
Moessner’s Theorem: an exercise
in coinductive reasoning in Coq

Robbert Krebbers1, Louis Parlant2, and Alexandra Silva3?

1 Aarhus University, Denmark
2 École Normale Supérieure de Lyon, France

3 University College London, United Kingdom

Dedicated to Frank de Boer on the occasion of his 60th birthday.

Abstract. Moessner’s Theorem describes a construction of the sequence
of powers (1n, 2n, 3n, . . .), by repeatedly dropping and summing elements
from the sequence of positive natural numbers. The theorem was pre-
sented by Moessner in 1951 without a proof and later proved and gen-
eralized in several directions. More recently, a coinductive proof of the
original theorem was given by Niqui and Rutten. We present a formaliza-
tion of their proof in the Coq proof assistant. This formalization serves
as a non-trivial illustration of the use of coinduction in Coq. During the
formalization, we discovered that Long and Salié’s generalizations could
also be proved using (almost) the same bisimulation.

1 Introduction

Coinduction has grown in the last years as the prime principle to prove properties
about dynamical and concurrent systems or, in general, structures that exhibit
circularity. Formalizations of coinduction are becoming common in most proof
assistants but the use thereof is not yet widespread, often due to the lack of good
examples balancing expressivity and simplicity to be suitable tutorials for new
users. This paper sets itself to provide such an example tutorial of formalized
coinduction. Formal methods, concurrency, and verification have been central
topics in Frank’s research and in the last decade he was exposed (though not
intentionally!) to coinduction frequently. We dedicate to Frank this paper on
formalizing a result about Frank’s favorite coinductive object – streams.

Streams constitute the most basic example of infinite objects and are often
used to illustrate the use of coinduction to prove equivalence of algorithms pro-
ducing infinite objects. A more elaborate example of the use of coinduction to
prove the correctness of an algorithm that produces infinite objects is provided
by Niqui and Rutten’s proof of Moessner’s Theorem [13].

Moessner’s Theorem describes a procedure for constructing the stream of suc-
cessive exponents (1n, 2n, 3n, . . .), for every n ≥ 1, with several steps of dropping

? The work in this paper was developed when all authors were at the Radboud Uni-
versity, The Netherlands.

and summing elements of the stream of positive natural numbers. This proce-
dure is quite simple: let us show the result for n = 3. Starting with the sequence
of positive naturals (1, 2, 3, 4, 5, 6, 7, 8, . . .), one drops every third element to ob-
tain the stream (1, 2, 4, 5, 7, 8, . . .). Then one computes the stream of the partial
sums by adding to every element all the previous ones:

(1, 1 + 2, 1 + 2 + 4, 1 + 2 + 4 + 5, 1 + 2 + 4 + 5 + 7, . . .) = (1, 3, 7, 12, 19, . . .)

Then, one drops every second element of the latter sequence, giving rise to
(1, 7, 19, . . .), and finally by taking partial sums, one gets: (1, 8, 27, . . .). The
resulting stream contains indeed the expected elements: (13, 23, 33, . . .).

This result holds for any n: drop every n-th element of the sequence of positive
naturals, then form partial sums, and then start again dropping every (n−1)-th
element and summing, and proceed recursively. This process creates the stream
of all positive naturals to the power of n: (1n, 2n, 3n, 4n, 5n, . . .).

The above algorithm/procedure can easily be described as a functional pro-
gram that takes n as a parameter. Moessner’s Theorem now corresponds to the
question of whether this program yields the stream (1n, 2n, 3n, 4n, 5n . . .) for
each n ≥ 1. Since the stream (1n, 2n, 3n, 4n, 5n . . .) is a functional program in
itself, Moessner’s Theorem can be proven by showing equivalence of these pro-
grams. Because these programs produce streams, the obvious technique to prove
equivalence is to use coinduction. This was observed by Niqui and Rutten who
provided a bisimulation witnessing the equivalence of these programs [13].

Related work. Moessner’s construction has attracted much attention over the
years. The theorem was only conjectured by its discoverer [12]. The first proof
was given shortly thereafter by Perron [17] (who, curiously, was the editor of the
journal where the conjecture was submitted). The theorem was then the subject
of several popular accounts and generalizations [4,8,11,20,14,15,16].

Paasche [14,15,16] generalized it by allowing the dropping intervals to in-
crease at each step. This led to the construction of the stream containing the
factorials and super-factorials. Long [10,11] and Salié [20] also generalized Moess-
ner’s result to apply to the situation in which the initial sequence is not the se-
quence of successive integers (1, 2, 3, . . .) but the arithmetic progression (a, d+
a, 2d + a, . . .). They showed that the final sequence obtained by the Moessner
construction is (a · 1n−1, (d+ a) · 2n−1, (2d+ a) · 3n−1, . . .).

Very recently, Hinze [7] and Niqui and Rutten [13] have given proofs involving
concepts from functional programming, respectively calculational scans and the
coalgebra of streams. The proof of Hinze covers Moessner’s and Paasche’s results
whereas Niqui and Rutten’s proof only covers the original Moessner’s Theorem.

Kozen and the third author [9] have provided an algebraic proof that has the
advantage of covering all the results mentioned above and opened the door to
new generalizations of Moessner’s original result. The foundations of this proof
were formalized in Nuprl by Bickford et al. [2].

Clausen et al. [3] have also provided a formalization of Moessner’s theorem in
Coq, but their approach is very different from ours. Our result is more general

and applies to (1n, 2n, 3n, . . .) for any n ≥ 1, whereas they provide a Coq tactic
that generates a theorem for any given n by macro expansion. We furthermore
also provide a proof of Long and Salié’s generalization, that is both more general,
and follows as a mere consequence of the original Moessner’s Theorem.

