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Kinetic perimetry is used to quantify visual field size/
sensitivity. Clinically, perimetry can be used to diagnose
and monitor ophthalmic and neuro-ophthalmic disease.
Normative data are integral to the interpretation of these
findings. However, there are few computational
developments that allow clinicians to collect and analyze
normative data from kinetic perimeters. In this article we
describe an approach to fitting kinetic responses using
linear quantile mixed models. Analogously to traditional
linear mixed-effects models for the mean, linear quantile
mixed models account for repeated measurements taken
from the same individual, but differently from linear
mixed-effects models, they are more flexible as they
require weaker distributional assumptions and allow for
quantile-specific inference. Our approach improves on
parametric alternatives based on normal assumptions.
We introduce the R package Kinet icF, a freely
available and open-access resource for the analysis of
perimetry data. Our proposed approach can be used to
analyze normative data from further studies.

Sensitivity to light reduces with increasing eccen-
tricity from the center of the visual field. Kinetic
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perimetry assesses the location at which moving light of
a fixed size/intensity can be seen and is used to quantify
visual field sensitivity. The location of each test point is
recorded as a polar coordinate, and points are joined to
form an isopter, denoting a line of differential light
sensitivity, within which light of a particular size/
intensity can be perceived.

Constructing robust normative perimetry standards
provides an evidence base for interpretation of clinical/
research findings—aiding detection of visual field
defects. Analysis of normative kinetic perimetry data
requires an understanding of anatomical and physio-
logical characteristics, and the correct application of
appropriate statistical methods. However, the analyti-
cal methods currently employed in the literature do not
take into account the repeated-measures structure of a
kinetic isopter, nor do they adequately address the lack
of normality in the empirical distribution of data
points.

Niederhauser and Mojon (2002) summarized kinetic
isopters at each meridian with the mean and 95%
confidence intervals. Similar methods have been used
by other researchers (Egge, 1984; Wilscher, Wabbels,
and Lorenz, 2010) though they assume symmetric
distributions along test meridians. There are two issues
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with this approach: It can define poorly fitted regions of
uncertainty that may fall outside the edge of the
perimeter test surface or cause crossing of confidence
bands; also, as it is not model-based, it cannot be used
for inferential purposes (e.g., to compare goodness-of-
fit or to determine whether the resulting normative
curves and confidence regions need further adjustment
by relevant covariates, such as age). Other techniques
for summarizing normative fields, such as total isopter
area (Bjerre, Codina, & Griffiths, 2014; Quinn, Fea, &
Minguini, 1991) and visual field extent along meridians
(Wilson, Quinn, Dobson, & Breton, 1991) do not
provide reference values that are easily interpretable in
a clinical setting.

Isopter data may show conditional distributions that
do not conform to normality assumptions, such as
symmetry and constant variance (homoscedasticity),
either on the observed or the transformed (e.g.,
logarithmic) scale of the outcome. For these reasons,
modeling based on mean (normal) regression can lead
to incorrect inference. Even when approximate nor-
mality is achieved after transformation, back-transfor-
mation of conditional expectations is troublesome as it
may lead to estimates and/or confidence regions outside
the admissible range of the outcome. Moreover, isopter
data that are collected repeatedly on the same subject
are correlated by design. While mixed-effects models
for the mean account for the clustered design, they are
still subject to strong distributional assumptions and
back-transformation issues.

As an alternative to mean regression, we consider
quantile regression (QR; Koenker, 2005), which intro-
duces weak assumptions on the distribution of the error
and therefore is robust to deviations from normality.
For this reason, no transformation is required—note,
however, that even when transformations are intro-
duced to achieve linearity, back-transforming quantiles
is a simple task (see for example, Geraci & Jones, 2015).
More specifically, in this article we address the
analytical challenges of modeling isopter data using
mixed-effects models for conditional quantiles called
linear quantile mixed models (LQMMs; Geraci &
Bottai, 2014). The inclusion of subject-specific effects in
mixed-effects models allows for within-subjects corre-
lation resulting from repeated measurements. This
approach yields clinically appropriate estimates within
expected clinical ranges and correct inference from
kinetic perimetry data.

