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Abstract

It is well-known that both random branching and trapping mechanisms can induce localisa-
tion phenomena in random walks; the prototypical examples being the parabolic Anderson
and Bouchaud trap models respectively. Our aim is to investigate how these localisation phe-
nomena interact in a hybrid model combining the dynamics of the parabolic Anderson and
Bouchaud trap models. Under certain natural assumptions, we show that the localisation
effects due to random branching and trapping mechanisms tend to (i) mutually reinforce,
and (ii) induce a local correlation in the random fields (the ‘fit and stable’ hypothesis of
population dynamics).
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1. Introduction

1.1. The Bouchaud–Anderson model

This paper studies a certain random walk model on Zd that is a hybrid of the well-known
parabolic Anderson (PAM) and Bouchaud trap (BTM) models. To introduce this model, first
recall the PAM, which describes the evolution of a diffusive particle in a random potential
field (or, equivalently, a random branching environment; see below). Precisely, the PAM is
the Cauchy problem on the lattice Zd

∂u(t, z)

∂t
= (∆ + ξ)u(t, z) , (t, z) ∈ [0,∞)× Zd ; (1)

u(0, z) = 1{0}(z) , z ∈ Zd ;

where ξ = {ξ(z)}z∈Zd is a collection of independent identically distributed (i.i.d.) random
variables known as the (random) potential field and ∆ is the discrete Laplacian defined by
(∆f)(z) =

∑
|y−z|=1(2d)−1(f(y)− f(z)), where | · | denotes the `1-norm. For a large class of

potential field distributions,1 equation (1) has a unique non-negative solution defined for all
time t. For general background information on the PAM, including its origins in the statistical
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1More specifically, those satisfying a certain integrability condition on the upper-tail; see [1].

Preprint submitted to Stochastic Processes and their Applications April 13, 2016



physics literature and its interpretation in terms of a system of branching diffusive particles,
see [1].

Recall also the BTM, which describes the evolution of a diffusive particle in a random
trapping landscape. Precisely, the BTM is the continuous-time Markov chain on Zd defined
by the jump rates

wz→y :=

{
(2dσ(z))−1 , if |y − z| = 1 ,

0 , otherwise ,
(2)

where σ = {σ(z)}z∈Zd is a collection of strictly-positive i.i.d. random variables known as the
(random) trapping landscape. Remark that the density of the BTM satisfies the equation

∂u(t, z)

∂t
= ∆σ−1 u(t, z) , (t, z) ∈ [0,∞)× Zd , (3)

where, for clarity, we stress that the operator ∆σ−1 acts as

(∆σ−1f)(z) =
∑
|y−z|=1

(2dσ(y))−1f(y)− σ−1(z)f(z) .

For general background information on the BTM, including its origins in the study of spin-
glasses dynamics and its broad utility as a simple model for a variety of trapping behaviour,
see [2].

The PAM and BTM are of great interest in the theory of random processes because they
exhibit intermittency, that is, unlike other commonly studied models of diffusion, their long-
term behaviour cannot, in general, be described with a simple averaging principle (see [1]
and [2] for a general overview of the PAM and BTM respectively.) Instead, extremes in the
respective random environments may create concentration effects, which can result in the
eventual localisation of the solution to equations (1) and (3) respectively over long periods of
time. In the most extreme cases, the solution localises on just a few sites.

Our aim is to study how the localisation phenomena in the PAM and the BTM interact.
To do this, we consider the Cauchy problem on the lattice Zd

∂u(t, z)

∂t
= (∆σ−1 + ξ)u(t, z) , (t, z) ∈ [0,∞)× Zd ; (4)

u(0, z) = 1{0}(z) , z ∈ Zd ;

derived by replacing the discrete Laplacian in equation (1) with the generator of the BTM in
equation (3). We refer to equation (4) as the Bouchaud–Anderson model (BAM).

By analogy with the PAM (see [1], Section 1.2), the solution to equation (4) has a natural
interpretation as the expected number of particles in a system of continuously-branching
diffusive particles on the lattice Zd specified by:

• Initialisation: A single particle at the origin;

• Branching : The local branching rate for a particle at a site z is given by ξ(z);

• Trapping : Each particle evolves as an independent BTM, that is, the waiting time at
each visit to a site z is independent and distributed exponentially with mean σ(z), with
the subsequent site chosen uniformly from among the nearest neighbours.
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This interpretation can be formalised in the Feynman-Kac representation of the solution
to (4):

u(t, z) := E0

[
exp

{∫ t

0
ξ(Xs)ds)

}
1{Xt=z}

]
, (5)

where X is the BTM and, for z ∈ Zd, Ez denotes the expectation over X given that X0 = z.
As we shall see, the interaction between the random branching and trapping mechanisms
makes the localisation behaviour of the BAM highly non-trivial.

1.2. Localisation in the PAM and BTM

The PAM and BTM are said to localise if, as t → ∞, the solution of equations (1)
and (3) respectively are eventually concentrated on a small number of sites with overwhelming
probability, i.e. if there exists a (random) localisation set Γt such that, as t→∞, |Γt| = to(1)

and ∑
z∈Γt

u(t, z)

U(t)
→ 1 in probability , (6)

where U(t) :=
∑

z∈Zd u(t, z) is the total mass of the solution (in the BTM, this is identically
one); see Section 1.8 for the definition of the asymptotic notation used here and throughout
the paper.

Naturally, the primary measure of the strength of localisation in the PAM and BTM is
the cardinality of the localisation set Γt. As such, the most extreme form of localisation is
complete localisation, which occurs if the total mass is eventually concentrated at just one site,
i.e. if Γt can be chosen in equation (6) such that |Γt| = 1. A finer measure of the strength
of localisation is the radius of influence, which measures the extent to which localisation
sites themselves are determined by purely local features of the random environment. More
precisely, the radius of influence ρ is the smallest integer for which the localisation sites can
be determined by maximising a functional on Zd that depends on the random environments
only through their values in balls of radius ρ around each site.

Broadly speaking, localisation in the PAM and BTM is generated by the structure-forming
effects of extremes in the respective random environment. If these extremes are both suffi-
ciently pronounced and sufficiently regular, over long periods of time the model will come
to adopt the structure present in the environment, with localisation the most extreme man-
ifestation of this. Naturally then, the strength of localisation in the PAM and BTM should
depend on (i) the asymptotic rate of decay, and (ii) the regularity of the upper-tail of the
random variables ξ(0) and σ(0). In this context, it is convenient to restrict ξ(0) and σ(0) to
be strictly-positive and to characterise these random variables by their exponential tail decay
rate function

gξ(x) := − log(P(ξ(0) > x)) and gσ(x) := − log(P(σ(0) > x))

for then (i) and (ii) translate to the asymptotic growth and regularity of the non-decreasing
functions gξ and gσ.

We briefly outline some known results on localisation in the PAM and BTM. For simplicity,
we shall assume all necessary regularity conditions without further specification.
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1.2.1. Localisation in the parabolic Anderson model

The conditions under which the PAM completely localises in the sense of equation (6)
has been the subject of intense and ongoing research over the last 25 years. The current
understanding is that double-exponential tail decay (gξ(x) ≈ ex) forms the boundary of
the complete localisation universality class. More precisely, it is conjectured that the PAM
exhibits complete localisation as long as log gξ(x) � x. This has been proven (in [3]) in
the extremal2 case of Pareto-like tail decay (gξ(x) ∼ γ log x, for γ > d), and more recently
(in [4] and [5]) in the case of Weibull-like tail decay (gξ(x) ∼ xγ). On the other hand, if
log gξ(x)� x, then complete localisation is known not to hold (see [6]). What occurs in the
interface regime of double-exponential tail decay (log gξ(x) ∼ cx, for c > 0) is not currently
well-understood.

As for the radius of influence of the potential field, ρPAM, in the case of Pareto-like tail
decay it has been shown (see [3]) that ρPAM = 0, in other words, the localisation site can be
determined by maximising a functional that depends on the potential field ξ only through its
value at individual lattice sites, with interactions between neighbouring lattice sites having no
influence on localisation. On the other hand, in the case of Weibull-like tail decay (gξ(x) ∼ xγ),
the radius of influence has been shown (see [5]) to be ρPAM = [(γ − 1)/2]+, where [x] and x+

denote the integer and positive parts of x respectively. Clearly this implies that ρPAM = 0 if
and only if γ < 3, and also that ρPAM →∞ in the γ →∞ limit.

1.2.2. Localisation in the Bouchaud trap model

The study of localisation in the Bouchaud trap model has also received considerable
attention over the last 10 years. A notable feature of the BTM is that localisation can only
occur in dimension one. In higher dimensions, the traps either have negligible effect in the
limit (if the tail is integrable, by virtue of the law of large numbers), or are visited in such a
way that their overall effect is spatially-homogeneous (see [7] and [2] for a proof of this result
in the case of Pareto-like tail decay, although the result is thought to hold more generally for
arbitrary non-integrable tail decay).

On the other hand, it is known that in dimension one, Pareto-like tail decay (gσ(x) ∼
c log x, c > 0) forms the boundary of the localisation universality class. More precisely, if
log x = O(gσ(x)), it is known that the BTM does not localise in the sense of equation (6)
(although it does localise in a certain weaker sense; see, e.g. [7]). On the other hand, it was
proven in [8] that for sub-Pareto tail decay (gσ(x) � log x), the BTM localises on exactly
two-sites in the limit, with a radius of influence (i.e. of the trapping landscape) equal to 0.

1.3. Overview of our results

Before detailing our results in full, we first provide a brief overview to highlight salient
features; this section is for exposition only, and is not intended to be mathematically rigorous.
A complete description of our results follows in Section 1.7 below.

In this initial study of localisation in the BAM, we focus on the case where both potential
distribution ξ(0) and trap distribution σ(0) have Weibull tail decay

P(ξ(0) > x) = e−x
γ

and P(σ(0) > x) = e−x
µ

γ, µ > 0 .

2This case is extremal in the sense that if gξ(x) ∼ γ log x for γ > d or γ = d = 1 then the solution to
equation (1) ‘blows-up’ in finite time, see [1].
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Our results also hold in the γ, µ → 0 limit (with some caveats; see Section 1.6). As we
shall see, the BAM with Weibull tail decay turns out to be a natural regime to study, since
the interaction between the potential field and trapping landscape exhibits certain phase
transitions in (γ, µ).

1.3.1. Complete localisation

Our first main result establishes the complete localisation of the BAM across the entire
regime (see Theorem 1.7 below).

Theorem 1.1. There exists a (random) site Zt such that, as t→∞,

u(t, Zt)

U(t)
→ 1 in probability .

That the BAM completely localises for some (γ, µ) is expected, since the PAM with
Weibull potential also exhibits complete localisation. More surprising, however, is that com-
plete localisation occurs regardless of the presence of very large traps, even in dimension one,
since a priori it might be thought that large traps would draw probability mass away from
the localisation site.

1.3.2. Mutual reinforcement of localisation effects due to the PAM and the BTM

Since complete localisation holds in the entire regime, in order to probe the interaction
between the potential field and trapping landscape we need a finer measure of localisation.
Such a measure is provided by the radius of influence ρ, which as described above is the
smallest integer for which the localisation site Zt can be determined by maximising a func-
tional on Zd that depends on ξ and σ only through their values in balls of radius ρ around
each site. Our second main result is to determine the radius of influence ρ, and to prove its
optimality (see Theorem 1.7 and part (a) of Theorem 1.10 below).

Theorem 1.2. The radius of influence is

ρ :=

[
γ − 1

2

µ

µ+ 1
+

1

2

]+

.

Note that ρ is a decreasing function of the strength of both the potential field and trapping
landscape (i.e. an increasing function of γ and µ), in other words, the localisation effects due
to the PAM and BTM are mutually reinforcing.

1.3.3. Reducibility of the BAM to the PAM

We next ask whether the BAM is ‘reducible’ to the PAM. There are actually two distinct
notions of reducibility that are relevant. Strong reducibility describes the situation in which
the trapping landscape σ plays no role in determining the localisation site Zt, and the macro-
scopic behaviour of the system is adequately approximated by the PAM with potential ξ.
Weak reducibility describes the situation in which all necessary information to determine Zt
is contained in the ‘net growth rate’ η := ξ−σ−1, and moreover, the macroscopic behaviour of
the BTM is adequately approximated by the PAM with potential replaced with η. The term
‘net growth rate’ comes from the interpretation of the BAM as a trapped, branching random
walk (see Section 1.5 below). Our third main result is to determine the regimes in which the
BAM is strongly and weakly reducibility to the PAM (see parts (c) and (d) of Theorem 1.10
below). These regimes are depicted in Figure 1.
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Figure 1: Partition of the parameter space of the BAM according to the whether the BAM is ‘strongly reducible’
to the PAM with the usual potential ξ (left of the dashed line) or ‘weakly reducible’ to the PAM with the
potential replaced with the ‘net growth rate’ η (left of the bold curve). The boundary curve is µ = 1/(γ − 2).

Theorem 1.3. The BAM is strongly reducible to the PAM if and only if γ < 1. The BAM
is weakly reducible to the PAM if and only if ρ = 0 and γ ≥ 1.

1.3.4. Local correlation between the potential field and trapping landscape: The ‘fit and stable’
hypothesis

Our final result is to establish the local correlation between the potential field and trapping
landscape (where ‘local’ is from the perspective of the localisation site); this is the so-called
‘fit and stable’ hypothesis that has been predicted numerically in the mathematical biology
literature (see, e.g., [9]), but never rigorously confirmed (see Section 1.5 below). Interestingly,
the correlation that we observe is positive at the localisation site, but negative away from the
localisation site, providing an unexpected extension to the ‘fit and stable’ hypothesis.

To describe this correlation, we shall need to define a second, possibly smaller, radius of
influence

ρξ :=

[
γ − 1

2

µ

µ+ 1

]+

∈ {ρ− 1, ρ} ,

which is the the smallest integer for which the localisation site Zt can be determined by a
maximising a functional on Zd that depends on ξ only through its values in balls of radius ρξ
around each site (note, the functional must still depend on σ through balls of radius at least
ρ). For simplicity, we exclude here the ‘interface cases’, i.e. the points of discontinuity of ρξ.

Theorem 1.4. Assume that γ ≥ 1, so that the BAM is not strongly reducible to the PAM.
Let Zt denote the site of complete localisation. Then, as t→∞ eventually almost surely: (i)
the random variables ξ(Zt) and σ(Zt) are positively correlated; and (ii) for all z such that
0 < |z − Zt| ≤ ρξ, the random variables ξ(z) and σ(z) are negatively correlated.

In Theorem 1.9 below we make explicit the nature of this correlation, as well as providing
a full description of the localisation site, determining its asymptotic distance from the origin,
the local profile of the potential field and trapping landscape, and its ageing behaviour.
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1.4. Methods and techniques

Our approach to proving localisation in the BAM is loosely based on existing techniques to
prove localisation in the PAM (see, e.g., [10, 6, 4]), although the complex interaction between
the potential field and the trapping landscape means that these techniques cannot be trivially
adapted. Instead, the presence of the trapping landscape requires the development of existing
techniques on two main fronts.

First, proving localisation in the BAM requires the development of the spectral theory of
operators of the form ∆σ−1 +ξ, including path expansions and Feynman-Kac representations
for the principal eigenvalue and eigenfunction respectively. To our knowledge this theory
has not appeared in the literature before, and may be of independent interest, including in
the study of position-dependent mass Schrödinger operators (see Section 1.5 below). In the
particular case of the BAM with Weibull tails, we also extend existing techniques to establish
the max-class of local eigenvalues; this is necessary in order to extract extra information about
the local correlation in the potential field and trapping landscape.

Second, in order to analyse the ‘screening effect’ of heavy traps, standard percolation esti-
mates are insufficient: in dimension one, because of the geometry; in dimensions higher than
one, because of complex dependencies between the potential field, the trapping landscape,
and the localisation site Zt. In dimension one we analyse heavy traps using coarse graining
methods; in higher dimensions, we implement new ideas that allow us to apply percolation
estimates in the presence of the dependencies.

In addition, our methods provide a new approach to working with ‘cluster expansions’.
Although these expansions have appeared in the literature before (see, e.g., [10, 5]), the
standard approach has been to access them via resolvent formalism. Our techniques provides
a purely probabilistic approach to ‘cluster expansion’, which avoids many of the technicalities
of the resolvent formalism. One application would be a simpler, purely probabilistic proof of
the localisation results on the PAM found in [5].

1.5. Connections to the literature

Although this is the first work to consider the BAM, there are clear connections between
the BAM and other models in the literature. First, the BAM can be interpreted as the
thermodynamic limit of a particle system with random branching and trapping mechanisms
(given, respectively, by the potential field ξ and the trapping landscape σ). In the probability
literature there have been several other analyses of models combining random branching and
trapping mechanisms – in particular, trapping mechanisms given by asymmetric transition
probabilities [11] and random conductances [12] – although these have not considered the
localisation properties of the model, focusing instead on the growth of the total population.

Similar models have also appeared in the mathematical biological literature, where they
find an application in the study of population dynamics. Here the branching and trapping
rates are recast as the fitness (‘adaptedness’) and stability (‘adaptability’) respectively of
individual states (e.g. geographic locations, genetic configurations etc.). While the literature
contains several models which allow for randomness in either the fitness [13, 14] or stability [15,
16, 17], most relevant is [9] which considers a model in which both these characteristics vary.
Indeed, the model considered in [9] is essentially identical to the BAM, except it is defined in
a domain without any geometry: when an individual’s state changes, the fitness and stability
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are re-sampled according to their respective distributions.3 The primary observation in [9]
(obtained numerically) is the tendency of populations to concentrate on states which are both
fit and stable: the ‘fit and stable’ hypothesis. Our results provide the first rigorous analysis
of this phenomenon. Indeed, our results actually suggest a refinement of the hypothesis (for
our model with geometry): that populations concentrate on states which are fit and stable,
but also for which neighbouring states are both fit and unstable.

Second, operators of the form ∆σ−1 + ξ have important applications in quantum me-
chanics, since their eigenvalues give the energy levels of a particle whose effective mass is
position-dependent (see, e.g., [18, 19, 20]). To make the connection, consider the position-
dependent mass Schrödinger equation for a particle with effective mass σ in a potential field
ξ. This equation has a Hamiltonian of general form (see [20])

1

2

(
σ−α∇σ−β∇σ−γ + σ−γ∇σ−β∇σ−α

)
+ ξ , α, β, γ ≥ 0, α+ β + γ = 1 .

Although there is no canonical choice for α, β, γ, in the discrete setting a natural restriction
is β = 0, which avoids symmetry breaking in the definition of ∇. Specialising to the case
α = γ = 1/2 gives the Hamiltonian

σ−
1
2 ∆σ−

1
2 + ξ = σ−

1
2
(
∆σ−1 + ξ

)
σ

1
2 . (7)

We remark that the Hamiltonian in (7) is the ‘symmetrised’ form of the operator ∆σ−1+ξ, and
hence has equivalent spectral theory. In Section 3 we develop general theory for operators of
the form ∆σ−1 + ξ, including deriving path expansions and Feynman-Kac representations for
the principal eigenvalue and eigenfunction respectively. This section is entirely self-contained,
and is completely deterministic, and we expect that it will be of independent interest.

Third, there are connections between the BAM and the PAM in the case where the poten-
tial field distribution ξ(0) is allowed to take on highly negative (or even infinitely negative)
values, which may be interpreted as ‘traps’. Previous work has noted the minimal influence
of such ‘traps’ in d ≥ 2 (see, e.g. [1, Section 2.4]), essentially due to percolation estimates,
an observation that finds echoes in our results and methods. However, there are clear dif-
ferences between this model and the BAM, primarily due to the fact that the traps in the
BAM may coexist with sites of high potential; this coexistence underlies the phenomena of
mutual reinforcement and correlation that we observe in the BAM. On the other hand, in di-
mension one the effect of highly negative potential values in the PAM is significant (see [21]).
Indeed, since such sites cannot be avoided, their effect is to ‘screen’ off the growth that would
otherwise occur from sites of high potential, and so the asymptotic growth of the solution
depends heavily on the relationship between the upper and lower tails of ξ(0). Again, this
is reminiscent of our results in dimension one, which are only valid if the trap distribution
decays sufficiently fast to ensure ‘screening’ effects are negligible.

