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Abstract

This paper investigates the problem of prediction of stellar parameters,

based on the star’s electromagnetic spectrum. The knowledge of these pa-

rameters permits to infer on the evolutionary state of the star. From a sta-

tistical point of view, the spectra of different stars can be represented as

functional data. Therefore, a two-step procedure decomposing the spectra in

a functional basis combined with a regression method of prediction is pro-

posed. We also use a bootstrap methodology to build prediction intervals for

the stellar parameters. A practical application is also provided to illustrate

the numerical performance of our approach.

1 Introduction

In stellar astrophysics, one of the major issues is to obtain information about

stars from the observation of their spectra. A spectrum can be mathematically

considered as a functional object where the flux (the physical observable quan-

tity) is expressed as function of the wavelength or frequency (see e.g., [Rob07]).

From the spectrum, an astrophysicist can deduce some of the stellar parameters

such as the radius, temperature, gravity of the star, as well as the abundances

of some of its elements. A standard method (see e.g., [KP00, LPA07]) consists

of modelling (using state-of-the-art numerical codes) many theoretical spectra

for each individual star and carefully comparing these by eye with the star’s ob-

served spectrum, in order to get the stellar parameters.

Due to the growing number of new astronomical facilities and instrumentation,

it is now possible to obtain the observed spectra for hundreds of stars simultane-

ously (e.g., using the Flames, Uves or Fors multi-spectral object instruments in

ESO-VLT at Cerro Paranal in northen Chile). Thus, when using all these data to

obtain the stellar parameters, it is very important to use novel techniques that

significantly reduce the data processing time.
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In this context, different approaches have been developed in recent years. On

one side [MdKP+05] implemented a genetic algorithm [Cha95] to develop an au-

tomated fitting method for the quantitative spectroscopy of O- and early B-type

stars with stellar winds. On the other side [LPA07, SDH14] created a grid of

models for the analysis of massive blue supergiant stars. After the grid is com-

pleted, one compares some of the observed spectral lines (see below) with each

one of the lines from all synthetic models in order to get the stellar parameters.

Using a grid of models we want to speed up the process of obtaining the closed

synthetic spectra using functional data analysis.

Due to the functional form of this type of data, we choose to create prediction

methods using the tools developed by the functional data analysis community

(see e.g., the monographs of [RS05] and [FV06]).

This adds a new field of application for functional data analysis to the exist-

ing ones on others areas, e.g., spectrometry, neuroscience, econometrics. Func-

tional data have been used in several contexts such as classification (see [FV06],

[CFF07], [BCF11], [DH12], [DH13]) and prediction (see [DHA09], [SH12]). To

the best of our knowledge, there is only one article that adapts the functional

data methodology to astronomy, see [CCF+14].

In this article, we tackle two problems that are crucial for astrophysics. The first

objective is to predict the star’s characteristics using synthetic spectra while the

second objective is to create prediction intervals for the obtained stellar parame-

ters. In a first step, we decompose the spectrum into a functional basis that can

be Fourier or splines. Then we use a prediction method to determine the values

of the stellar parameters, specifically linear regression and robust or penalized

linear regression. In order to choose the number of bases in the decomposition,

we propose to compute the accuracy of our predictions using a cross-validation

method. We also develop a method based on the bootstrap principle in order

to obtain prediction intervals for the stellar parameters. These two automatic

procedures can reduce significantly the number of simulated spectra in order to

obtain information about these parameters.

This paper is organized as follows: In section 2, we present the dataset used

throughout the paper as well as the classical method used by astrophysicists to

predict stellar parameters. In section 3, we recall tools developed for functional

data analysis and we present methodology for decomposing the spectrum. In

section 4, we present the prediction methods and we propose two procedures to

evaluate the quality of the prediction and the computation of the prediction in-

tervals. Section 5 is dedicated to explanation of the numerical results and last

section discuss our conclusions.

