0078$ ($\mathrm{H} 1: \mathrm{x}$ tends to be distributed differently to y)
Theta $\left(\mathrm{U}^{\prime} / \mathrm{mn}\right)=0.75625(95 \%$ CI: 0.565876 to 0.875312$)$
95.1% confidence interval for difference between medians or means:
Median difference $=-6(\mathrm{CI}:-9$ to -1$)$
Table Analyzed Data 1
Chi-square
Chi-square, df 0.9207, 1
z 0.9595
P value 0.3373
P value summary ns
One- or two-tailed Two-tailed
Statistically significant? (alpha<0.05) No
Data analyzed Expected Obseverd Total
Low Grade $10 \quad 13 \quad 23$
High Grade $10 \quad 7 \quad 17$
$\begin{array}{llll}\text { Total } & 20 & 20 & 40\end{array}$
Table Analyzed Data 2
Chi-square
Chi-square, df 0.8292, 1
z 0.9106
P value 0.3625

Table Analyzed Data 1

Fisher's exact test
P value 1
P value summary ns
One- or two-tailed Two-tailed

Statistically significant? (alpha<0.05)

Data analyzed Control SGA ab place Total
Low Grade $13 \quad 9 \quad 22$
High Grade $7 \quad 5 \quad 12$

Total $20 \quad 1434$

Table Analyzed Data 2
Fisher's exact test
P value 0.4224
P value summary ns
One- or two-tailed Two-tailed
Statistically significant? (alpha<0.05) No

Data analyzed Control	SGA normal plac	Total		
Low Grade	13	10	23	
High Grade	7	2	9	
Total 20	12	32		

Table Analyzed Data 3
Fisher's exact test
P value 0.3913
P value summary ns

One- or two-tailed Two-tailed					
Statistically significant? (alpha<0.05) No					
Data analyzed		GA ab place	SGA no		Total
Low Grade	9	10	19		
High Grade	5	2	7		
Total 14	12	26			

Appendix 4: 'Other' causes of death stated within the post-mortem data that were reclassified and the number of incidences recorded

In the Early miscarriage category the "other" causes of death were:

- Disconcordant placental share (x 2)
- Chorionic Haemosiderosis indicating premature separation of the placenta (x 2)
- Plasma cell deciduitis (x1)
- Massive perivillous fibrin deposition (x1)
- Cervical incompetence (x2)
- Placental Insufficiency (x 1)
- Placental calcifications suggesting chromosomal abnormalities (x2)
- Retroplacental Haemorrhage (x 3)
- Vasculitis and chroioamnionitis (x1)
- Hydropic growth restriction with Epstein abnormality and fetal and placental
hydrops (x1)
- Lymphoplasmocytic inflammation of decidua (x2)
- TTTS (x2)
- Hydrops and trisomy 21 (x1)
- Placental Infarction (x1)
- Subchorionic thrombus in placenta (x1)
- Vasculitis of unknown aetiology (x1)
- Triploidy (x1)
- Subchorionic haemorrhage (x1)
- Evidence of bleeding into amniotic fluid, lungs and stomach (x1)

In the late miscarriage category, the "other" causes of death were;

- Placental calcifications indicating placental chromosomal abnormalities (x 2)
- Cervical incompetence (x 2)
- Amniotic band over umbilical cord (x 1)
- Pregnancy induced hypertension and IUGR (x1)
- Twin to Twin Transfusion Syndrome (TTTS) (x 1)
- Complications post laser ablation for TTTS (x 1)
- Massive Histiocytic intervillositis (x1)
- Mosaicism for dicondric triploidy (x 1)
- Retroplacental haematoma (x 2)
- Intervillous placental haemorrhage (x 1)
- Placental Infraction (x 2)
- Diabetes Mellitus and IUGR (x 1)

In the stillbirth category the "other" causes of death were:

- Vascular Necrosis of the cord (x1)
- Thrombosis of fetal chorionic vessels with renal and hepatic thrombi (x1)
- Uteroplacental vasculopathy (x 6)
- Congenital malformation (x1)
- Infarction of the placenta (x29)
- Fetal thrombotic vasculopathy (x20)
- Vascular under perfusion of the placenta (x2)
- Hypercoiled coil found around neck of fetus at delivery (x 1)
- Cervical incompetence (x1)
- Long nuchal cord and maternal raised BP (x 1)
- Feto-maternal haemorrhage (x 9)
- Placental insufficiency (x4)
- Cord around neck at delivery (x 1)
- Maternal Diabetes mellitus (x 2)
- Maternal Gestational DM (x1)
- Maternal DM and PET (x 2)
- Abnormality of placentation (x 4)
- Cerebral haemorrhage (x 1)
- Thrombosis of fetal vellamentous vessels (x1)
- Umbilical cord haematoma (x1)
- Umbilical and renal vein thrombosis (x1)
- Massive perivillous fibrin deposition (x 4)
- Tightening of umbilical cord true knot (x 5)
- Abnormal villous tissue (x 1)
- Acute thrombosis of umbilical vein (x1)
- Placental vasculitis (x1)
- Retroplacental Haemorrhage (x 3)
- Massive thymic Haemorrhage (x1)
- Maternal HELLP syndrome (x1)
- Cholestasis of pregnancy (x1)
- Maternal events (i.e. events in labour) (x1)
- Fetal vascular thrombosis (x1)
- Furcate cord with thrombus formation (x1)
- Fetal thrombophilia (x1)
- Thrombus in large fetal vessel of placenta (x1)
- Thrombosis of vessels in cord (x1)
- Stem vessel thrombosis (x1)
- Chronic Histiocytic intervillositis (x2)
- Thrombus in vessels of vellamentous cord (x1)
- Underperfusion of placental (x1)
- True cord knot thrombosis (x1)
- Stricture of cord with thrombosis (x1)
- Viral intrauterine infection (x1)
- Chronic villitis (x8)
- Hydrops (x1)
- Entaglement of umbilical cord (x1)
- TTTS (x6)
- Intestinal perforation (x1)
- TRAP syndrome (x1)

Appendix 5: Delta male birthweight calculations:

Gestation	Birth Weight	WHO expected BW (50th centile)	$\begin{array}{\|l} \text { Obs- } \\ \exp \end{array}$	SD (g)	Delat $=$ (obsExp)/SD in grams	$\begin{aligned} & \mathrm{SGA}= \\ & \text { when } \\ & \text { delat } \\ & \text { value < } \\ & -1.375 \end{aligned}$	Review opinion - final cause of death	Sex
23	31	600	-569	82.44023083	-6.90197	Y	Unexplained, obese	M
25	181	800	-619	115.4163232	-5.363192857	Y	Unexplained lesion, placenta	M
25	200	800	-600	115.4163232	-5.198571429	Y	Known IUGR	M
24	210	700	-490	98.928277	-4.953083333	Y	Abruption	M
23	220	600	-380	82.44023083	-4.6094	Y	Unexplained lesion, baby	M

Appendices

26	265	925	-660	148.3924155	-4.447666667	Y	Unexplained, unexplained	M
26	270	925	-655	148.3924155	-4.413972222	Y	Placenta	M
24	280	700	-420	98.928277	-4.2455	Y	Unexplained lesion, baby	M
24	284	700	-416	98.928277	-4.205066667	Y	Pre-eclampsia	M
23	290	600	-310	82.44023083	-3.7603	Y	Congenital abnormalities	M
35	296	2475	-2179	362.7370157	-6.007106818	Y	Congenital abnormalities	M
24	300	700	-400	98.928277	-4.043333333	Y	Placenta	M
23	300	600	-300	82.44023083	-3.639	Y	Unexplained obese	M

Appendices

27	310	1025	-715	148.3924155	-4.818305556	Y	Unexplained lesion, placenta	M
28	320	1150	-830	181.3685078	-4.576318182	Y	Known IUGR	M
24	360	700	-340	98.928277	-3.436833333	Y	Unexplained, obese	M
24	395	700	-305	98.928277	-3.083041667	Y	Unexplained, unexplained	M
23	400	600	-200	82.44023083	-2.426	Y	Congenital abnormalities	M
24	410	700	-290	98.928277	-2.931416667	Y	Ascending infection	M
26	420	925	-505	148.3924155	-3.403138889	Y	Placenta	M
28	424	1150	-726	181.3685078	-4.0029	Y	Placenta	M

Appendices

28	430	1150	-720	181.3685078	-3.969818182	Y	Congenital abnormalities	M
25	435	800	-365	115.4163232	-3.162464286	Y	Infection	M
25	438	800	-362	115.4163232	-3.136471429	Y	Unexplained, unexplained	M
29	440	1275	-835	197.856554	-4.220229167	Y	Placenta	M
26	450	925	-475	148.3924155	-3.200972222	Y	Unexplained previous SB	M
24	454	700	-246	98.928277	-2.48665	Y	Unexplained lesion, placenta	M
25	455	800	-345	115.4163232	-2.989178571	Y	Known IUGR	M
23	458	600	-142	82.44023083	-1.72246	Y	Ascending infection	M
27	484	1025	-541	148.3924155	-3.645738889	Y	Placenta	M

Appendices

Appendices

24								

Appendices

28	605	1150	-545	181.3685078	-3.004931818	Y	Placenta	M
30	610	1425	-815	230.8326463	-3.530696429	Y	Twin complication	M
29	620	1275	-655	197.856554	-3.310479167	Y	Congenital abnormalities	M
25	630	800	-170	115.4163232	-1.472928571	Y	Unexplained, unexplained	M
25	632	800	-168	115.4163232	-1.4556	Y	Pre-eclampsia	M
24	641	700	-59	98.928277	-0.596391667	N	Placenta	M
26	650	925	-275	148.3924155	-1.853194444	Y	Twin complication	M

Appendices

25	660	800	-140	115.4163232	-1.213	N	Unexplained, previous SB	M
25	670	800	-130	115.4163232	-1.126357143	N	Unexplained, unexplained	M
24	680	700	-20	98.928277	-0.202166667	N	Unexplained, unexplained	M
25	682	800	-118	115.4163232	-1.022385714	N	Ascending infection	M
27	695	1025	-330	148.3924155	-2.223833333	Y	Unexplained, unexplained	M
28	700	1150	-450	181.3685078	-2.481136364	Y	Abruption	M
25	710	800	-90	115.4163232	-0.779785714	N	Unexplained, unexplained	M

Appendices

29	720	1275	-555	197.856554	-2.8050625	Y	Placenta	M
31	720	1600	-880	263.8087387	-3.33575	Y	Placenta	M
24	725	700	25	98.928277	0.252708333	N	Unexplained lesion, placenta	M
29	730	1275	-545	197.856554	-2.754520833	Y	Placenta	M
26	732	925	-193	148.3924155	-1.300605556	N	Unexplaine dlesion, clinical	M
28	740	1150	-410	181.3685078	-2.260590909	Y	Placenta	M
26	740	925	-185	148.3924155	-1.246694444	N	Unexplained, unexplained	M
24	740	700	40	98.928277	0.404333333	N	Abruption	M
27	750	1025	-275	148.3924155	-1.853194444	Y	Unexplained unexplained	M

Appendices

24								

Appendices

31	850	1600	-750	263.8087387	-2.84296875	Y	Unexplaiend lesion, placenta	M
27	858	1025	-167	148.3924155	-1.125394444	N	Unexplained obese	M
25	870	800	70	115.4163232	0.6065	N	Ascending infection	M
31	880	1600	-720	263.8087387	-2.72925	Y	Placenta	M
25	880	800	80	115.4163232	0.693142857	N	Unexplained, unexplained	M
26	890	925	-35	148.3924155	-0.235861111	N	Pre-eclampsia	M
27	900	1025	-125	148.3924155	-0.842361111	N	Unexplained lesion, clinical	M

Appendices

27	920	1025	-105	148.3924155	-0.707583333	N	Unexplained, unexplained	M
29	928	1275	-347	197.856554	-1.753795833	Y	Unexplained, unexplained	M
28	930	1150	-220	181.3685078	-1.213	N	Unexplained, unexplained	M
29	940	1275	-335	197.856554	-1.693145833	Y	Pre-eclampsia	M
28	940	1150	-210	181.3685078	-1.157863636	N	Unexplained, previous SB	M
27	950	1025	-75	148.3924155	-0.505416667	N	Unexplained, unexplained	M
29	965	1275	-310	197.856554	-1.566791667	Y	Unexplained lesion, baby	M
32	990	1800	-810	296.784831	-2.72925	Y	Placenta	M

Appendices

31	996	1600	-604	263.8087387	-2.2895375	Y	Known IUGR	M
27	1002	1025	-23	148.3924155	-0.154994444	N	Unexplained, unexplained	M
31	1020	1600	-580	263.8087387	-2.1985625	Y	Congenital abnormalities	M
27	1030	1025	5	148.3924155	0.033694444	N	Infection	M
27	1030	1025	5	148.3924155	0.033694444	N	Unexplained lesion, placenta	M
30	1060	1425	-365	230.8326463	-1.581232143	Y	Unexplained, unexplained	M
28	1080	1150	-70	181.3685078	-0.385954545	N	Unexplained, unexplained	M

Appendices

31	1110	1600	-490	263.8087387	-1.85740625	Y	Unexplained, unexplained	M
30	1110	1425	-315	230.8326463	-1.364625	N	Unexplained, previous SB	M
30	1110	1425	-315	230.8326463	-1.364625	N	Congenital Abnormalities	M
29	1114	1275	-161	197.856554	-0.813720833	N	Unexplained lesion, clinical	M
29	1120	1275	-155	197.856554	-0.783395833	N	Placenta	M
36	1140	2700	-1560	362.7370157	-4.300636364	Y	Congenital abnormalities	M
28	1140	1150	-10	181.3685078	-0.055136364	N	Ascending infection	M

Appendices

27	1140	1025	115	148.3924155	0.774972222	N	Ascedning infection	M
34	1170	2250	-1080	346.2489695	-3.119142857	Y	Unexplained lesion, placenta	M
29	1185	1275	-90	197.856554	-0.454875	N	Unexplained lesion, placenta	M
28	1188	1150	38	181.3685078	0.209518182	N	Ascending infection	M
31	1200	1600	-400	263.8087387	-1.51625	Y	Unexplained lesion, postterm	M
31	1204	1600	-396	263.8087387	-1.5010875	Y	Unexplained, unexplained	M
30	1230	1425	-195	230.8326463	-0.844767857	N	Unexplained lesion, cord	M

Appendices

29	1244	1275	-31	197.856554	-0.156679167	N	Congenital abnormalities	M
28	1245	1150	95	181.3685078	0.523795455	N	Ascending infection	M
31	1288	1600	-312	263.8087387	-1.182675	N	Unexplained, unexplained	M
33	1300	2000	-700	296.784831	-2.358611111	Y	Placenta	M
35	1310	2475	-1165	362.7370157	-3.211693182	Y	Placenta	M
35	1310	2475	-1165	362.7370157	-3.211693182	Y	Abruption	M
32	1336	1800	-464	296.784831	-1.563422222	Y	Abruption	M

Appendices

Appendices

29	1495	1275	220	197.856554	1.111916667	N	Unexplained with IDDM	M
29	1500	1275	225	197.856554	1.1371875	N	Congenital abnormalities	M
38	1504	3175	-1671	395.713108	-4.22275625	Y	Unexplained lesion, placenta	M
34	1516	2250	-734	346.2489695	-2.119861905	Y	Unexplained, obese	M
32	1520	1800	-280	296.784831	-0.943444444	N	Unexplained lesion, baby	M
34	1550	2250	-700	346.2489695	-2.021666667	Y	Abruption	M

Appendices

32								

Appendices

31								

Appendices

33	1920	2000	-80	296.784831	-0.269555556	N	Twin complication	M
32	1930	1800	130	296.784831	0.438027778	N	Unexplained, previous SB	M
32	1950	1800	150	296.784831	0.505416667	N	Unexplained lesion, placenta	M
31	1980	1600	380	263.8087387	1.4404375	N	Unexplained with GDM	M
31	1984	1600	384	263.8087387	1.4556	N	Unexplained unexplained	M
34	2015	2250	-235	346.2489695	-0.678702381	N	Unexplained lesion, placenta	M
36	2070	2700	-630	362.7370157	-1.736795455	Y	Unexplained with GDM	M
32	2092	1800	292	296.784831	0.983877778	N	Ascending infection	M

Appendices

34	2100	2250	-150	346.2489695	-0.433214286	N	Unexplained, previous SB	M
36	2155	2700	-545	362.7370157	-1.502465909	Y	Unexplained, unexplained	M
32	2180	1800	380	296.784831	1.280388889	N	Unexplained, unexplained	M
36	2242	2700	-458	362.7370157	-1.262622727	N	Unexplained with GDM and obese	M
31	2254	1600	654	263.8087387	2.47906875	N	Congenital abnormalities	M
40	2270	3550	-1280	395.713108	-3.234666667	Y	Ascending infection	M
35	2300	2475	-175	362.7370157	-0.482443182	N	Congenital abnormalities	M
38	2360	3175	-815	395.713108	-2.059572917	Y	Unexplained lesion, placenta	M

Appendices

40	2380	3550	-1170	395.713108	-2.9566875	Y	Unexplained, unexplained	M
36	2390							

Appendices

35	2580	2475	105	362.7370157	0.289465909	N	Unexplained, unexplained	M
36	2583							

Appendices

Appendices

40	2770	3550	-780	395.713108	-1.971125	Y	Unexplained, unexplained	M
41	2800							

Appendices

38	2860	3175	-315	395.713108	-0.79603125	N	Pre-eclampsia	M
37	2888	2950	-62	379.2250618	-0.163491304	N	Unexplained, unexplained	M
40	2905	3550	-645	395.713108	-1.62996875	Y	Unexplained, unexplained	M
41	2910	3700	-790	389.1178895	-2.030233051	Y	Unexplained obese with previous SB	M
35	2926	2475	451	362.7370157	1.243325	N	Unexplained with GDM	M
40	2940	3550	-610	395.713108	-1.541520833	Y	Unexplained, unexplained	M
37	2950	2950	0	379.2250618		N	Unexplained lesion, clinical	M