1.6. The formal set-up for the paper

For the rest of the paper, we make the following assumptions on the potential field ξ and
the trapping landscape σ:

3A second minor difference is that the population size is kept constant by the deletion of a uniformly chosen
individual at each replication event.
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Assumption 1.5 (Assumption on the potential field distribution).
The random variable ξ(0) is strictly-positive and satisfies

F̄ξ(x) = e−x
γ
,

for some γ > 0, where F̄ξ(x) := 1− Fξ(x) := P(ξ(0) > x).

Assumption 1.6 (Assumptions on the trap distribution).
The random variable σ(0) satisfies:

(a) No quick sites: The quantity
δσ := essinf σ(0)

is strictly positive;

(b) Regularity: The quantity

µ := lim
x→∞

log gσ(x)

log x

exists and is finite. If µ > 0, then σ(0) has a continuous density function fσ(x) with a
Weibull upper-tail, i.e. for sufficiently large x,

F̄σ(x) = exp{−xµ} ,

where F̄σ(x) := 1 − Fσ(x) := P(σ(0) > x). If µ = 0, then σ(0) has a continuous density
function fσ(x), with the property that

fσ(ax) ∼ fσ(bx)

for any ax, bx → ∞ such that ax ∼ bx (see Section 1.8 for the asymptotic notation). In
both cases, the lower-tail of fσ satisfies, as x→ 0,

fσ(x+ δσ) = o(e−1/x) .

Furthermore, if d = 1, then additionally σ(0) satisfies the following two extra conditions:

(c) Sufficiently fast tail decay: As x→∞ eventually, for some ε > 0,

gσ(x) > (1 + ε) log log x ;

(d) Regularity: There exists a c ∈ (1,∞] such that

lim
x→∞

gσ(x)

log log x
= c ,

with the convergence eventually monotone in the case c =∞.

We wish to briefly comment on the nature of the above assumptions on ξ(0) and σ(0).
First, we claim that the BAM with Weibull potential field is a natural regime in which to
observe the interaction between the localisation effects in the PAM and the BTM. If the
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potential field is any stronger (indeed if γ < 1), the BAM is strongly reducible to the PAM4.
On the other hand, if the potential field is any weaker, the effect of the trapping landscape,
while present, is harder to measure. To see why, recall that the PAM with Weibull potential
field has been shown to completely localise with a certain finite radius of influence ρPAM; it
is on the level of this radius that we measure the impact of the trapping landscape σ. Since
ρPAM →∞ in the γ →∞ limit, the effect of changes to ρPAM become harder to quantify, and
we leave this study to future work.

Second, the regularity assumption on ξ(0) is imposed mainly for simplicity; weaker regu-
larity assumptions (like those found in [10] and [22] for instance) are possible, although they
introduce certain technical difficulties that we wish to avoid. Finally, note that equivalent
results for the BAM with Pareto-like potential field can be naturally deduced by considering
our results in the γ → 0 limit.

Turning to the assumptions on σ(0), first note that the quantity µ measures the ‘Weibull-
ness’ of the upper-tail of σ(0), with the case µ = 0 corresponding to a stronger-than-Weibull
trapping landscape. For simplicity, we have chosen not to consider weaker-than-Weibull
trapping landscapes in this paper; equivalent results can be naturally deduced by considering
our results in the µ→∞ limit. As with ξ(0), the regularity assumptions on σ(0) are certainly
not optimal for our results to hold; they are chosen mainly for simplicity. On the other hand,
our assumption that σ(0) is bounded away from zero is essential. Indeed we expect that
the nature of the localisation behaviour will change if ‘quick’ sites are present. Finally,
the additional tail decay assumption in dimension one is also essential, and our results and
methods break down completely without it. Note, however, that this condition is only violated
for trap distributions with extremely heavy tails, such as if σ(0) is a log-Pareto random
variable.

1.7. Full description of our results

Here we describe our results in full, expanding on the exposition given in Section 1.3.
In order to state our results explicitly, we shall need to introduce some notation. Recall
the parameter µ ∈ [0,∞) from Assumption 1.6, which describes the ‘Weibull-like’ decay
parameter of the upper-tail of σ(0). Recall also from Section 1.3 the radius of influence

ρ :=

[
γ − 1

2

µ

µ+ 1
+

1

2

]+

and the, possibly smaller, radius of influence of the potential field ξ,

ρξ :=

[
γ − 1

2

µ

µ+ 1

]+

∈ {ρ− 1, ρ} ≤ ρ .

The relationship between ρ and ρξ is depicted in Figure 2; we defer further discussion on ρ
and ρξ to Remark 1.11.

Next we describe explicitly the localisation site. For each z ∈ Zd and n ∈ N, define the
ball B(z, n) := {y ∈ Zd : |y − z| ≤ n}. For each z ∈ Zd, define the Hamiltonian

H(z) := ∆σ−1 + ξ1B(z,ρξ)

4Note however that, because of Assumption 1.6, this conclusion does not apply in dimension one if the
trapping landscape is sufficiently strong.
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Figure 2: Partition of the parameter space of the BAM according to the values of ρ (bold lines) and ρξ (dashed
lines). The boundary curves are of the form µ = (2i− 1)/(γ − 2i) and µ = (2i)/(γ − 2i− 1), for i ∈ N \ {0}.

restricted to the domain B(z, ρ) with Dirichlet boundary conditions, denoting by λ(z) its
principal eigenvalue. Note that each λ(z) is real since the Hamiltonian H(z) is similar to the
Hermitian operator

σ−
1
2 H(z)σ

1
2 = σ−

1
2 ∆σ−

1
2 + ξ1B(z,ρξ) .

We refer to λ(z) as the local principal eigenvalue at z, and remark that it is a certain
functional of the sets ξ(ρξ)(z) := {ξ(y)}y∈B(z,ρξ) and σ(ρ)(z) := {σ(y)}y∈B(z,ρ). Note that
the random variables {λ(z)}z∈Zd are identically distributed, and have a dependency range
bounded by 2ρ, i.e. the random variables λ(y) and λ(z) are independent if and only if |y −
z| > 2ρ. Remark also that in the special case ρ = 0, λ(z) reduces to the ‘net growth rate’
η(z) = ξ(z)− σ−1(z).

For any sufficiently large t, define a penalisation functional Ψt : Zd → R by

Ψt(z) := λ(z)− |z|
γt

log log t .

Note that Ψt has a similar form to the penalisation functional introduced in [5] to prove
complete localisation in the PAM with Weibull potential field, representing the trade-off
between energetic forces (given by the local principal eigenvalue λ(z)) and entropic forces
(given by a probabilistic penalty which is linear in |z| and decaying in t); see Remark 1.8.

Define a large ‘macrobox’ Vt := [−Rt, Rt]d ∩ Zd, with Rt := t(log t)
1
γ . Fix a constant

0 < θ < 1/2 and define the macrobox level Lt := ((1 − θ) log |Vt|)
1
γ . Let the subset Π(Lt) :={

z ∈ Zd : ξ(z) > Lt
}
∩ Vt consist of sites in Vt at which ξ-exceedances of the level Lt occur.

Finally, define the random site
Zt := arg max

z∈Π(Lt)

Ψt(z) .

The site Zt is well-defined eventually almost surely since, as we show in Lemma 4.1, the
set Π(Lt) is non-empty and finite eventually almost surely. Moreover, for t sufficiently large,
Zt almost surely does not depend on the particular choice of θ. We present again (see
Theorem 1.1) our main theorem:
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Theorem 1.7 (Complete localisation). As t→∞,

u(t, Zt)

U(t)
→ 1 in probability .

Remark 1.8. In order to determine Zt explicitly, a finite approximation is available for λ(z)
(see Proposition 5.1 for a precise formulation):

λ(z) ≈ η(z) + σ−1(z)
∑

2≤k≤2j

∑
p∈Γk(z,z)
pi 6=z, 0<i<k

Set(p)⊆B(z,ρ)

∏
0<i<k

(2d)−1 σ−1(pi)

λ(z)− ηz(pi)
, (8)

where j := [γ − 1] and ηz := ξ1B(z,ρξ) − σ
−1; see Section 1.8 for the definition of the path

set Γk(z, z). This path expansion can be iteratively evaluated to approximate Ψt(z) as an
explicit function of ξ(ρξ)(z), σ(ρ)(z), |z| and t, which, as we show, is sufficiently precise to
determine the localisation site Zt with overwhelming probability.

Before stating our second and third main results we shall introduce some more notation.
First we define exponents that explicitly describe the correlation of the fields ξ and σ around
the localisation site Zt. To this end, define the function qξ : N→ [0, 1] and the non-negative
constant qσ by

qξ(x) :=


(

1− 2x
γ−1 −

1
µ+1

)+
if γ > 1 ,

(1− x)+ else,
and qσ :=

(
γ − 1

µ+ 1

)+

.

We shall also need the concept of ‘interface cases’, which correspond to the values of (γ, µ)
where ρ, and respectively ρξ, are transitioning from one integer to the next. To this end
define the sets

B :=

{
(γ, µ) :

γ − 1

2

µ

µ+ 1
+

1

2
= ρ

}
and Bξ :=

{
(γ, µ) :

γ − 1

2

µ

µ+ 1
= ρξ

}
.

Note that these sets correspond, respectively, to the bold and dashed curves in Figure 2.
Finally, define the random time Tt := inf{s > 0 : Zt+s 6= Zt} and the scales

rt :=
t(d log t)

1
γ
−1

log log t
and at := (d log t)

1
γ . (9)

The scales rt and at describe, respectively, the scale of the distance from the origin of the
localisation site and the scale of the height of the potential field at the localisation site.

Theorem 1.9 (Description of the localisation site). As t→∞ the following hold:

(a) (Localisation distance)
Zt
rt
⇒ X in law ,

where X is a random vector whose coordinates are independent and distributed as Laplace
(two-sided exponential) random variables with absolute-moment one.

12



(b) (Local correlation of the potential field) If (γ, µ) /∈ Bξ, then for each z ∈ B(0, ρξ) there
exists a c > 0 such that

ξ(Zt + z)

a
qξ(|z|)
t

→ c in probability . (10)

If (γ, µ) ∈ Bξ, then (10) holds for each z ∈ B(0, ρξ − 1), and moreover, for each z such
that |z| = ρξ there exists a c > 0 such that,

fξ(Zt+z)(x)→
ecxfξ(x)

E[ecξ(0)]
,

uniformly over x ∈ (0, Lt), where fξ(z) is the density of the potential field at site z (see
Assumption 1.5).

(c) (Correlation of the trapping landscape at Zt) If µ > 0 and γ > 1, then there exists a c > 0
such that

σ(Zt)

aqσt
→ c in probability .

If µ = 0 and γ > 1 then, for each ν > 0,

P
(

log σ(Zt)

log at
> qσ − ν

)
→ 1 .

If γ = 1 then,

fσ(Zt)(x)→ e−1/xfσ(x)

E[e−1/σ(0)]
,

uniformly over x, where fσ(Zt) is the density of the trapping landscape at site Zt.

(d) (Local correlation of the trapping landscape) If (γ, µ) /∈ B, then for each z ∈ B(0, ρ) \ {0}

σ(Zt + z)→ δσ in probability . (11)

If (γ, µ) ∈ B, then (11) holds for each z ∈ B(0, ρ) \ {0} and moreover, for each z such
that |z| = ρ, there exists a c > 0 such that

fσ(Zt+z)(x)→ ec/xfσ(x)

E[ec/σ(0)]
,

uniformly over x, where fσ(z) is the density of the trapping landscape at site z (see As-
sumption 1.6).

(e) (Ageing)
Tt
t
⇒ Θ in law ,

where Θ is a non-degenerate almost surely positive random variable.

Theorem 1.10 (Optimality results). As t→∞ the following hold:
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(a) (Optimality of the radius of influence) The radius of influence ρ is optimal, in other words,
there does not exist a functional ψt, depending on ξ and σ only through their values in
balls of radius ρ− 1 around each site z, such that

P

(
Zt = arg max

z∈Zd
ψt(z)

)
→ 1 . (12)

(b) (Optimality of the radius of influence with respect to the potential field) The radius of
influence of the potential field ρξ is optimal, in other words, there does not exist a func-
tional ψt, depending on ξ only through its values in balls of radius ρξ−1 around each site
z, such that

P

(
Zt = arg max

z∈Zd
ψt(z)

)
→ 1 . (13)

(c) (Criterion for reduction to the potential ξ) The localisation site is independent of the
trapping landscape σ if and only if γ < 1, in other words, if and only if γ < 1, there exists
a random site zt ∈ Zd, independent of σ, such that,

P (Zt = zt)→ 1 . (14)

(d) (Criterion for reduction to the ‘net growth rate’ η) The localisation site Zt depends on ξ
and σ only through the value of η if and only if ρ = 0, in other words, if and only if ρ = 0,
there exists a random site zt ∈ Zd, dependent on ξ and σ only through η, such that,

P (Zt = zt)→ 1 . (15)

Remark 1.11. We note several interesting features of the radius of influence ρ. As remarked
above, ρ is an increasing function of both γ and µ. Moreover, surprisingly it is not necessarily
the case that ρ → ρPAM := [(γ − 1)/2]+ in the µ → ∞ limit; indeed, if γ ∈ (2i, 2i + 1) for
i ∈ N\{0}, then in fact ρ→ ρPAM +1, meaning that influence of the BTM on the BAM is not
continuous in the degenerate limit (i.e. as σ(z)→ 1 simultaneously for each z). On the other
hand, ρξ → ρPAM in the µ→∞ limit, i.e. there is no discontinuity in the effect of the BTM
on the BAM on the level of the radius of influence of the potential field ξ. The relationship
between ρ, ρξ and ρPAM is depicted in Figure 3.

Remark 1.12. The shape of the local profile of the potential field and trapping landscape in
parts (b)–(d) of Theorem 1.9 is derived by considering the path expansion in equation (8) and
determining the values of ξ and σ that appropriately balance: (i) the increase in λ gained from
favourable realisations of ξ and σ; and (ii) the probabilistic penalty that results from such
favourable realisations of ξ and σ if they are too unlikely. This balance is expressed through
a convex function whose integral is asymptotically concentrated in the regions specified in
Theorem 1.9. This computation is carried out in the proof of Proposition 5.3, identifying the
constants in Theorem 1.9 explicitly.

We also give some heuristic reasons why we must distinguish the cases (γ, µ) ∈ B,Bξ
in the correlation results. If (γ, µ) /∈ Bξ, then the value of ξ(Zt + z) is growing (with high
probability) as t → ∞ for each z ∈ B(0, ρξ). However, if (γ, µ) ∈ Bξ, this only occurs for
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Figure 3: Partition of the parameter space of the BAM according to the relationship between ρ (bold lines)
and ρPAM (dashed lines), and ρξ (bold lines) and ρPAM (dashed lines) respectively, where ρPAM denotes the
radius of influence in the equivalent PAM with identical potential field. The boundary curves are of the form
µ = (2i− 1)/(γ − 2i) and µ = (2i)/(γ − 2i− 1) respectively, for i ∈ N \ {0}.

z ∈ B(0, ρξ − 1); at the interface of the radius, where |z| = ρξ, the value of ξ(Zt + z) instead
converges to a certain random variable with law distinct from the law of ξ(0). Similarly, for
(γ, µ) /∈ B, σ(Zt + z) converges to δσ for each z ∈ B(0, ρ) \ {0}. However, if (γ, µ) ∈ B, then
this is only true for z ∈ B(0, ρ− 1) \ {0}. If |z| = ρ, the value of σ(Zt + z) instead converges
to a certain random variable with law distinct from the law of σ(0). These properties are
reflective of the fact that the correlation in the fields ξ and σ induced by the localisation site
Zt decays away from the site.

We also explain why the cases γ ≤ 1 and µ = 0 must be further distinguished in our
profile for σ(Zt). If γ > 1 then the value of σ(Zt) is growing, and indeed growing with
a deterministic leading order. However, if γ = 1, this is no longer true and instead σ(Zt)
converges to a certain random variable with law distinct from the law of σ(0).5 The case
µ = 0 must be distinguished for a different reason; in this case, the extremes of σ are so large
that there are many sites z for which σ−1(z) is smaller than the gap in the top statistics of
Ψt. Past this threshold, differences in the magnitude of σ no longer materially influence the
determination of Zt, and so we lose a degree of certainty about the order of growth of σ(Zt).

Note finally that if (γ, µ) is not in B and Bξ respectively, then the probabilities in equations
(12) and (13) actually converge to 0 for any such ψt; otherwise, the respective probability will
converge to a constant c ∈ (0, 1). Similarly, if (γ, µ) lies to the right of the dashed or bold
line in Figure 1, the probabilities in (14) and (15) respectively converge to 0 for any such zt;
if (γ, µ) lies on either line, the repective probability instead converges to a constant c ∈ (0, 1).
We do not prove these additional results here.

1.8. Notation

Here we list notation that will be commonly used for the remainder of the paper.

5Of course, in the case γ < 1, with overwhelming probability σ is independent of the localisation site Zt
(cf. part (c) of Theorem 1.9) and so σ(Zt) has the same law as σ(0).
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Asymptotic notation: For functions f and g we use f ∼ g to denote that

lim
x→∞

f(x)/g(x) = 1 ,

and f = o(g) or f � g to denote that

lim
x→∞

f(x)/g(x) = 0 .

We use f = O(g) to denote that, as x→∞, eventually for some constant c > 0,

|f(x)| < c|g(x)| .

Notation for paths: For an integer k and sites y, z ∈ Zd, let Γk(y, z) be the set of
nearest neighbour paths in Zd of length k running from y to z, with each p ∈ Γk(y, z) indexed
as

y =: p0 → p1 → p2 → . . .→ pk := z .

Similarly, denote

Γk(y) :=
⋃
z∈Zd

Γk(y, z) , Γ(y, z) :=
⋃
k∈N

Γk(y, z) ,

Γ(y) :=
⋃
k∈N

Γk(y) , Γ :=
⋃
y∈Zd

Γ(y) .

For a site z ∈ Zd, let n(z) denote the number of shortest paths from the origin to z, i.e.

n(z) := |Γ|z|(0, z)| .

For a path p ∈ Γk(y, z) denote Set(p) := {p0, p1, . . . , pk} and |p| := k. For a nearest neighbour
random walk X let p(Xt) ∈ Γ(X0) denote the geometric path associated with the trajectory
of {Xs}s≤t and let pk(X) ∈ Γk(X0) denote the geometric path associated with the random
walk {Xs}s≥0 up to and including its kth jump.

Notation for sets: For a domain D ∈ Zd, denote by

∂D = {y ∈ Dc : there exists x ∈ D such that |x− y| = 1} .

For a set S ∈ Zd define B(S, n) :=
⋃
z∈S B(z, n) and sep (S) := minx 6=y∈S{|x− y|}.

Notation for solutions of the BAM: For each y, z ∈ Zd define uy(t, z) to be the
solution of the Cauchy problem

∂uy(t, z)

∂t
= (∆σ−1 + ξ)uy(t, z) , (t, z) ∈ [0,∞)× Zd ;

uy(0, z) = 1{y}(z) , z ∈ Zd ;

and, for z ∈ Zd and p ∈ Γ, define

up(t, z) := Ep0
[
exp

{∫ t

0
ξ(Xs) ds

}
1{Xt=z}1{p(Xt)=p}

]
, Up(t) :=

∑
z∈Zd

up(t, z) .

Notation for local principal eigenvalues: For each z ∈ Zd and n ∈ N define the
n-local principal eigenvalue λ(n)(z) to be the principal eigenvalue of the Hamiltonian

H(n)(z) := ∆σ−1 + ξ

restricted to the domain B(z, n) with Dirichlet boundary conditions.
Other notation: For a, b ∈ R define a ∧ b := min{a, b}.
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2. Outline of proof

The main idea of the proof of Theorem 1.7 is that the solution u(t, z) can be decom-
posed into disjoint components by reference to the trajectories of the underlying BTM in the
Feynman-Kac representation in (5). Using such a path decomposition, we prove complete
localisation by establishing that: (i) a single component carries the entire non-negligible part
of the solution; and (ii) the non-negligible component is localised at Zt.