2 Data

We use a grid of models calculated using the numerical code PoWR, [HG04]. This

code calculates the synthetic spectrum by solving the radiative transport equa-

tion for a stellar atmosphere. From a physical point of view, the observed spectra

measures the flux in the outer layers of a star (photosphere) and has two com-
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ponents (for details, see [Rob07]): the continuum (corresponding to the deepest

layers of the photosphere) and the spectral lines (interaction of the radiation with

non full–ionized atoms). We are interested in comparing some observed spectral

lines with the corresponding lines in synthetic spectra to get the information

about the stellar parameters. Thus, we divide the observed spectrum by the con-

tinuum to get what astronomers call the ’normalized spectrum’, which only car-

ries information about the spectral lines. From the PoWR database we will there-

fore use the normalized line spectrum of a star. All data can be downloaded at the

webpage http://www.astro.physik.uni-potsdam.de/~wrh/PoWR/powrgrid2-WNE.html.

There are many variables that describe the evolution of a star; in this case we

will use just 2 of them, namely the modified radius, Rt, and the effective tem-

perature, T∗, (see details in [HG04]). We downloaded the normalized spectra,

each of which contains 10455 data points over the same grid of wavelengths. The

spectra were generated for Wolf-Rayet star of type N (WNE).

The WNE database contains modelled spectra for 210 parameter pairings, corre-

sponding to T∗ ∈ [31.6,199.5] and Rt ∈ [0,1.5]. As the data are on a grid, several

spectra share the same value of T∗ or Rt. We compare ten spectral lines that cor-

respond to Hydrogen and Helium, the most abundant elements. Specifically the

lines are at wavelengths in the intervals [6500,6600] , [4800,4900] , [4300,4360] ,

[4370,4405] , [4460,4485] , [4700,4730] ,[4900,4940] ,[4180,4220] , [4525,4560] , [4670,4700] .

In Figures 1 and 2, we plot the whole spectrum corresponding to point 07-11 in

the grid of models. In Figures 3 and 4, we plot the modelled line spectra in the in-

terval [6500,6600] with one of the parameters fixed, to show the difficulty of the

problem. This grid is used to predict the value of T∗ and Rt when observing a star

through its spectrum. The usual approach to prediction involves minimizing the

L2 distance between the observed line spectrum and the line spectra generated

from the grid of parameters, and choosing the parameters of the minimizer.

3 Functional linear model

Due to high correlations between two consecutive values of a spectrum, tradi-

tional tools for parameter prediction, such as multivariate linear regression, fail.

To overcome this problem, we take advantage of the functional nature of the ob-

jects. Functional data analysis has become an important field of modern statis-

tics, and now there exists an abundant literature on this topic. We choose in

particular the approach of the functional linear model. We have tried nonpara-

metric methods such as in [FV06] in a preliminary study, but it seems that the

functional linear model works better. Functional linear regression has been in-

troduced for the case where predictors are curves, which is exactly the case here.

In fact, the functional linear model can be seen as a continuous version of the

multivariate linear model when the predictor is functional, i.e., where the pre-

dictor takes values in a functional space. The functional linear model, due to its

simplicity, has been widely studied in the literature; we refer to [CFS99] for a de-

scription of the model and an approach to parameter estimation. Furthermore,

the functional linear model covers a large range of applications, see [RS05] for

3
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Figure 1: Synthetic spectra of a WN star (grid model 07-11). Physical flux in

cgs units is plotted versus wavelength in Angstrom. The spectra is the one a star

would have if is located at a distance of 10 parsecs (pc) from us.

examples. Our case corresponds to a functional multivariate setup and we recall

here the principle and the notation, see [MAK08] for more details.

Suppose we have n observations i.i.d.
(
Y (1)

i
,Y (2)

i
, X i

)
; i = 1, . . . ,n, of

(Y (1),Y (2), X ) where Y (1) and Y (2) are scalar responses and X is a functional pre-

dictor. Suppose also that X is observed at M locations of interest, such that

we have X i, j , j = 1, . . . ,M. In our problem, Y (1) and Y (2) represent the stellar

parameters T∗ and Rt, respectively, and the functional variable X represents

the spectrum of the considered star, which we observe at M = 10 spectral lines.