Appendices

38	2976	3175	-199	395.713108	-0.502889583	N	Unexplained, previous SB	M
39	2980							

Appendices

41	3030	3700	-670	389.1178895	-1.72184322	Y	Unexplained, previous SB	M
39	3040							

Appendices

39	3150	3375	-225	395.713108	-0.56859375	N	Unexplained, unexplained	M
40	3158	3550	-392	395.713108	-0.990616667	N	Unexplained, unexplained	M
40	3160	3550	-390	395.713108	-0.9855625	N	Unexplained, unexplained	M
41	3180	3700	-520	389.1178895	-1.336355932	N	Unexplained, post term	M
40	3180	3550	-370	395.713108	-0.935020833	N	Placenta	M
36	3184	2700	484	362.7370157	1.3343	N	Unexplained lesion, placenta	M
41	3190	3700	-510	389.1178895	-1.31065678	N	Ascending infection	M

Appendices

39	3190	3375	-185	395.713108	-0.467510417	N	Unexplained, previous SB	M
41	3200	3700	-500	389.1178895	-1.284957627	N	Unexplained lesion, placenta	M
39	3200	3375	-175	395.713108	-0.442239583	N	Unexplained lesion, placenta	M
36	3200	2700	500	362.7370157	1.378409091	N	Unexplained, unexplained	M
30	3200	1425	1775	230.8326463	7.689553571	N	Unexplained, unexplained	M
39	3246	3375	-129	395.713108	-0.32599375	N	Ascending infection	M
40	3260	3550	-290	395.713108	-0.732854167	N	Unexplained, unexplained	M

Appendices

Appendices

40	3410	3550	-140	395.713108	-0.353791667	N	Unexplained lesion, placenta	M
38	3430							

Appendices

Appendices

40	3590	3550	40	395.713108	0.101083333	N	Unexplained unexplained	M
39	3600	3375	225	395.713108	0.56859375	N	Unexplained, unexplained	M
39	3600	3375	225	395.713108	0.56859375	N	Unexplained lesion, cord	M
40	3610	3550	60	395.713108	0.151625	N	Infection	M
42	3632	3850	-218	395.713108	-0.550904167	N	Unexplained, post-term and obese	M
41	3705	3700	5	389.1178895	0.012849576	N	Unexpalined, post-term	M
41	3710	3700	10	389.1178895	0.025699153	N	Unexplained, previous SB	M
40	3710	3550	160	395.713108	0.404333333	N	Unexplained, unexplained	M
42	3740	3850	-110	395.713108	-0.277979167	N	unexplained, post-term	M
39	3748	3375	373	395.713108	0.942602083	N	Unexplained obese and previous SB	M

Appendices

42	3770	3850	-80	395.713108	-0.202166667	N	Infection	M
41	3870	3700	170	389.1178895	0.436885593	N	Unexplained, unexplained	M
38	3870	3175	695	395.713108	1.756322917	N	Unexplained obese	M
41	3890	3700	190	389.1178895	0.488283898	N	Unexplained, post-term	M
41	3914	3700	214	389.1178895	0.549961864	N	Unexplained obese and postterm	M
41	3930	3700	230	389.1178895	0.591080508	N	Unexplained, post-term	M
42	3950	3850	100	395.713108	0.252708333	N	Unexplained lesion, placenta	M
42	3960	3850	110	395.713108	0.277979167	N	Ascending infection	M

Appendices

40	3960	3550	410	395.713108	1.036104167	N	Unexplained lesion, clinical	M
39	4045	3375	670	395.713108	1.693145833	N	Unexplained with IDDM and previous SB	M
41	4095	3700	395	389.1178895	1.015116525	N	Unexplained, post-term	M
38	4096	3175	921	395.713108	2.32744375	N	Unexplained lesion, placenta	M
40	4100	3550	550	395.713108	1.389895833	N	Unexplained, unexplained	M
40	4105	3550	555	395.713108	1.40253125	N	Birth trauma	M
40	4136	3550	586	395.713108	1.480870833	N	Unexplained lesion. Placenta	M
40	4225	3550	675	395.713108	1.70578125	N	Unexplained lesion, baby	M
42	4230	3850	380	395.713108	0.960291667	N	Unexplained, post-term	M

Appendices

40	4300	3550	750	395.713108	1.8953125	N	Unexplained obese with previous SB	M
41	4450	3700	750	389.1178895	1.927436441	N	Unexplained post-term	M
41	4480	3700	780	389.1178895	2.004533898	N	Placenta	M
40	4715	3550	1165	395.713108	2.944052083	N	Unexplained, unexplained	M
36	4720	2700	2020	362.7370157	5.568772727	N	Unexplained obese with GDM	M
40	5130	3550	1580	395.713108	3.992791667	N	Unexplained obese and previous SB	M
41	5150	3700	1450	389.1178895	3.726377119	N		

Appendix 6: Thymus gland measurements

Gestation	Thymic weight	Lobule area (mm2)	Medulla Area (mm2)	Cortex Area (mm2)	CM ratio	Number of HC (6 fields at x4)	Distance between lobules (6 fields at x4) (Micro meters)	$\begin{aligned} & \text { Number of TBMs } \\ & \text { (1xHPF) } \end{aligned}$	VB Grade	Category
40	8.7	4.46	1.28	3.18	2.484375	147	83.75	29	2	Control
26	1.6	4.73	1.01	3.72	3.683168317	65	57.25		2	Control
32	3.5	1.65	0.36	1.29	3.583333333	193	60.91666667	40	2	Control
31	4.4	0.931	0.23	0.701	3.047826087	111	97.9	32	2	Control
38	4	1.55	0.813	0.737	0.906519065	97	63.91666667	21	3	Control
39	11.4	5.96	1.17	4.79	4.094017094	69	106.9833333	43	3	Control
35	9.6	0.709	0.229	0.48	2.096069869	93	105.1833333	70	3	Control
35	8.63	5.43	2.27	3.16	1.392070485	74	82.65	50	2	Control
26	0.9	0.858	0.15	0.708	4.72	68	124.2166667	34	2	Control
40	11.2	5.27	1.57	3.7	2.356687898	238	94.46666667	41	4	Control
39	14.2	0.673	0.109	0.564	5.174311927	35	88.28333333	54	3	Control
24	1.8	0.835	0.358	0.477	1.332402235	89	126.8666667	33	2	Control
37	17.1	1.97	0.297	1.673	5.632996633	129	125.35	41	2	Control
36	N/G	2.4	0.664	1.736	2.614457831	61	127.1	55	3	Control
37	3.6	1.01	0.139	0.871	6.26618705	129	105.7833333	47	2	Control
36	9.2	Too high grade	Too high grade	Too high grade	Too high grade	199	78.1	55	3	Control
37	15.4	2.4	0.404	1.996	4.940594059	83	98.7	21	2	Control
25	1	0.869	0.239	0.63	2.635983264	93	102.9833333	34	1	Control
29	4.1	1.68	0.298	1.382	4.637583893	181	123.5	39	2	Control
40	19	Too autolysed	Too autolysed	Too autolysed	Too autolysed	141	60.26666667	76	2	Control
31	2.8	1.65	0.751	0.899	1.197070573	194	81.3	35	2	SGA Ab placenta
24	0.5	Not Thymus	SGA Ab placenta							
28	0.8	1.21	0.549	0.661	1.204007286	45	65.03333333	$\underline{28}$	2	SGA Ab placenta
29	0.7	4.72	1.98	2.74	1.383838384	262	80.16666667	35	2	SGA Ab placenta
39	6.6	1.29	0.2999	0.9901	3.301433811	56	76.8	Too autolysed	3	SGA Ab placenta
24	0.11	1.41	0.645	0.765	1.186046512	48	82.71666667	24	2	SGA Ab placenta
27	0.4	0.556	0.231	0.325	1.406926407	61	108.0166667	36	4	SGA Ab placenta
24	0.2	0.838	0.372	0.466	1.252688172	77	78.63333333	31	2	SGA Ab placenta
24	0.55	0.692	0.263	0.429	1.631178707	107	89.8	67	2	SGA Ab placenta
32	0.25	0.439	0.139	0.3	2.158273381	70	82.65	33	2	SGA Ab

										placenta
28	1.3	0.5	0.176	0.324	1.840909091	220	120.4333333	68	2	SGA Ab placenta
37	2.5	1	0.234	0.766	3.273504274	219	90.15	78	3	SGA Ab placenta
28	0.37	0.104	0.0201	0.0839	4.174129353	134	91	61	2	SGA Ab placenta
35	2.8	0.88	0.206	0.674	3.27184466	124	125.3666667	42	3	SGA Ab placenta
31	1.05	Too high grade	Too high grade	Too high grade	Too high grade	165	135.85	63	4	SGA Ab placenta
25	0.45	0.545	0.217	0.328	1.511520737	132	62.53333333	30	2	SGA Ab placenta
39	3.8	8.26	2.41	5.85	2.427385892	108	147.7666667	44	2	SGA N placenta
26	0.8	1.59	0.279	1.311	4.698924731	117	41.16666667	34	1	SGA N placenta
40	7.8	3.94	1.95	1.99	1.020512821	189	60.26666667	56	2	SGA N placenta
25	1.5	2.04	0.245	1.795	7.326530612	22	84.9	29	2	SGA N placenta
38	9.6	1.79	0.603	1.187	1.968490879	113	67.5	22	3	SGA N placenta
27	1.5	2.59	1.2	1.39	1.158333333	81	76.98333333	26	2	SGA N placenta
29	0.8	2.39	1.11	1.28	1.153153153	69	89.18333333	41	2	SGA N placenta
24	N/G	1.9	0.702	1.198	1.706552707	46	105.1833333	33	2	SGA N placenta
38	4.7	Too Autolysed	Too autoloysed	Too autolysed	Too autolysed	81	88.13333333	44	2	SGA N placenta
40	8.7	1.23	0.286	0.944	3.300699301	150	152.6333333	36	2	SGA N placenta
30	1.72	0.397	0.0939	0.3031	3.227902023	142	112	52	3	SGA N placenta
27	1.05	2.02	0.587	1.433	2.441226576	46	100.0166667	28	2	SGA N placenta

Appendix 7: Proteomic results

Accession Number Key	Accession
1	P23284
2	P62937;C9J5S7;E5RIZ5;F8WE65;P62937-2
3	Q8N0Y7
4	P62701;A6NH36
5	P08246
6	Q04917;A2IDB2
7	P08107;P08107-2;P17066
8	P07437;Q5JP53;Q5ST81
9	P05108;C9JXV4;E7EPP8;P05108-2
10	I3L504;C9J4W5;C9J7B5;F8WCJ1;I3L397;P63241;P63241-2;Q9GZV4
11	Q58FF3
12	Q13509-2;A0A0B4J269;Q13509
13	A0A087X0S5;P12109
14	P31946;P31946-2;Q4VY19;Q4VY20
15	P04083;Q5T3N0;Q5T3N1
16	A0A087WUJ4;Q92618
17	P12814;H0YJ11;H0YJW3;H7C5W8;H9KV75;P12814-2;P12814-3;P12814-4
18	P49454;A0A087WTY4
19	P02768;A0A087WWT3;A0A0C4DGB6;B7WNR0;C9JKR2;D6RHD5;H0YA55;H7C013;P02768-2;P02768-3
20	P18669;P15259
21	P62269
22	F8VSD4;F8VV71;F8VZ29;P61088;Q5JXB2
23	P31947;P31947-2
24	P61158

25	E9PJZ0
26	E5RHG9;B7Z2R2;P14927;P14927-2
27	Q99497
28	P19105;J3QRS3;O14950
29	I6L9I8;Q9H201;Q9H201-2
30	P07910- 3;B2R5W2;B2RXH8;B4DSU6;B4DY08;B7ZW38;G3V251;G3V2H6;G3V2Q1;G3V3K6;G3V4C1;G3V4M8;G3V4W0;G3V555;G3V575;G3V576;G3V5X6; O60812;P07910;P07910-2;P07910-4;P0DMR1
31	P04259;P02538;P48668
32	P30043;M0QZL1;M0R192
33	P09211;A0A087X243;A0A087X2E9;A8MX94
34	P01009-2;P01009
35	X6RJP6;P37802;P37802-2
36	M0R1M6
37	A0A0A0MRE3;A0A0C4DGK3;G3V5X4;Q8WXH0;Q8WXH0-2;Q8WXH0-7
38	Q6DN14;D6R8Z9;D6RA42;D6RC97;H0Y8M9;H0Y9S8;H0Y9Y6;Q6DN14-2;Q6DN14-3;Q6DN14-4
39	P12429;D6RFG5
40	P27338-2
41	P00915;E5RFE7;E5RFL2;E5RG43;E5RG81;E5RGU8;E5RH81;E5RHP7;E5RIF9;E5RII2;E5RJF6;E5RJI8;H0YBE2
42	P15880;E9PMM9;E9PPT0;E9PQD7;H0YE27;H0YEN5;H3BNG3
43	P51884
44	Q96QV6;P16104;Q8IUE6
45	J3QRK5;J3KSM4;J3QLP7
46	P08133-2;P08133
47	Q9BVQ7-2;Q9BVQ7;Q9BVQ7-3
48	P09104;F5H0C8;F5H1C3;P09104-2
49	P30044-2;P30044;P30044-3;P30044-4
50	P62834;A6NIZ1;B7ZB78;F5GZG1;F5H823;P61224;P61224-2;P61224-3;P61224-4
51	P20929-2

52	P02671-2;A0A087WUA0;P02671
53	P07355;A6NMY6;H0YKL9;H0YKS4;H0YKV8;H0YKX9;H0YKZ7;H0YL33;H0YLE2;H0YM50;H0YMD0;H0YMD9;H0YMM1;H0YMT9;H0YMU9;H0Y MW4;H0YN28;H0YN42;H0YN52;H0YNA0;H0YNP5;P07355-2
54	O95428-6;H0YMM2;O95428;095428-2;095428-4;O95428-5
55	A8MW49;P07148;Q9NQV6-6
56	Q9BTM1;H0YFX9;P04908;P0C0S8;P20671;Q16777;Q6F113;Q71UI9-5;Q7L7L0;Q93077;Q96KK5;Q99878;Q9BTM1-2
57	P69891
58	P40926;G3XAL0;P40926-2
59	P30086
60	P14061;A0A0A0MQS7;B4DU11
61	P02008
62	P68363;C9J2C0;C9JDS9;F5H5D3;F8VQQ4;F8VRK0;F8VRZ4;F8VS66;F8VVB9;F8VWV9;F8VX09;P68363-2;Q13748;Q13748-2;Q6PEY2;Q71U36;Q71U36-2;Q9BQE3;Q9NY65;Q9NY65-2;V9GZ17
63	P08758;D6RBE9;D6RBL5;D6RCN3;E9PHT9
64	P84077;C9J1Z8;F5H423;P61204;P61204-2;P84085
65	Q9UJZ1;Q9UJZ1-2
66	O14931-6;O14931-3
67	P98161-2;P98161;P98161-3
68	P14625;F8W026;H0YIV0;Q96GW1
69	P69892;E9PBW4
70	A0A0A0MS07;A0A087WV47;A0A087WYC5;A0A087WYE1;A0A087X010;A0A087X079;A0A087X1C7;A0A0A0MS08;P01857
71	Q9UBI6
72	P35754
73	J3KNE3;P68402
74	M0R210;A0A087WZ27;M0QX76;M0R1M5;M0R3H0;P62249;Q6IPX4
75	P05388-2;F8VPE8;F8VU65;F8VW21;F8VWS0;F8W1K8;G3V210;P05388;Q8NHW5
76	F8VXI2
77	P13645
78	P04792;C9J3N8;F8WE04
79	Q6B0K9

$\left.\begin{array}{|l|l|}\hline 80 & \begin{array}{l}\text { P07951;A0A087WWU8;B7Z596;D6R904;F5H7S3;H0YK48;H0YKP3;H0YKX5;H0YL52;H0YL80;H0YNC7;H7BYY1;J3KN67;K7ENT6;K7EP68;K7ERG } \\ 3 ; P 06753 ; P 06753-2 ; P 06753-3 ; P 06753-4 ; P 06753-5 ; P 06753-6 ; P 07951-2 ; P 07951-3 ; P 09493 ; P 09493-10 ; P 09493-2 ; P 09493-3 ; P 09493-4 ; P 09493-5 ; P 09493-~\end{array} \\ \text { 6;P09493-7;P09493-8;P09493-9;P67936;P67936-2;Q5HYB6;Q5TCU3;Q5TCU8;Q6ZN40 }\end{array}\right]$.