To assist in the proof, we introduce the scale

dt :=
1

γ
(d log t)

1
γ
−1

(16)

which is the derivative (on the log scale) of the height scale at, and naturally examines the
gaps in the maximisers of ξ in growing boxes. We also introduce auxiliary scaling functions
ft, ht, et, bt → 0 and gt, st → ∞ as t → ∞ that are convenient placeholders for negligibly
decaying (respectively growing) functions. For technical reasons, we shall need to choose
these functions to satisfy certain relationships, as follows. First, let st be such that

(log st)
2 � log log t .

Then, choose ft, ht, et, bt and gt satisfying

max{F̄σ(st), (log st)
2/ log log t, 1/ log log st} gt � bt � ftht � gtht � et . (17)

It is easy to check that such a choice is always possible.

Path decomposition

We explain here how to construct the path decomposition. Recall the definition of Vt from
Section 1.7. For a path p ∈ Γ(0) such that Set(p) ⊆ Vt, let

z(p) := arg max
z∈Set(p)

λ(z)

which is well-defined almost surely. Abbreviate

Bt := B (0, |Zt|(1 + ht)) ∩ Vt .

We partition the path set Γ(0) into the following five disjoint components

Eit :=



{
p ∈ Γ(0) : Set(p) ⊆ Bt, z(p) = Zt

}
, i = 1 ; (non-negligible component){

p ∈ Γ(0) : Set(p) ⊆ Vt, z(p) ∈ Π(Lt) \ Zt
}
, i = 2 ; (path does not hit best site){

p ∈ Γ(0) : Set(p) ⊆ Vt, Set(p) 6⊆ Bt, z(p) = Zt
}
, i = 3 ; (path travels far){

p ∈ Γ(0) : Set(p) ⊆ Vt, z(p) /∈ Π(Lt)
}
, i = 4 ; (path avoids all high sites)

{p ∈ Γ(0) : Set(p) 6⊆ Vt} , i = 5 ; (path leaves macrobox)

and associate each component Eit with a portion of the total mass U(t) of the solution. As
such, for each 1 ≤ i ≤ 5, let

ui(t, z) :=
∑
p∈Eit

up(t, z) and U i(t) =
∑
z∈Zd

ui(t, z) .
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Our strategy is to establish that each of U2(t), U3(t), U4(t) and U5(t) are negligible with
respect to the total mass U(t) of the solution, in other words that,

U i(t)

U(t)
→ 0 in probability, for i = 2, 3, 4, 5 .

To complete the proof of localisation, we also prove that U1(t) is localised at Zt, i.e. that,

u1(t, Zt)

U1(t)
→ 1 in probability.

Note that this strategy requires a balance to be struck in how Bt is defined; it must be large
enough that U3(t) is negligible, but small enough to ensure localisation. The scale ht has
been fine-tuned in (17) precisely to ensure this balance is struck correctly.

Negligible paths

The negligibility of U4(t) and U5(t) are simple to establish; the main difficulty is estab-
lishing the negligibility of U2(t) and U3(t). Our proof is based on formalising two heuristics.
First heuristic: Recall the constant j := [γ−1] ≥ ρ and the definition of the j-local principal
eigenvalue λ(j) from Section 1.8. We expect that, for a path p ∈ Γ(0) \ E5

t ,

Up(t) ≈ exp
{
tλ(j)(z(p))

}
a
−|p|
t , (18)

which represents the balance between (i) the exponential growth of the solution at each site,
and (ii) the probabilistic penalty for travelling each step along the path p.

The accuracy of this heuristic relies on some subtle observations about the BAM (and
indeed the PAM) which we shall briefly discuss further. First is the claim that the j-local
principal eigenvalues closely approximate the exponential growth rate of the solution at a site
(note that here we could take a slightly smaller constant in place of j, but j will turn out
to be convenient for another reason; see immediately below). This approximation, in turn, is
based on the fact that there is a lack of resonance between the top eigenvalues of the operator
∆ + ξ restricted to any finite domain.

Second is the claim that it is never beneficial for a path to visit other sites of high potential,
other than z(p). This is proved by way of a ‘cluster expansion’ (see Lemma 3.13) which bounds
the contribution to Up(t) between the time p visits a site z of high potential until it leaves the
ball B(z, j). Crucially, j is chosen precisely to be the smallest integer for which this ‘cluster
expansion’ bound is smaller than the probabilistic penalty associated with the path getting
from outside the ball B(z, j) to z (see the proof of Proposition 6.7).

Third is the claim that the probabilistic penalty for travelling along the path p is approx-
imately 1/at for each step of the path. Implicit in this claim is the highly non-trivial fact
that the trapping landscape σ is not an obstacle to the diffusivity of the particle, in other
words, that a sufficiently ‘quick’ path exists from 0 to the site z(p). If d ≥ 2, this is essentially
due to percolation estimates; if d = 1, then this relies crucially on the additional tail decay
assumption on the distribution of σ(0), and our proofs and methods break down without it.
Second heuristic: We expect that, for i = 1, 2, 3,

U i(t) ≈ max
p∈Eit

Up(t) , (19)
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which represents the idea that U i(t) should be dominated by the contribution from just a
single path in the path set Eit . This is essentially due to the fact that the number of paths of
length k grows exponentially in k, whereas the probabilistic penalty associated with a path
of length k decays as a−kt , which dominates since at →∞.

Let us consider what these heuristics imply for U(t). Recall the definition of Π(Lt) from
Section 1.7. By analogy with Ψt and Zt, define

Ψ
(j)
t (z) = λ(j)(z)− |z|

γt
log log t

and Z
(j)
t := arg maxz∈Π(Lt) Ψ

(j)
t . Note that it will turn out that Z

(j)
t = Zt with overwhelming

probability (see Corollary 5.11), so we will interchange between these freely in the discussion
that follows. Clearly, by the two heuristics, the dominant contribution to U(t) will come from
a path p ∈ Γ(0) that goes directly from the origin to z(p), and so we expect that

U(t) ≈ max
p∈Γ(0)

{
exp

{
tλ(j)(z(p))

}
a
−|z(p)|
t

}
≈ exp

{
tmax
z∈Zd

Ψ
(j)
t (z)

}
= exp

{
tΨ

(j)
t (Z

(j)
t )
}
.

Indeed, we formalise this approximation as a lower bound

logU(t) ≥ tΨ(j)
t (Z

(j)
t ) +O(tdtbt) . (20)

Similarly for U2(t), the heuristics imply that the dominant contribution will come from
the path p ∈ E2

t that goes directly from the origin to the site

Z
(j,2)
t = arg max

z∈Π(Lt)\{Z(j)
t }

Ψ
(j)
t (z) ,

and so

U2(t) ≈ exp
{
tλ(j)(Z

(j,2)
t )

}
a
−|Z(j,2)

t |
t ≈ exp

{
tΨ

(j)
t (Z

(j,2)
t )

}
.

We formalise this approximation as an upper bound

logU2(t) ≤ tΨ(j)
t (Z

(j,2)
t ) +O(tdtbt) ,

which, together with equation (20), implies that

logU2(t)− logU(t) ≤ −t
(

Ψ
(j)
t (Z

(j)
t )−Ψ

(j)
t (Z

(j,2)
t ) +O(dtbt)

)
.

Remark that the negligibility of U2(t) is then a consequence of the gap in the top order

statistics of Ψ
(j)
t being larger than the error (of order O(dtbt)) in these bounds.

Finally, the heuristics imply that the dominant contribution to U3(t) will come from a
path p that visits Zt but that also ventures outside Bt, and so

U3(t) ≈ exp
{
tλ(j)(Zt)

}
a
−|Zt|(1+ht)
t .

We formalise this approximation as an upper bound

logU3(t) ≤ tλ(j)(Zt)−
1

γ
|Zt|(1 + ht) log log t+O(tdtbt) (21)
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which, together with equation (20), implies that

logU3(t)− logU(t) ≤ −1

γ
|Zt|ht log log t+O(tdtbt) .

Remark that the negligibility of U3(t) is then a consequence of |Zt|ht log log t being larger
than the error (also of order O(tdtbt)) in these bounds.

In Section 5 we study extremal theory for λ(j) and Ψ
(j)
t , demonstrating, in particular, that

Ψ
(j)
t (Z

(j)
t )−Ψ

(j)
t (Z

(j,2)
t ) > dtet and |Z(j)

t |ht log log t > tdtet

both hold eventually with overwhelming probability. We also show that Z
(j)
t = Zt with

overwhelming probability. In the process, we establish the description of the localisation site
Zt that is contained in Theorem 1.9, as well as the optimality results in Theorem 1.10. In
Section 6, we show how to formalise the heuristics in equations (18) and (19) into the bounds
in equations (20) and (21), and so complete the proof of the negligibility of U2(t) and U3(t).

Throughout, we draw on the preliminary results established in Sections 3 and 4. Section 3
contains a compilation of general results on operators of the form ∆σ−1+ξ. Section 4 contains
general results on the random fields ξ and σ. Of particular concern here is the existence of
‘quick’ paths through the trapping landscape σ.

Localisation

In Section 7 we complete the proof of Theorem 1.7 by showing that u1(t, z) is localised at
the site Zt. The main idea is the same as in [6] and [4], namely that: (i) the solution u1(t, z)
is asymptotically approximated by the principal eigenfunction of the operator ∆σ−1 + ξ
restricted to the domain Bt; and (ii) the principal eigenfunction decays exponentially away
from the site Zt. Underlying this reasoning is the fact that the domain Bt has been constructed
to ensure that λ(j)(Zt) is the largest j-local principal eigenvalue in the domain. This in
turn allows us to give a Feynman-Kac representation of the principal eigenfunction vt (see
Proposition 7.3), which we analyse probabilistically to establish exponential decay.

3. General theory for the BAM

In this section we develop general theory for operators of the form ∆σ−1 +ξ which is valid
for arbitrary ξ and positive σ. This section will be entirely self-contained and is completely
deterministic, and may be of independent interest. We have chosen to develop the theory in
full generality so as to take advantage of the results in future work.

Throughout this section, let D ⊂ Zd be a bounded domain and let ξ and σ be arbitrary
functions ξ : Zd → R and σ : Zd → R+, with η := ξ − σ−1. Denote by H the Hamiltonian

H := ∆σ−1 + ξ

restricted to the domain D with Dirichlet boundary conditions, and let {λi}i≤|D| and {ϕi}i≤|D|
be respectively the (finite) set of eigenvalues and eigenfunctions of H, with eigenvalues in
descending order and eigenfunctions `2 normalised. Finally, recall that Xs denotes the BTM
and define the stopping times

τz := inf{t ≥ 0 : Xt = z} and τDc := inf{t ≥ 0 : Xt /∈ D} .

We start by presenting representations and deriving simple bounds for λ1 and ϕ1.
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Lemma 3.1 (Principal eigenvalue monotonicity). For each z ∈ D and δ > 0, let λ̄1 be the
principal eigenvalue of the operator H+ δ1{z}. Then λ̄1 > λ1.

Moreover, for each strictly smaller domain D̄ ⊂ D, let λ̄1 be the principal eigenvalue of H
restricted to the domain D̄ with Dirichlet boundary conditions. Then λ̄1 < λ1.

Proof. These are general properties of elliptic operators.

Lemma 3.2 (Bounds on the principal eigenvalue).

max
z∈D
{η(z)} ≤ λ1 ≤ max

z∈D

η(z) +
∑
|y−z|=1

1

2d
σ−1(y)

 .

Proof. The lower bound follows from the min-max theorem for the principal eigenvalue; the
upper bound follows from the Gershgorin circle theorem.

Proposition 3.3 (Feynman-Kac representation for the principal eigenfunction). For each
y, z ∈ D the principal eigenfunction ϕ1 satisfies the Feynman-Kac representation

ϕ1(y)

ϕ1(z)
=
σ(y)

σ(z)
Ey
[
exp

{∫ τz

0
(ξ(Xs)− λ1) ds

}
1{τDc>τz}

]
. (22)

Proof. Consider z fixed and define vz(y) := ϕ1(y)/ϕ1(z). Note that the function vz satisfies
the Dirichlet problem

(∆σ−1 + ξ − λ1) vz(y) = 0 , y ∈ D \ {z} ;

vz(y) = 1{z}(y) , y /∈ D \ {z} .

It is easy to check (for instance, by integrating over the first holding time) that the Feynman-
Kac representation on the right-hand side of equation (22) also satisfies this Dirichlet problem;
hence we are done if there is a unique solution. So assume another non-trivial solution w
exists. Then the difference q := vz − w satisfies the Dirichlet problem

(∆σ−1 + ξ − λ1) q(y) = 0 , y ∈ D \ {z} ;

q(y) = 0 , y /∈ D \ {z} ;

which is nonzero if and only if λ1 is an eigenvalue of the operator ∆σ−1 + ξ restricted to
the domain D \ {z} with Dirichlet boundary conditions. By the domain monotonicity of the
principal eigenvalue in Lemma 3.1, this is impossible.

Lemma 3.4 (Path-wise evaluation). For each k ∈ N, y, z ∈ D, p ∈ Γk(z, y) such that pi 6= y
for i < k and Set(p) ⊆ D, and ζ > max0≤i<k η(pi), we have

Ez
[
exp

{∫ τy

0
(ξ(Xs)− ζ) ds

}
1{pk(X)=p}

]
=

k−1∏
i=0

1

2d

σ−1(pi)

ζ − η(pi)
.

Proof. This follows by integrating over the holding times at the sites {pi}0≤i≤k−1, which are
independent. The restriction on ζ ensures that the resulting integrals are finite.
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Proposition 3.5 (Path expansion for the principal eigenvector). For each y, z ∈ D the
principal eigenfunction ϕ1 satisfies the path expansion

ϕ1(y)

ϕ1(z)
=
σ(y)

σ(z)

∑
k≥1

∑
p∈Γk(y,z)
pi 6=z, 0≤i<k

Set(p)⊆D

∏
0≤i<k

1

2d

σ−1(pi)

λ1 − η(pi)
.

Proof. The expectation on the right-hand side of equation (22) can be expanded path-wise
using Lemma 3.4, which is valid by the lower bound in Lemma 3.2.

Remark 3.6. Note that the initial factor σ(y) in the above path expansion cancels with
the term σ−1(p1) appeaing in each component of the sum. This turns out to be crucial in
establishing the localisation of the eigenfunctions in Sections 6 and 7, since a priori σ(y)
could be arbitrarily large.

Proposition 3.7 (Path expansion for the principal eigenvalue). For each z ∈ D the principal
eigenvalue has the path expansion

λ1 = η(z) + σ−1(z)
∑
k≥2

∑
p∈Γk(z,z)
pi 6=z, 0<i<k

Set(p)⊆D

∏
0<i<k

1

2d

σ−1(pi)

λ1 − η(pi)
.

Proof. Recalling that the eigenfunction relation evaluated at a site z gives

λ1 = η(z) +
∑
|y−z|=1

σ−1(y)
ϕ1(y)

ϕ1(z)
,

the result follows from Proposition 3.5.

We now study the solution uz(t, y) to the Cauchy problem

∂uz(t, y)

∂t
= H u(t, y) , (t, y) ∈ [0,∞)×D ; (23)

uz(0, y) = 1{z}(y) , y ∈ Zd .

In particular, we give the spectral representation of uz(t, y) and deduce upper and lower
bounds.

Proposition 3.8 (Feynman-Kac representation of the solution). For each y, z ∈ D,

uz(t, y) = Ez
[
exp

{∫ t

0
ξ(Xs)ds

}
1{Xt=y}1{τDc>t}

]
.

Proof. It can be directly verified that the Feynman-Kac representation satisfies (23).

Lemma 3.9 (Time-reversal). For each y, z ∈ D,

uz(t, y)σ(z) = uy(t, z)σ(y) .
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Proof. Consider the Hermitian operator

H̃ := σ−
1
2Hσ

1
2 = σ−

1
2 ∆σ−

1
2 + ξ

which can be viewed as the ‘symmetrised’ form of H. Since,

eH̃t = eσ
− 1

2Hσ
1
2 t = σ−

1
2 eHtσ

1
2 ,

we have, by the fact that H̃ is Hermitian,

uz(t, y) = eHt1{z}(y) =

(
σ(y)

σ(z)

) 1
2

eH̃t1{z}(y) =

(
σ(y)

σ(z)

) 1
2

eH̃t1{y}(z)

=
σ(y)

σ(z)
eHt1{y}(z) =

σ(y)

σ(z)
uy(t, z) .

Proposition 3.10 (Spectral representation for the solution). For each y, z ∈ D, the solution
uz(t, y) satisfies the spectral representation

uz(t, y) = σ−1(z)
∑
i

eλitϕi(z)ϕi(y)

||σ−
1
2ϕi||2`2

.

Proof. Recall the Hermitian operator H̃ from the proof of Lemma 3.9. Note that each (`2
normalised) eigenfunction ϕ̃i of H̃ satisfies the relation

ϕ̃i =
σ−

1
2ϕi

||σ−
1
2ϕi||`2

with λi the corresponding eigenvalue for ϕ̃i. The proof then follows by applying the spectral
theorem to H̃.

Corollary 3.11 (Bounds on the solution). For each z ∈ D we have the bounds

eλ1tσ−1(z)ϕ2
1(z)

||σ−
1
2ϕ1||2`2

≤ uz(t, z) ≤ eλ1t .

Proof. The lower bound follows directly from Proposition 3.10. For the upper bound, first
use Proposition 3.10 to write

uz(t, z) ≤ eλ1tσ−1(z)
∑
i

ϕ2
i (z)

‖σ−
1
2ϕi‖2`2

.

Then, since uz(0, z) = 1, Proposition 3.10 also implies that

σ−1(z)
∑
i

ϕ2
i (z)

‖σ−
1
2ϕi‖2`2

= 1

and the result follows.

23



Proposition 3.12 (Bound on the total mass of the solution). For each y, z ∈ D,∑
y∈D

uz(t, y) ≤ eλ1t
∑
y∈D

ϕ1(y)

ϕ1(z)
.

Proof. We write Fτz for the σ-algebra generated by the stopping time τz. First decompose
the Feynman-Kac representation for uy(t, z) in Proposition 3.8 by conditioning on Fτz and
using the strong Markov property:

uy(t, z) = Eτz
[
eλ1τz Ey

[
exp

{∫ τz

0
(ξ(Xs)− λ1) ds

}
1{τz<τDc}

∣∣∣∣Fτz]
×Ez

[
exp

{∫ t−τz

0
ξ(X ′s) ds

}
1{X′t−τz=z,τ ′Dc>t−τz}

∣∣∣∣Fτz]1{τz≤t}]
= Eτz

[
eλ1τz Ey

[
exp

{∫ τz

0
(ξ(Xs)− λ1) ds

}
1{τz<τDc}

∣∣∣∣Fτz]uz(t− τz, z)1{τz≤t}] ,
where Eτz denotes expectation taken over τz, X

′
t is an independent copy of Xt, and τ ′Dc :=

inf{t ≥ 0 : X ′t /∈ D}. Using the upper bound in Corollary 3.11 combined with the Feynman-
Kac representation for the principal eigenfunction in Proposition 3.3, we have that

uy(t, z) ≤ eλ1tEy
[
exp

{∫ τz

0
(ξ(Xs)− λ1) ds

}
1{τz<τDc}

]
= eλ1t

ϕ1(y)

ϕ1(z)

σ(z)

σ(y)
.

Finally, applying the time-reversal Lemma 3.9, we have

uz(t, y) = uy(t, z)
σ(y)

σ(z)
≤ eλ1tϕ1(y)

ϕ1(z)
,

which, after summing over y ∈ D, yields the result.

Next we prove a ‘cluster expansion’ that is useful for bounding expectations of the
‘Feynman-Kac type’. It is similar in spirit to [6, Lemma 4.2] and [23, Lemma 2.18], however
we will need an additional form of the bound to accommodate the impact of the trapping
landscape (see the proof of Lemma 7.4).

Lemma 3.13 (Cluster expansion). For each z ∈ D and for any ζ > λ1,

Ez
[
exp

{∫ τDc

0
(ξ(Xs)− ζ) ds

}]
≤ 1 +

maxw∈D{σ−1(w)} |D|
ζ − λ1

and

Ez
[
exp

{∫ τDc

0
(ξ(Xs)− ζ) ds

}]
≤ σ−1(z)

ζ − λ1

(
1 +

maxw∈D{σ−1(w)} |D|
ζ − λ1

)
.