The model is a multivariate functional linear model with scalar responses and is

given by: {
Y (1)

i
=α1 +

∑M
j=1

〈β1, j , X i, j〉+εi

Y (2)
i

=α2 +
∑M

j=1
〈β2, j , X i, j〉+ε′

i

(1)

where α1 and α2 are unknown scalar parameters, β1, j and β2, j are unknown

functional parameters, and εi and ε′
i

are i.i.d. errors independent of the predic-

tors. The notation 〈·, ·〉 represents the inner product of the space L2(K j), which

is the space of square integrable functions on compact intervals K j , which repre-

sent the M = 10 different intervals (containing the 10 spectral lines, see section
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Figure 2: Same as Fig. 1 but the flux is normalized by the flux of the continuum,

see text for details.

2).

In order to estimate the functional parameters, we use a Fourier basis. We denote

the p-length vector of Fourier basis functions (ρ
j

1
(t), . . . ,ρ

j
p(t)). The functional pre-

dictor X i, j then has the following basis function representation:

X i, j =

p∑

k=1

xi jkρ
j

k
+ r i jp,

where xi jk =
∫

K X i, j(t)ρ
j

k
(t)dt and r i jp is an error. We decompose the parameters

β1, j and β2, j using the same basis with the same notation. Then, we have

{
Y

(1)
i

=α1 +
∑M

j=1

∑p

k=1
β1 jkxi jk +ǫi

Y (2)
i

=α2 +
∑M

j=1

∑p

k=1
β2 jkxi jk +ǫ′

i
.

(2)

The errors in the equations of model (1) are different to the errors in (2), due to

the decomposition of the predictors. If we denote by X j the matrix (xi jk)i=1...n,k=1,...,p

we have {
Y (1) =α1 +

∑M
j=1

X jβ1, j +ǫ

Y (2) =α2 +
∑M

j=1
X jβ2, j +ǫ

′.
(3)
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Figure 3: H−α line (6562.8 angstrom) plotted against wavelength in the range

[6500,6600]. Upper left panel plot this line for models at Temperature=50.1

kKelvin showing the dependence for different stellar radius log(Rt) in the range

[0.3,1.7]. Other panels show the same but for different effective temperatures.

Given the new variable x, in order to predict values for Ŷ (1) and Ŷ (2), we need to

estimate the unknown parameters. Prediction is then simply achieved through

plugging-in these estimates:

{
Ŷ (1) = α̂1 +

∑M
j=1

〈β̂1, j ,x j〉

Ŷ (2) = α̂2 +
∑M

j=1
〈β̂2, j ,x j〉

In the literature, there are few references about the theoretical selection of the

numbers of components p, see [HY10] and [LWC13]. This is a challenging issue

and in our approach, we choose to minimize the ΓME, see section 5.

4 Evaluation methods

In this section, we present the statistical methods that we use to predict the stel-

lar parameters, given the data matrix X obtained through the functional models.
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Figure 4: Same as Fig 3. Upper left panel plot this line for models at log(Rt) =

0.2, but here the dependence is function of the effective temperature in the range

[56.2,177.8]. Other panels show the same but for different log(Rt).

4.1 Notations

We denote the l2 norm by ‖.‖2, i.e. ‖β‖2
2
=

∑p

k=1
|βk|

2. Similarly, we denote the

l1 norm by ‖.‖1, i.e. ‖β‖1 =
∑p

k=1
|βk|. In order to measure the quality of the

prediction function, we use the root mean square error i.e

RMSE(Y (l),Ŷ (l))=

√
1

n

n∑

i=1

|Y (l)
i

− Ŷ (l)
i

|2.

Of course, the goal is to obtained a RMSE as small as possible. We also intro-

duce the covariance matrix Γ = (γl,p)1≤l,p≤2 where γl,p = cov(Y (l),Y (p)) and the

associated scalar product (u,v)Γ = uT
Γ
−1v. Let us define the mean Γ error, i.e

ΓME(Y ,Ŷ )=

√
1

n

n∑

i=1

(Yi − Ŷi ,Yi − Ŷi)Γ.