Urbak [23] extended the results of Clausen et al. in his MSc thesis by explor-
ing Moesner’s theorem in a very general setting. Long and Salié’s generalization
is also a consequence of his work.

Contrary to these aforementioned Coq formalizations, we have setup our
Coq development in such a way that it matches common mathematical practice
in coinduction, as for example being used by Rutten [18]. We have abstracted
from Coq’s implementation of coinduction as much as possible by providing an
abstraction on top of it to avoid for example guardedness issues in proofs. Also,
we have made heavy use of Coq’s notations machinery to obtain notations close
to those on paper, and have automated parts of the proof that one would omit on
paper too. As a result, we were able to formalize the proof of Niqui and Rutten
in a very compact and concise way that is close to its original presentation. Our
Coq development is 20 times shorter, in terms of lines of code, than Urbak’s.

Contribution. We set ourselves to the quest of formalizing Niqui and Rutten’s
proof in the Coq proof assistant [5]. The interest in doing so is four-fold.

– On the one hand, as with every formalization, one is forced to go through all
details of the pen-and-paper proof and potentially uncover flaws or omissions.

– On the other hand, and of more interest to us, coinduction in Coq is not
widely used and good (tutorial) examples are lacking. Bisimulation proofs
are very mechanical and particularly suited for automation/formalization
in proof assistants. Hence, we hope that the present example can serve as
non-trivial teaching/illustration material of a proof by coinduction in Coq.

– There is often just a shallow correspondence between formalizations and
their original mathematical texts. We show that this is not necessarily the
case by defining suitable abstractions. In particular, we abstract from Coq’s
internals for coinduction as much as possible. As a result, our formalization
corresponds well to the paper by Niqui and Rutten, and is very compact.

– Lastly, in the process of formalizing Niqui and Rutten’s proof, we uncovered
a simple proof of Long [10,11] and Salié’s [20] generalization. Though (once
done) the generalization is not at all complicated, it was surprising to us
that the extended version is just a corollary of the original Moessner’s The-
orem, and that the the bisimulation did not have to be modified. The Coq
formalization was achieved with a simple extra lemma.

Our Coq code is available at https://github.com/robbertkrebbers/moessner.

2 Streams and Coinduction

In the construction of Moessner’s Theorem, streams and operations on them
(in particular, drop and sum) play a central role. The set of streams Aω with
elements in A can be formally defined as Aω = {s | s : N→ A}.

https://github.com/robbertkrebbers/moessner

We will make use of the following notation. We denote the n-th element of
the stream s by s(n). Given a stream s = (a0, a1, a2, a3, . . .), we call s(0) = a0
the head of the stream, and (a1, a2, a3, . . .) the tail of the stream, which we
denote by s′. The operations of head and tail define the following structure on
the set of streams:

c : Aω −→ A×Aω c(s) = (s(0), s′). (1)

The functor F corresponding to the above structure is F (X) = A×X. The
set of streams Aω is the greatest fixpoint of this functor. That is in essence why
streams are coinductive type, in contrast with lists, which are the least fixpoint
of the functor G(X) = 1 +A×X.

In Coq we define streams using the latter view as a coinductive type instead
of the functional view {s | s : N→ A}. The coinductive view on streams allows for
a simple and elegant definition of operations, as well as for proofs of properties on
them. The coinductive approach to infinite datatypes enables a uniform exten-
sion to more complex types, such as infinite trees, λ-terms, automata, etc. [19].

Streams are the simplest examples of coalgebras and proofs of stream equal-
ity are prime illustrations of the power of the coinduction proof principle. Since
in this paper we will only deal with streams, we will be introducing all gen-
eral concepts concretely in this context. The proof of Moessner’s Theorem is a
beautiful example of concrete coalgebra.

Definition 1. A relation R ⊆ Aω ×Aω is a bisimulation if for every (s, t) ∈ R
it holds that s(0) = t(0) and (s′, t′) ∈ R.

The following theorem states the coinduction proof principle for streams,
which enables one to prove equality of streams just by exhibiting a bisimulation
relation containing the pair consisting of these two streams.

Theorem 1 (Coinduction Principle). Let R ⊆ Aω × Aω be a bisimulation.
For all s, t ∈ Aω we have that (s, t) ∈ R implies s = t.

3 Basic operations and theorems on streams in Coq

In this section we describe the Coq definitions of operations on streams that are
needed to formalize Moessner’s Theorem. Also, we describe the basic theorems
and Coq infrastructure that we use for the formalization. In order to get started,
we first define the type Stream A of streams Aω with elements of type A.

CoInductive Stream (A : Type) : Type :=

SCons : A → Stream A → Stream A.

Arguments SCons {_} _ _. (* Setup implicit arguments so Coq infers the

type [A] of [SCons : ∀ A : Type, A → Stream A → Stream A]. *)

Infix ":::" := SCons.

This definition resembles the well-known inductive definition of lists, but
instead of the keyword Inductive we use the keyword CoInductive. Furthermore,

note that ::: is the inverse map of the structure map on the set of streams given
by head and tail, cf. (1), and the keyword CoInductive is taking the greatest
fixpoint of the functor F (X) = A×X, as described in Section 2.

The CoFixpoint command is used to create corecursive definitions:

CoFixpoint repeat {A} (x : A) : Stream A := x ::: #x

where "# x" := (repeat x).