Proof. We proceed by modifying the proofs of [6, Lemma 4.2] and [23, Lemma 2.18]. First
abbreviate

u(y) := Ey
[
exp

{∫ τDc

0
(ξ(Xs)− ζ) ds

}]
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and remark that u solves the boundary value problem

(σ−1∆ + ξ − ζ)u(y) = 0 , y ∈ D ; (24)

u(y) = 1 , y /∈ D .

Note that, in contrast to in the proof of Proposition 3.3, in the above boundary value problem
the relevant operator is the adjoint of H, since here we have not weighted the expectation
by σ. We make the substitution w := u − 1, where 1 denotes the vector of ones, which
turns (24) into

(σ−1∆ + ξ − ζ)w(y) = −(σ−1∆ + ξ − ζ)1(y) = ζ − ξ(y) , y ∈ D ;

w(y) = 0 , y /∈ D .

Since ζ > λ1, the solution exists and is given by

w(y) = (Rζ(ξ − ζ)) (y)

where Rζ is the resolvent of σ−1∆ + ξ at ζ. By Lemma 3.2 and since ζ > λ1 we have that
ξ(y)− ζ ≤ σ−1 for all y ∈ D, and so by the positivity of the resolvent (guaranteed since H is
elliptic and ζ > λ1) we obtain

w(z) ≤
(
Rζσ−1

)
(y) =

(
σ−

1
2 R̃ζσ−

1
2

)
(y) ≤ max

z∈D
{σ−1(z)}|D| ‖R̃ζ‖ ,

where R̃ζ is the resolvent of the Hermitian operator H̃ = σ−
1
2 ∆σ−

1
2 +ξ at ζ and ‖·‖ denotes the

operator norm. By considering the spectral representation of R̃ζ we have ‖R̃ζ‖ ≤ (ζ − λ1)−1

which gives the first bound. For the second bound, consider that (24) implies the identify

u(y) =
σ−1(y)

ζ − ξ(y) + σ−1(y)

∑
|x−y|=1

1

2d
u(x) . (25)

Applying the first bound to each u(x) in the sum in (25), the result follows by bounding
ξ(y) − σ−1(y) in the denominator of (25) from above by λ1, valid by the lower bound in
Lemma 3.2.

Finally, we give a general way to bound the contribution to the solution uz(t, y) from
paths that hit a certain site x ∈ D and then stay within a subdomain E ⊆ D that contains x.
In particular, we show that this contribution is proportional to the principal eigenfunction of
H restricted to E. This is similar in spirit to [6, Theorem 4.1], and it crucial to establishing
complete localisation of the solution.

So fix a domain E ⊆ D, a site x ∈ E, and define the operator HE to be the restriction
of H to the domain E with Dirichlet boundary conditions, with λE1 and ϕE1 respectively its
principal eigenvalue and eigenfunction. Define the stopping time

τx,Ec := inf{t ≥ τx : Xt /∈ E} .

Then the contribution to the solution uz(t, y) from paths that hit x and then stay within E
can be written

ux,Ez (t, y) := Ez
[
exp

{∫ t

0
ξ(Xs) ds

}
1{Xt=y,τx≤t,τx,Ec>t,τDc>t}

]
.
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Proposition 3.14 (Link between solution and principal eigenfunction; see [6, Theorem 4.1]).
For each x ∈ E, y ∈ E \ {x} and z ∈ D,

ux,Ez (t, y)∑
y∈D uz(t, y)

≤
σ(y)‖σ−

1
2ϕE1 ‖2`2

(ϕE1 (x))3
ϕE1 (y) .

Proof. We proceed by modifying the proof of [6, Theorem 4.1]. The first step is to make use
of the time-reversal in Lemma 3.9, suitably adapted to ux,Ez (t, y). In particular, defining

u
←−−
x,E
y (t, z) := Ey

[
exp

{∫ t

0
ξ(Xs) ds

}
1{Xt=z,τx≤t,τx<τEc ,τDc>t}

]
we can write

ux,Ez (t, y)∑
y∈D uz(t, y)

≤ ux,Ez (t, y)

uz(t, x)
=
σ(y)

σ(x)

u
←−−
x,E
y (t, z)

ux(t, z)
. (26)

Next we decompose the Feynman-Kac formula for u
←−−
x,E
y (t, z) as in the proof of Proposition 3.12,

by conditioning on the σ-algebra generated by the stopping time τx, and using the strong
Markov property. More precisely, we write

u
←−−
x,E
y (t, z) = Eτx

[
eτxλ

E
1 Ey

[
exp

{∫ τx

0

(
ξ(Xs)− λE1

)
ds

}
1{τx<τEc}

∣∣∣∣Fτx] (27)

×Ex
[
exp

{∫ t−τx

0
ξ(X ′s) ds

}
1{X′t−τx=z,τ ′Dc>t−τx}

∣∣∣∣Fτx]1{τx≤t}] ,
where Eτx , X ′t and τ ′Dc are defined as in the proof of Proposition 3.12. Next, note that an
application of Corollary 3.11 gives the bound

1 ≤ ux,Ex (w, x)
σ(x)‖σ−

1
2ϕE1 ‖2`2

(ϕE1 (x))2
e−wλ

E
1 , (28)

and recall the representation

ux,Ex (w, x) = Ex
[
exp

{∫ w

0
ξ(X ′s) ds

}
1{X′w=x,τ ′Ec>w}

]
.

Combining the bound in (28) with equation (27) (setting w = τx), gives

u
←−−
x,E
y (t, z) ≤

σ(x)‖σ−
1
2ϕE1 ‖2`2

(ϕE1 (x))2
Eτx

[
Ey
[
exp

{∫ τx

0

(
ξ(Xs)− λE1

)
ds

}
1{τEc>τx}

∣∣∣∣Fτx]
× Ex

[
exp

{∫ τx

0
ξ(X ′s) ds

}
1{X′τx=x,τ ′Ec>τx}

∣∣∣∣Fτx]
×Ex

[
exp

{∫ t−τx

0
ξ(X ′s) ds

}
1{X′t−τx=z,τ ′Dc>t−τx}

∣∣∣∣Fτx]1{τx≤t}]
≤
σ(x)‖σ−

1
2ϕE1 ‖2`2

(ϕE1 (x))2
Eτx

[
Ey
[
exp

{∫ τx

0

(
ξ(Xs)− λE1

)
ds

}
1{τEc>τx}

∣∣∣∣Fτx]
×Ex

[
exp

{∫ t

0
ξ(X ′s) ds

}
1{X′t=z,τ ′Dc>t}

∣∣∣∣Fτx]1{τx≤t}]
≤
σ(x)2‖σ−

1
2ϕE1 ‖2`2

σ(y)(ϕE1 (x))3
ϕE1 (y) ux(t, z) ,
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where the inequality in the second step results from deleting the condition that X ′τx = x, and
where the last inequality results from deleting the condition that τx ≤ t, and where we have
used the Feynman-Kac representation for ϕE1 given by Proposition 3.3. Combining this with
equation (26) gives the result.

4. Properties of the random environments

In this section we establish properties of the i.i.d. fields ξ and σ. In the first part we give
asymptotics for the upper order statistics of ξ and σ. The second part is devoted to proving
the existence of ‘quick paths’, which are an essential part of our proof that the trapping
landscape does not prevent complete localisation in the BAM.

4.1. Almost sure asymptotics for ξ and σ

For each a ≤ 1, define the macrobox level Lt,a := ((1 − a) log |Vt|)
1
γ and let the subset

Π(Lt,a) :=
{
z ∈ Zd : ξ(z) > Lt,a

}
∩ Vt consist of sites in Vt at which ξ-exceedances of the level

Lt,a occur. Recall that Lt := Lt,θ.

Lemma 4.1 (Almost sure asymptotics for ξ). Denote by ξt,i the ith highest value of ξ in Vt.
Then for a ∈ [0, 1) and a′ ∈ (0, 1], as t→∞,

ξt,[|Vt|a] ∼ Lt,a and |Π(Lt,a′ )| ∼ |Vt|a
′

hold almost surely.

Proof. These follow from well-known results on sequences of i.i.d. random variables; they are
proved in a similar way as [24, Lemma 4.7].

Recall that for a set S ∈ Zd we denote by sep (S) := minx 6=y∈S{|x− y|}.

Lemma 4.2 (Almost sure separation of high points of ξ). For any a > 0 and n ∈ N let

Π(Lt,a)
n := {z ∈ B(Vt, n) : ξ(z) > Lt,a}

be the set of Lt,a exceedences of ξ in the n-extended macrobox B(Vt, n). Then, for any a′ < a,
as t→∞

sep
(

Π
(Lt,a)
n ∪ {0}

)
> |Vt|

1−2a′
d

eventually almost surely.

Proof. This result is proved as in [10, Lemma 1].

Remark 4.3. Note that we need the almost sure separation of high points in the n-extended
macrobox B(Vt, n) rather than just in Vt because each λ(n)(z), for z ∈ Vt, depends on the
random environments ξ and σ in the ball B(z, n) ⊆ B(Vt, n). This result implies that,
eventually almost surely, each z ∈ Π(Lt,a) has the property that ξ(y) < Lt,a for all y ∈
B(z, n) \ {z}.

Corollary 4.4 (Paths cannot always remain close to high points of ξ). There exists a c ∈ (0, 1)
such that, for each n ∈ N, all paths p ∈ Γ(0, z) such that Set(p) ⊆ Vt satisfy, as t→∞,∣∣∣{i : pi /∈ B(Π(Lt), n)

}∣∣∣ ≥ |z| − |z|
tc
,

eventually almost surely.
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Proof. Abbreviate N := sep(Π(Lt) ∪ {0}) and

Q :=
∣∣∣{i : pi /∈ B(Π(Lt), n)

}∣∣∣ .
Suppose a path p passes through m distinct B(x, n) with x ∈ Π(Lt). Then, since there is a
minimum distance of (N − 2n) between each such ball, the path p satisfies

Q ≥ m(N − 2n) .

On the other hand, it is clear that that Q ≥ |z| − (2n+ 1)m. Therefore

Q ≥ min
m∈N

max {m(N − 2n− 1), |z| − (2n+ 1)m} ≥ (N − 2n− 1)|z|
N

= |z| − (2n+ 1)|z|
N

and the result follows from Lemma 4.2.

Lemma 4.5 (Almost sure asymptotics for σ). Denote by σ1
n the largest value among n i.i.d.

copies of σ(0). Then, under Assumption 1.6, for any c > 1, as n→∞,

gσ(σ1
n) ≤ c log n

eventually almost surely.

Proof. By [25, Theorem 3.5.1] we have equivalence of the statements

{
P
(
gσ(σ1

n) ≤ c log n ev.
)

= 1
}

and
{ ∞∑
n=1

P
(
gσ(σ(0)) > c log n

)
<∞

}
.

The proof is complete by noticing that, since gσ is continuous by Assumption 1.6, the random
variable F̄σ(σ(0)) is uniformly distributed over (0, 1). Hence, for any c > 1,

∞∑
n=1

P
(
gσ(σ(0)) > c log n

)
=
∞∑
n=1

n−c <∞ .

4.2. Existence of quick paths

In this section we prove the existence of paths p ∈ Γ(0, z) for certain z ∈ Vt that have the
property that (i) all σ(pi) are relatively small, and (ii) p is not much longer than a direct path
to z; what we mean by ‘relatively small’ and ‘not much longer’ will depend on the dimension.
We shall informally refer to such paths as quick paths. The reason we are interested in quick
paths is that they are intimately related to the probability that a particle undertaking the
BAM reaches a certain site z by time t.

In dimension higher than one, we will additionally require that such paths do not travel
too close to a certain well-separated set St. The reason for this additional requirement is that
we will eventually seek to apply our results to the site Zt, which depends in a complicated
way on σ(z) for z ∈ B(Π(Lt), ρ). We will wish to avoid this dependence, hence our insistence
on the fact that the paths do not travel too close to St.
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4.2.1. Dimension one

In dimension one, there is only one shortest path from 0 to z and this must pass through
all intermediate sites. Hence, we seek to show that not too many traps on this path are too
large. Clearly, the ability to do this depends on the tail decay of σ, which is the origin of the
extra tail decay condition for d = 1 in Assumption 1.6.

To proceed, we must undertake a rather delicate analysis of the trapping landscape σ in
the region between 0 and z. We simplify this using coarse graining, essentially placing each
site y into a certain ‘bin’ depending on the value of σ(y). We then seek to bound the number
of sites in each bin, weighted by the depth of the traps corresponding to each bin. To assist in
the coarse graining, we state and prove a technical lemma on the regularity of the upper-tail
of σ(0).

Lemma 4.6 (Regularity of the upper-tail of σ(0)). Under Assumption 1.6, let xt be such
that

gσ(exp{exp{xt}}) = t ,

which is well-defined by the continuity of gσ. Then, for constants c1 and c2 such that c2 >
c1 ≥ 1, as t→∞,

gσ(exp{exp{c2xt}}) > c1t

eventually.

Proof. Let c be the constant in part (d) of Assumption 1.6. In the case where c <∞, for any
ε > 0, as t→∞,

t = gσ(exp{exp{xt}}) < xt (c+ ε)

eventually. Choosing the 0 < ε < c(c2 − c1)/(c1 + c2), we have that, as t→∞,

gσ(exp{exp{c2xt}}) > c2xt (c− ε) > t
c2(c− ε)
c+ ε

> c1t

eventually. On the other hand, in the case where c =∞, then by Assumption 1.6,

t = gσ(exp{exp{xt}}) = xtκxt

for some κt ↑ ∞. Similarly

gσ(exp{exp{c2xt}}) = c2xtκc2xt > c1xtκxt = c1t

eventually, which completes the proof.

We now define the coarse graining scales that we will use. Let nt and σt be arbitrary
functions tending to ∞ as t→∞.

Lemma 4.7 (Existence of well-spaced coarse graining scales). Let ε < 1 be a constant that
satisfies part (c) of Assumption 1.6. Then there exist constants 0 < δ1 < δ2 < ε < 1 < c1, an
integer It = O(log log nt) and a set of scaling functions {σit}0≤i≤It such that, as t → ∞, the
following are all satisfied eventually:

(a) σ0
t = 0 ,

log log σ1
t

log log σt
∈ [1 + δ1, 1 + δ2] ,

log log σit
log log σi−1

t

∈ [1 + δ1, 1 + δ2] for 2 ≤ i ≤ It ;

(b) gσ(σIt−1
t ) ≤ c−1

1 log nt ; and
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(c) gσ(σItt ) ≥ c1 log nt .

Proof. Choose c1, δ1 and δ2 such that 1 < c2
1 < 1 + δ2 and 1 + δ1 < (1 + δ2)/c2

1. Suppose that
we define a sequence {σ̄it}i≥0 such that

σ̄0
t = 0 ,

log log σ̄1
t

log log σt
= 1 + δ1 and

log log σ̄it
log log σ̄i−1

t

= 1 + δ1 for each i ≥ 2 ,

and let It be the maximum integer such that

gσ(σ̄It−1
t ) ≤ c−1

1 log nt .

This satisfies
It = O(log log nt) ,

since if It > 1, then eventually

(1 + δ1)It−2 log log σ̄1
t = log log σ̄It−1

t < gσ(σ̄It−1
t ) ≤ c−1

1 log nt .

Now set σit = σ̄it for all 0 ≤ i ≤ It − 1, and choose σItt by{
log log σItt = (1 + δ2) log log σIt−1

t , It > 1 ;

log log σItt = (1 + δ2) log log σt , It = 1 .

It remains to check that gσ(σItt ) ≥ c1 log nt. By definition,

log log σItt =
1 + δ2

1 + δ1
log log σ̄Itt .

Then by Lemma 4.6, and the fact that 1 + δ1 < (1 + δ2)/c2
1, as t→∞,

gσ(σItt ) > c2
1gσ(σ̄Itt )

eventually. Finally, by the definition of It,

gσ(σ̄Itt ) > c−1
1 log nt

which completes the proof.

Finally, we prove the existence of a quick path. Let c1, δ1, δ2, It and {σit}0≤i≤It satisfy
the conditions in Lemma 4.7. Moreover, for a path p ∈ Γk define

Ni =
∑

0≤j<k
1{σ(pj)∈(σi−1

t ,σit]}
for each 1 ≤ i ≤ It .

The following proposition essentially bounds the number of sites in each coarse graining scale,
weighted by the log of the scale. This will turn out to be the correct definition of a ‘quick
path’ in Section 6.
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Proposition 4.8 (Existence of quick paths; d = 1). As t→∞, each path p ∈ Γ|z|(0, z) with
|z| < nt, satisfies

P

(
It∑
i=1

Ni log σit < nt max
{

(log σt)
2, log lognt/ log log σt

})
→ 1

and
max

0≤i<|z|
σ(pi) < σItt ,

eventually almost surely.

Proof. We first prove that the event

Nt :=

It⋃
i=1

{
Ni ≤ 2nt F̄σ(σi−1

t )
}

satisfies P(Nt)→ 1 as t→∞. Note that each Ni is stochastically dominated by

N̄i
d
= Binom(nt, F̄σ(σi−1

t )) ,

with EN̄i = ntF̄σ(σi−1
t ) and VarN̄i ≤ ntF̄σ(σi−1

t ). By the union bound and Chebyshev’s
inequality,

P
(⋃

i

{N̄i > 2EN̄i}
)
≤
∑
i

P(N̄i > 2EN̄i) ≤
∑
i

VarN̄i

(EN̄i)2
≤
∑
i

(
ntF̄σ(σi−1

t )
)−1

. (29)

Since the σit are increasing in i, for any 1 ≤ i ≤ It,

F̄σ(σi−1
t ) ≥ F̄σ(σIt−1

t ) ≥ n−c
−1
1

t ,

by condition (b) of Lemma 4.7. Combining with (29), by the union bound, as t → ∞,
eventually

P(Nt) > 1− It n
c−1
1 −1
t → 1 ,

since c1 > 1 and It = O(log log nt).
So assume the event Nt holds and split the sum

It∑
i=1

Ni log σit = N1 log σ1
t +

It∑
i=2

Ni log σit .

For the first term, on the event Nt and by condition (a) in Lemma 4.7 we have

N1 log σ1
t ≤ 2ntF̄σ(σ0

t ) log σ1
t = 2nt log σ1

t ≤ 2nt(log σt)
1+δ2 < nt(log σt)

2/2

eventually. Hence it suffices to show that each of the other terms, for 2 ≤ i ≤ It, satisfy

ItNi log σit <
1

2
nt log lognt/ log log σt
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eventually. Recall that by condition (a) in Lemma 4.7, log σit ≤ (log σi−1
t )1+δ2 for 2 ≤ i ≤ It.

Then, on the event Nt and by part (c) of Assumption 1.6, eventually,

Ni log σit ≤ 2ntF̄σ(σi−1
t ) log σit ≤ 2nt(log σi−1

t )−ε+δ2

≤ nt(log σi−1
t )−c2 ,

for some c2 > 0, since δ2 < ε. So by monotonicity in i and condition (a) in Lemma 4.7,

ItNi log σit ≤ Itnt(log σ1
t )
−c2 < nt log log nt(log σt)

−c3

eventually, for any 0 < c3 < c2(1 + δ1) which proves the claim.
Finally, the fact that, eventually almost surely,

max
0≤i<|z|

σ(pi) < σItt

follows from combining condition (c) in Lemma 4.7 with Lemma 4.5.

4.2.2. Dimension higher than one

In dimensions higher than one we use percolation-type estimates to prove the existence of
a path p ∈ Γ(0, z) with z ∈ St for some well-separated set St that (i) avoids all the deep traps,
(ii) has |p| not much more than |z|, and (iii) does not travel too close to sites in St. Because
we use percolation-type arguments, it will turn out that we need no extra assumption on the
tail decay of σ(0).

So let us start with the relevant percolation-type estimates; for background on percolation
theory see [26]. Consider site percolation on Zd with P(v open) = q independently for every
v ∈ Zd. We say that a subset of Zd is ∗-connected if it is connected with respect to the
adjacency relation

v
∗∼ w ⇔ max

1≤i≤d
|vi − wi| = 1 ,

where vi and wi denote the coordinate projections of v and w respectively. If v
∗∼ w we say

that w is a ∗-neighbour of v. A ∗-connected subset of Zd is referred to as a ∗-cluster. The
relevance of ∗-clusters is that they represent the blocking clusters for open paths in Zd. For
v ∈ Zd a closed site, denote by C(v) the largest ∗-cluster of closed sites containing v.

