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Abstract 

 

Background: Informative birth size occurs when the average outcome depends on the number of 

infants per birth. Although analysis methods have been proposed for handling informative birth 

size, their performance is not well understood. Our aim was to evaluate the performance of these 

methods and to provide recommendations for their application in randomised trials including 

infants from single and multiple births. 

 

Methods: Three generalised estimating equation (GEE) approaches were considered for 

estimating the effect of treatment on a continuous or binary outcome: cluster weighted GEEs, 

which produce treatment effects with a mother-level interpretation when birth size is 

informative; standard GEEs with an independence working correlation structure, which produce 

treatment effects with an infant-level interpretation when birth size is informative; and standard 

GEEs with an exchangeable working correlation structure, which do not account for informative 

birth size. The methods were compared through simulation and analysis of an example dataset. 

 

Results: Treatment effect estimates were affected by informative birth size in the simulation 

study when the effect of treatment in singletons differed from that in multiples (i.e. in the 

presence of a treatment group by multiple birth interaction). The strength of evidence supporting 

the effectiveness of treatment varied between methods in the example dataset. 

 

Conclusions: Informative birth size is always a possibility in randomised trials including infants 

from both single and multiple births, and analysis methods should be pre-specified with this in 
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mind. We recommend estimating treatment effects using standard GEEs with an independence 

working correlation structure to give an infant-level interpretation. 

 

Keywords: informative cluster size, multiple births, statistical methodology, clustering, 

generalised estimating equations. 
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 Many neonatal and perinatal trials include infants from both single and multiple births,
1,2

 

which makes the statistical analysis challenging. Whereas outcomes of infants born to different 

mothers can usually be considered independent, outcomes of infants from the same birth are 

likely to be similar due to shared genetic and environmental factors.
3,4

 Multiple births therefore 

create clustering in the data, where the mother is the cluster and her infant(s) are the cluster 

member(s).
3
 

 

 Methods for analysing clustered data are widely available and their performance has been 

investigated in studies including infants from both single and multiple births.
1,3-8

 It is now well 

established that clustering due to multiple births should be taken into account in the analysis,
1,3,7-

9
 especially when the multiple birth rate is not low.

4,5
 Failure to account for clustering due to 

multiple births can increase the chance that an ineffective treatment is found to be effective,
7
 

which could lead to inappropriate recommendations for clinical practice. Generalised estimating 

equations (GEEs)
10

 are the most popular analysis approach for handling clustering due to 

multiple births.
1,2

  

 

 Informative cluster size (ICS) is a common problem in clustered data. It occurs when the 

outcome of interest is related to the size of the cluster, conditional on the covariates in the 

analysis model.
11

 For randomised trials including infants from both single and multiple births, 

the cluster size is the birth size (i.e. the number of infants per birth) and ICS is likely to arise in 

two main ways. Firstly, the average outcome may differ between singletons and multiples. For 

example, multiples have lower average birthweights
12

 and increased risk of mortality and 

cerebral palsy.
13

 Secondly, the average effect of the intervention may differ between singletons 
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and multiples. For instance, antenatal corticosteroid therapy for preventing respiratory distress 

syndrome in preterm infants may be more effective in singletons than in twins.
12

  

 

 When ICS is present, GEEs do not necessarily estimate the treatment effect of interest.
14

 

Failure to account for ICS could therefore lead to biased treatment effect estimates and incorrect 

conclusions regarding the effectiveness of treatment. Analysis methods based on GEEs have 

been suggested for handling ICS,
15,16

 and these have been used to account for informative birth 

size.
1,17

 However, their performance has not been formally investigated in this setting and it is 

unclear when these methods should be applied. The aims of this article are to (1) study the 

performance of GEE methods for handling ICS through simulation and analysis of an example 

dataset; and (2) provide recommendations on the application of these methods in randomised 

trials including infants from both single and multiple births. 

 

Methods 

 

Statistical Methods 

 

 Three GEE methods were considered for estimating the marginal effect of treatment (i.e. 

the average treatment effect across all infants) on a continuous or binary outcome. Firstly, the 

cluster weighted GEE (CWGEE) approach is a GEE with an independence working correlation 

structure and weights equal to the inverse of the birth size (i.e. weight 1 for singletons, 1/2 for 

twins and so on).
15,16

 This method gives equal weight to each mother in the analysis, irrespective 

of the birth size. When ICS is present, CWGEE estimates treatment effects for a randomly 
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selected infant from a randomly selected mother, thus providing a mother-level 

interpretation.
14,15,18

 Secondly, the GEE independence (GEEind) approach is a standard 

(unweighted) GEE with an independence working correlation structure. This method gives each 

infant equal weight in the analysis. When ICS is present, GEEind estimates treatment effects for a 

randomly selected infant, irrespective of which mother they belong to, and thus provides an 

infant-level interpretation.
14,15,18

 Thirdly, the GEE exchangeable (GEEexch) approach is a standard 

GEE with an exchangeable working correlation structure, which assumes that the outcomes of all 

infants from the same birth are equally correlated. This method weights infants in a way that 

minimises the variance of the treatment effect estimate.
19

 Although GEEexch is not recommended 

in the presence of ICS as it does not necessarily estimate a treatment parameter of interest,
14

 we 

include it here to investigate what can go wrong with it when ICS is present. All methods were 

implemented using the GENMOD procedure with empirical sandwich variance estimation in 

SAS version 9.3 (Cary, NC, USA). 