The stream #x represents the constant stream (x, x, x, . . .) that Niqui and
Rutten denote by x. Whereas recursive definitions in Coq should be terminating,
corecursive definitions should be productive. Intuitively this means that given a
term of coinductive type (and in particular a CoFixpoint), it will always produce
a constructor. The following is rejected by Coq because this is not the case.

Fail CoFixpoint bad : Stream False := bad.

Since productivity is undecidable, corecursive definitions in Coq should sat-
isfy a decidable syntactical criterion (so as to enable decidable type checking)
that guarantees productivity. This criterion is called the guard condition. Over
simplified, this means that a CoFixpoint should have the following shape:

CoFixpoint f p : Stream A := x0 ::: x1 ::: . . . ::: xn ::: f q.

with 0 < n. Clearly, the definition of #x satisfies this condition, whereas the
rejected definition bad does not.

Although the guard condition ensures that terms of coinductive type always
produce a constructor, Coq’s computation rules do not allow CoFixpoint defini-
tions to reduce. For example, # 10 does not reduce to 10 ::: #x. If it would, this
process could be repeated infinitely many times, and would destroy the property
that all computations in Coq terminate. Instead, computation of coinductive
types is performed lazily, and a CoFixpoint definition is only allowed to reduce
whenever it is the operand of a pattern match construct.

Pattern matching can be used to decompose coinductive types. For streams,
this mechanism allows us to define the common destructors head and tail.

Definition head {A} (s : Stream A) : A := match s with x ::: _ ⇒ x end.

Definition tail {A} (s : A) : Stream A := match s with _ ::: s ⇒ s end.

Notation "s ‘" := (tail s).

We use the notation s‘ for tail s so as to resemble the presentation of Niqui
and Rutten. Of course, Coq allows us to write expressions like s‘‘ to denote the
second tail of s. Notice that the term head (#10) indeed reduces to #10 because
the CoFixpoint definition now becomes the operand of a pattern match construct.

From now on, we will not use explicit pattern matching on streams anymore,
and define everything in terms of head and tail. For example, see below the
functions map and zip_with which lift unary and binary functions, respectively,
on individual elements to whole streams.

CoFixpoint map {A B} (f: A → B) (s: Stream A) : Stream B :=

f (head s) ::: map f (s‘).

CoFixpoint zip_with {A B C} (f: A → B → C)

(s : Stream A) (t : Stream B) : Stream C :=

f (head s) (head t) ::: zip_with f (s‘) (t‘).

3.1 Stream equality, bisimulation, and coinduction

In order to support algebraic reasoning about streams, we need a notion that
denotes that streams are element-wise equal. Since no finite expansion of the
streams #f x and map f (#x) lead to equal terms, Coq’s notion of Leibniz equal-
ity is too strong to accurately capture stream equality [6,1]. Therefore, we use
the following coinductively defined relation of bisimilarity4:

CoInductive equal {A} (s t : Stream A) : Prop :=

make_equal : head s = head t → s‘ ≡ t‘ → s ≡ t

where "s ≡ t" := (@equal _ s t).

Since bisimilarity is defined as coinductive type, proving that two streams
are bisimilar corresponds to constructing a corecursive definition by the Curry-
Howard correspondence (programs as proofs). For example, we can construct a
proof of #f x ≡ map f (#x) by providing an explicit proof term as follows:

CoFixpoint repeat_map {A B} (f : A → B) x : #f x ≡ map f (#x) :=

make_equal (#f x) (map f (#x)) eq_refl (repeat_map f x).

Here, eq_refl is a proof of f x = f x, and thus a proof of head (#f x) = head

(map f (#x)) by convertability. Clearly, proving such properties by providing
an explicit proof term is inconvenient, and should be avoided in practice.

Coq’s native support for coinductive proofs is not as good as its support for
inductive proofs. There is just the primitive cofix tactic which requires the user
to ensure that the proof satisfies the guard condition (contrary to the induction

tactic which cannot produce ill-formed proofs). If the proof does not satisfy the
guard condition, it will be rejected at the very end when the proof is checked by
the kernel (i.e. when the user closes the proof using Qed) instead of at its specific
misuse. Let us give a demonstration of the cofix tactic.

Lemma repeat_map x : #f x ≡ map f (#x).

Proof.

cofix CH.

(* We get a hypothesis [CH : #f x ≡ map f (#x)]. We should use it in

such a way that the generated proof term is guarded. *)

apply make_equal.

* (* Prove that the heads are equal: [head (#f x) = head (map f (#x))]

This holds by computation, so [reflexivity] will succeed. *)

reflexivity.

* (* Prove that the tails are equal: [(#f x)‘ ≡ (map f (#x))‘] *)

(* Unfold the definitions to obtain [#f x ≡ map f (#x)] *)

(* NB: the exclamation mark ! performs a rewrite as many times as

possible (but at least once) *)

4 We use Leibniz equality for the heads because we only deal with streams of integers.
In general, for example to consider streams of streams, this is still too restrictive.

rewrite map_tail, !repeat_tail.

(* Use the corecursive assumption [CH]. *)

exact CH.

Qed.

In the above proof, it would be appealing to use the hypothesis CH straight-
away. Of course, the generated proof term would not be guarded, and will there-
fore be rejected whenever we type Qed. Since we have to be extremely careful
when to use the hypothesis generated by the cofix tactic, it has as a conse-
quence that many tactics for automation cannot be used for coinductive proofs
because they will likely break the guard condition. Therefore we will look at two
alternative approaches to proving stream equality.

The first approach is to define a stream bisimulation relation (see Defini-
tion 1), and then prove the coinduction proof principle (see Theorem 1). This is
the core of the coinductive proof of Moessner’s Theorem by Niqui and Rutten.