107	O60281;E5RFE6;H0YAU0;J3KNV1;O60281-2
108	Q149M9-3;F8W0U9;Q149M9
109	J3KT29;B9ZVP7;C9JD32;P62829
110	P06733;K7EM90;P06733-2;P13929-3
111	H0YCR7
112	Q9HC52;C9J6K3;C9JM54
113	P59665;P59666
114	Q6ZMR3;A0A087WUM2
115	P68871;F8W6P5
116	P00491;G3V5M2
117	P18615-4;A0A0A0MSN9;A0A0A0MT02;E9PD43;P18615;P18615-3
118	P07195;A8MW50;C9J7H8;F5H793
119	Q9BXT6-5;Q9BXT6
120	Q5VVC9;P62913;P62913-2;Q5VVC8
121	P61626;A0A0B4J259;F8VV32
122	P30050
123	P68366;P68366-2
124	P30041
125	J3QTB2;J3QTA6;Q9BRQ6
126	Q6DRA6;Q6DN03
127	Q9BYX7
128	A6NN06;Q5XG85
129	P02774;D6RBJ7;D6RF35;P02774-2;P02774-3
130	P0CG05;A0A075B6K9;A0A075B6L0;P0CG06
131	P09382
132	P49448
133	A0A0C4DGX0
135	Q13011

136	P02792;A0A087X1B9
137	P05164-3;J3QSF7;P05164;P05164-2
138	P02787;C9JB55;F8WEK9;H7C5E8
139	Q5T6W2;P61978;P61978-2;P61978-3
140	P13647;H0YI76
141	P62081;B5MCP9
142	P11142;E9PI65;E9PK54;E9PKE3;E9PLF4;E9PN25;E9PN89;E9PNE6;E9PPY6;E9PQQ4;P11142-2;P48741
143	J3QSW6;H7BXZ5;O60229
144	A0A087WUV9;Q9NV66;Q9NV66-2
145	C9J0D1;C9J386;P0C0S5;Q71U19;Q71U19-2;Q71UI9-3;Q71U19-4
146	Q58FF7
147	P60866;E5RIP1;E5RJX2;P60866-2
148	P62805
149	Q7EQJ4;B7Z4G8;F5GZ08;P51693;P51693-2
150	P92878;E7EN38;E7ESD9;E9PM98;Q92878-2
151	H0YD706-2;E7EUT5;P04406
152	Q5HY54;H0Y5F3;H7C2E7;P21333;P21333-2;Q60FE5
153	P60709;B8ZZJ2;C9JTX5;C9JUM1;C9JZR7;E7EVS6;F8WB63;F8WCH0;G5E9R0;I3L1U9;I3L3I0;I3L3R2;J3KT65;K7EM38;P63261
154	P02675;D6REL8
155	P12111;E7ENL6;P12111-2;P12111-3;P12111-4;P12111-5
156	O94964-2;H0YDM2;O94964
157	K7EKH6
158	Q8WXA9;Q8WXA9-2
159	Q13404;A0A0A0MSL3;G3V2F7;I3L0A0;Q13404-1;Q13404-2;Q13404-6;Q13404-7
160	Q13023;G3V3H2;G3V3H7;G3V569;Q13023-2
$162 ~$	
164	

165	P05386
166	Q16352;A0A087WYG8
167	A0A087WVV1;P49721
168	P07737;I3L3D5;K7EJ44
169	P08779;K7ENW6
170	C9JC84;C9JEU5;C9JPQ9;C9JU00;P02679;P02679-2
171	H0YK65
172	D6RF44;D6RAF8;H0Y8G5;H0YA96;Q14103;Q14103-2;Q14103-3;Q14103-4
173	E9PLL6;E9PJD9;E9PLX7;P46776
174	P06576;F8W079;F8W0P7;H0YH81
175	H0YIN9
176	P02533;F5GWP8;K7EMS3;K7EPJ9;P19012;Q04695
177	Q9BVA1;Q13885
178	D6RFL4;P08571
179	P10809
180	Q96H55;Q96H55-3;Q96H55-4
181	P35527;K7EQQ3;Q99456
182	P19971;C9JGI3;P19971-2
183	Q9Y4C8
184	P17661
185	A6QL64;Q8N2N9
186	Q9BZ23;E5RHA5;Q9BZ23-3;Q9BZ23-4;Q9H999;V9GYZ0
187	F8W6K2
188	P05787;P05787-2
189	P11021
190	Q99819;A2ID99;C9J9L9
191	A0A075B6E2;P39019
192	E5RI24
193	P02100;A8MUF7

194	P30101
195	A0A0C4DG40;E7ENN3;Q8NF91;Q8NF91-4;Q8NF91-7
196	P38646
197	Q03001;E7ERU0;E7ETB9;E9PEB9;E9PHM6;F6QMI7;F8W9J4;Q03001-13;Q5T0V7
198	P63151
199	P55084-2;P55084
200	P34931
201	Q06830;A0A0A0MSI0
202	P62820-2;E7END7;E9PLD0;P62820;Q92928;Q9H0U4
203	P07197;E7EMV2;E7ESP9;P07197-2
204	H3BML9;H3BN54;H3BPK4;Q96A32
205	Q15582;H0Y8L3;H0Y8M8
206	P09110;B4DVF4;C9JDE9;P09110-2
207	P51993;P51993-2
208	P04040
209	P55072
210	Q13162;H7C3T4
211	Q10570
212	P13796;P13796-2
213	P08727;C9JM50
214	P00924;U3KQP4
215	Q9NUU6
216	Q5SX87;P50395;P50395-2;Q5SX91
217	P05109
218	Q9UGJ0;F8WDA1;Q9UGJ0-3
219	H3BQK9;H3BPE1
220	P35908;Q5XKE5
221	P18206-2;A0A096LPE1;P18206
222	P62258;B4DJF2;I3L3T1;K7EIT4;K7EM20;P62258-2

223	P05783;F8VZY9
224	A0A087X1H5;H7C3K3;Q15057
225	P29401;A0A0B4J1R6;P29401-2
226	M0R300;M0R0P8;Q13459;Q13459-2
227	P25054;E9PFT7;P25054-2
228	Q14CN4-2;H0YHD9;Q14CN4;Q14CN4-3
229	P53814;A0A087WVP4;A0A087X1R1;P53814-5;P53814-6
230	Q96KP4;A0A087WVS2;A0A087WYZ1;J3KRD5;J3KSV5;J3QKQ0;J3QKT2;J3QL02;J3QLU1;J3QQN6;J3QR27;J3QRD0
231	Q96CX2
232	G8JLA2;B7Z6Z4;F8VPF3;F8VXL3;F8VZU9;F8W180;F8W1R7;G3V1V0;G3V1Y7;H0YI43;J3KND3;P60660;P60660-2
233	Q15084-3;Q15084;Q15084-2;Q15084-4;Q15084-5
234	O60858;060858-3
235	P13929-2;E5RG95;E5RGZ4;E5RI09;K7EKN2;K7EPM1;P13929
236	P07900-2;P07900
237	F5GWN5;O00750;Q5SW97;Q5SW98
238	P00761
239	Q7Z6B0-3;A0A0A0MTK0;A0A0A0MTP0;Q7Z6B0;Q7Z6B0-2
240	P54652
241	P02751-17;H0Y4K8;H0Y7Z1;P02751;P02751-10;P02751-11;P02751-12;P02751-13;P02751-14;P02751-15;P02751-3;P02751-4;P02751-5;P02751-6;P02751-7;P02751-8;P02751-9
242	P27797
243	H7BZJ3
244	P68032;A6NL76;C9JFL5;F6QUT6;F6UVQ4;P62736;P63267;P63267-2;P68133
245	Q02539
246	P0DML2;A0A087WU19;A0A087WUG6;A0A087WX75;A0A087WXJ5;A0A087X0G4;A0A0B4J1R0;A6NFB4;B1A4G9;B1A4H2;H0YM39;J3QT06;P0124 1;P01241-2;P01241-3;P01241-4;P01241-5;P01242;P01242-2;P01242-3;P01242-4;P0DML3;P0DML3-2;P0DML3-3;Q14406;Q14406-2;Q14406-3;Q14406-4
247	P10599;P10599-2
248	K7EK07;B4DEB1;K7EMV3;K7EP01;K7ES00;P68431;P84243;Q16695;Q5TEC6;Q6NXT2;Q71DI3
249	P08238;G3V2J8;Q58FF6
250	E9PMD7;A0A087WYY5;C9J9S3;C9JP48;E7ETD8;F5H037;F5H1L6;F8VR82;F8VYE8;F8W0W8;F8WE71;P36873;P36873-2;P62136;P62136-2;P62140

251	F8W0B5;F8VRK6
252	P52907
253	P00338-3;F5GXH2;F5GXY2;F5GYU2;F5GZQ4;F5H5J4;F5H6W8;P00338;P00338-2;P00338-4;P00338-5
254	P61981;E9PG15;P27348
255	Q8N3U4;Q8N3U4-2
256	P08311
257	P07339;H7C1V0;H7C469
258	P41219;F8W835;P41219-2
259	O60814;P57053;P58876;P62807;Q5QNW6;Q5QNW6-2;Q93079;Q96A08;Q99877;Q99879;Q99880;U3KQK0
260	P68104;A0A087WV01;A0A087WVQ9;P68104-2;Q05639;Q5VTE0
261	P31751;M0R0P9
262	Q9UKD2
263	P25101
264	P20160
265	Q12955;Q12955-4;Q12955-5;Q12955-6;Q12955-7
266	Q8WZ42-12;A0A0A0M03TS7
267	F8WDD7;A0A0A6YYG9;F8WCF6;H7C0A3;P59998;P59998-2;P59998-3;P59998-4;R4GN08
268	A0A087X130;A0A075B6H6;A0A075B6H7;A0A087WTX5;A0A087WWV8;A0A087WYL9;A0A087WZW8;A0A0B4J1TT9;A0A0C4DH55;A0A0C4DH90;P
269	P31150
270	P61604;B8ZZL8;S4R3N1
271	P08670;B0YJC4;B0YJC5;H7C5W5;P07196;P08729;Q5JVS8
272	P0A096LP30;Q8NDA2;Q8NDA2-2;Q8NDA2-3
273	P00558;P00558-2
274	Q16402;P10412;P16403
275	276
277	278

279	Q9H6S0;D6RA70;D6RF50
280	Q6S8J3
281	Q13951;J3KS23
282	O95678
283	A5A3E0
284	I3L4N8
285	A0A0A0MRQ5
286	C9JM00;O75635;O75635-2
287	Q9NX36
288	P06899;P23527;P33778;Q16778;Q8N257
289	B0QYN7
290	O43707;F5GXS2;H7C144;O43707-2;O43707-3
291	Q9Y2E4;E7EPU2
292	A8K7Q2
293	F8W754
294	H7C123
295	Q96C32;A0A087WV77;B4DV12;F5GXK7;F5GYU3;F5GZ39;F5H265;F5H2Z3;F5H388;F5H6Q2;F5H747;J3QKN0;J3QS39;J3QSA3;J3QTR3;K7EMA8;M 0R1V7;M0R2S1;P0CG47;P0CG48;P62979;P62987;Q5PY61 296
297	Q9BZF1-3;F8VQX7;F8VUA7;F8VVD3;F8VVE7;F8VZ43;Q9BZF1;Q9BZF1-2
298	P49585;C9J050;C9JEJ2
299	P0CG38
300	P0CG39
301	Q562R1
302	Q9Y536
303	P29590;H3BVD2;P29590-2;P29590-3;P29590-4;P29590-5;P29590-8;P29590-9
304	O43678-2;O43678
305	Q12929;F5GYM8;F5H0R8;F5H1B5;F5H2B8;F5H3Q6

	Peptide count	Unique peptides	Confidence score	Anova (p)	Max fold change	Fractions	Occurrences	Highest mean conditio		Description	Normalized abundance						
											Control			No Funisitis		Funisitis	
									Lowest mean condition		1	2	3	1	2	1	2
1	15	12	102.0762	0.003508607	1.147509577	2	1	No Funisitis	Funisitis	Peptidyl-prolyl cis-trans isomerase B OS=Homo sapiens GN=PPIB PE=1 $\mathrm{SV}=2$	147651.9	141480.3	147801.9	152353.6	151718.6	132778.5	132205.9
2	15	10	86.5089	0.010496563	1.241654952	1;2	2	Funisitis	No Funisitis	Peptidyl-prolyl cis-trans isomerase A OS=Homo sapiens GN=PPIA PE=1 SV=2	157239.8	157097.6	150743	149182.3	135975.3	176096.2	177971.2
3	5	3	25.6349	0.016703596	1.136192469	1;2	2	No Funisitis	Funisitis	Probable phosphoglycerate mutase 4 OS=Homo sapiens GN=PGAM4 PE=2 $\mathrm{SV}=1$	13414.44	13931.79	14478.65	14180.25	13925.65	12271.45	12465.47
4	3	3	16.5092	0.030609615	1.221985903	2	1	Control	No Funisitis	40S ribosomal protein S 4 , X isoform OS=Homo sapiens GN=RPS4X PE=1 SV=2	96504.94	97956.54	101240.2	86914.83	74408.18	82210.32	82876.29
5	6	4	15.0455	0.058167813	1.816108606	2	1	Funisitis	No Funisitis	Neutrophil elastase OS=Homo sapiens $\mathrm{GN}=$ ELANE $\mathrm{PE}=1 \mathrm{SV}=1$	36922.31	27751.71	37678.69	27277.88	19263.19	40529.58	43994.06
6	6	1	55.1172	0.06176162	1.467476885	1;2	2	Funisitis	No Funisitis	14-3-3 protein eta OS=Homo sapiens GN=YWHAH PE=1 SV=4	13511.34	13389.64	14616.63	12189.14	8841.331	15580.36	15281.37
7	12	4	86.2934	0.067021796	1.221748371	1;2	2	No Funisitis	Control	Heat shock 70 kDa protein 1A/1B OS=Homo sapiens GN=HSPA1A PE=1 SV=5	79151.71	74688.03	66072.8	90608.41	88510.13	79563.26	79398.45
8	7	4	36.0544	0.06818497	1.132143505	1;2	2	No Funisitis	Funisitis	Tubulin beta chain OS=Homo sapiens $\mathrm{GN}=\mathrm{TUBB}$ PE=1 SV=2	108361.7	111041.2	106842.3	127299.2	117568.8	103679	112608.1
9	6	5	35.5446	0.076304305	1.160005716	1 1	1	No Funisitis	Funisitis	Cholesterol side-chain cleavage enzyme, mitochondrial OS=Homo sapiens GN=CYP11A1 $\mathrm{PE}=1 \mathrm{SV}=2$	55599.45	52281.99	56768.27	58232.93	52913.21	46176.14	49639.03
10	2	2	9.0432	0.082184774	1.168135605	2	1	No Funisitis	Funisitis	Eukaryotic translation initiation factor 5A-1 OS=Homo sapiens GN=EIF5A PE=1 SV=1	39142.9	43376.65	38911.42	44874.26	43854.05	39236.29	36720.92
11	1	1	4.6221	0.09359994	1.357792222	1	1	No Funisitis	Funisitis	Putative endoplasmin-like protein OS=Homo sapiens $\mathrm{GN}=\mathrm{HSP90B2P}$ PE=5 $\mathrm{SV}=1$	33858.07	26882.28	35451.13	33261.1	34823.26	24298.59	25844.84
12	2	1	15.1166	0.101588241	1.129218552	1	1	No Funisitis	Funisitis	Isoform 2 of Tubulin beta-3 chain $\mathrm{OS}=$ Homo sapiens GN=TUBB3	29281.73	30667.44	31429.81	36326.17	32341.28	30655.24	30154.47
13	10	9	57.1123	0.127223827	1.428132774	1	1	No Funisitis	Funisitis	Collagen alpha-1(VI) chain OS=Homo sapiens $\mathrm{GN}=\mathrm{COL} 6 \mathrm{~A} 1 \mathrm{PE}=1 \mathrm{SV}=1$	122372	89294.41	97435.57	111214.9	128362.8	78817.26	88938.66
14	10	2	83.6191	0.131797899	1.259832837	1;2	2	Funisitis	Control	14-3-3 protein beta/alpha OS=Homo sapiens GN=YWHAB PE=1 SV=3	10054.36	9414.034	11410.42	13089.27	11382.58	11924.37	14010.38
15	14	12	120.3505	0.138524117	1.212442322	1;2	2	No Funisitis	Funisitis	$\begin{aligned} & \text { Annexin A1 OS=Homo } \\ & \text { sapiens GN=ANXA1 PE=1 } \\ & \mathrm{SV}=2 \end{aligned}$	124341	142567.2	129533.4	157817.4	135614	120283.3	121733.4
16	1	1	11.0316	0.140351526	2.487457035	2	1	Control	Funisitis	Zinc finger protein 516 (Fragment) OS=Homo sapiens GN=ZNF516 PE=1	378536.5	466631.5	334905.3	226177.7	294063	72110.19	244162.8