For two sites u, v in Zd denote by d∞(u, v) their chemical distance (also known as the
graph distance) with respect to site percolation, defined to be the length of the shortest open
path from u to v (and defined to be infinite if no such path exists).

Lemma 4.9 (Expected size and maximum of closed ∗-clusters). Let q ∈ (1− (3d)−1, 1) and
suppose u1, . . . , uM are M ∈ N distinct closed sites in Zd. Then

(i) E[|C(u1)|] ≤ (1− 3d(1− q))−1, and so in particular E[|C(u1)|]→ 1 as q → 1; and

(ii) For every x ∈ N,

P(max{|C(u1)|, . . . , |C(uM )|} < x) ≥ 1−M(3d(1− q))[log
3d
x] .

Proof. Consider performing a breadth-first search on C(u1) starting from the site u1, by
first discovering the closed ∗-neighbours v1, . . . , vk of u1, and then in turn discovering the
closed ∗-neighbours of each of the vj , 1 ≤ j ≤ k, iterating this procedure to explore C(u1).

32



Suppose that the site w has just been explored in this procedure. Then the number of closed
∗-neighbours of w that have not already been discovered is stochastically dominated by a
Binom(3d − 1, 1 − q) random variable. It follows that |C(u1)| is stochastically dominated by
the total progeny of a branching process with offspring distribution Binom(3d, 1 − q). Since
the expected total progeny of this branching process is (1− 3d(1− q))−1, this proves the first
statement.

For the second statement, note that by the union bound we have

P(max{|C(u1)|, . . . , |C(uM )|} ≥ x) ≤
M∑
i=1

P(|C(ui)| ≥ x) = M P(|C(u1)| ≥ x) .

Again by exploring C(u1) we have

P(|C(u1)| ≥ x) ≤ P(Z ≥ x) ,

where Z is the total progeny of a branching process with offspring distribution Binom(3d, 1−
q). To complete the proof, note that by Markov’s inequality we have

P(Z ≥ x) ≤ P(Z(blog3d xc) > 0) ≤ (3d(1− q))[log
3d
x] ,

where Z(n) denotes number of individuals in generation n of the branching process.

Lemma 4.10 (Chemical distance). Fix two sites u, v in Zd and a function c := c(q) with
c→∞ as q → 1. Then, as q → 1,

P
(
d∞(u, v)

|u− v|
< 1 + c(1− q)

)
→ 1 .

Proof. Denote by C∞ the unique infinite open cluster, which exists almost surely for all q
sufficiently close to 1 (see [26]). Let p̂ ∈ Γ|u−v|(u, v) be any shortest path, denote by K the
subset of Set(p̂) consisting only of closed sites, and define

S :=
∣∣∣ ⋃
x∈K
C(x)

∣∣∣ ≤∑
x∈K
|C(x)| . (30)

By part (i) of Lemma 4.9 and the FKG inequality (see [26], Section 2.2), we have the bound

E[S|{u, v ∈ C∞}] ≤
E[ |K|

∣∣{u, v ∈ C∞}]
1− 3d(1− q)

≤ |u− v|(1− q)
1− 3d(1− q)

.

We now claim that, on the event {u, v ∈ C∞}, it is possible to find a path p ∈ Γk(u, v) for
some k ≤ |u − v| + (3d − 1)S such that every site in Set(p) is open. To obtain the required
path p take the direct path p̂ and divert it around C(u) for each closed u ∈ Set(p̂), so that
every site in Set(p) is either in Set(p̂) or in the outer boundary of some C(u), where by outer

boundary we mean the set of sites {v /∈ C(u) : ∃u ∈ C(u), u
∗∼ v}. This procedure is possible

since u, v ∈ C∞. Then Set(p) will consist of just open sites since the outer boundary of each
C(u) is a path of open sites. The bound on |p| follows from the fact that the size of the outer
boundary of a ∗-cluster A is at most (3d − 1)|A|.
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We complete the proof of the Lemma with Markov’s inequality:

P
(
d∞(u, v)

|u− v|
≥ 1 + c(1− q)

)
≤ P

(
|S| > c(1− q)|u− v|

(3d − 1)

∣∣∣∣{u, v ∈ C∞})+ P ({u, v ∈ C∞}c)

≤ 3d

c(1− 3d(1− q))
+ P ({u, v ∈ C∞}c) .

Since P(u, v ∈ C∞)→ 1 as as q → 1, this completes the proof.

We are now ready to show the existence of a quick path in dimensions higher than one.
Let St ⊆ Zd be such that

sep(St) > tε and min
u∈St
|u| > tε

eventually for some ε > 0. Recall the definition of j := [γ−1]. Let σt be an arbitrary function
tending to infinity as t→∞. Define the set

Zd(σt, St) := {z ∈ Zd : σ(z) ≤ σt, z /∈ B(St, j)} .

For a site z ∈ Zd, let |z|chem be the chemical distance of the ball B(z, j) in this set, that is, the
length of the shortest path from the origin to ∂B(z, j) that lies exclusively in this subgraph
(setting it as ∞ if such a path does not exist).

Proposition 4.11 (Existence of quick paths; d > 1). Let zt ∈ St∩Vt and let ct be a function
such that ct →∞ as t→∞ and F̄σ(σt)ct � 1. Then, there exists a constant c > 0 such that,
as t→∞,

P
(
|zt|chem

|zt|
≤ 1 + F̄σ(σt)ct + t−c

)
→ 1 .

Proof. Let q := 1 − F̄σ(σt). By Lemma 4.10, with probability tending to 1 as t → ∞ there
exists a path p̂ ∈ Γ`t(0, zt) for some

`t ≤ |zt|(1 + F̄σ(σt)ct)

such that σ(p̂i) ≤ σt for all 0 ≤ i < `t. Let i = min{0 ≤ j < `t : p̂j ∈ ∂B(zt, j)} and define
vt := p̂i to be the first site in ∂B(zt, j) visited by path p̂. We show how to modify p̂ so that
we obtain a new path p ∈ Γ(0, vt) for some vt ∈ ∂B(Zt, j) with Set(p) ⊆ Zd(σt, St).

The modification is done by diverting p̂ around the balls of radius j centred on sites in St.
In doing so, we may encounter new closed sites v, and these too must be avoided if we wish to
find a path p with Set(p) ⊆ Zd(σt, St). Formally, the set of these new closed sites is precisely

{x ∈ ∂B (St ∩B(Set(p̂), j), j) : σ(x) > σt} .

Denote by Mt the size of this set and its elements as w1, . . . , wMt , and choose 0 < c1 < ε
where ε is the constant appearing in the definition of St. Then by the separation of sites
in St, we have

|St ∩B(Set(p̂), j)| ≤ `tt−ε,

and so

Mt ≤ 3d|B(0, j)|`tt−ε < |zt|t−c1 (31)
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for all t sufficiently large. Choose now 0 < c2 < c1, α < −1 − (1 − c1)/c2, and t sufficiently
large so that

F̄σ(σt) < 3dα .

Applying part (ii) of Lemma 4.9, we deduce that

max{|C(w1)|, . . . , |C(wMt)|} ≤ tc2

with probability tending to 1 as t→∞. We claim this implies that, by the separation of sites
in St and the fact that c2 < ε, with overwhelming probability there exists a path p ∈ Γ(0, vt)
which avoids all j-balls centred on sites in St and all closed sites. Indeed to obtain this
path we take path p̂ and then divert around j-balls centred on sites in St and then further
divert around any new closed ∗-clusters we encounter. Since we know that no such cluster
is too large, they cannot cut the origin off from vt in Zd(σt, St), and furthermore we will not
encounter any more sites in St on the new path.

We can now bound |p|. The number of additional sites we must visit to obtain p from
p̂ is at most 3dMt(|B(0, j)| + tc2) with probability tending to 1 as t → ∞; this comes from
counting the diversions around each j-ball and the diversions around each closed cluster we
then encounter. Using (31), we can thus choose 0 < c < c1 − c2 to yield the result.

5. Extremal theory for local eigenvalues

In this section, we use point process techniques to study the random variables Z
(j)
t and

Ψ
(j)
t (Z

(j)
t ), and generalisations thereof; the techniques used are similar to those found in

[22, 5, 4], although we strengthen the results available in those papers. In the process, we
complete the proof of Theorems 1.9 and 1.10. Throughout this section, let ε be such that
0 < ε < θ.

5.1. Upper-tail properties of the local principal eigenvalues

The first step is to give upper-tail asymptotics for the distribution of the local principal
eigenvalues λ(n)(z) for z ∈ Π(Lt) and n ∈ N. These will allow us to study the random

variables Z
(j)
t and Ψ

(j)
t (Z

(j)
t ) via point process techniques. For technical reasons, we shall

actually consider a punctured version of λ(n)(z) which will coincide with λ(n)(z) eventually
almost surely for each z ∈ Π(Lt).

To this end, let {ξ̃z}z∈Vt be a collection of independent potential fields ξ̃z : Zd → R defined
so that, for each z ∈ Vt, we have ξ̃z(z) = ξ(z), and, for each y ∈ Vt \ {z}, instead ξ̃z(y) is i.i.d.
with common distribution

ξ̃(0) =

{
ξ(0), if ξ(0) < Lt ,

0, otherwise .

Then, for each z ∈ Vt and n ∈ N, let λ̃
(n)
t (z) be the principal eigenvalue of the punctured

Hamiltonian
H̃(n)(z) := ∆σ−1 + ξ̃z

restricted to the domain B(z, n) with Dirichlet boundary conditions.
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Proposition 5.1 (Path expansion for λ̃
(n)
t ). For each n ∈ N and z ∈ Π(Lt,ε) uniformly, as

t→∞,

λ̃
(n)
t (z) = η(z) + σ−1(z)

∑
2≤k≤2j

∑
p∈Γk(z,z)
pi 6=z, 0<i<k

Set(p)⊆B(z,n)

∏
0<i<k

(2d)−1 σ−1(pi)

λ̃
(n)
t (z)− η(pi)

+ o(dtet) ,

= η(z) +O(a−1
t ) .

Moreover, as t→∞,

λ̃
(n)
t (z) = λ(n)(z)

eventually almost surely.

Proof. Applying Proposition 3.7 we have that

λ̃
(n)
t (z) = η(z) + σ−1(z)

∑
k≥2

∑
p∈Γk(z,z)
pi 6=z, 0<i<k

Set(p)⊆B(z,n)

∏
0<i<k

(2d)−1 σ−1(pi)

λ̃
(n)
t (z)− η(pi)

.

Now recall that, by Lemmas 4.2 and 3.2, for each pi ∈ B(z, n) \ {z},

λ̃
(n)
t (z)− η(pi) > Lt,ε − Lt − δ−1

σ ∼ (θ − ε)at ,

eventually almost surely. Moreover, each σ−1(pi) is bounded above by δ−1
σ . Finally, as t→∞,

a
−(2j+2)
t = o(dtet) ,

by the definition of j. This means that, up to the error o(dtet), we can truncate the sum
at paths with 2j steps. It also means that the total contribution from the sum over paths

p ∈ Γk(z, z) is O(a−1
t ). Finally, the fact that λ̃

(n)
t (z) = λ(n)(z) eventually almost surely follows

directly from Lemma 4.2.

Proposition 5.2 (Extremal theory for λ̃
(n)
t ; see [22, Section 6], [5, Proposition 4.2]). For

each n ∈ N, there exists a scaling function At = at +O(1) such that, as t→∞ and for each
fixed x ∈ R,

td P
(
λ̃

(n)
t (0) > At + xdt

)
→ e−x .

Moreover, there exists a c > 0 such that, as t→∞ and uniformly for x > 0,

td P
(
λ̃

(n)
t (0) > At + xdt

)
< e−cx

min{1,γ}
.

Proof. First remark that, by Lemmas 4.2 and 3.2, as t→∞,

λ̃
(n)
t (0) > At + xdt implies that ξ(0) > Lt,ε ,

eventually almost surely, which means that we can apply the path expansion in Proposition 5.1

to λ̃
(n)
t (0). Let At be an arbitrary scale such that At = at +O(1), and define the function

Q(At; ξ, σ) := σ−1(0) + σ−1(0)
∑

2≤k≤2j

∑
p∈Γk(0,0)
pi 6=0, 0<i<k

Set(p)⊆B(z,j)

∏
0<i<k

(2d)−1 σ−1(pi)

At − η(pi)
,
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if ξ(y) < Lt for each y ∈ B(0, j) \ {0} and Q(At; ξ, σ) := 0 otherwise. Then, since λ̃
(n)
t (0) is

strictly increasing in ξ(0) we have that, as t→∞,

P
(
λ̃

(n)
t (0) > At + xdt

)
∼ P

(
ξ(0) > At + xdt +Q(At + xdt; ξ, σ)

)
∼ P

(
ξ(0) > At + xdt +Q(At; ξ, σ)

)
(32)

∼ t−de−x
∫
ξ,σ

exp

{
aγt −

(
At +Q(At; ξ, σ)

)γ}
dµξ dµσ (33)

where the first asymptotic accounts for the error in the path expansion Proposition 5.1,
the second and third asymptotics result from Taylor expansions, and are uniform in ξ and
σ, and where µξ and µσ stand for the joint probability densities of {ξ(y)}y∈B(0,n)\{0} and
{σ(y)}y∈B(0,n) respectively. Consider then the integral in (33), which we abbreviate as

I(At) :=

∫
ξ,σ
f(At; ξ, σ) dµξ dµσ , f(At; ξ, σ) := exp

{
aγt −

(
At +Q(At; ξ, σ)

)γ}
.

Note that Q(At; ξ, σ) is uniformly bounded as t → ∞ (by 2δ−1
σ for instance) . Hence, for C

sufficiently large, as t→∞ eventually

f(at + C; ξ, σ) < 1 < f(at − C; ξ, σ)

uniformly in {ξ(y)}y∈B(0,n)\{0} and {σ(y)}y∈B(0,n). This implies that I(At−C) < 1 < I(at +
C). Moreover, since f(At; ξ, σ) is continuous in At uniformly for each {ξ(y)}y∈B(0,n)\{0} and
{σ(y)}y∈B(0,n), the function I(At) is continuous in At. Hence, by the intermediate value
theorem function, there exists an At = at + O(1) such that, as t→∞ eventually I(At) = 1,
which gives the first result. For the second, instead of (32) we bound Q(At +xdt; ξ, σ) above,
uniformly in x > 0, by Q(At; ξ, σ), which produces the bound

t−d
∫
ξ,σ

exp

{
aγt −

(
At +Q(At; ξ, σ)

)γ(
1 +

x

γ
(log t)−1

)γ}
dµξ dµσ .

In the case γ ≥ 1, we bound this expression above uniformly in x > 0 by

t−d
∫
ξ,σ

exp

{
aγt −

(
At +Q(At; ξ, σ)

)γ(
1 +

x

γ
(log t)−1

)}
dµξ dµσ ∼ e−

x
γ

(1+o(1))
,

using the definition of At and the fact that At + Q(At; ξ, σ) ∼ at in the last step. The case
γ < 1 is simpler, since then we have simply

P
(
ξ(0) > At + xdt + σ−1(0)

)
= P

(
ξ(0) > at + xdt +O(1)

)
and the bound follows from the regularity of Weibull tail of ξ(0) in Assumption 1.5.

We now define the set-up we shall need to examine the correlation of the potential field
and trapping landscape near sites of high λ̃(n); since the nature of this correlation differs
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depending on (γ, µ), so does our set-up. Fix a constant ν ∈ (0, 1). Recalling the definition of
the ‘interface cases’ B and Bξ, define the ‘interface sites’

F :=

{
y ∈ Zd : |y| = ρ , if (γ, µ) ∈ B ,
∅ , else ,

and Fξ :=

{
y ∈ Zd : |y| = ρξ , if (γ, µ) ∈ Bξ ,
∅ , else .

Recalling the definition of n(y), for each y ∈ Zd define the positive constants

cσ :=


(
γ
µ

) 1
µ+1

, if qσ > 0 ,

0 , else ,
, cξ(y) :=

{(
n(y)2(2d)−1δ−1

σ c−1
σ

) 1
γ−1 , if qξ(|y|) > 0 ,

0 , else ,
,

c̄σ(y) := n(y)2(2d)−1γc−1
σ and c̄ξ(y) := c̄σ(y) δ−1

σ .

For each n ∈ N, if µ > 0 and γ > 1, define the rectangles

Eξ :=
∏

y∈(B(0,n∧ρξ)\{0})\Fξ

(−ft, ft) ×
∏

y∈(B(0,n)\B(0,n∧ρξ))∪Fξ

(ft, gt) ,

Eσ := (−ft, ft) ×
∏

y∈(B(0,n)\{0})\F

(0, ft) ×
∏

y∈(B(0,n)\B(0,n∧ρ))∪F

(0, gt) ,

Sξ :=
∏

y∈(B(0,n∧ρξ)\{0})\Fξ

a
qξ(|y|)
t (cξ(y)− ft, cξ(y) + ft) ×

∏
y∈(B(0,n)\B(0,n∧ρξ))∪Fξ

(ft, gt) ,

and

Sσ := aqσt (cσ − ft, cσ + ft) ×
∏

y∈(B(0,n)\{0})\F

(δσ, δσ + ft) ×
∏

y∈(B(0,n)\B(0,n∧ρ))∪F

(0, gt) .

If µ = 0 and γ > 1, define instead

Eσ := (a−νt ,∞) ×
∏

y∈B(0,n)\{0}

(0, gt) and Sσ := aγ−1
t (a−νt ,∞) ×

∏
y∈B(0,n)\{0}

(0, gt) ,

whereas if γ ≤ 1, maintain the definition of Eσ but define instead

Sσ :=
∏

y∈B(0,n)

(0, gt) .

For each n ∈ N, define the event

St :=
{
{ξ(y)}y∈B(0,n)\{0} ∈ Sξ , {σ(y)}y∈B(0,n) ∈ Sσ

}
,

and, for each x ∈ R and the scaling function At from Proposition 5.2, further define the event

At :=
{
λ̃

(n)
t (0) > At + xdt

}
.
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Proposition 5.3 (Correlation of potential field and trapping landscape). For each n ∈ N,
as t→∞,

P
(
St
∣∣At)→ 1 .

Moreover, as t→∞,

fξ(y)|At(x)→
ec̄ξ(y)xfξ(x)

E[ec̄ξ(y)ξ(0)]
, for each y ∈ Fξ, (34)

uniformly over x ∈ (0, Lt), and

fσ(y)|At(x)→ ec̄σ(y)/xfσ(x)

E[ec̄σ(y)/σ(0)]
, for each y ∈ F , (35)

uniformly over x. Finally, if γ = 1, then for each x ∈ R+, as t→∞,

fσ(0)|At(x)→ e−1/xfσ(x)

E[e−1/σ(0)]
, (36)

uniformly over x.

Proof. Define a field s : B(0, n)\{0}∪B(0, n)→ R with projections sξ and sσ onto B(0, n)\{0}
and B(0, n) respectively. For a scale Ct ∼ at define the function

Qt(Ct; s) := a−qσt (cσ + sσ(0))−1 − a−qσt (cσ + sσ(0))−1

×
∑

2≤k≤2j

∑
p∈Γk(0,0)
pi 6=0, 0<i<k

Set(p)⊆B(0,n)

∏
0<i<k

(2d)−1 (δσ + sσ(pi))
−1

Ct − a
qξ(|pi|)
t (cξ(pi) + sξ(pi)) + (δσ + sσ(pi))−1

,

if, for each y ∈ B(0, n) \ {0},

a
qξ(|y|)
t (cξ(y) + sξ(y)) ∈ (0, Lt) , sσ(y) > 0 and aqσt (cσ + sσ(0)) > 0

are satisfied, and Qt(Ct; s) := 0 otherwise. Define further the function

Rt(Ct; s) := aγt − (Ct +Qt(Ct; s))
γ +

∑
y∈B(0,n)

(
log fξ

(
a
qξ(|y|)
t (cξ(y) + sξ(y))

)
+ log a

qξ(|y|)
t

)
+ log fσ (aqσt (cσ + sσ(0)) + log aqσt +

∑
y∈B(0,n)\{0}

log fσ (δσ + sσ(y)) .