4.2 Linear regression and variations

The easiest approach to prediction is to fit a linear model for the parameters. This

involves finding the parameter vector β that minimizes ‖Xβ−Y (l)‖2 and classical

results show that the required minimizer is β̂OLS = (XT X )−1XY (l). This method
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suffers from a major drawback, however: it is very unstable when the matrix

XTX is ill-conditioned. Moreover, when the number of basis functions becomes

large, the matrix XTX is no longer invertible; in our setting we have 126 curves

so this is the case when p > 13. In order to obtain more consistent predictions,

we explore three variants of this method. The first one is called “robust linear

regression", see e.g., [Hub64]. This method consists of solving an M-estimation

problem in order to stabilize the linear regression when the noise is heavy-tailed,

but this method is not suited for large p. The second solution is to penalize the

linear regression: specifically, we minimize the equation ‖Y (l)−Xβ‖2+λ‖β‖2
2

and

this method is called ridge regression [HK70]. One can show that the coefficient

can be written as β̂RR
j

=
β̂OLS

j

1+λ . When the number of parameters is larger than the

number of observations, the classical approach is to use a lasso procedure, see

[Tib96]. This is the third method that we consider, and it consists of minimizing

‖Y (l) −Xβ‖2 +λ‖β‖1.

4.3 Evaluation of the prediction

Here, we describe how to evaluate the accuracy of the presented algorithms

through a classical cross validation procedure. We choose to use a 5-fold pro-

cedure; 3 folds are used to estimate the parameter vector β(l). Notice that the

functional model depends on the number, p, of basis functions used for the de-

composition. To choose this parameter, we use a validation set as described in

Algorithm 1. Since we want to use the same parameter p to estimate β̂1 and β̂2,

we choose the parameter p that minimizes the mean Γ error on the validation

set. Finally, the performance of an algorithm is evaluated on the test set. In

order to get a more stable evaluation of the performances, we circulate the folds

and average the results. We notice that the error for each parameter is sensi-

tive with respect to the number of basis functions used, and for this reason we

also try to standardize the vector of stellar parameters within each column of the

training set.

4.4 Prediction intervals

Once we have predicted the parameter values, it is important to say how confi-

dent we are about this prediction. To solve this issue we build prediction inter-

vals at level α ∈ [0,1] for the parameters. By definition, a prediction interval I

at level α is such that P{Y ∈ I} = 1−α, where Y is a random variable. Note that

there are a large number of intervals that satisfy this condition, so we focus on

prediction interval of the following form: I = Il ∩ Ir where Il is a left prediction

interval (i.e, of the form ]−∞;M], M ∈R) at level α/2 and Ir is a right prediction

interval (i.e, of the form ]m;+∞], m ∈R) at level α/2. Obviously, such an interval

is a prediction interval at level α and is unique. Since the distribution of the

parameters Y (k), k = 1,2, are unknown, the question is how to build a prediction

interval. In this paper, we use the bootstrap methodology (described in [Sti85]) to

build a prediction interval for Y = θ(X ) and we recall the procedure in Algorithm

8



Algorithm 1 Evaluation of the prediction with validated number of basis

1. (INPUT.) A dataset D, A a prediction algorithm.

2. (SPLIT) Split Dn randomly in five equal parts D1, D2, D3, D4 and D5. Define

Da =∪3
i=1

Di , Dv =D4, Dt =D5

3. (ITERATIONS.) For p = 1,3,5 . . . ,13,

(a) (DECOMPOSITION.) Decompose Da, Dv using a functional basis, F, of size p

to obtain the matrices Xa and Xv.

(b) (LEARNING.) Use A and Xa to compute β̂p,1 and β̂p,2.

(c) (VALIDATION.) Compute Ŷ
p,1
v = Xvβ̂

p,1 and Ŷ
p,2
v = Xvβ̂

p,2 and

ΓME(Yv,Ŷ
p
v )where Yv is the matrix of true parameters corresponding to the

validation set and Ŷ
p
v = (Ŷ

p,1
v ,Ŷ

p,2
v )

4. (PREDICTION) Choose p̃ = argminpΓME(Yv,Ŷ
p
v ). Decompose Da, Dt using a

functional basis, F, of size p̃ to obtain the matrices Xa and Xt. Use A and Xa

to compute β̂p̃,1 and β̂p̃,2. Compute Ŷ
p̃,1
t = Xtβ̂

p̃,1 and Ŷ
p̃,2
t = Xtβ̂

p̃,2. We note

Ŷt = (Ŷ
p̃,1
t ,Ŷ

p̃,2
t ).