 

Simulation Study 

 

 A simulation study was conducted to evaluate the performance of CWGEE, GEEind and 

GEEexch when ICS is present. Simulation scenarios were chosen based on an example dataset 

(described below) and 10,000 datasets were generated for analysis in each scenario. Mothers 

were randomised to the intervention or control group (300 per group), and independently 

assigned to have a single birth with 80% probability, or a twin birth with 20% probability; higher 

order multiples are rare in practice and were not considered. This produced an expected total 

sample size of 720 infants with 33.3% from a multiple birth, which is typical of preterm 
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populations.
2
 Outcomes of infants from the same birth were positively correlated, with an 

intracluster correlation coefficient (ICC) of 0.1, 0.5 or 0.9. Additional simulations were 

performed for an ICC of 0.5 while varying the probability of a twin birth from 5% to 95% by 

5%. 

 

 Continuous outcomes were randomly generated from the model 

 
0 1 1 2 2 3 1 2ij i i i i i ijY X X X X a e         , (1) 

where 
ijY  is the outcome for the j th infant from the i th mother, 1iX  is the randomised treatment 

group (1=intervention, 0=control), 2iX  is the multiple birth status (1=multiple birth, 0=single 

birth), ia  is a random mother effect drawn from an  20, aN   distribution, and 
ije  is a random 

error drawn from an  20, eN   distribution. Under model (1), ICS occurs whenever the outcome 

and/or the effect of treatment on the outcome depends on birth size (i.e. whenever 2  and/or 3  

are nonzero); more general definitions of ICS are discussed elsewhere.
14,18,20

 Variances were 

chosen to give a total variance of 2 2 215a e    and produce the desired ICC according to the 

equation  2 2 2ICC a a e    . The mean outcome for singletons in the control group was set to 

100 ( 0 100  ), since outcomes of many developmental assessments follow an  2100,15N  

distribution in the population, such as the Mental Development Index (MDI) standardised score 

from the Bayley Scales of Infant Development.
21

 The mean outcome for singletons in the 

intervention group was chosen to be 104 to produce a treatment effect of 4 among singletons (

1 4  ), since the example trial was designed to detect a 4-point improvement in the MDI. The 

mean outcome for twins in the control group was set to 97 ( 2 3   ), since a 3 point reduction in 
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the mean developmental outcome for twins compared with singletons is plausible based on the 

example dataset. The mean outcome for twins in the intervention group was chosen to be either 

101, 99 or 103 ( 3 0  , -2 or 2) to produce a treatment effect among twins of 4 (to match the 

singletons), 2 or 6, respectively, in order to explore the effect of ICS in the absence or presence 

of a treatment group by multiple birth interaction. Simulation methods for binary outcomes are 

described in the Online Supplement. 

 

 Treatment effects were estimated for each simulated dataset based on the unadjusted 

model 
0 1 1ij iX    , and the model adjusting for multiple birth status as a main effect 

0 1 1 2 2ij i iX X      , where 
ij ijE Y      is the mean outcome, since both unadjusted and 

adjusted estimates are commonly presented. An interaction model 

0 1 1 2 2 3 1 2ij i i i iX X X X         was used to test for evidence of a treatment group by multiple 

birth interaction but not to estimate treatment effects, since these should primarily be estimated 

from main effects models.
22

 Simulation results were summarised for each scenario by averaging 

the treatment effect ( 1 ) estimates and their estimated standard errors. Monte Carlo (simulation) 

standard deviations were very similar to the average estimated standard errors and are not 

reported. The power to detect a treatment group by multiple birth interaction was calculated as 

the percentage of simulated datasets where the interaction term was statistically significant 

(p<0.05).  

 

Example Dataset 
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 To illustrate the impact of choosing different GEE methods in a real trial where ICS may 

be present, we consider a trial of high-dose versus standard-dose docosahexaenoic acid (DHA), a 

source of omega-3 fatty acids, for preterm infants.
23

 Consenting mothers of infants born less than 

33 weeks' gestation were randomly assigned to receive capsules rich in DHA or placebo capsules 

and infants received the treatment through breast milk. There were 545 mothers and 657 infants 

included in the trial, of whom 33.6% were from a multiple birth (30.4% in the high-DHA group, 

36.7% in the standard-DHA group). The primary outcome was neurodevelopment of the infant at 

18 months, as measured by the MDI, while significant mental delay (MDI<70) was a key 

secondary outcome. These outcomes were reanalysed for the 584 infants from a single or twin 

birth who remained after excluding infants with missing outcomes, along with nine sets of 

triplets for comparison with the simulation results. Treatment effects were estimated based on a 

linear model for the MDI, and both a logistic and log binomial model (see Online Supplement) 

for significant mental delay.  