Definition bisimulation {A} (R : relation (Stream A)) : Prop :=

∀ s t, R s t → head s = head t ∧ R (s‘) (t‘).

Lemma bisimulation_equal {A} (R : relation (Stream A)) s t :

bisimulation R → R s t → s ≡ t.

Instead of having to produce a proof-term that satisfies the guard condition,
one has to define a suitable bisimulation relation, and the problem of guardedness
has moved to the proof of bisimulation_equal.

Another approach is to view streams Stream A as functions nat → A (as we
have initially introduced streams in Section 2). The function s !! i gives the
ith element s(i) of the stream s. It is straightforward to prove that streams are
bisimilar if and only if they are element-wise equal using the !! function.

Fixpoint elt {A} (s : Stream A) (i : nat) : A :=

match i with O ⇒ head s | S i ⇒ s‘ !! i end

where "s !! i" := (elt s i).

Lemma equal_elt {A} (s t : stream A) : s ≡ t ↔ ∀ i, s !! i = t !! i.

For many streams !! enjoys nice properties. The lemma equal_elt is thus
often useful to prove stream equality. For example, using the lemmas:

Lemma repeat_elt {A} (x : A) i : #x !! i = x.

Lemma map_elt {A B} (f : A → B) s i : map f s !! i = f (s !! i).

we can give yet another proof of #f x ≡ map f (#x).

Lemma repeat_map x : #f x ≡ map f (#x).

Proof.

apply equal_elt. intros i. rewrite map_elt, !repeat_elt. reflexivity.

Qed.

By using equal_elt, we have to prove that #f x !! i = map f (#x)!! i for
any i. This trivially follows from the lemmas above.

In order to enable algebraic reasoning about streams, we should be able to
rewrite using bisimilarity. We thus prove that equal is an equivalence relation.

Instance equal_equivalence {A} : Equivalence (@equal A).

We use the Instance keyword instead of the Lemma keyword to register this
fact with Coq’s setoid machinery [21]. The setoid machinery uses Coq’s type
classes [22] under water, but we will not detail that here.

Of course, rewriting with bisimilarity gives rise to side-conditions: rewriting
a subterm is allowed only if the subterm is an argument of a function that has
been proven to respect bisimilarity. For the case of ::: this means that s ≡ t

implies x ::: s ≡ x ::: t. In Coq this property can be expressed compactly by
the following notation:

Instance SCons_proper {A} (x : A) : Proper (equal =⇒ equal) (SCons x).

This notation should be read as: if the arguments of SCons x are bisimilar,
then so are the results. The arrow =⇒ should not be confused with the arrow→
for function types. A property like the above must be proved for each function
in whose arguments we wish to rewrite. For example:

Instance head_proper {A} : Proper (equal =⇒ eq) (@head A).

Instance tail_proper {A} : Proper (equal =⇒ equal) (@tail A).

Instance elt_proper {A} : Proper (equal =⇒ eq =⇒ eq) (@elt A).

3.2 Specific stream operations

In the last part of this section we define stream operations that are used for
Moessner’s Theorem. First of all, we define the operations for element-wise ad-
dition, multiplication, and subtraction, by lifting the operations on integers using
the zip_with and map functions.

Infix "⊕ " := (zip_with Z.add). (* addition *)

Infix "	 " := (zip_with Z.sub). (* subtraction *)

Infix "� " := (zip_with Z.mul). (* multiplication *)

Notation "	 s":= (map Z.opp s). (* additive inverse *)

Together with the constant streams #0 and #1, these operations introduce a
ring structure on streams. To prove this result, we use the lemma equal_elt that
relates bisimilarity to element-wise equality.

Lemma stream_ring_theory :

ring_theory (#0) (#1) (zip_with Z.add) (zip_with Z.mul)

(zip_with Z.sub) (map Z.opp) equal.

Add Ring stream : stream_ring_theory.

The command Add Ring stream : stream_ring_theory registers this fact, so
that ring equations over streams can be solved automatically using the ring

tactic. Automation for solving ring equations will be used heavily in Section 4.

Lemma Smult_plus_distr_r s t u : (t ⊕ u) � s ≡ (t � s) ⊕ (u � s).

Proof. ring. Qed.

The repeated multiplication defines the stream power, written s〈n〉:

Fixpoint Spow (s : Stream Z) (n : nat) : Stream Z :=

match n with O ⇒ #1 | S n ⇒ s � s ^^ n end

where "s ^^ n" := (Spow s n).

The stream of positive natural numbers nats is defined as the unique solution
of the equations: nats(0) = 1 and nats′ = 1⊕nats. In order to define this stream
in Coq, we define a more general notion that makes use of an accumulator. The
definition Sfrom i represents the stream (i, 1 + i, 2 + i, . . .).

CoFixpoint Sfrom (i : Z) : Stream Z := i ::: Sfrom (1 + i).

Notation nats := (Sfrom 1).

The equation of nats without an accumulator as given by Niqui and Rutten
is not accepted by Coq because the co-recursive call to nats is hidden behind
the ⊕ operation. This is not allowed by the guard condition.

Fail CoFixpoint nats : Stream Z := 1 ::: #1 ⊕ nats. (* Not allowed *)

Although this definition is rejected by Coq, we can still prove that the heads
and tails of our definition satisfy the desired equations. This allowed reasoning
in the same way as on paper.

Lemma Sfrom_tail n : (Sfrom n)‘ ≡ #1 ⊕ Sfrom n.