5. (OUTPUT.) RMSE(Y
(1)
t ,Ŷ

p̃,1
t ), RMSE(Y

(2)
t ,Ŷ

p̃,2
t ), ΓME(Yt,Ŷt) where Yt =

(Y
(1)
t ,Y

(2)
t ) are the true parameters corresponding to the test set.

2. The idea behind this method is to re-sample from the residuals in order to

create the prediction intervals. In order to assess the accuracy of the prediction

interval, we estimate the coverage probabilities, i.e., the frequency at which the

true parameter falls into the prediction interval. In practice, we run a leave one

out procedure to evaluate the coverage probabilities, each a element of the grid

is used once as X f and D is the rest of the grid in Algorithm 2.

5 Numerical results

To implement the experiments in this paper we use several R-packages. The

functional decomposition is carried out using the package “fda" , the linear re-

gression (named “LM" in the Tables), the robust linear regression (named “Ro-

bust LM" in the Tables) and the ridge regression (named “Ridge" in the Tables)

are implemented in the “MASS" library , and finally the lasso is implemented us-

ing the “glmnet” library. The standard method used by astrophysicists is named

“Astro" in the tables. As explained in 4.3, we run the experiments with the

original vectors Y (named “Brut” in the Tables) and with normalised Y (named

“Norm” in the Tables). Since the matrix Γ is unknown we evaluate it using the

full database and we obtain Γ̂= (0.2316,−0.1119;−0.1119,0.2184).

9



Algorithm 2 Bootstrap for building prediction intervals

1. (INPUT.) A training dataset D = (X,Y ) of size n, A a prediction algorithm, X f an

observation.

2. (ESTIMATION) Compute Ŷ = Xβ̂ using D and A. Set r̂ = (r̂1, . . . , r̂n) = Y − Ŷ the

residuals.

3. (ITERATIONS.) For t= 1, . . . ,T,

(a) (SAMPLE.) Draw with replacement from r̂ a sample r∗ = (r∗
1

, . . . ,r∗n) and r∗
f
.

Create D∗ = (X,Y ∗) where Y ∗ =Xβ̂+ r∗

(b) (LEARNING.) Use A and D∗ to compute β̂∗. Keep B∗
t = X f β̂−X f β̂

∗+ r∗
f
.

4. (OUTPUT) A prediction interval Ĩ = [X f β̂+q∗; X f β̂+Q∗] where q∗ (resp. Q∗) is the

empirical quantile at level α/2 (resp. 1−α/2) of B∗ = (B∗
1

, . . . ,B∗
T

).

5.1 Selection of the number of basis

For each procedure, we use a different range for p. Notice that p is always odd

when we use the Fourier base and must be greater than 4 when we use the spline

decomposition. For the linear model and for robust regression, we recall that p<

13 due to problems of identification. For ridge regression and the lasso, there are

no restrictions and we set p≤ 31 for the lasso and p≤ 35 for the ridge regression.

In figures 5, we show the evolution of ΓME as a function of p, the number of

Fourier basis functions. Each of the 5 lines corresponds to one validation set and

the pink dot corresponds to the mean. For the linear model, the value p = 7, is

clearly optimal. For the robust linear model, the use of 5 basis functions appears

marginally preferable. The results for ridge regression do not show a clear trend,

however high values for p should be preferred. Finally, the lasso should be used

with around 11 Fourier basis functions.

5.2 Results for prediction

In Tables 1 and 2, we detail the numerical accuracy of the prediction procedure,

calculated using the validation method explained in 4.3. It is clear that all the

functional model based methods improve the previous method. For all methods

shown, the median number p of basis functions selected (named Nbase in the

tables) in the validation step is quite small and is consistent with previous re-

sults for functional models [RS02]. The robust linear model always outperforms

the linear model however the comparison with ridge regression is not so clear.

Furthermore, the use of the standardized output variables is better for the linear

model but not for the others. We observe that the linear model and the robust

linear model fail when the number of basis functions is greater than 13 because

the models have identification problems. Finally, we observe that the results for

the decomposition in a Fourier basis are often better than for the spline basis.