										$\mathrm{SV}=1$							
17	15	9	85.5505	0.141312714	1.508627139	1;2	2	Control	No Funisitis	Alpha-actinin-1 OS=Homo sapiens $\mathrm{GN}=\mathrm{ACTN} 1 \mathrm{PE}=1$ SV=2	215717.1	145543.1	216420	135318.9	119959.6	168141.3	202792.3
18	12	5	62.5878	0.152334469	1.244063314	1	1	Funisitis	Control	Centromere protein F OS=Homo sapiens GN=CENPF PE=1 SV=2	40573.69	36722.69	46634.88	55616.18	46693.54	54652.49	48133.07
19	46	40	367.5547	0.162733654	1.211427684	1;2	2	Control	Funisitis	Serum albumin OS=Homo sapiens GN=ALB PE=1 SV=2	325151.1	403078.1	336724.1	347330.9	329778.8	284626.2	301433.4
20	6	2	30.9098	0.164552402	1.161534138	1;2	2	Control	Funisitis	Phosphoglycerate mutase 1 OS=Homo sapiens GN=PGAM1 PE $=1 \mathrm{SV}=2$	45670.11	42985.03	50490.41	43400.58	46917.82	38416.87	41446.21
21	3	2	15.4882	0.181637225	1.640412248	2	1	Funisitis	No Funisitis	40S ribosomal protein S18 OS=Homo sapiens $\mathrm{GN}=\mathrm{RPS} 18 \mathrm{PE}=1 \mathrm{SV}=3$	43612.02	38425	52368.75	43024.13	24413.74	58149.96	52475.96
22	5	5	31.469	0.190763409	1.414538029	2	1	No Funisitis	Funisitis	Ubiquitin-conjugating enzyme E2 N OS=Homo sapiens GN=UBE2N PE=1 $\mathrm{SV}=1$	93252.38	142761.5	100116.3	149694.6	155135.7	118755.4	96742.67
23	7	2	60.0578	0.19491784	1.26184777	1;2	2	Funisitis	No Funisitis	14-3-3 protein sigma OS=Homo sapiens $\mathrm{GN}=\mathrm{SFN}$ PE=1 SV=1	27441.44	25619.28	23148.75	25257.65	19699.45	28622.23	28106.8
24	3	2	16.6985	0.202611005	1.317007853	1	1	Funisitis	Control	Actin-related protein 3 OS=Homo sapiens $\mathrm{GN}=\mathrm{ACTR} 3$ PE $=1 \mathrm{SV}=3$	10653.41	10460.91	7750.659	9750.308	10474.43	13766.38	11577.22
25	1	1	5.6144	0.22329092	1.912920894	2	1	No Funisitis	Funisitis	Neuroblast differentiationassociated protein AHNAK (Fragment) OS=Homo sapiens GN=AHNAK PE=1 SV=1	1712.572	4332.149	3313.25	4812.626	6746.474	3489.785	2552.858
26	1	1	4.6983	0.223401068	1.441253753	2	1	Funisitis	No Funisitis	Cytochrome b-c1 complex subunit $7 \mathrm{OS}=\mathrm{Homo}$ sapiens GN=UQCRB PE=1 $\mathrm{SV}=1$	70328.09	63631.35	71279.18	68425.53	44045.73	90542.57	71557.06
27	5	3	27.6044	0.22697338	1.136376374	2	1	No Funisitis	Funisitis	Protein deglycase DJ-1 OS=Homo sapiens GN=PARK7 PE=1 SV=2	81500.64	85158.5	70054.78	89459.48	89053.6	78242.41	78847.33
28	2	2	16.0485	0.231477384	1.315872151	2	1	Funisitis	No Funisitis	$\begin{aligned} & \text { Myosin regulatory light } \\ & \text { chain 12A OS=Homo } \\ & \text { sapiens GN=MYL12A } \\ & \mathrm{PE}=1 \mathrm{SV}=2 \\ & \hline \end{aligned}$	74263.24	57167.78	68925.34	56033.55	57561.9	65593.77	83883.33
29	1	1	5.6532	0.235470488	1.291847595	1	1	No Funisitis	Control	$\begin{aligned} & \text { EPN3 protein OS=Homo } \\ & \text { sapiens GN=EPN3 PE=1 } \\ & \text { SV }=1 \end{aligned}$	28789.69	22986.59	32063.68	37078.3	35127.33	33556.69	27379.5
30	2	2	9.6429	0.243018303	1.126467629	2	1	No Funisitis	Control	Isoform 3 of Heterogeneous nuclear ribonucleoproteins C1/C2 OS=Homo sapiens GN=HNRNPC	10589.62	11228.49	11601.94	12137.61	12960.12	13032.01	11182.73
31	6	3	43.5493	0.243315471	1.158619474	1	1	Funisitis	Control	Keratin, type II cytoskeletal 6B OS=Homo sapiens GN=KRT6B PE $=1 \mathrm{SV}=5$	110642.5	97874.5	102997.4	115941.2	93973.72	120266	120351.8
32	5	5	42.882	0.263617338	1.721866582	2	1	Control	Funisitis	Flavin reductase (NADPH) OS=Homo sapiens GN=BLVRB PE=1 SV=3	182024.3	303350.5	184561.7	144647.9	206053.5	94633.64	164750.2
33	8	8	56.8992	0.265010194	1.174309228	1;2	2	Control	$\begin{aligned} & \text { No } \\ & \text { Funisitis } \end{aligned}$	Glutathione S-transferase P OS=Homo sapiens GN=GSTP1 PE=1 SV=2	202602.4	177307.3	217276.5	162210.2	176818.1	171292.3	193635
34	2	1	15.9327	0.271357517	2.081709461	1	1	Funisitis	No Funisitis	Isoform 2 of Alpha-1antitrypsin OS=Homo sapiens GN=SERPINA1	23874.11	12935.11	15959.03	13021.91	11767.71	16534.15	35070.65

35	8	8	44.2945	0.278934588	1.078498446	1;2	2	Control	No Funisitis	Transgelin-2 (Fragment) OS=Homo sapiens GN=TAGLN2 $\mathrm{PE}=1 \mathrm{SV}=1$	130888.2	123236.2	124072.2	122603.3	111176.5	121635.5	129716.6
36	6	1	36.9392	0.281965158	2.8269693	1;2	2	Funisitis	No Funisitis	Ubiquitin-60S ribosomal protein L40 (Fragment) $\mathrm{OS}=\mathrm{Homo}$ sapiens GN=UBA52 PE=1 SV=1	55850.1	32544.88	51551.04	20315.67	20043.79	23487.3	90607.65
37	7	4	38.3708	0.288343098	1.201690239	1	1	Control	Funisitis	$\begin{aligned} & \text { Nesprin-2 OS=Homo } \\ & \text { sapiens GN=SYNE2 PE=1 } \\ & \mathrm{SV}=1 \end{aligned}$	69492.51	83430.97	72815.63	65258.92	83342.66	65023.59	60210.63
38	3	2	19.4567	0.293529074	1.138454795	1	1	Control	Funisitis	$\begin{aligned} & \text { Multiple C2 and } \\ & \text { transmembrane domain- } \\ & \text { containing protein } 1 \\ & \text { OS=Homo sapiens } \\ & \text { GN=MCTP1 PE=2 SV=2 } \end{aligned}$	56936.31	46229.37	50078.56	49582.93	49926.81	43489.69	46248.46
39	1	1	5.0084	0.29547485	1.162185315	1	1	Control	Funisitis	$\begin{aligned} & \text { Annexin A3 OS=Homo } \\ & \text { sapiens GN=ANXA3 PE=1 } \\ & S V=3 \end{aligned}$	58671.72	67559.82	73831.65	59275.5	60669.11	53961.21	60801.42
40	3	3	9.4567	0.299473398	1.327361354	2	1	Funisitis	Control	Isoform 2 of Amine oxidase [flavin-containing] B OS=Homo sapiens GN=MAOB	10604.15	8976.22	12022.61	11822.69	9405.293	16362.03	11603.68
41	11	9	78.1691	0.304828163	1.439605265	1;2	2	Control	$\begin{aligned} & \text { No } \\ & \text { Funisitis } \\ & \hline \end{aligned}$	Carbonic anhydrase 1 OS=Homo sapiens $\mathrm{GN}=\mathrm{CAl}$ PE $=1 \mathrm{SV}=2$	259607.5	177793.4	264298.9	146851.9	178098.3	175519.7	256360.3
42	3	2	17.1718	0.308030131	1.436968889	1	1	No Funisitis	Control	40S ribosomal protein S2 OS=Homo sapiens GN=RPS2 PE=1 SV=2	14556.05	14826.09	7533.157	18534.95	16829.15	19467.3	15216.03
43	5	5	40.2043	0.311608467	1.145476145	1	1	Control	Funisitis	$\begin{aligned} & \text { Lumican OS=Homo } \\ & \text { sapiens GN=LUM PE=1 } \\ & \mathrm{SV}=2 \end{aligned}$	75451.99	81259.39	89981.5	82400.14	78211.86	65957.48	77617.68
44	13	2	53.4567	0.31175468	1.376858702	1;2	2	Funisitis	Control	Histone H2A type 1-A OS=Homo sapiens GN=HIST1H2AA PE=1 $\mathrm{SV}=3$	57060.15	51618.75	43512.94	71150.49	52527.6	82730.61	56967.17
45	7	1	35.6576	0.314194099	1.273974498	1;2	2	No Funisitis	Funisitis	$\begin{aligned} & \text { Protein UBBP4 OS=Homo } \\ & \text { sapiens GN=UBBP4 PE=1 } \\ & \text { SV }=1 \end{aligned}$	117603.5	149176.3	147021.6	185262.7	154249.6	152468.5	114030
46	4	4	18.396	0.322504409	1.148158213	1	1	Funisitis	No Funisitis	Isoform 2 of Annexin A6 OS=Homo sapiens GN=ANXA6	56062.73	47539.03	48369.45	46961.94	45696.3	49762.72	56623.6
47	2	1	9.0131	0.326254036	2.411222071	1	1	$\begin{aligned} & \text { No } \\ & \text { Funisitis } \end{aligned}$	Funisitis	Isoform 2 of Spermatogenesis-associated protein 5-like protein 1 OS=Homo sapiens GN=SPATA5L1	990.6364	485.8112	2087.925	1768.597	1745.419	765.0894	692.2694
48	8	2	59.3015	0.33720689	1.170493712	1;2	2	No Funisitis	Control	$\begin{aligned} & \text { Gamma-enolase OS=Homo } \\ & \text { sapiens GN=ENO2 PE=1 } \\ & \text { SV=3 } \end{aligned}$	13229.15	14053.32	10672.76	14770.01	14847.56	13596.92	12005.63
49	5	5	37.2308	0.343084533	1.150358096	2	1	Control	Funisitis	Isoform Cytoplasmic+peroxisomal of Peroxiredoxin-5, mitochondrial OS=Homo sapiens GN=PRDX5	37179.12	37582.76	40961.25	35984.5	38380.18	29464.8	37600.19
50	1	1	5.8184	0.345707053	1.748682779	2	1	Control	Funisitis	Ras-related protein Rap-1A OS=Homo sapiens $\mathrm{GN}=$ RAP1A PE $=1 \mathrm{SV}=1$	13027.36	8657.778	22316.52	14327.89	13573.71	6616.725	10158.44
51	8	6	27.0271	0.358470963	1.459084314	2	1	Control	No Funisitis	Isoform 2 of Nebulin OS=Homo sapiens GN=NEB	43959.89	60351.09	34391.87	25934.32	37440.06	36048.31	43240.29
52	22	19	179.4866	0.359889667	1.144194624	1;2	2	Control	No Funisitis	Isoform 2 of Fibrinogen alpha chain OS=Homo sapiens $\mathrm{GN}=\mathrm{FGA}$	296864.5	288558.1	248775.7	232287.7	253759.2	239591.9	277201.4

53	14	6	104.4274	0.361682773	1.242147222	1;2	2	Funisitis	No Funisitis	$\begin{aligned} & \text { Annexin A2 OS=Homo } \\ & \text { sapiens GN=ANXA2 PE=1 } \\ & \text { SV=2 } \end{aligned}$	185854.7	154727.4	136978.8	137262.3	138617.1	153278.6	189404.2
54	3	2	13.6222	0.365856175	1.335799028	1	1	Funisitis	Control	Isoform 6 of Papilin OS=Homo sapiens GN=PAPLN	7452.006	6781.532	10849.76	12641.95	8876.582	9929.122	12408.37
55	8	7	63.2127	0.367951059	2.087366384	1;2	2	Funisitis	Control	Fatty acid-binding protein, liver OS=Homo sapiens GN=FABP1 PE=1 SV=1	115095.7	129945.6	113071.6	197388.5	106331.9	364888.7	133453.2
56	17	6	51.1149	0.371655581	1.286740772	1;2	2	No Funisitis	Control	Histone H2A.J OS=Homo sapiens GN=H2AFJ PE=1 $\mathrm{SV}=1$	859205.8	814166.8	702863.5	1201501	836899	1029547	816372.9
57	53	5	264.6564	0.374333368	1.451959281	1;2	2	Funisitis	Control	Hemoglobin subunit gamma-1 OS=Homo sapiens GN=HBG1 PE=1 $\mathrm{SV}=2$	2625100	2078839	2636075	2979680	1983270	4487685	2617250
58	14	12	98.5629	0.375281966	1.206194853	1;2	2	No Funisitis	Control	Malate dehydrogenase, mitochondrial OS=Homo sapiens GN=MDH2 PE=1 $\mathrm{SV}=3$	105067.6	127124.7	104242.6	149952.8	120584.5	128448.1	105863.2
59	5	4	38.9433	0.384547978	1.343765693	2	1	Funisitis	Control	Phosphatidylethanolaminebinding protein 1 OS=Homo sapiens GN=PEBP1 PE=1 SV=3	44568.56	41790.09	52120.22	57938.59	43252.08	74649.68	49405.76
60	6	5	40.1177	0.388284255	1.335431438	1;2	2	No Funisitis	Control	Estradiol 17-betadehydrogenase 1 OS=Homo sapiens GN=HSD17B1 PE=1 SV=3	28020.73	21360.38	30464.72	42861.66	28224.1	27078.52	29196.92
61	8	4	46.7014	0.388408059	1.179657187	1;2	2	Funisitis	Control	Hemoglobin subunit zeta OS=Homo sapiens $\mathrm{GN}=\mathrm{HBZ}$ PE=1 $\mathrm{SV}=2$	6806.735	6764.513	8059.612	8156.704	7126.489	9428.422	7582.911
62	10	3	107.9309	0.395224727	1.126914161	1;2	2	No Funisitis	Control	Tubulin alpha-1B chain OS=Homo sapiens GN=TUBA1B PE=1 SV=1	27867.87	30615.3	30076.09	36646.44	29886.02	32032.68	30388.45
63	24	22	170.8449	0.397058195	1.153768129	1;2	2	No Funisitis	Funisitis	$\begin{aligned} & \text { Annexin A5 OS=Homo } \\ & \text { sapiens GN=ANXA5 PE=1 } \\ & \text { SV=2 } \end{aligned}$	217206.8	248625	193081.1	254931.6	232260.7	218030.9	204230.9
64	5	5	29.5982	0.398010131	1.723457124	2	1	Control	No Funisitis	ADP-ribosylation factor 1 OS=Homo sapiens $\mathrm{GN}=\mathrm{ARF} 1 \mathrm{PE}=1 \mathrm{SV}=2$	370808.3	222537	376410.1	138764.7	236355.5	182774.2	405281.2
65	5	3	31.4149	0.402974547	1.339302327	1	1	Control	Funisitis	Stomatin-like protein 2, mitochondrial OS=Homo sapiens GN=STOML2 $\mathrm{PE}=1 \mathrm{SV}=1$	102886.3	94522.21	123899.4	70885.93	104804	61815.23	98122.71
66	2	2	9.1181	0.408179177	1.304851987	1	1	Control	Funisitis	$\begin{aligned} & \text { Isoform } 6 \text { of Natural } \\ & \text { cytotoxicity triggering } \\ & \text { receptor } 3 \text { OS=Homo } \\ & \text { sapiens GN=NCR3 } \\ & \hline \end{aligned}$	12074.07	10033.83	14985.61	7853.492	11626.96	8191.362	10760.22
67	4	2	19.5823	0.408618327	1.237502748	2	1	Control	Funisitis	Isoform 2 of Polycystin-1 OS=Homo sapiens GN=PKD1	17106.3	14445.21	19115.19	13167.56	17923.57	14286.85	13008.28
68	11	7	57.9752	0.410241011	1.083212277	1	1	No Funisitis	Funisitis	Endoplasmin OS=Homo sapiens GN=HSP90B1 $\mathrm{PE}=1 \mathrm{SV}=1$	54438.45	55161.02	59488.85	61844.33	55477.15	55025.24	53283.62
69	52	4	272.339	0.410372955	1.443358826	1;2	2	Funisitis	Control	$\begin{aligned} & \text { Hemoglobin subunit } \\ & \text { gamma-2 OS=Homo } \\ & \text { sapiens GN=HBG2 PE=1 } \\ & \text { SV=2 } \\ & \hline \end{aligned}$	692668	557460.7	719417.7	802733.5	532980.7	1208713	686461.2
70	3	2	19.9124	0.4193471	1.16475427	1 1	1	Control	Funisitis	Ig gamma-1 chain C region (Fragment) OS=Homo sapiens GN=IGHG1 PE=1 $\mathrm{SV}=1$	48984.84	52898.66	49281.39	45861.42	50847.89	36308.99	50212.78