To motivate these definitions, consider that, similarly to the above, we can write

P
(
λ̃

(n)
t (0) > At + xdt

)
∼ t−de−x

∫
R2|B(0,n)|−1

exp {Rt(At; s)} ds . (37)

It remains to show that the integral in (37) is asymptotically concentrated on the set Eξ×Eσ
and that equations (34)–(36) are satisfied. This fact can be checked by a somewhat lengthy
computation which we only sketch here. We shall treat separately three cases: (i) γ > 1 and
µ > 0; (ii) γ > 1 and µ = 0; and (iii) γ ≤ 1. We begin with case (i), which is the most
delicate.
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We must analyse the variables sσ(0), {sσ(y)}y∈B(0,n)\{0}, and {sξ(y)}y∈B(0,n)\{0} sepa-
rately; we start with sσ(0). In what follows abbreviate Rt(At; s) by Rt(s). Fix an arbitrary
choice of the components of s and consider how Rt(s) varies with sσ(0). Notice that the
function Rt(s) can be decomposed into two parts, one of which decreases as sσ(0) increases
(through Qt) and another which increases as sσ(0) increases (through fσ). The first part is
analysed by Taylor expanding (At+Qt(At; s))

γ , from which it can be seen that the dependence
on sσ(0) is, as t→∞,

γ a−qσt aγ−1
t (cσ + sσ(0))−1 (1 + o(1))

where the error term o(1) is uniform in s. The second part is given by − log fσ(aqσt (cσ+sσ(0)))
which is, if µ > 0, eventually

aqσµt (cσ + sσ(0))µ .

Hence, since we defined qσ precisely so that

−qσ + γ − 1 = qσµ ,

the function Rt has the asymptotic form, as t→∞,

Rt(s) = f1(t; s) + aκ1t (g1(sσ(0) + o(1))

where f1(t; s) is some function not depending on sσ(0), κ1 is some positive constant, the
function g1(x) satisfies

g1(x) := −γ(cσ + x)−1 − (cσ + x)µ ,

and the error term o(1) is uniform in s. Then we have, uniformly in s, as t→∞,∫
R
eRt(s) dsσ(0) ∼ ef1(t;s)

∫
R

exp {aκ1t g1(sσ(0))} dsσ(0) . (38)

Remark that g1(x) achieves a unique maximum at 0 (by the construction of cσ). Therefore,
by the Laplace method, the above integral is eventually asymptotically concentrated around
0 on the order aκ1t , and hence the integral is concentrated on the domain sσ(0) ∈ (−ft, ft).

Consider now the variables {sσ(y)}y∈B(0,n)\{0}. Fix an sσ(0) ∈ (−ft, ft) and an arbitrary
choice of the remaining components of s. Again, similarly to the above, the function Rt(s)
can be decomposed into two parts, one whose dependence on sσ(y) is, as t→∞,

n(y)2 (2d)−1 γ c−1
σ a

γ−2|y|
t a−qσt (δσ + sσ(y))−1 (1 + o(1))

uniformly in s, and another whose dependence is

− log fσ(δσ + sσ(y)) .

Then we have, uniformly in s, as t→∞,∫
R
eRt(s) dsσ(y) ∼ ef2(t;s)

∫
R

exp
{
γc−1
σ aκ2t (δσ + sσ(y))−1

}
fσ(δσ + sσ(y)) dsσ(y) ,

where f2(t; s) is some function not depending on sξ(y), κ2 is some non-negative constant with
κ2 > 0 if and only if y ∈ B(0, ρ) \ F , and where the error term o(1) is uniform in s. Hence,
if y ∈ B(0, ρ) \ F , then along with the lower-tail assumption in 1.6, it is clear that the above
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integral is asymptotically concentrated on sσ(y) ∈ (0, ft). On the other hand, if y ∈ F , then
the integrand is asymptotically

ec̄σ(y)/(sσ(y)+δσ)fσ(sσ(y) + δσ) ,

uniformly over sσ(y), which establishes (35). Trivially, if y /∈ B(0, ρ), then the integral is
concentrated on sσ(y) ∈ (ft, gt).

Finally, consider the variables {sξ(y)}y∈B(0,n)\{0} and fix sσ(0) ∈ (−ft, ft), sσ(y) ∈ (0, ft)
for each y ∈ B(0, ρ) \ F , and an arbitrary choice of the remaining components of s. The
function Rt(s) can be decomposed into two parts, one whose dependence on sξ(y) is of order,
as t→∞,

n(y)2 (2d)−1(δσ + sσ(y))−1γc−1
σ a

qξ(|y|)
t a

γ−1−2|y|
t a−qσt (cξ(y) + sξ(y)) (1 + o(1)) ,

uniformly in s, another whose dependence is

a
qξ(|y|)γ
t (cξ(y) + sξ(y))γ .

Hence, since we defined qξ(|y|) precisely so that

qξ(|y|) + γ − 1− 2|y| − qσ = qξ(|y|)γ ,

if y ∈ B(0, ρξ), the function Rt has the asymptotic form, as t→∞,

Rt(s) = f3(t; s) + aκ3t (g3(sξ(y)) + o(1))

where f3(t; s) is some function not depending on sξ(y), κ3 is some non-negative constant with
κ3 > 0 if any only if y ∈ B(0, ρξ) \ Fξ, the function g3(x) satisfies

g3(x) := γ n(y)2 (2d)−1 δ−1
σ c−1

σ (cξ(y) + x)− (cξ(y) + x)γ ,

and where the error term o(1) is uniform in s. Then we have, uniformly in s, as t→∞,∫
R
eRt(s) dsξ(y) ∼ ef3(t;s)

∫
R

exp {aκ3t g3(sξ(y))} dsξ(y) .

If y ∈ B(0, ρξ) \ Fξ, and since g3(x) achieves a unique maximum at 0 (by the construction
of cξ(y)), again by the Laplace method this integral is also asymptotically concentrated on
sξ(y) ∈ (−ft, ft). On the other hand, if y ∈ Fξ, then the integrand is asymptotically

ec̄ξ(y)sξ(y)fξ(sξ(y)) ,

uniformly over sξ(y), which establishes (34). Trivially, if y /∈ B(0, ρξ), then the integral is
concentrated on sξ(y) ∈ (ft, gt). Since we have now shown that each component of (37) is
asymptotically concentrated on the respective component of the set Eξ×Eσ, integrating first
over sξ(y) and sσ(y) for y ∈ B(0, n) \ {0}, and then over sσ(0), we have the result.

We now turn to case (ii). In this case the integral over sσ(0) in (38) becomes

ef1(t;s)

∫
R
e−γs

−1
σ (0)fσ

(
Aγ−1
t sσ(0)

)
dsσ(0) ∼ ef1(t;s)

∫
R
e−γs

−1
σ (0)fσ

(
aγ−1
t sσ(0)

)
dsσ(0) ,
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where we used the regularity in 1.6 in the last step. On the region (0, a−νt ), this integral can
be bounded above as∫ a−νt

0
e−γs

−1
σ (0)fσ

(
aγ−1
t sσ(0)

)
dsσ(0) ≤

∫ a−νt

0
e−γs

−1
σ (0) dsσ(0) ≤ e−γaνt .

On the other hand, for any 0 < c < ν, the integral is bounded below by∫ ∞
a−ct

e−γs
−1
σ (0)fσ

(
aγ−1
t sσ(0)

)
dsσ(0) ≥ e−γact F̄σ

(
aγ−1−c
t

)
� e−γa

ν
t

with the final asymptotic following since µ = 0. Hence the integral in (38) is asymptotically
concentrated on sσ(0) ∈ (a−νt ,∞). Finally, notice that for fixed sσ(0) ∈ (a−νt ,∞) we have
that, as t→∞,

Qt(At; s) = a1−γ
t s−1

σ (0) + o(dt)

since ν < 1, with the error uniform in sσ(0). Hence, for sσ(0) ∈ (a−νt ,∞), as t→∞,

exp{Rt(At; s)} ∼ t−daγ−1
t e−γs

−1
σ (0)

∏
sξ

fξ(sξ)
∏
sσ

fσ(sσ)

and so the integral in (37) is asymptotically concentrated on Eξ × Eσ.
Case (iii) is easier to handle. Now the integral in (38) becomes

ef1(t;s)

∫
R

exp{−γaγ−1
t s−1

σ (0) + o(1)} fσ(sσ(0)) dsσ(0) ,

with the error uniform in s. If γ < 1, then this integral is clearly concentrated on sσ(0) ∈
(0, gt). If γ = 1, then the integrand of this integral is asymptotically

es
−1
σ (0)fσ(sσ(0)) ,

uniformly over sσ(0), which establishes (36). The remainder of the proof is identical.

5.2. Constructing the point process

The existence of asymptotics for the (punctured) local principal eigenvalues allows us to

establish scaling limits for the penalisation functional Ψ
(j)
t . We start by constructing a point

set from the pair (z,Ψ
(j)
t (z)) which will converge to a point process in the limit. Here we

make use of the length scale rt defined in equation (9), and the first and second order scales
At and dt for the extremes of the local principal eigenvalues defined in Proposition 5.2 and
equation (16) respectively. Note that the appropriate rescaling functions for the point set are
actually Art and drt , although since drt ∼ dt we shall eventually end up substituting these.

For technical reasons, we shall actually need to consider a certain generalisation of the

functional Ψ
(j)
t . More precisely, for each c ∈ R, define the functional Ψ

(j)
t,c : Vt → R by

Ψ
(j)
t,c (z) := λ(j)(z)− |z|

γt
log log t+ c

|z|
t
.

For each z ∈ Π(Lt) define

Y
(j)
t,c,z :=

Ψ
(j)
t,c (z)−Art

drt
and M(j)

t,c :=
∑

z∈Π(Lt)

1
(zr−1

t ,Y
(j)
t,c,z)

.
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Finally, for each τ ∈ R and α > −1 let

Ĥα
τ := {(x, y) ∈ Ṙd+1 : y ≥ α|x|+ τ}

where Ṙd+1 is the one-point compactification of Rd+1.

Proposition 5.4 (Point process convergence). For each τ, c ∈ R and α > −1, as t→∞,

M(j)
t,c |Ĥα

τ
⇒M in law ,

whereM is a Poisson point process on Ĥα
τ with intensity measure ν(dx, dy) = dx⊗e−y−|x|dy.

Proof. The idea of the proof is to replace the set {λ(j)(z)}z∈Π(Lt) with the set of i.i.d. punctured

principal eigenvalues {λ̃(j)
t }z∈Vt and then apply standard results in i.i.d. extreme value theory

to show convergence to M in Ĥα
τ .

To this end, define Ψ̃
(j)
t,c (z) and Ỹ

(j)
t,c,z equivalently to Ψ

(j)
t,c (z) and Y

(j)
t,c,z after replacing

λ(j)(z) everywhere with λ̃
(j)
t (z) and further define

M̃(j)
t,c =

∑
v∈Vt

1
(zr−1

t ,Ỹ
(j)
t,c,z)

.

Recall that {λ̃(j)
t }z∈Vt are i.i.d. with tail asymptotics and uniform tail decay governed by

Proposition 5.2. By applying an identical argument as in [4, Lemma 3.1] and [27, Lemma
4.3], we have that, as t→∞,

M̃(j)
t,c

∣∣
Ĥα
τ
⇒M in law .

Note that the uniform tail decay is necessary for the point process convergence to hold since
Ĥα
τ is a non-compact set (see [27, Lemma 4.3]). We claim that if z ∈ Vt is such that

(zr−1
t , Ỹ

(j)
t,c,z) ∈ Ĥα

τ ,

then, eventually almost surely,
z ∈ Π(Lt) .

This is since (zr−1
t , Ỹ

(j)
t,c,z) ∈ Ĥα

τ is equivalent to

λ̃
(j)
t (z) ≥ Art +

α|z|drt
rt

+
|z|
γt

log log t− c|z|
t

+ τdrt

which implies that, as t→∞,

λ̃
(j)
t (z) ≥ at(1 + o(1)) + (α+ 1 + o(1))

|z|
γt

log log t+O(dt)

≥ at(1 + o(1)) +O(dt)

since Art ∼ art ∼ at, drt ∼ dt and α > −1. The claim then follows by the upper bound in
Lemma 3.2. As a consequence, we have that, as t→∞,∑

z∈Π(Lt)

1
(zr−1

t ,Ỹ
(j)
t,c,z)

∣∣
Ĥα
τ
⇒M in law . (39)
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To complete the proof, we construct a coupling of the field ξ with the fields {ξ̃z}z∈Π(Lt) with
the property that {

λ(j)(z)
}
z∈Π(Lt)

=
{
λ̃

(j)
t (z)

}
z∈Π(Lt)

, (40)

for t sufficiently large. In particular, by Lemma 4.2 there exists a t0 such that almost surely,
for all t > t0, we have r(Π(Lt)) > 2j. For such t we define the coupling as follows: for z ∈ Π(Lt)

and y ∈ B(z, j) set ξ̃z(y) = ξ(y); otherwise choose ξ̃z(y) independently. Since t > t0, {ξ̃z}z∈Vt
is indeed a set of independent fields and also (40) holds. Combining with (39) completes the
proof.

Remark 5.5. Although we state Proposition 5.4 for arbitrary c ∈ R, we shall only apply it to
c = 0 and one other value of c that will be determined in Section 6.

We now use the point process M to analyse the joint distribution of top two statistics of

the functional Ψ
(j)
t,c . So let

Z
(j)
t,c := arg max

z∈Π(Lt)

Ψ
(j)
t,c (z) and Z

(j,2)
t,c := arg max

z∈Π(Lt)

z 6=Z(j)
t,c

Ψ
(j)
t,c .

Note that eventually these are well-defined almost surely, since Π(Lt) is finite and non-zero
by Lemma 4.1.

Corollary 5.6. For each c ∈ R, as t→∞,(
Z

(j)
t,c

rt
,
Z

(j,2)
t,c

rt
,
Ψ

(j)
t,c (Z

(j)
t,c )−Art
drt

,
Ψ

(j)
t,c (Z

(j,2)
t,c )−Art
drt

)

converges in law to a random vector with density

p(x1, x2, y1, y2) = exp{−(y1 + y2)− |x1| − |x2|)− 2de−y2}1{y1>y2} .

Proof. This follows from the point process density in Proposition 5.4 using the same compu-
tation as in [4, Proposition 3.2].

5.3. Properties of the localisation site

In this subsection we use the results from the previous subsection to analyse the localisa-

tion sites Z
(j)
t,c and Zt, and in the process complete the proof of Theorems 1.9 and 1.10. For

each c ∈ R, introduce the events

Gt,c := {Ψ(j)
t,c (Z

(j)
t,c )−Ψ

(j)
t,c (Z

(j,2)
t,c ) > dtet} ,

Ht := {rtft < |Z(j)
t | < rtgt} and It := {at(1− ft) < Ψ

(j)
t (Z

(j)
t ) < at(1 + ft)} ,

and the event

Et,c := St(Z(j)
t ) ∩ Gt,0 ∩ Gt,c ∩Ht ∩ It (41)

which acts to collect the relevant information that we shall later need.
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Proposition 5.7. For each c ∈ R, as t→∞,

P(Et,c)→ 1 .

Proof. This follows from Proposition 5.2 and Corollary 5.6, since Art ∼ at and drt ∼ dt.

In the next few propositions, we prove that the sites Z
(j)
t,c and Z

(j)
t are both equal to the

localisation site Zt with overwhelming probability.

Proposition 5.8. For each c ∈ R, on the event Et,c, as t→∞,

Z
(j)
t,c = Z

(j)
t

holds eventually.

Proof. Assume that Z
(j)
t,c 6= Z

(j)
t and recall that 1/ log log t < et/gt eventually by (17). On

the event Et,c, the statements

Ψ
(j)
t (Z

(j)
t )−Ψ

(j)
t (Z

(j)
t,c ) > dtet and Ψ

(j)
t,c (Z

(j)
t,c )−Ψ

(j)
t,c (Z

(j)
t ) > dtet

and, eventually,

|Ψ(j)
t (Z

(j)
t )−Ψ

(j)
t,c (Z

(j)
t )| = |c| |Z

(j)
t |
t

< γ
dtgt

log log t
< dtet

all hold, giving a contradiction.

Lemma 5.9. For each c ∈ R, on the event Et,c, as t→∞,

λ(j)(Z
(j)
t ) ≥ λ(Z

(j)
t ) and λ(j)(Zt) ≥ λ(Zt)

and
λ(j)(Z

(j)
t )− λ(Z

(j)
t ) < dtet

all hold eventually.

Proof. The first two statements follow from the domain monotonicity of the principal eigen-
value in Lemma 3.1. For the third statement, remark that the event Et,c implies that

Z
(j)
t ∈ Π(Lt,ε), that ξ(y) < Lt for all y ∈ B(Z

(j)
t , ρ), that ξ(y) < gt for all y such that

j ≥ |y − Z(j)
t | > ρξ, and that σ(Z

(j)
t ) > aqσt ft. Hence, by considering the path expansion in

Proposition 5.1, we have that for some C > 0,

λ(j)(Z
(j)
t )− λ(Z

(j)
t ) <

Ca
−( γ−1

µ+1
)+

t gt
ft(Lt,ε − Lt)2ρ+1

< dtet (42)

eventually, with the last equality holding since

− 2ρ− 1−
(
γ − 1

µ+ 1

)+

< 1− γ . (43)

Remark 5.10. Note that ρ is precisely the smallest integer such that (43) holds.
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Corollary 5.11 (Equivalence of Z
(j)
t and Zt). For each c ∈ R, on the event Et,c, as t→∞,

Z
(j)
t = Zt

eventually.

Proof. Assume that Z
(j)
t 6= Zt. On the event Et,c, Lemma 5.9 implies that(

Ψ
(j)
t (Z

(j)
t )−Ψt(Z

(j)
t )
)
−
(

Ψ
(j)
t (Zt)−Ψt(Zt)

)
=
(
λ(j)(Z

(j)
t )− λ(Z

(j)
t )
)
−
(
λ(j)(Zt)− λ(Zt)

)
< dtet

holds eventually. On the other hand, on the event Et,c, and by the definition of Zt and Z
(j)
t

as the argmax of Ψt and Ψ
(j)
t respectively,

Ψ
(j)
t (Z

(j)
t )−Ψ

(j)
t (Zt) > dtet and Ψt(Zt)−Ψt(Z

(j)
t ) > 0

also hold, giving a contradiction.

Finally, we prove a criterion for the independence of Zt from the trapping landscape
σ. Define ψt(z) := ξ(z) − |z|γt log log t, and let zt := arg maxz∈Π(Lt) ψt(z). Note that zt is
independent of σ.

Proposition 5.12 (Criterion for the independence of Zt from the trapping landscape σ). If
γ < 1, then as t→∞,

P (Zt = zt)→ 1 .

Proof. By Proposition 5.7 we may assume Et,c holds. Observe that, on Et,c and by Proposi-

tion 5.1, any z ∈ Π(Lt,ε) \ {Z(j)
t } satisfies

ψt(Z
(j)
t ) > Ψ

(j)
t (Z

(j)
t ) > Ψ

(j)
t (z) + dtet > ψt(z) +O(1) + dtet .

Moreover, by Lemma 3.2 and on Et,c, any z ∈ Π(Lt) \Π(Lt,ε) also satisfies

ψt(Z
(j)
t ) > Ψ

(j)
t (Z

(j)
t ) > ψt(z) +O(1) + dtet .

Since dtet → ∞ if γ < 1, this implies that Z
(j)
t = arg maxz∈Π(Lt) ψt(z) =: zt. Corollary 5.11

completes the proof.

5.4. Proof of Theorem 1.9

We prove Theorem 1.9 on the event Et,c, since by Proposition 5.7 this event holds with
overwhelming probability eventually. Part (a) is implied directly by the definition of the event
Et,c. Parts (b)–(d) follow by combining the definition the event Et,c with Proposition 5.3.
Finally, part (e) is a consequence of the point process convergence, and is proved in an
identical manner to the corresponding results in [5, 4].
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5.5. Proof of Theorem 1.10

Consider parts (a) and (b). By definition, Zt depends only on the values of ξ and σ in
balls of radius ρξ and ρ respectively around each site, and so the radii ρξ and ρ are certainly
sufficient. To show necessity, consider that the results in parts (b)–(d) of Theorem 1.9 establish
the correlation of the fields ξ and σ at a distance ρξ and ρ respectively around Zt. Hence
these radii are necessary as well.