Another operation that arises in the Moessner construction described in the
introduction is partial sums of a stream. This operation is informally defined by:

Σ (s0, s1, s2, . . .) = (s0, s0 + s1, s0 + s1 + s2, . . .)

and formally by the equations (Σ s) (0) = s(0) and (Σ s)
′

= s ⊕ Σ s′. In order
to define the partial sums in Coq we also need to make use of an accumulator.
We prove that the definition satisfies the desired equation.

CoFixpoint Ssum (i : Z) (s : Stream Z) : Stream Z :=

head s + i ::: Ssum (head s + i) (s‘).

Notation "’Σ ’ s" := (Ssum 0 s).

Lemma Ssum_tail s : (Σ s)‘ ≡ #head s ⊕ Σ s‘.

The last operation we need to define the Moessner construction is dropping.
We define a family of drop operators Di

k : Aω → Aω as the solution of:

(Di+1
k s)(0) = s(0) (Di+1

k s)′ = Di
k s
′ (D0

k s)(0) = s(1) (D0
k s)
′ = Dk−2

k s′′.

The drop operator Di
k s repeatedly drops the i-th element of every block of k

elements of s. For example, D1
3 s = (s(0), s(2), s(3), s(5), s(6), s(8), . . .). We use

the notation D@{i,k} s to denote this operation in Coq.

CoFixpoint Sdrop {A} (i k : nat) (s : Stream A) : Stream A :=

match i with

| O ⇒ head (s‘) ::: D@{k-2,k} s‘‘

| S i ⇒ head s ::: D@{i,k} s‘

end

where "D@{ i , k } s" := (Sdrop i k s).

This definition is identical to the definition of Niqui and Rutten, but whereas
they require 2 ≤ k and 0 ≤ i < k, we allow any k and i (subtraction of naturals
i− j is a total Coq function that yields 0 in case i < j).

4 A formalized proof of Moessner’s Theorem

We are now ready to formulate Moessner’s Theorem using the stream operations
that we have defined. For the case n = 3, as presented in the introduction, the
theorem boils down to the stream equation ΣD1

2ΣD2
3 nats = nats〈3〉.

The general case is slightly more involved (mainly due to the amount of
indices), but still mirrors very well the informal construction:

ΣD1
2ΣD2

3 · · ·ΣDn−1
n nats = nats〈n〉.

Niqui and Rutten start from the stream of ones, 1, and define an operator
combining summing and dropping, namely Σk

n = ΣDk
n , which leads to a shorter

formulation of the theorem: Σ1
2 Σ

2
3 · · ·Σn

n+1 1 = nats〈n〉. The simplification by
Niqui and Rutten of not starting from the stream nats of positive natural num-
bers but from the stream 1 of ones is justified by the equation nats = Σ 1.

In order to state Moessner’s Theorem formally we introduce the Coq defini-
tion Σ @{i,k,n} s that recursively defines the sequence Σi

k · · ·Σ
n+i
n+k s.

Definition Ssigma (i k : nat) (s : Stream Z) : Stream Z := Σ D@{i,k} s.

Notation "Σ @{ i , k } s" := (Ssigma i k s).

Fixpoint Ssigmas (i k n : nat) (s : Stream Z) : Stream Z :=

match n with

| O ⇒ Σ @{i,k} s

| S n ⇒ Σ @{i,k} Σ @{S i,S k,n} s

end

where "Σ @{ i , k , n } s" := (Ssigmas i k n s).

Moessner’s Theorem is stated in Coq as follows:

Theorem Moessner n : Σ @{1,2,n} #1 ≡ nats ^^ S n.

In order to prove Moessner’s Theorem by coinduction, we define the bisimu-
lation relation of Niqui and Rutten using an inductively defined relation.

Inductive Rn : relation (Stream Z) :=

| Rn_sig1 n : Rn (Σ @{1,2,n} #1) (nats ^^ S n)

| Rn_sig2 n : Rn (Σ @{0,2,n} #1) (nats � (#1 ⊕ nats) ^^ n)

| Rn_refl s : Rn s s

| Rn_plus s1 s2 t1 t2 : Rn s1 t1 → Rn s2 t2 → Rn (s1 ⊕ s2) (t1 ⊕ t2)

| Rn_mult n s t : Rn s t → Rn (#n � s) (#n � t)

| Rn_eq s1 s2 t1 t2 : s1 ≡ s2 → t1 ≡ t2 → Rn s1 t1 → Rn s2 t2.

The relation Rn is nearly a literate Coq translation of the bisimulation rela-
tion given by Niqui and Rutten. There are three small differences, however:

– Niqui and Rutten use indexes that count from 1 instead of 0. When working
in a formal system, this is inconvenient, as it leads to many side-conditions.

– Since we consider streams of integers instead of streams of naturals (to make
the generalizations in Section 5 possible), we had to explicitly close the bisim-
ulation relation under scalar multiplication (using the constructor Rn_mult).

– Because we use bisimilarity to express stream equality, we had to close the
bisimulation relation under it (using the constructor Rn_eq).

As for the last point, we explicitly register this fact with the setoid rewriting
machinery, so as to enable rewriting in the arguments of Rn.

Instance: Proper (equal =⇒ equal =⇒ iff) Rn.

To prove that Rn is actually a bisimulation relation, we have to show that
Rn s t implies head s = head t and Rn (s‘)(t‘). We will prove this by induction
on the structure of the relation Rn. There are two interesting cases:

1. We have show that Rn (Σ @{1,2,n} #1) (nats ^^ S n) implies equality of the
heads head (Σ @{1,2,n} #1) = (nats ^^ S n) and inclusion of the bisimula-
tion relation of the tails Rn (‘(Σ @{1,2,n} #1)) (‘(nats ^^ S n)).