71	1	1	5.0011	0.424134917	1.197270768	2	1	No Funisitis	Control	Guanine nucleotide-binding protein $\mathrm{G}(\mathrm{I}) / \mathrm{G}(\mathrm{S}) / \mathrm{G}(\mathrm{O})$ subunit gamma-12 OS=Homo sapiens $\mathrm{GN}=\mathrm{GNG} 12 \mathrm{PE}=1 \mathrm{SV}=3$	13305.27	11566.03	17059.55	17981.22	15487.17	14423.19	13702.78
72	3	3	20.4883	0.428348012	1.17805693	2	1	No Funisitis	Control	Glutaredoxin-1 OS=Homo sapiens GN=GLRX PE=1 $\mathrm{SV}=2$	42667.23	49481.72	34053	48586.5	50528.89	44072.23	42550.71
73	1	1	4.5269	0.431764927	1.369172552	2	1	No Funisitis	Funisitis	Platelet-activating factor acetylhydrolase IB subunit beta (Fragment) OS=Homo sapiens GN=PAFAH1B2 $\mathrm{PE}=1 \mathrm{SV}=1$	4074.366	6215.474	6122.795	6416.977	7922.224	6525.88	3947.016
74	4	4	26.7493	0.434035106	1.244071184	1;2	2	No Funisitis	Control	$\begin{aligned} & \text { 40S ribosomal protein S16 } \\ & \text { OS=Homo sapiens } \\ & \text { GN=RPS16 PE=1 SV=1 } \end{aligned}$	51447.89	52305.37	33811.32	53577.2	60516.22	49215.36	54452.53
75	3	3	32.1088	0.441302284	1.214003366	1;2	2	Funisitis	Control	$\begin{aligned} & \text { Isoform } 2 \text { of } 60 \mathrm{~S} \text { acidic } \\ & \text { ribosomal protein P0 } \\ & \text { OS=Homo sapiens } \\ & \text { GN=RPLP0 } \\ & \hline \end{aligned}$	25401.03	23321.42	26255.49	33451.19	24733.18	34662.71	26019.6
76	1	1	9.6778	0.444846929	2.856377913	2	1	Control	Funisitis	Phosphatidylinositol phosphatase PTPRQ (Fragment) OS=Homo sapiens GN=PTPRQ PE=4 $\mathrm{SV}=1$	36803.15	36924.56	208036.6	76986.59	96996.63	28775.1	36987.5
77	17	11	112.9246	0.446031828	1.242560518	1;2	2	Funisitis	Control	Keratin, type I cytoskeletal 10 OS=Homo sapiens $\mathrm{GN}=\mathrm{KRT} 10 \mathrm{PE}=1 \mathrm{SV}=6$	273895.7	292673.4	200716.9	281413.8	245181.1	359424.8	276174.7
78	8	8	55.216	0.449105539	1.099297214	2	1	Funisitis	$\begin{aligned} & \text { No } \\ & \text { Funisitis } \end{aligned}$	Heat shock protein beta-1 OS=Homo sapiens $\mathrm{GN}=\mathrm{HSPB} 1 \mathrm{PE}=1 \mathrm{SV}=2$	78881.61	82770.44	68804.32	72683.24	76608.93	81311.79	82804.68
79	2	2	6.3224	0.454011436	1.230541259	1;2	2	Funisitis	Control	Hemoglobin subunit mu OS=Homo sapiens GN=HBM PE=2 SV=1	21273.76	17217.95	25422.26	27875.17	23021.22	30101.59	22330.93
80	2	2	18.4127	0.45690348	1.230993548	1	1	No Funisitis	Funisitis	Tropomyosin beta chain OS=Homo sapiens $\mathrm{GN}=\mathrm{TPM} 2 \mathrm{PE}=1 \mathrm{SV}=1$	63109.82	81027.22	64853.44	87001	66648.11	67257.76	57559.39
81	6	4	42.0717	0.462198286	1.262259474	1;2	2	Funisitis	Control	Protein-glutamine gammaglutamyltransferase 2 OS=Homo sapiens GN=TGM2 PE=1 SV=2	23581.26	22839.32	15338.61	29144.1	22826.65	23956.22	21264.73
82	6	3	38.737	0.467317529	1.124034217	1	1	Control	No Funisitis	Moesin OS=Homo sapiens GN=MSN PE=1 SV=3	40941.48	33171.34	41914.6	34340.93	34475.14	40367.53	36571.3
83	44	8	195.6523	0.469516505	1.224080542	1;2	2	Control	$\begin{aligned} & \text { No } \\ & \text { Funisitis } \end{aligned}$	Hemoglobin subunit delta OS=Homo sapiens GN=HBD PE=1 SV=2	308760.9	294234.2	282530.8	201853.8	280427	184992.1	301919.3
84	6	3	29.5413	0.469539432	1.311455443	1	1	No Funisitis	Control	A-kinase anchor protein 9 OS=Homo sapiens GN=AKAP9 PE=1 SV=3	16514.95	20123.77	11887.34	22675.82	19750.7	20821.25	14130.57
85	3	1	34.1305	0.477540981	1.210328838	1	1	Funisitis	$\begin{aligned} & \text { No } \\ & \text { Funisitis } \end{aligned}$	Keratin, type II cuticular Hb4 OS=Homo sapiens GN=KRT84 PE=2 SV=2	910.3905	874.2937	1284.314	985.0122	938.8187	1181.337	1147.131
86	1	1	10.0096	0.478444914	2.95981557	2	1	Funisitis	Control	Mitochondrial pyruvate carrier 1 OS=Homo sapiens $\mathrm{GN}=\mathrm{MPC} 1 \mathrm{PE}=1 \mathrm{SV}=1$	39834.71	60411.27	54308.99	212413.2	48359.82	249311.8	55657.63
87	1	1	6.1818	0.479296346	1.1994748	1	1	Control	Funisitis	$\begin{aligned} & \text { Vitronectin OS=Homo } \\ & \text { sapiens GN=VTN PE }=1 \\ & \text { SV }=1 \end{aligned}$	142681.8	118379.8	158758.5	126965.8	143411.8	98457.65	134877.8
88	2	2	8.7495	0.480306853	1.313101171	2	1	No Funisitis	Control	Insulin-like peptide INSL6 OS=Homo sapiens GN=INSL6 PE=2 SV=2	22836.83	25084.11	20406.28	37156.61	22657.08	31442.64	23534.51
89	15	8	137.7449	0.481301647	1.13837356	1;2	2	Funisitis	No Funisitis	14-3-3 protein zeta/delta OS=Homo sapiens	129244.6	102191.4	117405	112447.6	108676.6	117197.1	134524.9

										GN=YWHAZ PE=1 SV=1							
90	1	1	5.0902	0.481838848	1.118807518	2	1	Control	Funisitis	Coagulation factor XIII A chain (Fragment) OS=Homo sapiens GN=F13A1 PE=1 SV=2	23056.94	25693.76	26822.46	22548.35	23655.72	19820.94	25211.03
91	12	6	73.5299	0.487279205	1.221458007	1	1	Control	No Funisitis	Neurofilament heavy polypeptide OS=Homo sapiens $\mathrm{GN}=\mathrm{NEFH}$ PE $=1$ $\mathrm{SV}=4$	32909.91	26763.95	40834.32	25595.08	29261.86	28250.83	30824.19
92	12	11	81.1699	0.487534481	1.112602144	1	1	No Funisitis	Control	Carbamoyl-phosphate synthase [ammonia], mitochondrial OS=Homo sapiens GN=CPS1 PE=1 SV=2	75446.45	76669.54	85263.25	92819.3	83253.13	95068.9	77192.54
93	5	4	30.1895	0.489628273	1.35838052	1;2	2	No Funisitis	Control	Fas-binding factor OS=Homo sapiens $\mathrm{GN}=\mathrm{FBF} 1 \mathrm{PE}=1 \mathrm{SV}=2$	30328.87	42924.82	23283.78	52694.89	34728.18	36666.18	33017.48
94	4 4	3	9.6877	0.490715524	1.237199761	2	1	Funisitis	Control	Thiosulfate sulfurtransferase/rhodanese- like domain-containing protein $2 \mathrm{OS}=$ Homo sapiens GN=TSTD2 $\mathrm{PE}=1$ SV=1	65522.84	61492.66	62801.47	78386.08	49214.35	89134.09	67426.92
95	1	1	5.5488	0.493289744	1.090972099	2	1	No Funisitis	Funisitis	Transcription factor SOX12 OS=Homo sapiens GN=SOX12 PE=2 SV=2	162305.9	147024.4	146518	150398	170935.7	141574.3	152964.6
96	6	4	26.3748	0.494123172	1.173891018	1;2	2	Control	Funisitis	Ankyrin repeat domaincontaining protein 36 C OS=Homo sapiens $\mathrm{GN}=\mathrm{ANKRD} 36 \mathrm{C}$ PE=2 SV=3	57358.77	46029.61	48849.28	46915.53	44943.62	35927.13	50530.45
97	4	1	20.5842	0.496535511	1.235432862	1	1	No Funisitis	Control	Isoform 2 of BCL-6 corepressor OS=Homo sapiens GN=BCOR	271055.2	354705.2	244078.9	411252.8	305165.8	380168.9	297179
98	5	5	34.366	0.499633757	1.220281275	1;2	2	Funisitis	No Funisitis	Protein S100-A9 OS=Homo sapiens $\mathrm{GN}=\mathrm{S} 100 \mathrm{~A} 9 \mathrm{PE}=1 \mathrm{SV}=1$	155385.3	108976.3	141947.4	115275.5	119560.8	126971.1	159595.2
99	14	14	110.9718	0.50467293	1.163896393	1	1	Funisitis	Control	Protein disulfide-isomerase OS=Homo sapiens $\mathrm{GN}=\mathrm{P} 4 \mathrm{HB}$ PE= $=1 \mathrm{SV}=3$	116207.8	81439.3	113433.8	103308.7	109952.8	118285.5	123091.8
100	12	11	109.1429	0.507032497	1.093494517	1;2	2	Funisitis	Control	Isoform 2 of ATP synthase subunit alpha, mitochondrial OS=Homo sapiens GN=ATP5A1	59819.52	53654.27	47902.07	55206.02	53418.93	60834.93	56807.49
101	20	16	147.3054	0.507815161	1.148140106	1;2	2	Funisitis	$\begin{aligned} & \text { No } \\ & \text { Funisitis } \end{aligned}$	$\begin{aligned} & \text { Peroxiredoxin-2 OS=Homo } \\ & \text { sapiens GN=PRDX2 PE=1 } \\ & \text { SV=5 } \end{aligned}$	233999.5	188318	241633.7	188824.3	202348.8	204066.3	245055.3
102	3	1	16.9407	0.509845713	1.38939495	1	1	Control	Funisitis	Zinc finger protein 205 OS=Homo sapiens GN=ZNF205 PE=1 SV=2	57941.72	99410.65	58058.54	52351.76	74818.7	48492.16	54867.42
103	50	42	214.3774	0.510650084	1.500085003	1;2	2	Control	$\begin{aligned} & \text { No } \\ & \text { Funisitis } \end{aligned}$	Hemoglobin subunit alpha OS=Homo sapiens GN=HBA1 PE=1 SV=2	8162786	4976027	9173488	3842306	6073710	4595240	8111280
104	2	2	18.094	0.51179194	1.050567456	1;2	2	Control	$\begin{aligned} & \text { No } \\ & \text { Funisitis } \end{aligned}$	Isoform 2 of Electron transfer flavoprotein subunit alpha, mitochondrial OS=Homo sapiens GN=ETFA	187146.9	194035.9	178797.3	169878.7	185472.2	185201.9	181089.7
105	4	3	20.563	0.512087606	1.146073032	2	1	No Funisitis	Control	Prohibitin OS=Homo sapiens $\mathrm{GN}=\mathrm{PHB}$ PE=1 $\mathrm{SV}=1$	31660.93	33539.53	25044.89	35371.36	33580.48	35023.16	29569.14

106	8	2	65.9945	0.517859178	1.165276446	1;2	2	No Funisitis	Control	Annexin OS=Homo sapien $\mathrm{GN}=\mathrm{ANXA} 2 \mathrm{PE}=1 \mathrm{SV}=1$	16233.1	16447.16	11890.01	19004.14	15620.31	16218.85	16728.37
107	3	2	14.737	0.518160027	1.606529126	2	1	Control	Funisitis	Zinc finger protein 292 OS=Homo sapiens GN=ZNF292 PE=1 SV=3	23713.37	40369.97	15500.73	20279.35	17805.29	12485.84	20539.43
108	1	1	10.371	0.518188045	2.580351084	2	1	Control	No Funisitis	Isoform 3 of NACHT and WD repeat domaincontaining protein 1 OS=Homo sapiens GN=NWD1	62089.32	104238.2	18929.56	15871.81	31991.72	5065.452	50088.42
109	4	4	18.222	0.522447047	1.140938726	2	1	Funisitis	Control	60S ribosomal protein L23 OS=Homo sapiens GN=RPL23 PE=1 SV=1	22457.43	22500.56	27671.78	28372.06	22927.32	29110.11	26133.97
110	23	13	157.1718	0.536686715	1.094995742	1;2	2	No Funisitis	Control	$\begin{aligned} & \text { Alpha-enolase OS=Homo } \\ & \text { sapiens GN=ENO1 PE=1 } \\ & S V=2 \end{aligned}$	94236.12	101174	102827.6	121231.8	96480.95	107837.4	106427.8
111	1	1	5.9227	0.540504862	1.729823236	1	1	Control	No Funisitis	Ribonuclease inhibitor (Fragment) OS=Homo sapiens $\mathrm{GN}=\mathrm{RNH} 1 \mathrm{PE}=1$ $\mathrm{SV}=1$	13421.71	6645.896	18779.71	6433.596	8537.998	4129.229	12066.78
112	2	2	9.445	0.541065036	1.179792285	2	1	Control	Funisitis	$\begin{aligned} & \text { Chromobox protein } \\ & \text { homolog } 8 \text { OS=Homo } \\ & \text { sapiens GN=CBX8 PE=1 } \\ & \mathrm{SV}=3 \end{aligned}$	23718.91	28203.65	19090.46	21798.34	20567.94	21244.02	18883.39
113	7	6	47.4329	0.547699079	2.286501958	1;2	2	Control	No Funisitis	Neutrophil defensin 1 OS=Homo sapiens GN=DEFA1 PE=1 SV=1	391192.6	142741.3	662191.5	150298.3	198451.4	201941.1	551137.8
114	4	2	32.445	0.548733955	1.396348678	1	1	Control	No Funisitis	L-lactate dehydrogenase Alike 6A OS=Homo sapiens GN=LDHAL6A PE=2 SV=1	14582.16	10302.2	21579.11	10442.19	11741.13	12562.79	14563.3
115	63	23	266.2916	0.549177984	1.461810164	1;2	2	Control	Funisitis	Hemoglobin subunit beta OS=Homo sapiens $\mathrm{GN}=\mathrm{HBB}$ PE $=1 \mathrm{SV}=2$	4966524	3809963	4262134	1923492	4762621	1621160	4325176
116	5	5	43.3274	0.5509211	1.173380269	2	1	No Funisitis	Control	Purine nucleoside phosphorylase OS=Homo sapiens GN=PNP PE=1 $\mathrm{SV}=2$	42088.15	58654.44	39106.1	55763.84	53633.28	52495.45	44316.39
117	2	1	9.5511	0.551911809	1.346399777	1	1	Funisitis	Control	$\begin{aligned} & \text { Isoform } 3 \text { of Negative } \\ & \text { elongation factor E } \\ & \text { OS=Homo sapiens } \\ & \text { GN=NELFE } \\ & \hline \end{aligned}$	86678.38	102921.5	48613.21	123362.1	87540	133158.3	80661.76
118	6	4	38.9145	0.552398557	1.122227465	1;2	2	No Funisitis	Funisitis	L-lactate dehydrogenase B chain OS=Homo sapiens GN=LDHB PE=1 SV=2	55773.01	54106.13	56200.38	67669.73	52779.5	56367.81	50962.69
119	1	1	3.9998	0.553083325	1.291112447	2	1	Funisitis	No Funisitis	Isoform 5 of Putative helicase Mov1011 OS=Homo sapiens GN=MOV10L1	104173.6	73064.81	58452.74	72514.03	72540.79	81597.32	105684.8
120	1	1	6.6019	0.564745884	1.162144628	2	1	No Funisitis	Control	60S ribosomal protein L11 (Fragment) OS=Homo sapiens GN=RPL11 PE=1 $\mathrm{SV}=1$	63459.23	63072.93	45793.18	60146.87	73364.44	59907.79	59733.06
121	3	3	27.0775	0.566790141	1.331544012	2	1	Control	No Funisitis	$\begin{aligned} & \text { Lysozyme C OS=Homo } \\ & \text { sapiens GN=LYZ PE=1 } \\ & S V=1 \end{aligned}$	75462.17	53225.4	77111.29	42389.79	60647.91	42624.08	76058.15
122	4	4	17.4632	0.568316714	1.245113385	1;2	2	No Funisitis	Control	60S ribosomal protein L12 OS=Homo sapiens GN=RPL12 PE=1 SV=1	63910.06	78335.3	41681.2	83212.05	69460.89	67344.27	61402.88
123	8	1	79.5944	0.572430415	1.236865005	1;2	2	Control	Funisitis	Tubulin alpha-4A chain OS=Homo sapiens $\mathrm{GN}=\mathrm{TUBA} 4 \mathrm{~A}$ PE=1 SV=1	101681.6	77157.44	110249.2	70934.01	88529.28	56846.94	98970.8

124	5	5	30.1927	0.575065704	1.074871202	1;2	2	No Funisitis	Control	Peroxiredoxin-6 OS=Homo sapiens GN=PRDX6 PE=1 $\mathrm{SV}=3$	64130.28	69282.57	58960.77	72325.05	65526.19	67555.05	61537.85
125	1	1	11.6194	0.578570113	1.161590386	1	1	Control	Funisitis	MICOS complex subunit MIC25 OS=Homo sapiens GN=CHCHD6 PE=1 SV=1	64903.22	45190	53999.4	51967.79	56694.39	41393	52783.99
126	3	1	31.8425	0.582143898	1.652320227	1;2	2	Control	No Funisitis	Putative histone H2B type 2-D OS=Homo sapiens GN=HIST2H2BD PE=5 $\mathrm{SV}=3$	278152	153171	431315.1	146529.3	201521.9	174191.6	284288.5
127	18	2	97.2243	0.590857777	1.467685133	1;2	2	Control	Funisitis	Putative beta-actin-like protein 3 OS=Homo sapiens GN=POTEKP $\mathrm{PE}=5 \mathrm{SV}=1$	15089.11	21542.65	9143.427	11091.59	12735.78	7614.025	13178.44
128	1	1	9.3154	0.592872641	1.394887558	2	1	Control	Funisitis	Putative UPF0633 protein MGC21881 OS=Homo sapiens $\mathrm{PE}=5 \mathrm{SV}=1$	92693.89	84326.56	65479.31	42443.79	89340.18	33051.36	82847.95
129	1	1	15.3396	0.596366205	2.328535849	1	1	Control	No Funisitis	Vitamin D-binding protein OS=Homo sapiens GN=GC $\mathrm{PE}=1 \mathrm{SV}=1$	7448.775	4987.348	27280.64	2543.541	8827.484	6304.124	17478.02
130	2	2	10.0227	0.598127908	1.260949083	2	1	Funisitis	Control	Ig lambda-2 chain C regions OS=Homo sapiens GN=IGLC2 PE=1 SV=1	7486.777	9174.668	6666.468	5745.07	10940.14	9872.984	9737.224
131	6	6	29.7083	0.599689679	1.170804052	2	1	Control	Funisitis	Galectin-1 OS=Homo sapiens GN=LGALS1 $\mathrm{PE}=1 \mathrm{SV}=2$	111794.2	102960	90364.73	86715.01	115721.8	70396.55	103340.9
132	3	3	32.2204	0.600115563	1.368881233	1	1	Funisitis	Control	Glutamate dehydrogenase 2, mitochondrial OS=Homo sapiens GN=GLUD2 PE=1 $\mathrm{SV}=2$	68878.27	72417.66	36298.26	93886.18	59500.58	102127.4	59942.82
133	2	1	9.3217	0.602365603	1.156745388	2	1	Control	No Funisitis	Ankyrin repeat domaincontaining protein 36B OS=Homo sapiens GN=ANKRD36B PE=4 SV=1	17976.34	15507.81	18200.82	13170.96	16616.62	13449.07	18619.9
134	4	3	20.2745	0.608437229	1.169341328	2	1	No Funisitis	Control	Delta(3,5)-Delta(2,4)-dienoyl-CoA isomerase, mitochondrial OS=Homo sapiens GN=ECH1 PE=1 SV=2	67862.09	73640.53	45704.81	71701.64	74237.95	67832.9	63220.53
135	10	5	55.6701	0.609383763	1.250175759	1;2	2	Funisitis	No Funisitis	Triosephosphate isomerase OS=Homo sapiens $\mathrm{GN}=\mathrm{TPI} 1 \mathrm{PE}=1 \mathrm{SV}=3$	44399.45	29297.8	38910.05	42720.82	24629.11	42128.91	42070.34
136	10	9	72.8725	0.612231812	1.08646386	1;2	2	No Funisitis	Control	Ferritin light chain OS=Homo sapiens GN=FTL PE=1 SV=2	112613.1	95612.16	127030.3	119459.4	123369.4	116929.2	122250.5
137	19	18	140.8629	0.612575517	1.100672876	1;2	2	No Funisitis	Control	$\begin{aligned} & \text { Isoform H7 of } \\ & \text { Myeloperoxidase } \\ & \text { OS=Homo sapiens } \\ & \text { GN=MPO } \\ & \hline \end{aligned}$	186892	160258	184240.8	220249.6	169675.3	203728	185405.7
138	8	8	56.8526	0.617413061	1.209123949	1	1	No Funisitis	Control	$\begin{aligned} & \text { Serotransferrin OS=Homo } \\ & \text { sapiens GN=TF PE=1 } \\ & \mathrm{SV}=3 \end{aligned}$	128213.7	155167	96936.69	167593.4	138973.8	164201.6	117134.6
139	2	2	9.9633	0.620434737	1.067537673	1	1	No Funisitis	Control	Heterogeneous nuclear ribonucleoprotein K (Fragment) OS=Homo sapiens GN=HNRNPK $\mathrm{PE}=1 \mathrm{SV}=1$	30128.63	30334.12	35895.49	35095.45	33481.92	33033.7	32700.22
140	5	1	36.8712	0.623107467	1.558280067	1	1	No Funisitis	Control	Keratin, type II cytoskeletal 5 OS=Homo sapiens $\mathrm{GN}=\mathrm{KRT} 5 \mathrm{PE}=1 \mathrm{SV}=3$	22684.09	54111.54	10220.01	56769.23	33627.26	41635.86	19831.07
141	4	3	32.5354	0.623603789	1.194538263	1;2	2	Funisitis	Control	40S ribosomal protein S7 OS=Homo sapiens GN=RPS7 PE=1 SV=1	10255.71	7058.723	11398.99	11659.12	8420.049	11414.56	11451.63