10



Figure 5: Evolution of the ΓME as function of the number of basis for the differ-

ent prediction procedures, see text for details.
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5.3 Results for prediction intervals

In Tables 3 and 4, we present the coverage probabilities of the prediction inter-

vals produced with the procedure explained in 4.4. We can see that the prediction

intervals produced by the linear model and the robust linear model are closer to

0.95 than the one build using the classical method. But the prediction intervals

are too small when one use the robust regression. This is due to the fact that the

robust regression introduce a bias in order to reduce the variance and a bootstrap

method using a bias correction should be used is this case. We refer to [CK01] for

such methods. Finally, it is not so clear that the Fourier basis is better than the

spline one; as in the previous case. It depends of the proposed method: Fourier

with ridge regression is better than Spline with ridge regression, on the contrary,

Spline-LM is better than Fourier-LM.
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Table 1: Comparison of methods with Fourier decomposition : prediction.

LM Robust LM Ridge Lasso

Astro Brut Norm Brut Norm Brut Norm Brut Norm

RMSE1 0.171 0.088 0.061 0.062 0.070 0.080 0.065 0.123 0.109

RMSE2 0.143 0.089 0.088 0.060 0.081 0.075 0.074 0.109 0.084

ΓME 0.437 0.280 0.238 0.189 0.247 0.231 0.210 0.322 0.281

Nbase – 7 7 7 7 7 21 11 11

Table 2: Comparison of methods with spline decomposition : prediction.

LM Robust LM Ridge Lasso

Astro Brut Norm Brut Norm Brut Norm Brut Norm

RMSE1 0.171 0.119 0.116 0.116 0.120 0.079 0.060 0.122 0.103

RMSE2 0.143 0.102 0.102 0.096 0.112 0.075 0.067 0.103 0.094

ΓME 0.437 0.322 0.315 0.302 0.317 0.235 0.200 0.306 0.274

Nbase – 5 5 5 5 21 13 9 9

Table 3: Comparison of methods with Fourier decomposition : coverage proba-

bilities at 95 % .

LM Robust LM Ridge Lasso

Astro Brut Norm Brut Norm Brut Norm Brut Norm

Coverage Y (1) 0.871 0.919 0.895 0.905 0.900 0.948 0.971 0.976 0.962

Coverage Y (2) 0.910 0.948 0.967 0.914 0.905 0.948 0.962 0.971 0.962

Table 4: Comparison of methods with spline decomposition : coverage probabili-

ties at 95 % .

LM Robust LM Ridge Lasso

Astro Brut Norm Brut Norm Brut Norm Brut Norm

Coverage Y (1) 0.871 0.910 0.924 0.938 0.924 0.981 0.981 0.976 0.962

Coverage Y (2) 0.910 0.933 0.948 0.929 0.895 0.976 0.981 0.971 0.962
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6 Conclusion

In this work we have implemented a linear functional data model for the predic-

tion of stellar parameters from their spectra. After the observation (and record-

ing) of a spectrum of a star, astronomers want to extract some stellar parameters,

such as stellar radius and effective temperature from it. Normally this is a very

time consuming process, where many numerical models must be implemented to

generate synthetic spectra for comparing against the observed spectra. An alter-

native method is to run a grid of numerical models and then select the nearest

synthetic spectra to the observed one. The approach we propose in this work is

to use a linear functional data model to find the nearest grid spectrum to the ob-

served one. This new methodology considerably speeds up the reduction process

to obtain stellar parameters and allows us to get the best starting point to per-

form more numerical calculations in order to get closer synthetic spectra to the

observed one. The Genetic Algorithm method [MdKP+05] takes about one day

per spectra, the search in a grid [LPA07, SDH14] takes about 20 - 30 minutes,

while the method proposed here takes just a few seconds. This article considers

a new field of application for functional data analysis. We investigated the accu-

racy of different functional models for prediction and construction of prediction

intervals for astrophysical parameters. We presented a classical cross-validation

method in order to select the size of the functional model and to evaluate the per-

formances. We used a bootstrap method to compute the prediction intervals. In

the numerical experiments, we saw that these functional-based prediction meth-

ods perform far better than the classical method currently used in the astro-

physics literature. We noted that the linear regression can be very unstable but

this issue is solved both with the robust regression and the ridge regression, im-

proving the prediction performances. As a future work we will look to create our

own grid of synthetic spectra and to use this methodology with a larger number

of parameters (temperature, radius, gravity, some elements abundances) to bet-

ter describe the evolutionary stage of a star.
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