Consider then part (c). The sufficient condition for the reduction to ξ follows directly
from Proposition 5.12. To show necessity, consider that the results in part (c) of Theorem 1.9
establish that, if γ ≥ 1, the value of σ(Zt) is not an independent copy of σ(0), and hence Zt
must depend on σ.

It remains to prove part (d). If ρ = 0 then Zt depends only on η by definition. On the
other hand, suppose ρ ≥ 1 and, for the purposes of contradiction, that there exists a random
site zt, depending only on ξ and σ through η, such that, as t→∞,

P(Zt = zt)→ 1 .

Fix a site y and a constant c > δσ. We establish a contradiction by considering two bounds
on the probability of the event

{σ(y) < c, |Zt − y| = 1}.

We first consider the case (γ, µ) /∈ Bσ. Then by part (d) of Theorem 1.9, conditionally on
event {|Zt − y| = 1}, we have that σ(y) → δσ in probability as t → ∞. This implies that
there exists some c1 > 0 such that

P(σ(y) < c, |Zt − y| = 1) > (P(σ(y) < c) + c1) P(|Zt − y| = 1) (44)

eventually. In the case (γ, µ) ∈ Bσ, conditionally on event {|Zt−y| = 1} and again by part (d)
of Theorem 1.9,

fσ(y)(x)→ c2e
c̄σ/xfσ(x)

for some c2 > 0, and so (44) holds in this case as well.
We now work on the event {Zt = zt} and show how to obtain a lower bound on the

probability of the event {σ(y) < c, |zt − y| = 1}. Let η̄ = {η(v) : v 6= y}. Remark first that,
since zt ∈ Π(Lt), by Proposition 5.1 we have that λt(zt) is increasing in η(y) for |y − zt| = 1.
Hence there exists a function βt : η̄ → R ∪ {∞} such that, conditionally on η̄,

{|zt − y| = 1} and {η(y) ≥ βt(η̄)}

agree almost surely. To see this, set βt(η̄) to be the minimum η(y) such that with such a
value of η(y), we have |zt− y| = 1 (and setting it to be infinity if no such value exists). Then
clearly, if η(y) < βt(η̄) we cannot have |zt − y| = 1, and on the other hand we claim that if
η(y) ≥ βt(y) we have |zt − y| = 1. This follows by the almost-sure separation of Lemma 4.2,
which ensures that {y = zt} has probability 0. Denote by Fη̄ the σ-algebra generated by η̄.
Then, eventually almost surely,

P(σ(y) < c, |zt − y| = 1) = Eη̄
[
E[1{|zt−y|=1}1{σ(y)<c}| Fη̄]

]
= Eη̄

[
E[1{η(y)>βt(η̄)}1{σ(y)<c}| Fη̄]

]
≤ Eη̄

[
E[1{η(y)>βt(η̄)}| Fη̄]E[1{σ(y)<c}| Fη̄]

]
= P(σ(y) < c)P(|zt − y| = 1) ,

47



where the second equality uses the fact that zt depends on σ only through η, and the inequality
holds since, conditionally on Fη̄, the events {η(y) > βt(η̄)} and {σ(y) < c} are negatively
correlated. Since zt = Zt with probability going to one, combining with (44) gives the required
contradiction.

6. Negligible paths

In this section we show that the contribution to the total mass U(t) from the components
U2(t), U3(t), U4(t) and U5(t) are all negligible. We proceed in two parts: first we prove a
lower bound on the total mass U(t), and then we bound from above the contribution to the
total mass from each U i(t). Throughout this section, let ε be such that 0 < ε < θ.

6.1. Preliminaries

We begin by proving a general result on eigenfunction decay around sites of high potential,
which will be used in both the lower and upper bound. For each z ∈ Π(Lt,ε), let ϕ1 denote
the principal eigenfunction of the Hamiltonian H(j)(z).

Proposition 6.1. For each z ∈ Π(Lt,ε) uniformly, as t→∞, almost surely

∑
y∈B(z,j)\{z}

ϕ1(y)→ 0 and
∑

y∈B(z,j)\{z}

σ(y)−
1
2ϕ1(y)

||σ−
1
2ϕ1||`2

→ 0 .

Proof. By Proposition 3.5, we have the path expansion

ϕ1(y)

ϕ1(z)
=
σ(y)

σ(z)

∑
k≥1

∑
p∈Γk(y,z)
pi 6=z, 0≤i<k

Set(p)⊆B(z,j)

∏
0≤i<k

(2d)−1 σ−1(pi)

λ(j)(z)− η(pi)
, y ∈ B(z, j) \ {z} . (45)

Since, by Lemmas 4.2 and 3.2, for each y ∈ B(z, j) \ {z}, almost surely

λ(j)(z)− η(yi) > Lt,ε − Lt − δ−1
σ ,

and moreover since σ−1(y) < δ−1
σ for all y ∈ B(z, j), the result follows.

Corollary 6.2 (Bound on total mass of the solution). For each z ∈ Π(Lt,ε) uniformly and
any c > 1, as t→∞, almost surely

Ez
[
e
∫ t
0 ξ(Xs) ds1{τB(z,j)c>t}

]
< c etλ

(j)(z)

eventually.

Proof. This follows by combining Propositions 6.1 and 3.12.
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6.2. Lower bound on the total mass U(t)

Recall that by the discussion in Section 2, the total mass U(t) can be approximated by
considering both the benefit of being near a site of high potential and the probabilistic penalty
from diffusing to that site. To formalise a lower bound for U(t) we need a bound on both of
these terms.

We begin by bounding from below the benefit to the solution from paths that start and
end at a site of high potential.

Lemma 6.3. For each z ∈ Π(Lt,ε) uniformly,

log uz(t, z) ≥ tλ(j)(z) + o(1)

eventually almost surely.

Proof. Recall the Feynman-Kac formula for the solution uz(t, z) (see, e.g., Proposition 3.8),
and note that the expectation is larger than the corresponding expectation taken only over
paths that do not leave B(z, j). Using Corollary 3.11, we then have that

uz(t, z) ≥
eλ

(j)(z)tσ−1(z)ϕ2
1(z)

||σ−
1
2ϕ1||2`2

,

where ϕ1 denotes the principal eigenfunction of the Hamiltonian H(j)(z). Since the domain

B(z, j) is finite, the fact that the eigenfunction σ−
1
2ϕ1 is localised at z (by Proposition 6.1)

ensures that the square eigenfunction σ−1ϕ2
1 is also localised at z, and the result follows.

The next step is to bound from above the probabilistic penalty incurred by diffusing to a
certain site. This will be a function both of the distance of the site from the origin, as well as
the size of the traps on paths from the origin to the site. Here we use the existence of quick
paths that we established in a general setting in Section 4.

Recall the scaling function st, which satisfies the properties in (17). If d = 1, for σt := st
and nt := rtgt, recall the definitions of It and {σit} from Proposition 4.8. Let p ∈ Γ|Zt|(0, Zt)
be the (unique) shortest path from 0 to Zt and define

Np
i :=

∑
0≤l<|Zt|

1{σ(pl)∈(σi−1
t ,σit]}

, i = 1, . . . , It .

If d ≥ 2, for zt := Zt, σt := st and St := Π(Lt), recall the definition of |Zt|chem from
Proposition 4.11. Denote by Θd

t the event

Θd
t :=

{{∑It
i=1N

p
i log σit < tdtbt , max0≤l<|Zt| σ(pl) < σItt

}
, d = 1 ;

{|Zt|chem < |Zt|+ rtbt} , d ≥ 2 .

Proposition 6.4 (Existence of quick paths). For each c ∈ R, as t→∞,

P(Θd
t , Et,c)→ 1 .
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Proof. Recall that on event Et,c we have that |Zt| < rtgt. Suppose d = 1. Then the result
follows immediately from Proposition 4.8 and the properties of the scaling function st in (17),
since

log log rtgt ∼ log log t .

Suppose then d ≥ 2. Note that conditioning on ξ determines Π(Lt) and also that, by
Lemma 4.2, eventually almost surely Π(Lt) satisfies the properties required by the set St.
Since Zt ∈ Π(Lt), conditioning on the values of σ in B(Π(Lt), j) therefore determines Zt.
Given Zt and Π(Lt), the event Θd

t is fully determined by the values of σ in Zd \ B(Π(Lt), j).
Hence we can apply Proposition 4.11 with zt = Zt, σt = st and St = Π(Lt), to deduce that
there exists a c1 < 1 such that, for all functions ct →∞ such that F̄σ(st)ct � 1,

|Zt|chem < |Zt|(1 + F̄σ(st)ct + t−c1)

with probability tending to 1. By (17), we can pick a ct such that

rtgtF̄σ(st)ct � rtbt ,

and so we have the result.

We are now ready to prove the lower bound.

Proposition 6.5. For each c ∈ R, on the events Et,c and Θd
t , as t→∞,

logU(t) ≥ tλ(j)(Zt)−
|Zt|
γ

log log t+O(tdtbt)

almost surely.

Proof. In the following proof set z = Zt and abbreviate τ = τz. We first consider the case of
d ≥ 2. By the Feynman-Kac formula (5), the total mass U(t) can be written as

U(t) = E0

[
exp

{∫ t

0
ξ(Xs)ds

}]
.

Using the non-negativity of ξ and by the strong Markov property, we have, for each r ∈ (0, 1),

U(t) ≥ E0

[
exp

{∫ t

0
ξ(Xs)ds

}
1{τ<rt}

]
≥ E0

[
exp

{∫ t−(rt−τ)

τ
ξ(Xs)ds

}
1{τ<rt}

]
= E0

[
exp

{∫ t−(rt−τ)

τ
ξ(Xs)ds

}]
P0(τ < rt)

≥ uz((1− r)t, z)P0(τ < rt) . (46)

We now seek to bound P0(τ < rt). Since we are on event Θd
t , there exists a path

p ∈
⋃

y∈∂B(z,j)

Γ`t(0, y)

for some `t < |z|+ rtbt such that σ(x) < st for all x ∈ Set(p). Moreover, since we are on event
Et,c, each σ(x) ∈ B(z, j) \ {z} is such that σ(x) < aνt for some ν ∈ (0, 1). We shall denote by
{X̃t}t∈R+ a random walk with generator ∆σ̃−1, where σ̃(x) = st for all x ∈ Set(p), σ̃(x) = aνt
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for all x ∈ B(z, j) \ {z}, and σ̃(x) = σ(x) otherwise. By a simple coupling argument we have
that

P0(τ < rt) ≥ P0(τ̃ < rt) , (47)

where τ̃ is the first hitting time of z by X̃. Using a similar calculation as in [3][Proposition 4.2],
for any r1 + r2 ≤ r,

P0(τ̃ < rt) > (2d)−`t−j P
(
Poi(r1ts

−1
t ) = `t

)
P
(
Poi(r2ta

−ν
t ) = j

)
= (2d)−`t−je−r1ts

−1
t

(r1ts
−1
t )`t

(`t)!
e−r2ta

−ν
t

(r2ta
−ν
t )j

j!
.

Applying Stirling’s formula, we obtain

logP0(τ̃ < rt) ≥ −r1ts
−1
t − r2ta

−ν
t − `t log

(
2d `t

er1ts
−1
t

)
+ j log r2 +O(log t) . (48)

Now note that on the event Et,c we have that Zt ∈ Π(Lt,ε). Hence we can combine equations
(46)–(48) and Lemma 6.3 to get that

logU(t) ≥ (1− r1 − r2)tλ(j)(z)− r1ts
−1
t − r2ta

−ν
t − `t log

(
2d `t

er1ts
−1
t

)
+ j log r2 +O(log t) .

Use the bound `t < |z|+ rtbt and choose r = r1 + r2 to maximise this equation, that is, set

r1 :=
|z|+ rtbt

t(λ(j)(z) + s−1
t )

and r2 :=
j

t(λ(j)(z) + a−νt )
.

It is clear that on event Et,c we have r ∈ (0, 1). With these values of r1 and r2 we obtain

logU(t) ≥ tλ(j)(z)− (|z|+ rtbt)
{

log
(λ(j)(z) + s−1

t

s−1
t

)
+O(1)

}
+O(log t) .

On event Et,c we have that λ(j)(z) < at(1 + ft). Since also |z| < rtgt on event Et,c we find that

logU(t) ≥ tλ(j)(z)− |z| log(λ(j)(z))− rtbt log(λ(j)(z)) +O (rtgt log(st))

≥ tλ(j)(z)− |z|
γ

log log t+O (tdtbt)

by the choice of the scaling functions st in equation (17).
Next, we turn to the case d = 1. Denote by {X̄t}t∈R+ a random walk with generator

∆σ̄−1 where σ̄(x) = σit if σ(x) ∈ (σi−1
t , σit]. Again, by a simple coupling argument

P0(τ < rt) ≥ P0(τ̄ < rt) ,

where τ̄ is the first hitting time of z by X̄ and r ∈ (0, 1). Furthermore, we have

P0(τ̄ < rt) > 2−|Zt|
It∏
i=1

P(Poi(rit(σ
i
t)
−1) = Np

i ),
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for any {ri}1≤i≤It satisfying
∑

i ri ≤ r. By a similar calculation to the d ≥ 2 case, we have

logU(t) ≥ t(1− r)λ(j)(z) +

It∑
i=1

(
−rit(σit)−1 −Np

i log(2Np
i /(erit(σ

i
t)
−1)
)

+O(log t) .

Choose r and {ri} to maximise this equation, that is, set

ri =
Np
i

t(λ(j)(z) + (σit)
−1)

and r =
∑
i

rt

noting that r ∈ (0, 1) for the same reason as in the d ≥ 2 case. Then,

logU(t) ≥ tλ(j)(z) +

It∑
i=1

(
−Np

i

(
log
(
λ(j)(z)σit

))
+O(1)

)
+O(log t)

= tλ(j)(z)− |z| log
(
λ(j)(z)

)
−

It∑
i=1

(
Np
i log σit +O(|z|)

)
+O(log t) .

The result follows since we are on event Θd
t .

6.3. Contribution from each U i(t) is negligible

In this section we prove that the contribution to U(t) from the each of the components
U i(t), for i = 2, 3, 4, 5, is negligible. The most difficult step is bounding the contribution from
the components U2(t) and U3(t).

The difficulty with these components is that paths are permitted to visit sites of high
potential that are not Zt. Away from these sites, there is a probabilistic penalty associated
with each step of the path; this is easy to bound. However, close to these sites, the maximum
contribution from the path may come from a complicated sequence of return cycles to the
site. This motivates our set-up, which groups paths into equivalence classes depending only
on their trajectory away from sites of high potential.

For each t, we define a partition of paths into equivalence classes as follows. Suppose
p, p̄ ∈ Γ are two finite paths in Zd. Define inductively, r0 = 0, and

s` := min{i ≥ r`−1 : pi ∈ Π(Lt)} and r` := min{i > s` : pi ∈ ∂B(ps` , j)}

for each ` ∈ N, setting each to be ∞ if no such minimum i exists, and define similarly
(s̄`, r̄`)`≥1 for path p̄. Then we say that p and p̄ are in the same equivalence class if and only
if, for all ` ≥ 0,

s`+1 − r` = s̄`+1 − r̄` and pr`+i = p̄r̄`+i , for each i ∈ {0, 1, . . . , s`+1 − r`} .

Note that although s` and r` depend on t (through the set Π(Lt)), we suppress this dependence
for clarity. If p and p̄ are in the same equivalence class at time t we write p ∼ p̄. Denote by
P (p) := {p̄ ∈ Γ : p ∼ p̄}. Informally, the equivalence class P (p) consists of paths that have
identical trajectory except for when they are in balls of radius j around sites z ∈ Π(Lt) (or,
more accurately, when they first hit a site z ∈ Π(Lt) until when they leave the ball B(z, j)).

It is natural to group these equivalence classes P (p) according to (i) how many balls of
radius j around sites z ∈ Π(Lt) the path visits; and (ii) the total length of the path outside
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such balls. So for m,n ∈ N, let Pn,m be the set of equivalence classes P (p) of paths p that
satisfy

max{` : r` <∞} = m and
m−1∑
`=0

(s`+1 − r`) + sm+1
1{sm+1<∞} + |p|1{sm+1=∞} − rm = n .

Note that if a path p satisfies these two properties for some m and n then any other path
p̄ ∈ Pp will also satisfy these properties for the same m and n and hence Pn,m is well-defined.
The quantity m counts the number of balls of radius j around z ∈ Π(Lt) that the path exits
(which is easier to work with than the number of balls the path enters); the quantity n counts
the total length of the path between leaving each of these balls and hitting the next site
z ∈ Π(Lt).

Recalling the definitions of p(Xt), define the event

{p(X) ∈ P (p)} :=
⋃
s≥0

{p(Xs) ∈ P (p)} ,

and remark that we have the relationship

{p(Xt) ∈ P (p)} ⊆ {p(X) ∈ P (p)} . (49)

Denote by

UP (p)(t) = E0

[
exp

{∫ t

0
ξ(Xs) ds

}
1{p(Xt)∈P (p)}

]
.

the contribution to the total solution U(t) from the path equivalence class P (p).
The following lemma bounds the contribution of each P (p) ∈ Pn,m in terms of m and n.

The key fact motivating our set-up is that the contribution is decreasing in n.

Lemma 6.6 (Bound on the contribution from each equivalence class). Let m,n ∈ N and
p ∈ Γ(0) such that Set(p) ⊆ Vt and P (p) ∈ Pn,m. Define z(p) := arg maxz∈Set(p) λ

(j)(z) and

let ζ > max{λ(j)(z(p)), Lt,ε}. Then there exist constants c1, c2 > 0 such that, uniformly in
m,n, p and ζ, as t→∞,

UP (p)(t) ≤ eζt
(
c1(ζ − Lt)

)−n(
1 + c2

(
ζ − λ(j)(z(p))

)−1
)m

eventually almost surely.

Proof. The strategy of the proof is to split UP (p)(t) into three components, corresponding
to the contribution: (i) from when Xs is outside B(Π(Lt), j) until Xs hits a site z ∈ Π(Lt);
(ii) from when Xs hits z ∈ B(Π(Lt), j) until when Xs leaves the ball B(z, j); and (iii) if Xs

hits z ∈ Π(Lt) and does not subsequently leave B(z, j), from this component separately. To
bound the contribution from these components, we make use of Corollary 6.2, Lemma 3.13
and Lemma 3.4 respectively.

There are two cases to consider, depending on whether the event described in (iii) occurs,
that is, if sm+1 < ∞. We begin with this case. To simplify notation in the following we
abbreviate

Iba := exp

{∫ b

a
(ξ(Xs)− ζ) ds

}
.
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Recall the definition of (s`, r`)`∈N and define the stopping times

R0 := 0 , S` := inf{s ≥ R`−1 : Xs = ps`} and R` := inf{s ≥ S` : Xs = pr`t
}

for each ` ∈ {1, . . . ,m}, and similarly define Sm+1 since sm+1 <∞. We can then write

UP (p)(t) = E0

[
e
∫ t
0 ξ(Xs) ds1{p(Xt)∈P (p)}

]
= eζt E0

[
It0 1{p(Xt)∈P (p)}

]
= eζt E0

[(
m∏
`=0

IS
`+1

R`

)(
m∏
`=1

IR
`

S`

)
ItSm+11{p(Xt)∈P (p)}

]
.