Appendices

142	19	4	151.6967	0.633214391	1.118532033	1;2	2	Funisitis	Control	Heat shock cognate 71 kDa protein OS=Homo sapiens $\mathrm{GN}=\mathrm{HSPA} 8 \mathrm{PE}=1 \mathrm{SV}=1$	159800.9	128791.9	110930	144874.3	133611.6	146564.9	151354.5
143	4	2	17.1145	0.637841444	1.445543467	1	1	No Funisitis	Control	Kalirin OS=Homo sapiens GN=KALRN PE=1 SV=1	8576.902	17456.57	5078.64	18914.42	11068.19	13882.56	8885.318
144	2	1	10.6804	0.638263715	1.082895719	1	1	Funisitis	Funisitis	S-adenosyl-L-methioninedependent tRNA 4demethylwyosine synthase OS=Homo sapiens GN=TYW1 $\mathrm{PE}=1 \mathrm{SV}=1$	26534.18	32233.89	26516.66	29558.14	27373.28	27709.43	24863.89
145	11	1	39.2311	0.639815825	1.189017701	1;2	2	Funisitis	Funisitis	$\begin{aligned} & \text { Histone H2A OS=Homo } \\ & \text { sapiens GN=H2AFV PE=3 } \\ & \text { SV=1 } \end{aligned}$	7444.068	8457.307	7141.152	10837.36	7414.342	9040.874	6309.363
146	2	1	9.5239	0.639957745	1.167335462	1	1	No Funisitis	Control	Putative heat shock protein HSP 90-beta-3 OS=Homo sapiens GN=HSP90AB3P $\mathrm{PE}=5 \mathrm{SV}=1$	40171.98	42022.62	25828.8	43943.96	40122.4	38423.08	35853.6
147	2	1	11.8034	0.645422533	1.298147923	2	1	Funisitis	Control	40S ribosomal protein S20 OS=Homo sapiens GN=RPS $20 \mathrm{PE}=1 \mathrm{SV}=1$	27190.87	22079.15	9804.774	19063.2	28378.41	24278.4	26846.81
148	31	27	146.6354	0.647336352	1.117837611	1;2	2	No Funisitis	Funisitis	$\begin{aligned} & \text { Histone H4 OS=Homo } \\ & \text { sapiens GN=HIST1H4A } \\ & \text { PE=1 SV=2 } \end{aligned}$	1335038	1351279	943151.6	1365211	1338472	1186287	1232385
149	1	1	4.018	0.654378603	1.335969211	2	1	Funisitis	Control	Amyloid-like protein 1 (Fragment) OS=Homo sapiens GN=APLP1 PE=1 $\mathrm{SV}=1$	5296.368	4600.201	6087.362	8146.159	5538.975	9666.184	4569.842
150	1	1	6.2198	0.656141291	1.18379166	1	1	No Funisitis	Control	DNA repair protein RAD50 OS=Homo sapiens GN=RAD50 PE=1 SV=1	92401.14	107885.5	89413.88	135381.3	93248.76	118546.8	91164.49
151	9	9	57.5232	0.658745912	1.070733277	1;2	2	Funisitis	Control	Isoform 2 of Glyceraldehyde-3- phosphate dehydrogenase OS=Homo sapiens GN=GAPDH	271603.9	275623.7	224293.5	283277.3	267451.6	264960	269866.8
152	1	1	5.0658	0.659262944	1.229466395	1	1	No Funisitis	Funisitis	Complex I assembly factor TMEM126B, mitochondrial (Fragment) OS=Homo sapiens GN=TMEM126B $\mathrm{PE}=1 \mathrm{SV}=4$	17198.45	22196.38	13537.09	23975.86	17486.77	19280.64	14443.45
153	8	5	48.6172	0.660690014	1.104323667	1	1	Funisitis	Control	$\begin{aligned} & \text { Filamin-A OS=Homo } \\ & \text { sapiens GN=FLNA PE=1 } \\ & \text { SV=1 } \end{aligned}$	27111.92	23093.02	18254.69	24667.19	24900.46	24422.94	25978.12
154	76	5	374.1434	0.666305589	1.108822319	1;2	2	No Funisitis	Funisitis	Actin, cytoplasmic 1 OS=Homo sapiens $\mathrm{GN}=\mathrm{ACTB} \mathrm{PE}=1 \mathrm{SV}=1$	586217.7	650372.1	489997.6	706298.7	568637.3	580478.4	569332.5
155	26	20	247.2305	0.669766486	1.287143507	1;2	2	Funisitis	Control	Keratin, type II cytoskeletal 1 OS=Homo sapiens GN=KRT1 PE= $1 \mathrm{SV}=6$	261026	346458.7	166455.5	377556.7	265246.8	423028.4	241086.2
156	43	38	312.6718	0.67032289	1.124683407	1;2	2	Control	Funisitis	Fibrinogen beta chain OS=Homo sapiens $\mathrm{GN}=\mathrm{FGB}$ PE $=1 \mathrm{SV}=2$	347424.2	315548.5	327243.9	280740.5	357697	242570.3	344389.8
157	55	45	392.0561	0.676529994	1.113215601	1	1	No Funisitis	Funisitis	Collagen alpha-3(VI) chain OS=Homo sapiens $\mathrm{GN}=\mathrm{COL} 6 \mathrm{~A} 3 \mathrm{PE}=1 \mathrm{SV}=5$	139379.9	170427.4	128216	177588.9	145394.3	154340.4	135794.9
158	2	2	12.191	0.677197951	1.088198425	2	1	No Funisitis	Control	Isoform 2 of Protein SOGA1 OS=Homo sapiens GN=SOGA1	238615.7	189214.4	235964.8	257514.7	224045.7	230332.4	231305.1
159	1	1	4.2044	0.678817602	1.13480143	1	1	Funisitis	No Funisitis	Glial fibrillary acidic protein (Fragment) OS=Homo sapiens $\mathrm{GN}=\mathrm{GFAP}$ PE $=1 \mathrm{SV}=1$	43779.13	50257.45	49518.74	50053.34	38356.87	56554.03	43774.01

160	2	2	9.6418	0.680237397	1.155528234	2	1	Funisitis	No Funisitis	Splicing regulatory glutamine/lysine-rich protein 1 OS=Homo sapiens GN=SREK1 PE=1 $\mathrm{SV}=1$	33435.85	23829.46	30529.97	24786.71	28746.19	27631.02	34227.75
161	4	3	20.8974	0.684636554	1.14201905	2	1	No Funisitis	Control	Ubiquitin-conjugating enzyme E2 variant 1 OS=Homo sapiens GN=UBE2V1 PE=1 SV=2	78981.9	72227.79	51646.8	72072.8	82371.18	63171.98	75915.56
162	2	2	10.5754	0.685220185	1.464494547	1	1	Control	No Funisitis	A-kinase anchor protein 6 OS=Homo sapiens GN=AKAP6 PE=1 SV=3	1941.419	1597.176	3721.46	1251.808	2053.112	1496	2662.442
163	6	5	31.7072	0.685301865	1.139905556	1	1	No Funisitis	Funisitis	$\begin{aligned} & \text { Fibulin-1 OS=Homo } \\ & \text { sapiens GN=FBLN1 PE=1 } \\ & \text { SV }=1 \end{aligned}$	46712.54	36936.75	51265.66	44088.02	48293.92	34495.66	46547.85
164	7	1	67.4307	0.688994937	1.160962732	1;2	2	Funisitis	$\begin{aligned} & \text { No } \\ & \text { Funisitis } \end{aligned}$	Heat shock cognate 71 kDa protein (Fragment) OS=Homo sapiens GN=HSPA8 PE=1 SV=1	146560.7	104942.2	135875.1	112677.1	114946.1	111548.7	152713.4
165	2	1	11.1772	0.689418556	1.538875414	2	1	No Funisitis	Funisitis	60S acidic ribosomal protein P1 OS=Homo sapiens GN=RPLP1 PE=1 $\mathrm{SV}=1$	2919.537	762.5833	5160.433	4199.518	3756.048	2567.383	2602.344
166	6	3	40.3002	0.690084163	1.127856466	1	1	No Funisitis	Funisitis	Alpha-internexin OS=Homo sapiens GN=INA PE $=1 \mathrm{SV}=2$	18027.71	23334.67	18980.34	23240.18	18970.98	20109.92	17316.08
167	1	1	5.927	0.690198374	1.369353876	2	1	$\begin{aligned} & \text { No } \\ & \text { Funisitis } \end{aligned}$	Funisitis	Proteasome subunit beta type-2 OS=Homo sapiens GN=PSMB2 PE $=1 \mathrm{SV}=1$	64.5164	48.03742	1297.29	624.4272	470.3366	711.0676	88.40709
168	11	9	84.4185	0.693889616	1.106159738	1;2	2	Control	Funisitis	$\begin{aligned} & \text { Profilin-1 OS=Homo } \\ & \text { sapiens GN=PFN1 PE=1 } \\ & \text { SV=2 } \end{aligned}$	249794.4	209489.3	223796.7	193943.5	235916.9	178464.7	233218.2
169	8	1	39.1948	0.697355099	1.348826769	1	1	$\begin{aligned} & \text { No } \\ & \text { Funisitis } \end{aligned}$	Control	Keratin, type I cytoskeletal 16 OS=Homo sapiens $\mathrm{GN}=\mathrm{KRT} 16 \mathrm{PE}=1 \mathrm{SV}=4$	12014.87	21010.27	9107.865	23290.42	14596.33	22655	11396.27
170	11	8	90.1971	0.700484198	1.154572128	1;2	2	Control	Funisitis	Fibrinogen gamma chain OS=Homo sapiens GN=FGG PE=1 SV=1	132001	139595.7	95180.4	108115	115744	92454.87	119327.6
171	1	1	4.5307	0.701409277	1.306615884	1	1	Control	No Funisitis	Uncharacterized protein C15orf52 (Fragment) OS=Homo sapiens GN=C15orf52 PE=1 SV=1	36741.91	26127.78	54187.41	28491.34	31234	26263.76	38670.21
172	3	3	13.738	0.701498877	1.137090526	1	1	No Funisitis	Control	Heterogeneous nuclear ribonucleoprotein D0 (Fragment) OS=Homo sapiens GN=HNRNPD $\mathrm{PE}=1 \mathrm{SV}=4$	16936.81	20847.28	14678.18	22615.62	17153.94	18980.69	16443.56
173	2	1	11.9401	0.704815967	1.16193147	2	1	No Funisitis	Control	60S ribosomal protein L27a OS=Homo sapiens $\mathrm{GN}=$ RPL27A $\mathrm{PE}=1 \mathrm{SV}=1$	100146.9	106598	64299.97	95919.77	114037.2	84592.84	101880.8
174	16	12	92.9098	0.712963955	1.129645104	1	1	No Funisitis	Control	ATP synthase subunit beta, mitochondrial OS=Homo sapiens GN=ATP5B PE=1 SV=3	152964.1	181633.9	123759.7	188858.6	156329.1	173267.8	142991.3
175	3	1	24.6884	0.71517349	1.073517909	1	1	No Funisitis	Control	Keratin, type II cytoskeletal 5 (Fragment) OS=Homo sapiens GN=KRT5 PE=1 $\mathrm{SV}=1$	55521.18	61144.73	52424.33	66113.41	54900.86	62651.37	56013.41
176	8	1	38.5641	0.719810737	1.391338758	1	1	No Funisitis	Control	Keratin, type I cytoskeletal 14 OS=Homo sapiens $\mathrm{GN}=\mathrm{KRT} 14 \mathrm{PE}=1 \mathrm{SV}=4$	1114.819	1859.415	849.6331	2268.197	1278.666	2473.275	983.6713
177	3	1	15.0885	0.720689881	1.088808416	1	1	No Funisitis	Funisitis	Tubulin beta-2B chain OS=Homo sapiens $\mathrm{GN}=\mathrm{TUBB} 2 \mathrm{~B}$ PE=1 $\mathrm{SV}=1$	13678.3	13780.88	16376.57	16706.99	13939.97	14198.87	13948.38

178	3	2	21.7666	0.72176915	1.184476615	1	1	Funisitis	Control	Monocyte differentiation antigen CD14 (Fragment) OS=Homo sapiens $\mathrm{GN}=\mathrm{CD} 14 \mathrm{PE}=1 \mathrm{SV}=1$	12712.55	8295.269	18249.22	17108.34	13891.02	14373.59	14160.4
179	5	4	36.9265	0.721964872	1.064296263	1	1	Funisitis	No Funisitis	60 kDa heat shock protein, mitochondrial OS=Homo sapiens GN=HSPD1 PE=1 $\mathrm{SV}=2$	30288.34	35214.61	32370.66	33256.04	29505.28	34960.69	31835.95
180	3	2	13.302	0.722886135	1.118971187	2	1	No Funisitis	Control	Unconventional myosinXIX OS=Homo sapiens GN=MYO19 PE=2 SV=2	65411.13	66924.43	45738.93	61572.85	71267.3	55036.43	64315.17
181	17	14	153.8849	0.72308044	1.304369277	1;2	2	Funisitis	Control	Keratin, type I cytoskeletal 9 OS=Homo sapiens GN=KRT9 PE=1 SV=3	139701.7	218165.6	110987.8	247896.4	159810.3	243917.1	125179.4
182	2	1	12.0438	0.726222099	1.415022411	1	1	Control	No Funisitis	Thymidine phosphorylase OS=Homo sapiens GN=TYMP PE=1 SV=2	14253.07	7502.171	19063.81	10705.23	8526.058	9459.031	13911.99
183	2	2	7.5706	0.728959845	1.06768378	1	1	Funisitis	Control	$\begin{aligned} & \text { Probable RNA-binding } \\ & \text { protein } 19 \text { OS=Homo } \\ & \text { sapiens GN=RBM19 PE=1 } \\ & \text { SV=3 } \\ & \hline \end{aligned}$	51926.95	43204.07	40243.86	47360.85	46096.95	46828.25	49530.13
184	8	1	84.0702	0.73396675	1.498067847	1	1	Control	No Funisitis	Desmin OS=Homo sapiens GN=DES PE= $1 \mathrm{SV}=3$	1205.834	508.7933	1129.597	445.4151	820.3149	514.3505	1364.152
185	5	2	23.2452	0.738909191	1.103790529	2	1	Control	No Funisitis	Ankyrin repeat domaincontaining protein 36A OS=Homo sapiens $\mathrm{GN}=\mathrm{ANKRD} 36 \mathrm{PE}=2$ SV=3	30687.38	26632.82	29696.97	22253.74	30302.84	22529.45	30888.58
186	11	7	65.3602	0.740712537	1.289054105	1;2	2	Funisitis	No Funisitis	Pantothenate kinase 2, mitochondrial OS=Homo sapiens GN=PANK2 $\mathrm{PE}=1$ SV=3	437817.4	462755.3	213636.3	303804.5	311322.2	362063.3	430868.2
187	1	1	4.6669	0.743160351	1.095939429	2	1	Funisitis	Control	N-chimaerin (Fragment) OS=Homo sapiens GN=CHN1 PE=1 SV=1	1295.056	3067.085	106.532	1460.239	1764.875	1937.605	1327.325
188	5	1	53.7825	0.74677628	1.045956923	1	1	Control	Funisitis	Keratin, type II cytoskeletal 8 OS=Homo sapiens GN=KRT8 PE=1 SV=7	27740.09	27994.54	24494.7	27095.9	25257.13	26074.84	25061.32
189	16	11	96.3814	0.750216144	1.099021901	1;2	2	Funisitis	Funisitis	78 kDa glucose-regulated protein OS=Homo sapiens $\mathrm{GN}=\mathrm{HSPA} 5 \mathrm{PE}=1 \mathrm{SV}=2$	102535.6	131571.3	117529.2	130605	110738.3	119919.6	99678.59
190	1	1	4.7276	0.755278185	1.224585208	2	1	Control	Funisitis	Rho GDP-dissociation inhibitor 3 OS=Homo sapiens GN=ARHGDIG $\mathrm{PE}=2 \mathrm{SV}=2$	43055.85	24345.59	32144.38	25446.63	33450.92	18287.44	35905.51
191	3	3	19.8974	0.755906786	1.126462036	2	1	No Funisitis	Control	40S ribosomal protein S19 OS=Homo sapiens $\mathrm{GN}=\mathrm{RPS} 19 \mathrm{PE}=1 \mathrm{SV}=1$	23594.24	22663.1	14657.65	21649.37	24096.25	19037.46	22411.47
192	1	1	5.5253	0.757308024	1.127175057	2	1	Funisitis	Funisitis	Arginine--tRNA ligase, cytoplasmic OS=Homo sapiens GN=RARS PE=1 $\mathrm{SV}=1$	35389.71	31480.51	31036.49	29830.76	38672.05	24543.59	36230.29
193	14	1	58.2653	0.758273963	1.147993832	1;2	2	Funisitis	Control	Hemoglobin subunit epsilon OS=Homo sapiens $\mathrm{GN}=$ HBE $1 \mathrm{PE}=1 \mathrm{SV}=2$	3593.189	4511.461	2495.933	3847.988	3730.2	4592.158	3520.777
194	13	8	106.3763	0.759465788	1.083241317	1	1	Control	No Funisitis	Protein disulfide-isomerase A3 OS=Homo sapiens GN=PDIA3 PE=1 SV=4	136651.5	99027.2	109984.4	105840.1	106893.7	104443	109247
195	56	39	238.7676	0.765894077	1.049126616	1;2	2	Funisitis	Control	Nesprin-1 OS=Homo sapiens GN=SYNE1 PE=4 $\mathrm{SV}=1$	239157	224138.4	199425.5	229614.8	233904	215115.2	237044.5
196	5	4	28.7348	0.768304779	1.069931208	1	1	No Funisitis	Control	Stress-70 protein, mitochondrial OS=Homo	19140.16	21767.57	16664.64	21877.97	19187.69	19468.32	19421.47