Here we report the application of LQMMs to
normative kinetic isopter data obtained from healthy
children (Patel, Cumberland, Walters, Russell-Eggitt,
Cortina-Borja et al., 2015) using the R (The R project
for Statistical Computing, version 3.1.2; R Core Team,
2016) package kinet icF (Patel & Cortina-Borja,
2015). The kineticF package is a collection of
functions for cleaning, processing, visualization, and
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analysis of manual (Goldmann) and automated (Oc-
topus 900) kinetic visual field data, which depends on
the package 1gmm (Geraci, 2014) used to fit QR
models with random effects.

Data

The data used in the examples here were collected at
Moorfields Eye Hospital, London, as part of a wider
program of research, which has been described
elsewhere (Patel, Cumberland, Walters, Russell-Eggitt,
& Rabhi, 2015). Briefly, we recruited children without an
ophthalmic condition that affects the visual field to
generate normative data and explore visual field
development in childhood. Informed written consent
was obtained from the children’s parents/guardians.
This study was approved by the National Health
Service Research Ethics Committee for London—
Bloomsbury and conforms to the tenets of the
Declaration of Helsinki.

Children aged 5 to 15 years were examined by one
clinician (DEP) under clinical conditions using Gold-
mann and Octopus kinetic perimeters (Haag-Streit,
Bern, Switzerland). Manual Goldmann data were
scanned and digitized using Engauge digitizer software
(open-source, www.digitizer.sourceforge.net). Octopus
data were extracted from the perimeter and processed
using the R package kineticF (Patel & Cortina-
Borja, 2015) available from the Comprehensive R
Archive Network repository.

Statistical methods

Data were collected in polar coordinates (r, 0)
defining points along meridians. Due to the cyclical
nature of the isopters (Figure 1A), we used harmonic
linear predictors in our regression models. For these
data, a simple model with sine and cosine terms of
periods 7 and 7/2 could be specified as follows:

r = Py + Bicos(0) + p,sin(0) + B3cos(20)
+ B4sin(20) +¢, (1)

where r is the isopter value corresponding to meridian 0
and the ffs are the model’s parameters. Of course,
Model 1 can include interactions between the sine and
cosine terms, or higher frequency harmonics, and be
adjusted for confounders such as age and sex.
Typically, the error term ¢ is assumed to be normal,
with zero mean and constant variance.
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Figure 1. Subject lines (A), points (B), and methods of summarizing normative data; mean and 95% confidence interval (C), mean with
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2.5% and 97.5% quantiles (D), and a linear quantile mixed-effects model without (E) and with (F) subject data points.
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Since the goal is to produce normative standards
(i.e., reference charts), we need to predict specific
isopter quantiles. Under normal assumptions, the
100 - pth centile of the conditional distribution of r
from Equation 1 is defined as

0:(p) = Po,, + Bicos(0) + Pysin(0) + B3cos(20)
+ B4sin(20), (2)

where f, , is an intercept that depends on the quantile
p. However, note that the slopes in Equation 2 are
constrained by the normal model to be the same for all
quantiles. This means that all the individuals in the
sample are assumed to have the same distribution,
except for a shift f, ,, which is determined by the
normal distribution.

In QR, individual conditional distributions are
allowed to differ from subject to subject by letting all
the parameters, including the slopes, vary with p. Thus,
the location, scale, and shape of the error term ¢ are not
determined by a theoretical distribution (e.g., normal)
but are modeled empirically.

A QR approach is particularly appropriate to model
isopter data. The distribution of points along meridians
(as observed from multiple subjects) is skewed and
leptokurtotic (Figure 1B). Rather than use a transfor-
mation (e.g., logarithmic) of these values to achieve
normality, we used QR models, which do not require
specific distributional assumptions on the error (distri-
bution-free), adequately describe skewed and kurtotic
distributions, and operate on the data’s original scale.
In these models, we define the regression parameters in
relation to a set of quantile levels, namely 2.5%, 50%,
and 97.5%, which describe the central tendency and the
central 95% of the conditional distribution. Moreover,
since by design the isopter data are clustered within
individuals, we used LQMMs as proposed by Geraci
and Bottai (2014) to account for the within-subjects
correlation. For our data, we considered several
specifications of LQMM:s.

In our model selection strategy, we first used a
forward stepwise approach in which terms were
included if their parameter estimates reached a 10%
significance level. We only considered random effects
terms on the intercept of each model given that, for all
models fitted, adding other random effects in the
models did not improve the trade-off between
goodness-of-fit and number of parameters as mea-
sured with the Bayesian Information Criterion (Kuha,
2004).