2. Likewise for Rn (Σ @{0,2,n} #1) (nats � (#1 ⊕ nats) ^^ n).

Niqui and Rutten have proven these cases using four propositions to relate
the heads and tails of the involved streams [13, Proposition 5.1-5.4]. Their first
proposition [13, Proposition 5.1] concerns the stream nats ^^ S n.

Fixpoint nat_seq (n : nat) : Stream Z :=

match n with

| O ⇒ #1 ⊕ nats

| S n ⇒ nats � (#1 ⊕ nats) ^^ S n ⊕ nat_seq n

end.

Lemma nats_pow_head n : head (nats ^^ n) = 1.

Lemma nats_pow_tail n : (nats ^^ S n)‘ ≡ nat_seq n.

The proof of nats_pow_head uses the fact that head (s ^^ n) = head s ^ n.
The lemma nats_pow_tail is just proven by induction on n. The second propo-
sition [13, Proposition 5.2] involves the stream Σ @{1,2,n} #1.

Fixpoint sig_seq (i k n : nat) : Stream Z :=

match n with

| O ⇒ #1 ⊕ Σ @{i,k} #1

| S n ⇒ Σ @{i,k,S n} #1 ⊕ sig_seq i k n

end.

Lemma Ssigmas_head_S i k n : head (Σ @{S i,k,n} #1) = 1.

Lemma Ssigmas_S_tail i k n : (Σ @{S i,k,n} #1)‘ ≡ sig_seq i k n.

These lemmas can also be proven by induction on n using some equational
reasoning (using Coq’s ring tactic to solve ring equations).

We can now prove the first interesting case. Using the lemmas nats_pow_head

and Ssigmas_head_S we obtain equality of the heads. Using nats_pow_tail and
Ssigmas_S_tail, the remaining obligation for the tails boils down to the following
fact, which is proven by induction on n:

Lemma Rn_sig_seq_nat_seq n : Rn (sig_seq 0 2 n) (nat_seq n).

In order to formalize the second case, we need to relate the heads and tails
of Σ @{0,2,n} #1 and nats � (#1 ⊕ nats)^^ n. For this, Niqui and Rutten have
introduced the following definition:

ani =

(
n
i

)
+ · · ·+

(
n
1

)
+

(
n
0

)
=

(
n
i

)
+ · · ·+

(
n
1

)
+ 1.

We formalize ani using the Coq definition bins n i below, where bin n i is
the ordinary recursive definition of the binomial coefficients (as usual, bin n i

is defined as a total Coq function that yields 0 in case n < i).

Fixpoint bins (n i : nat) : Z :=

match i with O ⇒ 1 | S i ⇒ bin n (S i) + bins n i end.

We prove the following useful properties of bins by induction.

Lemma bins_0 n : bins n 0 = 1.

Lemma bins_S n i : bins (S n) (S i) = bins n (S i) + bins n i.

Lemma bins_SS n : bins (S n) (S n) = bins n n + bins n n.

Lemma bins_diag n : bins n n = 2 ^ n.

Using these auxiliary definitions, we can state the third proposition of Niqui
and Rutten [13, Proposition 5.3].

Fixpoint bins_seq (n j : nat) : Stream Z :=

match j with

| O ⇒ #bins n n � (#1 ⊕ nats)

| S j ⇒ #bins n (n - S j) � nats � (#1 ⊕ nats) ^^ S j ⊕ bins_seq n j

end.

Lemma nats_nats_pow_head n : head (nats � (#1 ⊕ nats) ^^ n) = 2 ^ n.

Lemma nats_nats_pow_tail n : (nats � (#1 ⊕ nats) ^^ n)‘ ≡ bins_seq n n.

The proof of the lemma nats_nats_pow_head is trivial. We use basic properties
about the heads of the operations for element-wise addition, multiplication and
repeated multiplication. The lemma nats_nats_pow_tail is proven by induction
on n, making use of the auxiliary result below.

Lemma bins_seq_SS n : bins_seq (S n) (S n) ≡ (#2 ⊕ nats) � bins_seq n n.

The formal proof of this auxiliary lemma is quite tricky, and requires a sub-
tle induction loading. The subtlety arises from the fact that in the lemma con-
cerns bins_seq with the same value, namely S n, for both arguments. However,
bins_seq is defined recursively on its second argument, whereas the first argu-
ment remains constant throughout the recursion. Therefore, we had to generalize
the lemma bins_seq_SS such that both arguments are independent. The Coq
statement of the generalized lemma is as follows.

Lemma bins_seq_SS_help n j :

(j < n)%nat →
bins_seq (S n) (S j) ≡ (nats ⊕ #2) � bins_seq n j ⊕

#bins n (n - S j) � nats � (#1 ⊕ nats) ^^ S j.

The above lemma is proven by induction on j. The main lemma bins_seq_SS

is then proven by case analysis on n using the generalized lemma.
There is just one proposition missing to finally prove Moessner’s Theorem,

namely the one about the head and tail of Σ @{0,k,n} #1 [13, Proposition 5.4].

Fixpoint bins_sig_seq (n k j : nat) : Stream Z :=

match j with

| O ⇒ #bins n n � (#1 ⊕ Σ @{k - 2,k} #1)

| S j ⇒ #bins n (n - S j) � Σ @{k - 2,k,S j} #1 ⊕ bins_sig_seq n k j

end.

Lemma Ssigmas_0_head k n : head (Σ @{0,k,n} #1) = 2 ^ n.

Lemma Ssigmas_0_tail k n :

2 ≤ k → (Σ @{0,k,n} #1)‘ ≡ bins_sig_seq n k n.