										sapiens GN=HSPA9 PE=1 $\mathrm{SV}=2$							
197	17	14	74.6132	0.774589035	1.19518	2	1	Control	No Funisitis	$\begin{aligned} & \text { Dystonin OS=Homo } \\ & \text { sapiens GN=DST PE=1 } \\ & \text { SV=4 } \end{aligned}$	426050.4	288575	295826.5	229325.4	334300.7	231185.4	384577.2
198	1	1	3.7103	0.776673673	1.452057947	2	1	Control	No Funisitis	Serine/threonine-protein phosphatase 2A 55 kDa regulatory subunit B alpha isoform OS=Homo sapiens GN=PPP2R2A PE $=1 \mathrm{SV}=1$	1366225	2423043	766373.5	681156	1410423	753978.9	1464482
199	2	2	9.66	0.776899966	1.092209003	1	1	No Funisitis	Control	Isoform 2 of Trifunctional enzyme subunit beta, mitochondrial OS=Homo sapiens GN=HADHB	15621.34	16359.27	13994.61	18702.51	14773.86	17361.91	13922.96
200	13	3	93.8407	0.77715165	1.048288097	1;2	2	Funisitis	No Funisitis	Heat shock 70 kDa protein 1-like OS=Homo sapiens GN=HSPA1L PE=1 SV=2	25190.63	22701.02	20731.54	22270.77	23042.16	24179.52	23321.49
201	12	4	80.1131	0.779233963	1.125859392	1;2	2	No Funisitis	Funisitis	Peroxiredoxin-1 OS=Homo sapiens GN=PRDX1 PE=1 $\mathrm{SV}=1$	52946.15	67623.51	47413.75	71108.22	54144.73	63685.98	47565
202	1	1	6.6434	0.783607062	1.091730628	2	1	Control	No Funisitis	Isoform 2 of Ras-related protein Rab-1A OS=Homo sapiens $\mathrm{GN}=\mathrm{RAB} 1 \mathrm{~A}$	49900.49	40851.93	48541.58	47752	37308.06	39955.09	49641.62
203	6	1	40.3749	0.784803123	1.094620237	1	1	No Funisitis	Control	Neurofilament medium polypeptide OS=Homo sapiens GN=NEFM PE=1 SV=3	10305.63	12307.09	8798.041	12630.56	10291.34	11357.91	9787.787
204	1	1	6.678	0.785649852	1.131047496	1	1	No Funisitis	Funisitis	Myosin regulatory light chain 2, skeletal muscle isoform (Fragment) OS=Homo sapiens GN=MYLPF PE $=1 \mathrm{SV}=1$	245862.3	289030.7	164575.4	243923.9	273252.8	237755.6	219499
205	2	2	10.7533	0.786605354	1.620371415	1	1	Control	No Funisitis	Transforming growth factor-beta-induced protein ig-h3 OS=Homo sapiens $\mathrm{GN}=\mathrm{TGFBI}$ PE $=1 \mathrm{SV}=1$	6255.032	2599.748	8183.742	2858.862	4151.268	2405.378	7657.635
206	2	2	11.0905	0.787408237	1.173720431	1	1	Funisitis	No Funisitis	3-ketoacyl-CoA thiolase, peroxisomal OS=Homo sapiens GN=ACAA1 PE=1 $\mathrm{SV}=2$	11021.7	14093.39	13221.67	13291.56	10940.95	17416.98	11025.22
207	2	2	9.0905	0.789899519	1.163186615	2	1	Control	Funisitis	Alpha-(1,3)fucosyltransferase 6 OS=Homo sapiens GN=FUT6 PE=1 SV=1	17617.63	14647.86	10786.13	12222.87	15212.98	9777.672	14896.86
208	13	10	83.9575	0.794536242	1.219633422	1	1	Control	Funisitis	Catalase OS=Homo sapiens GN=CAT PE $=1 \mathrm{SV}=3$	68654.36	36587.56	71951.25	42932.53	54411.86	39565.57	57290.4
209	6	6	42.3268	0.796598327	1.069636794	1	1	No Funisitis	Control	$\begin{aligned} & \text { Transitional endoplasmic } \\ & \text { reticulum ATPase } \\ & \text { OS=Homo sapiens } \\ & \text { GN=VCP PE }=1 \mathrm{SV}=4 \\ & \hline \end{aligned}$	36177.36	31381.63	39927.81	42307.23	34340.65	38363.22	36771.87
210	3	1	18.4291	0.800730784	1.169938052	1;2	2	No Funisitis	Control	$\begin{aligned} & \text { Peroxiredoxin-4 OS=Homo } \\ & \text { sapiens GN=PRDX4 PE=1 } \\ & \text { SV=1 } \end{aligned}$	6805.63	9615.678	5061.167	7217.765	9537.677	9853.683	6116.539
211	2	2	10.0953	0.801743177	1.222432767	2	1	Control	No Funisitis	Cleavage and polyadenylation specificity factor subunit 1 OS=Homo sapiens GN=CPSF1 $\mathrm{PE}=1$ $\mathrm{SV}=2$	138476.3	96323.15	94068.07	64910.42	114441	68783.74	141863.4
212	9	8	57.2261	0.802617249	1.063473375	1	1	Control	Funisitis	$\begin{aligned} & \hline \text { Plastin-2 } \mathrm{OS}=\mathrm{Homo} \\ & \text { sapiens GN=LCP1 PE=1 } \\ & \mathrm{SV}=6 \end{aligned}$	88520.42	80552.6	103331.8	88994.85	86276.31	82834.86	87929.37
213	8	2	39.3735	0.806910634	1.041725756	1;2	2	No Funisitis	Control	Keratin, type I cytoskeletal 19 OS=Homo sapiens	15758.74	16251.54	16583.11	18240.52	15506.8	17539.59	15957.22

										$\mathrm{GN}=\mathrm{KRT} 19 \mathrm{PE}=1 \mathrm{SV}=4$							
214	41	38	334.487	0.810142744	1.266498758	1;2	2	Control	Funisitis	Enolase 1 OS=Saccharomyces cerevisiae (strain ATCC 204508 / S288c) GN=ENO1 PE=1 SV=3	670650.6	1061380	448783	620906.4	747655.6	538014.2	609934.6
215	1	1 1	4.9163	0.810528369	1.266007696	2	1	Control	No Funisitis	Inactive ubiquitin thioesterase FAM105A OS=Homo sapiens $\mathrm{GN}=\mathrm{FAM} 105 \mathrm{~A}$ PE=2 SV=1	83372.44	55316.29	99171.34	44569.16	80685.51	46559.18	104221.7
216	3	1	22.1509	0.811455419	1.151117985	1	1	Funisitis	No Funisitis	Rab GDP dissociation inhibitor beta (Fragment) OS=Homo sapiens $\mathrm{GN}=\mathrm{GDI} 2 \mathrm{PE}=1 \mathrm{SV}=1$	11071.19	7252.581	12922.02	10077.2	8459.316	10921.97	10415.75
217	3	3	34.813	0.811970055	1.093671347	1;2	2	Control	$\begin{aligned} & \text { No } \\ & \text { Funisitis } \end{aligned}$	Protein S100-A8 OS=Homo sapiens $\mathrm{GN}=\mathrm{S} 100 \mathrm{~A} 8 \mathrm{PE}=1 \mathrm{SV}=1$	216670.4	163547.8	206859.2	169845	188018.4	158530.9	209104.5
218	2	1	15.53	0.814731996	1.194362403	2	1	$\begin{aligned} & \text { No } \\ & \text { Funisitis } \end{aligned}$	Funisitis	5'-AMP-activated protein kinase subunit gamma-2 OS=Homo sapiens GN=PRKAG2 PE=1 SV=1	46437.22	46117.25	30153.87	34175.25	52680.89	28676.69	44045.07
219	9	6	33.6165	0.81735264	1.104328984	1	1	Control	No Funisitis	Microtubule-actin crosslinking factor 1 , isoforms 1/2/3/5 OS=Homo sapiens $\mathrm{GN}=\mathrm{MACF} 1 \mathrm{PE}=1 \mathrm{SV}=1$	53606.81	50855.42	73307.31	55713.27	51603.5	59252.36	54280.01
220	8	4	63.3134	0.818452882	1.153183003	1;2	2	No Funisitis	Control	Keratin, type II cytoskeletal 2 epidermal OS=Homo sapiens GN=KRT2 PE=1 $\mathrm{SV}=2$	37461.66	57701.26	25756.92	51946.65	41015.16	48179	32572.55
221	3	2	21.0185	0.818506251	1.298121555	1	1	Funisitis	No Funisitis	Isoform 1 of Vinculin OS=Homo sapiens GN=VCL	6069.476	2790.784	8987.941	4474.15	5508.051	6339.957	6618.153
222	13	6	108.0225	0.81923371	1.147219823	1;2	2	Control	Funisitis	14-3-3 protein epsilon OS=Homo sapiens $\mathrm{GN}=\mathrm{YWHAE} \mathrm{PE}=1 \mathrm{SV}=1$	374829	309520.9	342924.6	229267	416641.9	213684.1	383280.5
223	5	2	30.0147	0.820178232	1.058709604	1;2	2	Funisitis	Control	Keratin, type I cytoskeletal 18 OS=Homo sapiens GN=KRT18 PE=1 SV=2	61490.62	63597.01	63866.69	71378.16	61384.69	74641.8	58723.37
224	3	2	20.0487	0.823814613	1.078095018	2	1	No Funisitis	Control	Arf-GAP with coiled-coil, ANK repeat and PH domain-containing protein 2 OS=Homo sapiens $\mathrm{GN}=\mathrm{ACAP} 2 \mathrm{PE}=1 \mathrm{SV}=1$	88025.74	71817.99	60342.16	85113.51	73140.69	71570.45	76873.1
225	4	3	20.0716	0.831178649	1.065945617	1	1	Funisitis	Control	Transketolase OS=Homo sapiens GN=TKT PE=1 SV=3	16907.3	15959.65	22675.56	20631.67	18518.86	21149.99	18320.21
226	3	2	11.7588	0.839335418	1.263292342	2	1	No Funisitis	Control	Unconventional myosinIXb (Fragment) OS=Homo sapiens GN=MYO9B PE=1 $\mathrm{SV}=4$	121182.1	368408.4	88752.35	338753.5	148323.9	269117.7	141523.6
227	4	3	21.6945	0.841295595	1.080821693	1	1	No Funisitis	Funisitis	Adenomatous polyposis coli protein OS=Homo sapiens GN=APC PE= $\mathrm{SV}=2$	17244.58	18445.76	22107.83	17471.26	21104.17	14130.47	21560.37
228	1	1	4.7783	0.845520537	1.162853214	1	1	Control	Funisitis	Isoform 2 of Keratin, type II cytoskeletal 72 OS=Homo sapiens GN=KRT72	23092.99	42832.54	27201.6	27821.48	27269.09	28027.69	25362.33
229	2	2	7.1065	0.852889351	1.110249904	2	1	No Funisitis	Control	$\begin{aligned} & \text { Smoothelin OS=Homo } \\ & \text { sapiens GN=SMTN PE=1 } \\ & \text { SV=7 } \end{aligned}$	86803.94	86978.26	49286.17	73491.45	91616.3	67218.17	82104.39

230	3	3	18.1884	0.853313384	1.06113532	1	1	Control	Funisitis	Cytosolic non-specific dipeptidase $\mathrm{OS}=\mathrm{Homo}$ sapiens GN=CNDP2 PE=1 $\mathrm{SV}=2$	30433.19	29626.32	37234.92	30468.3	33382.44	27846.87	33279.13
231	3	2	17.6022	0.854300955	1.069319512	2	1	Control	Funisitis	BTB/POZ domaincontaining protein KCTD12 OS=Homo sapiens GN=KCTD12 PE=1 SV=1	26154.93	27911.99	24004.97	29445.65	21298.59	24609.44	24064.44
232	5	5	35.845	0.861269794	1.078980179	2	1	Funisitis	$\begin{aligned} & \text { No } \\ & \text { Funisitis } \end{aligned}$	Myosin light polypeptide 6 OS=Homo sapiens GN=MYL6 PE=1 SV=1	110217.5	80761.47	108619.5	95816.27	91780.09	93231.98	109180.8
233	8	4	60.1428	0.863455678	1.051497255	1	1	Funisitis	Control	$\begin{aligned} & \text { Isoform } 3 \text { of Protein } \\ & \text { disulfide-isomerase A6 } \\ & \text { OS=Homo sapiens } \\ & \text { GN=PDIA6 } \end{aligned}$	45366.66	47618.74	49278.26	54938.99	44787.58	52525.32	45356.99
234	1	1	3.8743	0.864730684	1.416013104	1	1	Control	No Funisitis	E3 ubiquitin-protein ligase TRIM13 OS=Homo sapiens GN=TRIM13 PE=1 SV=2	3460.339	1473.875	5373.805	2895.386	1957.686	2244.363	4227.104
235	5	1	41.4126	0.866109564	1.069148701	1;2	2	No Funisitis	Funisitis	Isoform 2 of Beta-enolase OS=Homo sapiens $\mathrm{GN}=\mathrm{ENO} 3$	138350.8	138287.8	98592.46	127793.2	135250.7	121037.3	124993.9
236	7	1	45.5785	0.876908478	1.044976527	1	1	No Funisitis	Funisitis	Isoform 2 of Heat shock protein HSP 90-alpha OS=Homo sapiens GN=HSP90AA1	28614.89	26033.65	31096.57	31271.34	27382.67	29055.96	27073.54
237	2	1	9.4007	0.880009277	1.13601636	1	1	Funisitis	Control	Phosphatidylinositol 4phosphate 3-kinase C2 domain-containing subunit beta OS=Homo sapiens GN=PIK3C2B PE=1 SV=1	10519.16	19804.16	9829.908	16263.27	12293.67	18871.23	11538.59
238	15	14	52.4613	0.881481795	1.404644094	1;2	2	Control	No Funisitis	Trypsin OS=Sus scrofa $\mathrm{PE}=1 \mathrm{SV}=1$	1738299	2626009	760673	1260190	1172208	1116800	1884831
239	5	3	27.2582	0.883548263	1.11564912	2	1	Control	Funisitis	Isoform 3 of Coiled-coil domain-containing protein 91 OS=Homo sapiens GN=CCDC91	84276.82	85446.99	56923.01	60462.05	84110.11	65116.49	70318.45
240	15	5	109.0178	0.886126529	1.079959881	1;2	2	Funisitis	Funisitis	Heat shock-related 70 kDa protein 2 OS=Homo sapiens GN=HSPA2 PE=1 $\mathrm{SV}=1$	22812.65	19115.08	29466.43	24661.48	24637.9	21195.81	24453.45
241	34	31	241.7267	0.888130839	1.056122443	1;2	2	No Funisitis	Funisitis	Isoform 17 of Fibronectin OS=Homo sapiens GN=FN1	253362.9	230501.5	167052.2	228885.6	229395.1	206076.6	227851
242	2	2	10.9013	0.888682937	1.194311962	1	1	Funisitis	$\begin{aligned} & \text { No } \\ & \text { Funisitis } \end{aligned}$	$\begin{aligned} & \text { Calreticulin OS=Homo } \\ & \text { sapiens GN=CALR PE=1 } \\ & \text { SV }=1 \end{aligned}$	484504.5	354799.6	334084.1	253721.5	452760.2	280833	562926.5
243	5	1	36.5451	0.889478761	1.09073616	1	1	Funisitis	Funisitis	Protein disulfide-isomerase A3 (Fragment) OS=Homo sapiens GN=PDIA3 PE=1 $\mathrm{SV}=1$	16016.57	21292.45	13004.32	19367.04	16186.74	17600.9	14995.24
244	59	9	331.4744	0.89172766	1.052685733	1;2	2	No Funisitis	Control	Actin, alpha cardiac muscle 1 OS=Homo sapiens $\mathrm{GN}=\mathrm{ACTC} 1 \mathrm{PE}=1 \mathrm{SV}=1$	656979.5	718739.8	571685	759541.1	607128.7	664983.8	665048.2
245	4	1	13.3881	0.896283399	1.16153988	1;2	2	Funisitis	Control	Histone H1.1 OS=Homo sapiens GN=HIST1H1A $\mathrm{PE}=1 \mathrm{SV}=3$	481.7546	1040.174	424.3304	1003.327	434.2404	922.2158	584.8892
246	16	15	120.6893	0.896473116	1.127913905	1;2	2	No Funisitis	Funisitis	$\begin{aligned} & \hline \text { Chorionic } \\ & \text { somatomammotropin } \\ & \text { hormone } 1 \text { OS }=\text { Homo } \\ & \text { sapiens GN=CSH1 PE=1 } \\ & \text { SV=1 } \\ & \hline \end{aligned}$	301461.7	472611.4	228530.6	346673.4	344727.3	319135.7	293855
247	3	2	17.3372	0.896497656	1.13547704	2	1	No Funisitis	Funisitis	Thioredoxin OS=Homo sapiens GN=TXN PE=1	117841.4	112570	67391.35	88402.42	125650.2	86695.92	101817.5