Note that, conditionally on FSm+1 (the σ-algebra generated by Sm+1), the quantity ItSm+1 is
independent of all other Iba in this expectation. Thus we have

UP (p)(t) = eζt E

{
E0

[(
m∏
`=0

IS
`+1

R`

)(
m∏
`=1

IR
`

S`

)
1{p(Xt)∈P (p)}

∣∣∣FSm+1

]

× E0

[
ItSm+11{p(Xt)∈P (p)}

∣∣FSm+1

]}
. (50)

We use Corollary 6.2 to bound the expectation on the second line of (50); in the calculation
that follows, abbreviate s := sm+1 and S := Sm+1. We obtain, for some C > 1,

E0

[
ItS1{p(Xt)∈Pt(p)}

∣∣S] ≤ 1{S≤t} Eps
[
It−S0 1{τB(ps,j)>t−S}

∣∣∣S] ≤ Ce(t−S)(λ(j)(ps)−ζ) ≤ C

almost surely, since ζ > λ(j)(ps). Combining with (50) and using equation (49) we obtain

UP (p)(t) ≤ C eζt E0

[(
m∏
`=0

IS
`+1

R`

)(
m∏
`=1

IR
`

S`

)
1{p(X)∈P (p)}

]

= Ceζt E0

[(
m∏
`=0

IS
`+1

R`

)
1{p(X)∈P (p)}

]
E0

[(
m∏
`=1

IR
`

S`

)
1{p(X)∈P (p)}

]
. (51)

Let ξ
(`)
max = maxr`≤k<s`+1 ξ(pk), for ` = {0, 1, . . . ,m}. By Lemma 3.4, which we can apply

here since ζ > Lt,ε > Lt ≥ max0≤l≤m ξ
(`)
max ,

E0

[(
m∏
`=0

IS
`+1

R`

)
1{p(X)∈P (p)}

]
≤ (2d)−n

m∏
`=0

s`+1−1∏
k=r`

(
1 + σ(pk)(ζ − ξ(`)

max )
)−1

(52)

≤ (2d)−n (1 + δσ(ζ − Lt))−n ,

almost surely, using the definition of n and the lower bound on σ. Making the new abbrevi-
ation s := s`, we have

E0

[(
m∏
`=1

IR
`

S`

)
1{p(X)∈P (p)}

]
=

m∏
`=1

Eps
[
I
τB(ps,j)

0 1{p(X)∈P (p)}

]
≤

m∏
`=1

Eps
[
I
τB(ps,j)

0

]
.
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Since ζ > λ(j)(z(p)), we can apply the first bound in the cluster expansion in Lemma 3.13 to
deduce that

m∏
`=1

Eps
[
I
τB(ps,j)

0

]
≤
(

1 +
δ−1
σ |B(0, j)|

ζ − λ(j)(z(p))

)m
. (53)

Using these two estimates, we obtain from equation (51) the desired bound.
We now deal with the case that sm+1 =∞. Similarly to the above, we condition on FRm

(the σ-algebra generated by Rm) to write UP (p)(t) as

eζt E

{
E0

[(
m∏
`=0

IS
`+1

R`

)(
m∏
`=1

IR
`

S`

)
1{p(X)∈P (p)}

∣∣∣FRm]E0

[
ItRm1{Rm≤t}

∣∣FRm]}.
Set l := |p| − rm > 0 and τend := inf{s > 0 : Xs = Xt}. Observe that, since ζ > Lt,ε > Lt ≥
ξ(Xt), almost surely

E0

[
ItRm1{p(Xt)∈P (p)}

∣∣FRm] ≤ E0

[
IτendRm 1{p(Xt)∈P (p)}

∣∣FRm]
and applying Lemma 3.4 (valid by Lemma 3.2) we get that

E0

[
ItRm1{p(Xt)∈P (p)}

∣∣FRm] ≤ (2d)−l(1 + δσ(ζ − Lt))−l

almost surely. The rest of the proof proceeds similarly to the previous case.

We can use Lemma 6.6 to bound the contribution to the total mass U(t) from U2(t) and
U3(t).

Proposition 6.7 (Upper bound on U2(t)). There exists a constant c such that, as t→∞,

logU2(t) ≤ t max
z∈Π(Lt)\{Zt}

Ψ
(j)
t,c (z) +O(tdtbt)

almost surely.

Proof. Recall the path set E2
t , and for each m,n ∈ N define

P2
n,m :=

⋃
p∈E2

t

Pt(p) ∩ Pn,m .

Note that |P2
n,m| ≤ κn+m, with κ = max{2d, |∂B(0, j)|}. We observe that

U2(t) =
∑
n,m

UP
2
n,m(t) ≤

∑
n,m

κn+m max
P∈P2

n,m

{
UP (t)

}
=
∑
n,m

κ−n−m max
P∈P2

n,m

{
κ2(n+m)UP (t)

}
≤ max

n,m
max

P∈P2
n,m

{
κ2(n+m)UP (t)

}∑
n,m

κ−n−m .

For each P ∈ P2
n,m, denote by z(P ) the site y ∈ Π(Lt) on a given path p ∈ P which maximises

λ(j)(y), remarking that this a class property of P eventually almost surely by Lemma 4.2.
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Using Lemma 6.6, for each P ∈ P2
n,m and for any ζ > max{λ(j)(z(P )), Lt,ε}, we have that

there exist constants c1, c2, c3 > 0 such that, eventually almost surely,

κ2(n+m) UP (t) ≤ eζt (c1(ζ − Lt))−n
(
c2 + c3(ζ − λ(j)(z(P )))−1

)m
.

Set ζ = max{λ(j)(z(P )), Lt,ε}+ dtbt. To lower bound n, observe that the number of steps be-
tween exiting a j-ball and hitting another site in Π(Lt) is at least j+1. We apply Corollary 4.4
to the balls B(Π(Lt), j + 1) to deduce that, eventually almost surely

n > m(j + 1) + |z(P )| − |z(P )|c4 , (54)

for some c4 < 1. Then, by monotonicity in n,

κ2(n+m) UP (t) ≤ et(λ(j)(z(P ))+dtbt)(c1(Lt,ε − Lt))−|z
(P )|+|z(P )|c4

×
(
c1(Lt,ε − Lt))−j−1(c2 + c3dtbt)

−1)
)m

eventually almost surely. Note that j was chosen precisely to be the smallest integer such
that

(j + 1) log at + log(dt)→∞ (55)

which implies, since bt � 1/ log log t by (17), that

(j + 1) log at + log(c2 + c3dtbt)→∞ .

By Lemma 4.2, for z ∈ Π(Lt), as t→∞,

|z|c4 < tdtbt

eventually almost surely. Moreover,

log (Lt,ε − Lt) > log at + c5

eventually for some positive c5. So there exists a constant c such that

2(n+m) log κ+ logUP (t) ≤ c|z(P )|+ λ(j)(z(P ))t− 1

γ
|z(P )| log log t+ tdtbt

eventually almost surely, which yields the result.

Proposition 6.8 (Upper bound on U3(t)). There exists a constant c such that, as t→∞,

logU3(t) ≤ tΨ(j)
t,c (Zt)− ht

1

γ
|Zt| log log t+O (tdtbt)

almost surely.

Proof. Recall the set of paths E3
t and define P3

n,m by analogy with P2
n,m. The proof then

follows as for Proposition 6.7 after strengthening the bound in (54) to give that for each
p ∈ E3

t and for some c1 < 1, eventually almost surely

n > m(j + 1) + (1 + ht)
1

γ
|Zt| log log t− |Zt|c1 .
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Proposition 6.9 (Upper bound on U4(t)). For all t ≥ 0,

U4(t) ≤ etLt .

Proof. This follows trivially from the definition of U4(t).

Proposition 6.10 (Negligibility of U5(t)). As t→∞, almost surely,

U5(t)

U(t)
→ 0 .

Proof. The equivalent statement for the PAM with Weibull potential is proved in [23, Section
2.5], and is a consequence of a large probabilistic penalty for diffusing outside the macrobox
Vt. The assumption that σ(0) > δσ ensures that the proof applies equally well in our case.

Corollary 6.11. There exists a constant c such that, as t→∞,

U2(t) + U3(t) + U4(t) + U5(t)

U(t)
1Et,c1Θdt

→ 0

almost surely.

Proof. Let c be the maximum of the constants appearing in Propositions 6.7 and 6.8. Com-

bining Propositions 6.5 and 6.7, and recalling that Z
(j)
t,c = Zt eventually by Proposition 5.8

and Corollary 5.11, we have that, on the events Et,c and Θd
t , eventually almost surely

logU2(t)− logU(t) ≤ t
(

Ψ
(j)
t,c (Z

(j,2)
t,c )−Ψ

(j)
t,c (Z

(j)
t,c )
)

+ c|Zt|+O(tdtbt) .

Using the gap in the maximisers of Ψ
(j)
t,c and since |Zt| < rtgt, we have that, as t→∞,

logU2(t)− logU(t) ≤ −tdtet +O(rtgt) +O(tdtbt)→ −∞

by the properties of the scaling functions in (17). Similarly, combining Propositions 6.5
and 6.8, we have that, on the events Et,c and Θd

t , eventually almost surely

logU3(t)− logU(t) ≤ −ht
1

γ
|Zt| log log t+ c|Zt|+O(tdtbt)

and so, using that |Zt| > rtft on the event Et,c, as t→∞,

logU3(t)− logU(t) ≤ −rtftht
1

γ
log log t+O(tdtbt)→ −∞

by the properties in (17). Finally, combining Propositions 6.5, 6.9 and 6.10, we get the
result.

7. Localisation

In this section we complete the proof of Theorem 1.7; that is, we show that the non-
negligible component of the total solution, u1(t, z), is eventually localised at Zt. Recall the
idea of the proof that was outlined in Section 2, that: (i) the solution u1(t, z) is closely
approximated by the principal eigenfunction of ∆σ−1 + ξ restricted to the domain

Bt := B (0, |Zt|(1 + ht)) ∩ Vt
and; (ii) the principal eigenfunction decays exponentially away from Zt. Throughout this
section, fix the constant c > 0 from Corollary 6.11.

57



7.1. Approximating the solution with the principal eigenfunction

Let λt and vt denote, respectively, the principal eigenvalue and eigenfunction of the Hamil-
tonian ∆σ−1+ξ restricted to the domain Bt with Dirichlet boundary conditions, renormalising
vt so that vt(Zt) = 1.

Lemma 7.1 (Gap in j-local principal eigenvalues in Bt). On the event Et,c, each z ∈ Bt\{Zt}
satisfies

λ(j)(Zt)− λ(j)(z) > dtet + o(dtet) .

Proof. On the event Et,c, we have that λ(j)(Zt) > at(1 − ft) and so the claim is true for
z /∈ Π(Lt) by Lemma 3.2. On the other hand, if z ∈ Π(Lt) then

dtet < Ψ
(j)
t (Zt)−Ψ

(j)
t (z) = λ(j)(Zt)− λ(j)(z) +

|z| − |Zt|
γt

log log t .

To complete the proof, notice that, for each z ∈ Bt,

|z| − |Zt|
γt

log log t <
rtgtht
γt

log log t = dtgtht � dtet

since gtht � et by (17).

Corollary 7.2. Eventually on the event Et,c, each z ∈ Bt \ {Zt} satisfies

λt > λ(j)(z) + dtet + o(dtet) .

Proof. First note that, on the event Et,c, the ball B(Zt, j) ⊆ Bt. Hence, by the domain
monotonicity in Lemma 3.1, we have λt ≥ λ(j)(Zt), and so the result follows from Lemma 7.1.

Proposition 7.3 (Feynman-Kac representation for the principal eigenfunction). Eventually
on the event Et,c,

vt(z) =
σ(z)

σ(Zt)
Ez
[
exp

{∫ τZt

0
(ξ(Xs)− λt) ds

}
1{τBct>τZt}

]
,

where
τZt := inf{t ≥ 0 : Xt = Zt} and τBct := inf{t ≥ 0 : Xt /∈ Bt} .

Proof. This is an application of Proposition 3.3, valid precisely because of Corollary 7.2.

7.2. Exponential decay of the principal eigenfunction

Recall the partition of paths into equivalence classes in Section 6, the quantities r` and s`

associated to each equivalence class, and, for m,n ∈ N, the set of equivalence classes Pn,m.
Recall also the event {p(X) ∈ P (p)}.

Define the path set

Ē1
t :=

{
p ∈ E1

t : |p| = min {i : pi = Zt}
}
,

and for each m,n ∈ N define

P̄1
n,m :=

⋃
p∈Ē1

t

Pt(p) ∩ Pn,m .
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Further, for each P ∈ P̄1
n,m and y ∈ Bt define

vPt (y) :=
σ(y)

σ(Zt)
Ey
[
exp

{∫ τZt

0
(ξ(Xs)− λt) ds

}
1{p(X)∈P}

]
. (56)

For each P ∈ P̄1
n,m denote by z(P ) the site y ∈ Π(Lt) on a given path p ∈ P , excluding the

site Zt, which maximises λ(j)(y), setting z(P ) = ∅ (and λ(j)(∅) = 0) if no such y exists.
Remark that, whenever z(P ) is defined, it is a class property of P eventually almost surely,
by Lemma 4.2.

Lemma 7.4 (Bound on the contribution from each equivalence class). Let m,n ∈ N and
P ∈ P̄1

n,m. Then there exist constants c1, c2 > 0 such that, for each m,n, P and y ∈ Bt \Π(Lt)

uniformly, as t→∞,

vPt (y)σ(Zt) ≤ (c1(λt − Lt))−n
(

1 + c2(λt − λ(j)(z(P )))−1
)m−1

and, for every y ∈ Π(Lt) uniformly,

vPt (y)σ(Zt) ≤
(
λt − λ(j)(z(P ))

)−1
(c1(λt − Lt))−n

(
1 + c2(λt − λ(j)(z(P )))−1

)m−1

both hold eventually almost surely.

Proof. Starting with the Feynman-Kac representation for vPt (y) in equation (56), the proof
follows similarly as in Lemma 6.6 for ζ = λt, which is a valid setting for ζ because of Corol-
lary 7.2. Two modifications are necessary to adapt the proof.

The first modification comes from the observation that, for any p ∈ P , the final site
Zt gives no contribution to the expectation, and hence we have m − 1 instead of the m in
Lemma 6.6.

The second modification is necessary to take into account the additional σ(y) factor present
in the Feynman-Kac representation in equation (56), which a priori could be arbitrarily large.
How we take this into account depends on whether p starts at a site of high potential. If
y /∈ Π(Lt), we simply modify equation (52) by pulling out the factor σ(y) and bounding the
right-hand side by

(2d)−nσ−1(y)(λt − Lt)−1 (1 + δσ(λt − Lt))−n+1 ,

and the claimed result follows. If y ∈ Π(Lt), we instead modify equation (53) by using the
second bound in Lemma 3.13 on the product factor for ` = 1, which yields (abbreviating
s := s`)

Ey[I
τB(y,j)

0 ]

m−1∏
`=2

Eps
[
I
τB(ps,j)

0

]
≤ σ−1(y)(λt − λ(j)(z))−1

(
1 +

δ−1
σ |B(0, j)|

λt − λ(j)(z(P ))

)m−1

,

and again the claimed result follows.

Proposition 7.5 (Exponential decay of principal eigenfunction). On the event Et,c there
exists a constant C > 0 such that, for each y ∈ Bt uniformly, as t→∞,

log vt(y) + log σ(Zt) ≤ −C|y − Zt| log log t

eventually almost surely.
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Proof. As in Proposition 6.7, we observe that there exists κ > 1 such that

vt(y) =
∑
n,m

∑
P∈P̄1

n,m

vPt (y) ≤ max
n,m

max
P∈P1

n,m

{
κ2(n+m)vPt (y)

}∑
n,m

κ−n−m .

Suppose y ∈ Bt \Π(Lt). Then for each P ∈ P̄1
n,m, by Lemma 7.4 there exist c1, c2, c3 > 0 such

that

κ2(n+m)σ(Zt)v
P
t (y) ≤ (c1(λt − Lt))−n(c2 + c3(λt − λ(j)(z(P )))−1)m−1

eventually almost surely. Note also that by Corollary 4.4 (similarly to (54)), eventually almost
surely

n > (m− 1)(j + 1) + c4|y − Zt|

for any c4 < 1. Then, for any 0 < ε < θ,

κ2(n+m)σ(Zt)v
P
t (y) ≤ (c1(Lt,ε − Lt))−c4|y−Zt|

(
(c1(Lt,ε − Lt))−j−1(c2 + c3(dtet)

−1)
)m−1

eventually almost surely by monotonicity in n and Corollary 7.2, and so, applying equa-
tion (55), there exists a C > 0 such that

2(n+m) log κ+ log vPt (y) + log σ(Zt) ≤ −C|y − Zt| log log t

eventually almost surely. Suppose then that y ∈ Π(Lt). Here we proceed similarly, but we
now need the stronger bound n > m(j+1)+ c4|y−Zt| for any c4 < 1, valid eventually almost
surely for y ∈ Π(Lt) by Lemma 4.2. Then,

κ2(n+m)σ(Zt)v
P
t (y) ≤

(
(c1(Lt,ε − Lt))−j−1(dtet)

−1
)

(c1(Lt,ε − Lt))−c4|y−Zt|

×
(
(c1(Lt,ε − Lt))−j−1(c2 + c3(dtet)

−1)
)m−1

,

and the rest of the proof follows as before.

7.3. Completion of the proof of Theorem 1.7

We are now in a position to establish Theorem 1.7. First, remark that Proposition 7.5
implies that, as t→∞,

1Et,c σ(Zt)
∑

z∈Bt\{Zt}

vt(z)
2 → 0

almost surely, and so in particular 1Et,c‖vt‖2`2 → 1, since we know σ(Zt) > δσ. Hence since

1Et,c σ(Zt) ‖σ−
1
2 vt‖2`2

∑
z∈Bt\{Zt}

vt(z) ≤ 1Et,c δ
−1
σ ‖vt‖2`2 σ(Zt)

∑
z∈Bt\{Zt}

vt(z) , (57)

the left-hand side of equation (57) also converges to zero almost surely. To finish the proof,
we apply Proposition 3.14, which gives that

1Et,c
1

U(t)

∑
z∈Bt\{Zt}

u1(t, z)→ 0

almost surely. Combining the above with the negligibility results already established in Corol-
lary 6.11 on events Et,c and Θd

t , and the fact that the events Et,c and Θd
t hold eventually with

overwhelming probability by Proposition 6.4, we have established Theorem 1.7.
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[6] J. Gärtner, W. König, S. Molchanov, Geometric characterization of intermittency in the
parabolic Anderson model, Ann. Probab. 35(2) (2007) 439–499.

[7] L. Fontes, M. Isopi, C. Newman, Random walks with strongly inhomogeneous rates and
singular diffusions: Convergence, localization and aging in one dimension, Ann. Probab.
30(2) (2002) 579–604.

[8] S. Muirhead, Two-site localisation in the Bouchaud trap model with slowly varying traps,
Electron. Commun. Probab. 20(25) (2014) 115.

[9] T. Brotto, G. Bunin, J. Kurchan, Population aging through survival of the fit and stable,
arXiv:1407.4669.

[10] A. Astrauskas, Poisson-type limit theorems for eigenvalues of finite-volume Anderson
Hamiltonian, Acta Appl. Math. 96 (2007) 3–15.

[11] C. Bartsch, M. Kochler, N. Gantert, Survival and growth of a branching random walk
in random environment, Markov Process. Related Fields 15(4) (2009) 525–548.

[12] T. Wolff, Random walk local times, Dirichlet energy and effective conductivity in the
random conductance model, PhD Thesis, TU Berlin.

[13] J. F. C. Kingman, A simple model for the balance between selection and mutation, J.
Appl. Prob. 15 (1978) 1–12.

[14] S. C. Park, D. Simon, J. Krug, The speed of evolution in large asexual populations, J.
Stat. Phys. 138 (2010) 381–410.

[15] K. Ishii, H. Matsuda, Y. Iwasa, A. Sasaki, Evolutionarily stable mutation rate in a
periodically changing environment., Genetics 121 (1) (1989) 163–74.

61



[16] E. G. Leigh, Natural selection and mutability, The American Naturalist 104 (937) (1970)
301–305.

[17] F. Taddei, M. Radman, J. Maynard-Smith, B. Toupance, P. H. Gouyon, B. Godelle, Role
of mutator alleles in adaptive evolution, Nature 387 (6634) (1997) 700–702.

[18] G. Chen, Z. Chen, Exact solutions of the position-dependent mass Schrödinger equation
in D dimensions, Phys. Lett. A. 331(5) (2004) 312–315.

[19] H. Eleuch, P. Jha, Y. Rostovtsev, Analytical solution to position dependent mass for
3d-Schrödinger equation, Math. Sci. Lett. 1 (2012) 1–6.

[20] O. Roos, Position-dependent effective masses in semiconductor theory, Phys. Rev. B
27 (7545).

[21] M. Biskup, W. König, Screening effect due to heavy lower tails in one-dimensional
parabolic Anderson model, J. Stat. Phys. 102 (5-6) (2001) 1253–1270.

[22] A. Astrauskas, Extremal theory for spectrum of random discrete Schrödinger operator.
I. Asymptotic expansion formulas, J. Stat. Phys. 131 (2008) 867–916.
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