This lemma is a nice example that informal proofs often hide details under
the carpet. Niqui and Rutten just write that these results are proven by “in-
duction on n”. As we have seen while formalizing their second proposition [13,
Proposition 5.2], we need to generalize the statement in order to make the in-
duction hypothesis sufficiently strong.

Already the lemma Ssigmas_0_head for the head requires some work. We make
use of the lemmas Ssigmas_head_S and Ssigmas_tail_S, as well as the following
auxiliary lemma.

Lemma sigseq_0_head k n : head (sig_seq 0 (S k) n) = 2 ^ S n.

The proof of the lemma Ssigmas_0_head for the case of the tail makes use of
the auxiliary lemma below, whose proof is similar to the proof of bins_seq_SS.

Lemma bins_sig_seq_SS n k :

2 ≤ k →
bins_sig_seq (S n) k (S n) ≡ Σ @{(k - 2),k} bins_sig_seq n (S k) n ⊕

bins_sig_seq n k n ⊕ #bins n n.

Moessner’s Theorem is a simple consequence of the results in this section.

Lemma bisimulation_Rn : bisimulation Rn.

Theorem Moessner n : Σ @{1,2,n} #1 ≡ nats ^^ S n.

5 Long and Salié’s generalization

Long [10,11] and Salié [20] generalized Moessner’s result to apply to the situation
in which the initial sequence is not the sequence of successive integers (1, 2, 3, . . .)
but the arithmetic progression (a, d+ a, 2d+ a, . . .). They showed that the final
sequence obtained by the Moessner construction is (a·1n−1, (d+a)·2n−1, (2d+a)·
3n−1, . . .). We show that these results are a corollary of the version of Moessner’s
Theorem proven in Section 4. This is a new proof: Niqui and Rutten did not
have it in their paper.

Similar to Section 4, where we started with the constant stream (1, 1, 1, . . .)
instead of (1, 2, 3, . . .), we will here start with (a, d, d, . . .) instead of (a, d +

a, 2d+ 2, . . .). Clearly we have Σ (a, d, d, . . .) ≡ (a, a+ d, a+ 2d, . . .), and hence
Σn

n+1 (a, d, d, . . .) ≡ (a, a+ d, a+ 2d, . . .) for any n ≥ 1. We can formulate Long
and Salié’s generalization of Moessner’s Theorem thus as follows.

Corollary Moessner_ext a d n :

Σ @{1,2,n} (a ::: #d) ≡ Σ (a ::: #d) � nats ^^ n.

An important observation to prove this generalization is the following lemma.

Lemma Moessner_ext_help a d : Σ (a ::: #d) ≡ #d � nats ⊕ #(a - d).

This lemma is straightforward to prove by showing that the heads and tails of
both sides are equal. This involves just basic equational reasoning. It is essential
that we consider streams of integers instead of naturals, since we want to allow
the subtraction operation on the right hand side.

In order to prove the actual theorem, namely Moessner_ext, we perform case
analysis on n. For the case 0, the result trivially holds, and for the case 1 + m
we use the following derivation:

Σ1
2 · · ·Σ

(1+m)+1
(1+m)+2 (a ::: d) ≡ Σ1

2 · · ·Σm+1
m+2 Σ (a ::: d)

≡ Σ1
2 · · ·Σm+1

m+2 (d� nats⊕ a− d) (2)

≡ d�Σ1
2 · · ·Σm+1

m+2 nats⊕ a− d�Σ1
2 · · ·Σm+1

m+2 1 (3)

≡ d� nats〈2+m〉 ⊕ a− d� nats〈1+m〉 (4)

≡ (d� nats⊕ a− d)� nats〈1+m〉

≡ Σ (a ::: d)� nats〈1+m〉 (5)

Step 2 and 5 use the Lemma Moessner_ext_help, step 3 uses the fact that
addition and scalar multiplication distribute through the partial sum and drop
operations, and step 4 uses Moessner’s Theorem twice.

6 Conclusions

We have presented a Coq formalization of Niqui and Rutten’s proof of Moess-
ner’s Theorem [13], as well as a new proof for the generalization of Moessner’s
Theorem by Long and Salié. We will summarize the lessons learned from doing
coinductive proofs in Coq.

Although Coq’s syntactic guard condition for corecursive definitions is of-
ten believed to be too weak, it was strong enough to formalize this non-trivial
coinductive proof without many complications. Most definitions of stream op-
erations as given by Niqui and Rutten had a straightforward translation into a
corresponding Coq definition. For some operations (e.g. nats and Σ), we had
to modify the definition slightly, but we could easily prove that our alternative
definition indeed satisfies the equations as given by Niqui and Rutten.

The guard condition was also hardly of any concern for proving proper-
ties. We only proved basic properties by guarded corecursion, and thereafter we
typically proved stream equalities using the coinduction principle, element-wise

equality, or equational reasoning using previously proved algebraic properties.
Hence, in more involved proofs, there was never the issue of proofs being rejected
because of Coq’s guard condition.

A source of inconvenience is that Coq’s Leibniz equality is not extensional,
and we thus had to resort to bisimilarity to capture stream equality. However, us-
ing the setoid machinery we could easily circumvent this source of inconvenience
without noticeable overhead. We still had to prove that all stream operations
respect bisimilarity, but those proofs were trivial. Hence, it would be useful if
there was automation to do such proofs.

The proof of Moessner’s Theorem involved some reasoning about ring equa-
tions over streams. Coq’s ring tactic turned out to be extremely valuable, be-
cause it could solve these equations fully automatically.