										$\mathrm{SV}=3$							
248	20	20	60.1271	0.901778735	1.049500018	1;2	2	Funisitis	No Funisitis	Histone H3 (Fragment) OS=Homo sapiens $\mathrm{GN}=\mathrm{H} 3 \mathrm{~F} 3 \mathrm{~B}$ PE $=1 \mathrm{SV}=1$	515402.7	485910.2	664321.2	549991.6	543999	573488.5	574654.6
249	10	3	61.8127	0.904657595	1.072307765	1 1	1	No Funisitis	Funisitis	Heat shock protein HSP 90 beta OS=Homo sapiens GN=HSP90AB1 PE=1 $\mathrm{SV}=4$	100531.4	71577.95	89004.82	105506.8	79646.38	91309.17	81358.82
250	2	2	12.1923	0.907146999	1.15648573	1	1	Funisitis	No Funisitis	Serine/threonine-protein phosphatase (Fragment) OS=Homo sapiens GN=PPP1CA PE=1 SV=1	10781.14	5015.453	11033.55	7167.002	8834.792	8413.322	10092.52
251	1	1	5.3764	0.911023703	1.094525032	2	1	Control	No Funisitis	Ataxin-2 (Fragment) OS=Homo sapiens $\mathrm{GN}=\mathrm{ATXN} 2 \mathrm{PE}=1 \mathrm{SV}=3$	87909.84	66380.07	59887.97	41395.06	89059.02	49345.18	90460.3
252	1	1	5.8624	0.911478821	1.108248672	1	1	Funisitis	No Funisitis	F-actin-capping protein subunit alpha-1 OS=Homo sapiens GN=CAPZA1 $\mathrm{PE}=1 \mathrm{SV}=3$	13212.55	8886.227	17085.44	11534.54	12637.48	12796.15	13992.47
253	8	6	59.5677	0.913676367	1.065096691	1;2	2	Control	Funisitis	$\begin{aligned} & \text { Isoform } 3 \text { of L-lactate } \\ & \text { dehydrogenase A chain } \\ & \text { OS=Homo sapiens } \\ & \text { GN=LDHA } \end{aligned}$	45060.24	41610.67	57859.07	52439.63	38916.87	47737.26	42727.13
254	11	4	96.2579	0.915913885	1.326217554	1;2	2	Control	Funisitis	14-3-3 protein gamma OS=Homo sapiens $\mathrm{GN}=\mathrm{YWHAG}$ PE=1 SV=2	35785.03	94936.54	28513.61	46148.12	49147.64	45053.6	34991.17
255	2	1	11.9577	0.91680663	1.10765191	1	1	No Funisitis	Funisitis	Cohesin subunit SA-2 OS=Homo sapiens GN=STAG2 PE=1 SV=3	7729.472	18560.47	20459.17	18555.35	14937.72	16647.88	13590.02
256	6	6	47.9452	0.918403247	1.066026306	1;2	2	Control	No Funisitis	$\begin{aligned} & \text { Cathepsin G OS=Homo } \\ & \text { sapiens GN=CTSG PE=1 } \end{aligned}$ $\mathrm{SV}=2$	111383.2	81972.73	116665.1	95432.49	98447.03	93992.67	110540.7
257	5	4	32.6713	0.919546505	1.044761079	1	1	Funisitis	Control	$\begin{aligned} & \text { Cathepsin D OS=Homo } \\ & \text { sapiens GN=CTS PE }=1 \\ & \text { SV }=1 \end{aligned}$	49489.33	42752.95	66967.11	55597.44	53135.7	58451.14	52439.38
258	7	2	63.1633	0.920031274	1.086425598	1	1	Control	No Funisitis	$\begin{aligned} & \text { Peripherin OS=Homo } \\ & \text { sapiens GN=PRPH PE=1 } \\ & \text { SV=2 } \end{aligned}$	19392.56	12784.86	18674.91	14706.21	16498.46	14718.62	17709.42
259	22	2	105.1757	0.921478128	1.038992526	1;2	2	No Funisitis	Control	Histone H2B type 1-K OS=Homo sapiens $\mathrm{GN}=\mathrm{HIST} 1 \mathrm{H} 2 \mathrm{BK}$ PE=1 SV=3	457494.1	477639.7	337908.7	460849.5	420938.3	442590.3	426216.9
260	5	5	44.3923	0.921956768	1.044485846	1	1	No Funisitis	Control	Elongation factor 1-alpha 1 OS=Homo sapiens GN=EEF1A1 PE=1 SV=1	42709.18	52755.7	51647.76	56937.39	45500.66	51957.09	48506.34
261	2	2	8.8928	0.922363519	1.042718764	1	1	$\begin{aligned} & \text { No } \\ & \text { Funisitis } \end{aligned}$	Control	RAC-beta serine/threonineprotein kinase OS=Homo sapiens GN=AKT2 PE=1 $\mathrm{SV}=2$	87141.93	88072.32	60817.63	84090.86	79985.71	79937.28	78732.63
262	4	1	14.487	0.927205861	1.123888714	2	1	Funisitis	No Funisitis	mRNA turnover protein 4 homolog OS=Homo sapiens GN=MRTO4 PE=1 $\mathrm{SV}=2$	78260.57	56932.66	52645.76	45903	66531.05	42775.71	83587.65
263	1	1	4.4387	0.928684533	1.152628329	1	1	No Funisitis	Funisitis	Endothelin-1 receptor OS=Homo sapiens GN=EDNRA $\mathrm{PE}=1 \mathrm{SV}=1$	18643.28	36873.05	7446.817	25803.78	17471.69	20719.35	16825.69
264	3	2	15.5754	0.931850028	1.192771248	2	1	Funisitis	No Funisitis	$\begin{aligned} & \text { Azurocidin OS=Homo } \\ & \text { sapiens GN=AZU1 PE=1 } \\ & \text { SV=3 } \end{aligned}$	18080.73	9876.937	11108.76	9470.994	15490.04	9639.942	20132.86
265	10	9	39.6439	0.93571854	1.042096093	2	1	Control	No Funisitis	$\begin{aligned} & \text { Ankyrin-3 OS=Homo } \\ & \text { sapiens GN=ANK3 PE=1 } \\ & \text { SV=3 } \end{aligned}$	142428.5	121287.3	112890.8	112346	128582.9	112191.2	134237.5

266	3	1	14.8845	0.937680583	1.037016609	1	1	Funisitis	Control	Isoform Pax3G of Paired box protein Pax-3 OS=Homo sapiens GN=PAX3	475279.8	379226.4	327218.1	374169.3	416877.5	387738.8	429239.7
267	48	31	201.2852	0.938189594	1.068892493	1	1	No Funisitis	Funisitis	Isoform 12 of Titin OS=Homo sapiens GN=TTN	357616.8	523401.2	232639.5	414124.2	364561.6	413378.1	315119.6
268	3	3	17.8785	0.940489912	1.059082719	2	1	Control	Funisitis	Actin-related protein $2 / 3$ complex subunit 4 OS=Homo sapiens $\mathrm{GN}=\mathrm{ARPC} 4 \mathrm{PE}=1 \mathrm{SV}=1$	37588.54	31535.28	27061.68	25832.75	35883.34	25776.32	34770.1
269	6	4	64.2009	0.959343661	1.028695378	1;2	2	No Funisitis	Control	Ig kappa chain C region OS=Homo sapiens GN=IGKC PE=1 SV=	116698	99569.73	108718.1	105058.7	117815.6	96481.14	122902.5
270	3	2	16.3346	0.960126127	1.02215502	1 1	1	No Funisitis	Control	Rab GDP dissociation inhibitor alpha OS=Homo sapiens $\mathrm{GN}=\mathrm{GDII} \mathrm{PE}=1$ $\mathrm{SV}=2$	61668.91	53586.16	69347.58	66455	59340.02	60958.86	62244.8
271	1	1	11.5806	0.961953119	1.025822781	2	1	Funisitis	$\begin{aligned} & \text { No } \\ & \text { Funisitis } \end{aligned}$	10 kDa heat shock protein, mitochondrial OS=Homo sapiens GN=HSPE1 PE=1 $\mathrm{SV}=2$	38990.15	50746.04	42634.98	43948.58	42154.18	44046.08	44280.09
272	35	24	348.8489	0.967029613	1.039727338	1;2	2	Funisitis	Funisitis	$\begin{aligned} & \text { Vimentin OS=Homo } \\ & \text { sapiens GN=VIM PE=1 } \\ & \text { SV=4 } \end{aligned}$	614101.8	887437.8	368326.2	661044.8	603473.7	556190.9	660011
273	1	1	3.564	0.976087701	1.0333781	1	1	Control	Funisitis	$\begin{aligned} & \text { Hemicentin-2 OS=Homo } \\ & \text { sapiens GN=HMCN2 PE=1 } \\ & \text { SV=1 } \end{aligned}$	61192.51	46504.94	73807.61	58711.94	61502.07	47249.82	69845.15
274	6	5	35.1493	0.979772647	1.086176409	1	1	Control	No Funisitis	Phosphoglycerate kinase 1 OS=Homo sapiens $\mathrm{GN}=\mathrm{PGK} 1 \mathrm{PE}=1 \mathrm{SV}=3$	42049.04	29608.5	57813.07	39746.1	39719.57	36069.58	45640.49
275	5	3	27.0607	0.984407632	1.044644964	1	1	Control	Funisitis	Histone H1.3 OS=Homo sapiens GN=HIST1HID PE=1 SV=2	28904.95	57006.25	25572.26	41056.54	32768.61	41902.67	29243.33
276	2	2	13.7943	0.984642404	1.026230904	2	1	Control	Funisitis	Isoform USP25b of Ubiquitin carboxyl-terminal hydrolase 25 OS=Homo sapiens GN=USP25	17154.05	12661.45	15774.1	13977.47	15893.11	13625.69	15990.52
277	11	10	79.4372	0.992585304	1.013270244	1	1	Control	Funisitis	$\begin{aligned} & \text { Lactotransferrin OS=Homo } \\ & \text { sapiens GN=LTF PE=1 } \\ & \text { SV=6 } \end{aligned}$	133830.3	113489.4	144800.8	137704.5	120315.8	129854.7	128135.3
278	1 1	0	5.0276		1 1	2	1	-	-	NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 12 OS=Homo sapiens GN=NDUFA12 PE=1 SV=1							
279	2	0	14.3206		1	1	1	---	---	Probable ATP-dependent RNA helicase YTHDC2 OS=Homo sapiens GN=YTHDC2 PE=1 SV=2							
280	38	0	203.4723		1	1;2	2	---	---	$\begin{aligned} & \text { POTE ankyrin domain } \\ & \text { family member E } \\ & \text { OS=Homo sapiens } \\ & \text { GN=POTEE PE }=1 \text { SV=3 } \\ & \hline \end{aligned}$							
281	1	0	9.9018		1	1	1	---	---	Core-binding factor subunit beta OS=Homo sapiens $\mathrm{GN}=\mathrm{CBFB}$ PE $=1 \mathrm{SV}=2$							
282	2	0	18.1838		1	1	1	---	---	Keratin, type II cytoskeletal 75 OS=Homo sapiens $\mathrm{GN}=$ KRT75 $\mathrm{PE}=1 \mathrm{SV}=2$							
283	37	0	181.1994		1	1;2	2	---	---	POTE ankyrin domain family member F OS=Homo sapiens							

Appendices

Appendix 8: Pilot study

Introduction

Within the study, around $15-20 \%$ of causes of death could have been allocated from the antenatal history; with either the autopsy confirming what was clinically suspected or providing no additional information. In view of this, together with the large proportion of unexplained deaths within the study (63%), it was suggested by the examiners at the viva that a small pilot study was needed to assess concordance of important clinical details being present in the postmortem pack (provided for the autopsy) compared to the antenatal notes themselves. The cases used within the original study were non-identifiable based on study number only, hence those cases could not be used to review the original antenatal notes. To address this issue, a small audit study was performed using recent cases.

Methods

Perinatal deaths from University College London Hospital (UCLH) were selected from 2014/2015 in which the autopsies were completed at Great Ormond Street Hospital.

Details from these new cases were also entered into the Microsoft Access database that was used in the original study for consistency and ease of analysis. The antenatal clinical notes were reviewed for each case at UCLH and comparisons were made between the clinical details provided in the postmortem pack and the antennal clinical notes for major categories using Microsoft Excel.

Results

In total, 21 cases were selected for analysis, including five miscarriages, one stillbirth, three neonatal deaths and 12 terminations of pregnancies for fetal abnormality (Figure 1).

The majority of deaths (57%) were attributed to congenital abnormalities including organ, skeletal and genetic abnormalities (Table 1), corresponding to the number of terminations within the sample with other deaths classified as ascending infection, abruption, chronic lung disease and unexplained (Figure 2).

Figure 1: Proportion of different types of fetal death

Cause of death	Number of cases
Ascending Infection	$3(14 \%)$
Abruption	$1(5 \%)$
Chronic Lung disease	$1(5 \%)$
Congenital Abnormalities	$12(57 \%)$
Unexplained	$4(19 \%)$

Total

21
Table 1: Proportion of cases with different causes of death

Figure 2: Proportion of each type of death within each cause of death
In all of the cases reviewed, the post-mortem pack information failed to provide a complete and detailed antenatal history. Missing information from the postmortem (PM) pack included: antenatal blood test results; history of antenatal dating and anomaly ultrasound scan results; maternal ethnicity; maternal smoking status; maternal obstetric history and fetal birth weight (Table 2).

Missing data	Complete Information not available from PM pack
Antenatal blood tests	18 out of $18(100 \%)$
Ultrasound scans	13 out of $18(72 \%)$
Maternal BMI	7 out of $18(39 \%)$

Maternal Ethnicity	8 out of $18(44 \%)$
Maternal Smoking status	5 out of $18(28 \%)$
Maternal Obstetric history	3 out of $18(17 \%)$
Fetal Birth weight	5 out of $18(28 \%)$

Table 2: Missing data from postmortem pack
18 out of 21 clinical notes were available for review at UCLH. 66% of the missing data items were provided by review of the full antenatal clinical notes: 100% of maternal obstetric history and maternal smoking status was achieved through review of the notes, however, the clinical notes did not provide the missing fetal birth weight data. The remainder of missing data was found in the clinical notes in $57-75 \%$ of cases (Figure 3).

Figure 3: Proportion of cases in which missing data was found on review of clinical notes.

However, on review of the cases, with the additional clinical information, no effect was found on the cause of death provided at autopsy. All clinically relevant information had been included in the original postmortem pack with no causes of death altered based on full review of the clinical notes.

Discussion

This small audit study demonstrates that in all cases of perinatal deaths undergoing autopsy, an incomplete antenatal history was provided, including the absence of results such as antenatal blood tests and ultrasound scans. Most of this missing data was available on review of the clinical notes, but this additional information had no effect on the cause of death, indicating that important aspects of the antenatal history had been included within the postmortem pack.

These findings would suggest that, although not complete, the details provided routinely at the time of autopsy request, within the postmortem pack are sufficient to aid the pathologist in the attribution of cause of death. Cases which were unexplained within the main study are therefore likely to have remained unexplained regardless of whether the full antenatal details were available.

The additional benefits of the extra information provided by review of the full clinical notes would be for research studies looking for trends in data and relationships between antenatal history, such as maternal obstetric history, Body Mass Index and type or cause of death, rather than the determination of the overall cause of death.

There are limited data based on adult studies, evaluating clinical cause of death and cause of death attributed after autopsy with around 20% of cases having unexpected findings (1-5). This would suggest that whilst clinical information remains important, autopsy can identify pathologies missed clinically in the adult patient. The differences between these cases and fetal deaths are that the majority of patients in the aforementioned studies were long term patients on Intensive Care Units and thus there was time for clinicians to establish a suitable reason for death, with concurrent clinical investigations, which in most cases led to the true cause of death, whilst most intrauterine deaths are clinically unsuspected. Much research is still needed in the field of antenatal and fetal pathology to establish why so many stillbirths and miscarriages remain unexplained but the current audit suggest that additional clinical information provision is unlikely to significantly affect the rate of unexplained stillbirth.

1. Costache M, Lazaroiu AM, Contolenco A, Costache D, George S, Sajin M, Patrascu OM. Clinical or Postmortem? The importance the Autopsy; a Retrospective Study. Maedica (Buchar). 2014;9(3): 261-65.
2. Tavora F, Crowder CD, Sun CC, Burke AP. Discrepancies between clinical and autopsy diagnosis: a comparison of university, community and private autopsy practises. Am J Clin Pathol. 2008;129(1): 102-9.
3. Combes A, Mokhtari M, Couvelard A, Trouillet JL, Baudot J, Henin D, Gilbert C, Chastre J. Clinical and autopsy diagnoses in the intensive care unit: a prospective study. Arch Intern Med. 2004;164(4):389-92.
4. Roosen J, Frans E, Wilmer A, Knockaert DC, Bobbaers H. Comparison of premortem clinical diagnoses in critically ill patients and subsequent autopsy findings. Mayo Clin Proc. 2000:75(6):562-7.
5. Maris C, Martin B, Creteur J, Remmelink M, Piagnerelli M, Salmon I, Vincent JL, Demetter P. Comparison of clinical and post-mortem findings in intensive care unit patients. Virchows Arch. 2007;450(3):329-33.