The final LQMM

Q'(p> = (ﬂO,p + bO,]?) + ﬂl,pcos(g) + ﬁZ,pSin(Q)
+ B3 ,c0s(20) + B4 ,sin(20)
+ Ps ,sin(0) X cos(20),  (3)

included a random intercept (b ,) and a fixed effect
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for the interaction between cosine and sine terms
(Bs,p), along with fixed effects for individual cosine
and sine terms. Note that all regression coefficients
depend on the particular centile p.

The R package kinet icF makes use of the
routines from the package 1gmm (Geraci, 2014) to
fit QR models with random effects. The output from
lgmm is subsequently taken by kineticF to
provide graphical and statistical summaries matching
those produced by common perimeters, thus imme-
diately facilitating clinical interpretation. Cubic
smoothing spline models were used to smooth the
predicted isopters between consecutive meridians by
interpolating the fitted quantile values in each
meridian. The smoothing parameter of these spline
models was chosen using a cross-validation proce-
dure (Green & Silverman, 1994). This interpolating
process is included in kineticF and produces
smooth bands for specific quantiles of the isopters.
These predicted normative bands avoid assuming a
constant standard deviation and symmetry across
meridians.

These outputs were then formatted as templates for
use in both clinical and research settings (available
from http://e-lucid.com/i/video_and_images/
optic_templates.html). All data management and sta-
tistical modeling was performed using Microsoft Excel
2010® and R.

Data were collected from 154 children. The examples
shown here are from 30 subjects aged 8 to 11 years,
plotting isopter 14e.

Figure 1A displays the trajectories of individuals,
demonstrating the need for modeling the within-subject
structure present in the dataset. (Note that the lack of
data points along the 0° meridian corresponds to the
void [hashed] area within the Goldmann perimeter
bowl—that is, an area where no points can be plotted.)
Figure 1B shows the sample data points along 24
meridians located at 15° intervals; the asymmetry of
these observations along each meridian is apparent.
For example, along the 150° meridian, there is a
concentration of points at 50° eccentricity (near the
limit of the nasal field), with a long lower tail extending
to approximately 35°. Figure 1C and D show these
data’s mean and 95% confidence interval, and the 2.5th,
50th, and 97.5th empirical centiles along each meridian,
which are methods that have been used previously in
the literature. Finally, Figure 1E and F show the fitted
mixed-effects QR model as defined in Equation 3 with
predicted and smoothed curves for the 2.5%, 50%, and
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97.5% quantiles, without and with observed data
points, respectively.

We have applied robust statistical methods to the
modeling of normative kinetic perimetry data sampled
from multiple subjects and developed a collection of
visual and analytic software routines to carry out
similar analyses. Our approach is robust against
deviations from normality and homoscedasticity, and
represents a substantial advance to current practice in
that it lays the basis for statistical model comparisons
based on goodness-of-fit criteria, and improves
clinical interpretation by providing smooth quantile
curves representing the variability of normative visual
fields. Since these two aspects have not been fully
addressed in the literature, we cannot compare our
approach with other modeling strategies (Vonthein et
al., 2007). However, Figure 1F shows a substantial
improvement with respect to other approaches that do
not use regression models, namely Figure 1C and D.
Both are flawed: The former assumes that the mean
and a constant dispersion measure are enough to
model the conditional distribution; the latter estimates
the quantiles of interest for each isopter without
reference to the whole data set or to the within-
subjects correlation, and does not produce smooth
normative bands.

A potential limitation of methods based on QR is
that small samples (data sparsity) may lead to erratic
estimates of tail quantiles and, in the worst case, to
quantile crossing. This can be avoided by ensuring a
balanced design and an adequately sized sample.

As noted, we used a cross-validation criterion to
determine the smoothness of the cubic splines that
interpolated the quantiles of the isopters predicted by
our model. This could have been achieved in a Bayesian
setting assuming a prior distribution for the smoothing
parameters and estimating them with, for instance, the
median of its posterior distribution.

Our approach can be applied to clinical data from
control subjects thus providing normative data
against which observations from case subjects can be
compared. Without defining these normative stan-
dards, it is impossible to accurately assess disease
status. The mixed-effects quantile models described
in this paper can be readily applied to perimetric
data using packages 1gmm and kineticF,
which are freely available from public repositories.
Our findings support the use of the models reported
here when generating normative kinetic perimetry
standards.
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