One thing worth remarking is that Coq’s notation system with unicode char-
acters made it possible to type the proofs in a close notation to the one used
by Niqui and Rutten. While formalizing their proof, we did not find any factual
errors in the results. The challenge was that despite the good presentation of
all definitions and auxiliary results, most proofs were hidden under the carpet.
The proofs of the first three main propositions [13, Proposition 5.1-5.3] were not
given at all, and for the last main proposition [13, Proposition 5.4], they stated
“by induction on n”, whereas it was unclear to us how to do that induction at
all. Our proof turned out to be much more involved.

In this paper we have moreover given a concise and original proof of Long and
Salié’s generalization. Although formalization did not directly help us discovering
this proof, it was definitely of indirect use. Namely, formalization makes it very
attractable to make as much parts of the proof development reusable. This was
indeed the key to discovering our proof of this generalization.

We conclude that formalizing coinductive proofs as Moessner’s Theorem in
Coq is feasible, and worth doing. Our Coq formalization constitutes of a small
library on general operations and theory on streams (348 lines), a proof of Moess-
ner’s Theorem for the case n = 1 (34 lines), for the case n = 2 (57 lines), and
the general case (319 lines, including Long and Salié’s generalization). This total
of 758 lines of Coq code (including white space), corresponds to approximately
7 and half pages of informal mathematical text, with many proofs omitted, and
without Long and Salié’s generalization.

Acknowledgments. The authors thank Dexter Kozen, Jan Rutten, Olivier Danvy,
and the anonymous referees for useful comments and discussions. The last author
learned from Frank many years ago that a good steak, a glass of excellent wine,
and fantastic company can make the hardest of days seem distant and irrelevant
in the grand scheme of things! Frank, we wish you the very best for the years to
come!

References

1. Y. Bertot and P. Castéran. Interactive Theorem Proving and Program Develop-
ment. Coq’Art: The Calculus of Inductive Constructions. Texts in TCS. Springer,

2004.
2. M. Bickford, D. Kozen, and A. Silva. Formalizing Moessner’s Theorem and gener-

alizations in Nuprl. Available at http://www.nuprl.org/documents/Moessner/,
2013.

3. C. Clausen, O. Danvy, and M. Masuko. A characterization of Moessner’s sieve.
Theoretical Compututer Science, 546:244–256, 2014.

4. J. H. Conway and R. K. Guy. Moessner’s magic. In The Book of Numbers, pages
63–65. Springer-Verlag, 1996.

5. Coq Development Team. The Coq Proof Assistant Reference Manual. INRIA,
2013.

6. C. E. Giménez. Un Calcul de Constructions Infinies et son Application à la
vérification de systèmes communicants. PhD thesis, L’École Normale Supérieure
de Lyon, 1996.

7. R. Hinze. Scans and convolutions—a calculational proof of Moessner’s theorem.
In IFL ’08, volume 5836 of LNCS, 2009.

8. R. Honsberger. More Mathematical Morsels. Dolciani Mathematical Expositions.
Math. Assoc. Amer., 1991.

9. D. Kozen and A. Silva. On Moessner’s Theorem. The American Mathematical
Monthly, 120(2):131–139, 2013.

10. C. T. Long. On the Moessner theorem on integral powers. The American Mathe-
matical Monthly, 73(8):846–851, 1966.

11. C. T. Long. Strike it out–add it up. The Mathematical Gazette, 66(438):273–277,
1982.

12. A. Moessner. Eine Bemerkung über die Potenzen der natürlichen Zahlen. Sitzungs-
berichten der Bayerischen Akademie der Wissenschaften, Mathematischnaturwis-
senschaftliche Klasse 1952, 29, 1951.

13. M. Niqui and J. J. M. M. Rutten. A proof of Moessner’s theorem by coinduction.
Higher-Order and Symbolic Computation, 24(3):191–206, 2011.

14. I. Paasche. Ein neuer Beweis des moessnerischen Satzes. Sitzungsberichten der
Bayerischen Akademie der Wissenschaften, Mathematischnaturwissenschaftliche
Klasse 1952, 1:1–5, 1953.

15. I. Paasche. Ein zahlentheoretische-logarithmischer Rechenstab. Math. Naturwiss.
Unterr., 6:26–28, 1953–54.

16. I. Paasche. Eine Verallgemeinerung des moessnerschen Satzes. Compositio Math-
ematica, 12:263–270, 1954.

17. O. Perron. Beweis des Moessnerschen Satzes. Sitzungsberichten der Bayerischen
Akademie der Wissenschaften, Mathematisch-naturwissenschaftliche Klasse 1951,
4:31–34, 1951.

18. J. Rutten. A coinductive calculus of streams. Mathematical Structures in Computer
Science, 15:93–147, 2005.

19. J. J. M. M. Rutten. Universal coalgebra: a theory of systems. Theoretical Com-
pututer Science, 249(1):3–80, 2000.

20. H. Salié. Bemerkung zu einem Satz von Moessner. Sitzungsberichten der
Bayerischen Akademie der Wissenschaften, Mathematisch-naturwissenschaftliche
Klasse 1952, 2:7–11, 1952.

21. M. Sozeau. A New Look at Generalized Rewriting in Type Theory. Journal of
Formalized Reasoning, 2(1):41–62, 2009.

22. M. Sozeau and N. Oury. First-Class Type Classes. In TPHOLs, volume 5170 of
LNCS, pages 278–293, 2008.

23. P. Urbak. A Formal Study of Moessner’s Sieve, 2015. MSc thesis, Aarhus Univer-
sity.

http://www.nuprl.org/documents/Moessner/

	Moessner's Theorem: an exercise in coinductive reasoning in Coq

