Alliouachene, S;
Bilanges, B;
Chaussade, C;
Pearce, W;
Foukas, LC;
Scudamore, CL;
Moniz, LS;
(2016)
Inactivation of class II PI3K-C2α induces leptin resistance, age-dependent insulin resistance and obesity in male mice.
Diabetologia
, 59
(7)
pp. 1503-1512.
10.1007/s00125-016-3963-y.
Preview |
Text
art_10.1007_s00125-016-3963-y.pdf Download (1MB) | Preview |
Abstract
AIMS/HYPOTHESIS: While the class I phosphoinositide 3-kinases (PI3Ks) are well-documented positive regulators of metabolism, the involvement of class II PI3K isoforms (PI3K-C2α, -C2β and -C2γ) in metabolic regulation is just emerging. Organismal inactivation of PI3K-C2β increases insulin signalling and sensitivity, whereas PI3K-C2γ inactivation has a negative metabolic impact. In contrast, the role of PI3K-C2α in organismal metabolism remains unexplored. In this study, we investigated whether kinase inactivation of PI3K-C2α affects glucose metabolism in mice. METHODS: We have generated and characterised a mouse line with a constitutive inactivating knock-in (KI) mutation in the kinase domain of the gene encoding PI3K-C2α (Pik3c2a). RESULTS: While homozygosity for kinase-dead PI3K-C2α was embryonic lethal, heterozygous PI3K-C2α KI mice were viable and fertile, with no significant histopathological findings. However, male heterozygous mice showed early onset leptin resistance, with a defect in leptin signalling in the hypothalamus, correlating with a mild, age-dependent obesity, insulin resistance and glucose intolerance. Insulin signalling was unaffected in insulin target tissues of PI3K-C2α KI mice, in contrast to previous reports in which downregulation of PI3K-C2α in cell lines was shown to dampen insulin signalling. Interestingly, no metabolic phenotypes were detected in female PI3K-C2α KI mice at any age. CONCLUSIONS/INTERPRETATION: Our data uncover a sex-dependent role for PI3K-C2α in the modulation of hypothalamic leptin action and systemic glucose homeostasis. ACCESS TO RESEARCH MATERIALS: All reagents are available upon request.
Type: | Article |
---|---|
Title: | Inactivation of class II PI3K-C2α induces leptin resistance, age-dependent insulin resistance and obesity in male mice |
Open access status: | An open access version is available from UCL Discovery |
DOI: | 10.1007/s00125-016-3963-y |
Publisher version: | http://dx.doi.org/10.1007/s00125-016-3963-y |
Language: | English |
Additional information: | Copyright © The Author(s) 2016. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. |
Keywords: | Food intake, Glucose homeostasis, Insulin, Insulin resistance, Knock-in leptin, Leptin resistance, Mouse gene targeting, Obesity, PI3K |
UCL classification: | UCL UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Life Sciences UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Life Sciences > Div of Biosciences UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Life Sciences > Div of Biosciences > Genetics, Evolution and Environment UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Medical Sciences UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Medical Sciences > Cancer Institute UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Medical Sciences > Cancer Institute > Research Department of Oncology |
URI: | https://discovery.ucl.ac.uk/id/eprint/1492747 |
Archive Staff Only
View Item |