 

Results 

 

Simulation Study 

 

 The simulation results for a continuous outcome are given in Table 1 (see also Online 

Supplement). Average unadjusted treatment effect estimates were very similar for all methods 

and ICCs when the treatment effect was the same for singletons and twins, but varied otherwise. 

When the true treatment effect among twins was 2, average unadjusted treatment effect estimates 

were close to the true overall mother-level treatment effect of 3.60 for CWGEE, which is the 
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average of the true treatment effects for singletons and twins, weighted by the expected 

proportion of mothers with single and twin births (i.e. (0.8 4) (0.2 2) 3.60    ). For GEEind, 

estimates were close to the true overall infant-level treatment effect of 3.33, which is the average 

of the true treatment effects for singletons and twins, weighted by the expected proportion of 

singleton and twin infants (i.e. (0.667 4) (0.333 2) 3.33    ). Likewise, when the true 

treatment effect was 6 among twins, average unadjusted treatment effect estimates were around 

4.40 and 4.67 for CWGEE and GEEind respectively (see Online Supplement). As the ICC 

increased, average unadjusted treatment effect estimates remained stable for CWGEE and 

GEEind. For GEEexch, estimates were similar to GEEind when the ICC was low but similar to 

CWGEE when the ICC was high. Independently of whether the treatment effect differed between 

singletons and twins, average unadjusted standard errors increased with the ICC for all methods. 

CWGEE produced the largest standard errors when the ICC was low, whereas GEEind produced 

the largest standard errors when the ICC was high, although differences between methods were 

fairly small. Adjusting for multiple birth status only slightly reduced the standard errors and 

made little difference to the treatment effect estimates on average. All methods produced 

identical results for each simulated dataset when the correct interaction model (1) was fitted to 

the data, although the power to detect an interaction was very low, ranging from 10.3% to 

13.6%. Similar results were obtained for binary outcomes (see Online Supplement). 

 

 The impact of varying the multiple birth rate on the average unadjusted treatment effect 

estimate for a continuous outcome with different treatment effects for singletons and twins is 

shown in Figure 1. When the multiple birth rate was low, estimates were similar between 

methods and close to the true treatment effect of 4 for singletons. As the multiple birth rate 
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increased, estimates approached the true treatment effect of 2 (Figure 1A) or 6 (Figure 1B) for 

twins. The relationship was approximately linear for CWGEE but exponential for GEEind, with 

GEEexch estimates falling in between. The difference between methods increased as the 

percentage of twins moved away from 0% or 100%. A similar pattern was seen for adjusted 

treatment effect estimates (data not shown) and binary outcomes (see Online Supplement). 

 

Example Dataset 

 

 Treatment effect estimates for the DHA trial are given in Table 2. For the MDI, treatment 

effect estimates were somewhat different between analysis methods but none produced sufficient 

evidence to support the hypothesis that high-DHA increases the mean MDI. For significant 

mental delay, unadjusted odds ratios ranged from 0.47 for GEEind to 0.52 for CWGEE. This 

relatively small difference between methods is consistent with the results from the simulations 

where a treatment group by multiple birth interaction was present. Subgroup analyses produced 

an estimated odds ratio of 0.60 among singletons and 0.31 among twins, but there was little 

evidence to suggest that the effect of treatment varied by birth size (p>0.4 for all GEE methods). 

If an infant-level interpretation of the odds ratio is of interest, the GEEind results suggest that 

treatment reduces the odds of significant mental delay by 53% for a randomly selected high-

DHA infant compared with a randomly selected standard-DHA infant, irrespective of which 

mother they belong to. If a mother-level interpretation is desired, the CWGEE results suggest 

that treatment reduces the odds of significant mental delay by 48% comparing a randomly 

selected infant from a randomly selected high-DHA mother with a randomly selected infant from 

a randomly selected standard-DHA mother. Estimated relative risks can be interpreted similarly. 
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High-DHA was shown to be effective for reducing both the odds and risk of significant mental 

delay using GEEind (p=0.03) and GEEexch (p=0.04), while the evidence in favour of the 

intervention was less convincing using CWGEE (p=0.06).  

 

Comments 

 

 We have explored the problem of ICS in randomised trials including infants from both 

single and multiple births. We considered scenarios where ICS arises due to differences in 

average outcomes between singletons and multiples (no interaction), and differences in average 

treatment effects between singletons and multiples (interaction). Treatment effect estimates were 

obtained from main effects models only, as recommended for randomised trials.
22

 Our simulation 

results indicate that treatment effect estimates are only influenced by ICS in the latter scenario 

(Figure 2), in which case different GEE methods of analysis are expected to produce different 

treatment effect estimates, although the differences we found were relatively small. Whether 

these differences are of practical importance will depend on the context. Our example dataset 

illustrates the potential for the strength of evidence supporting the effectiveness of treatment to 

vary according to the GEE method chosen. 

 

 When treatment effects estimates differ between methods, GEEexch produces estimates 

similar to GEEind when the ICC is low and similar to CWGEE when the ICC is high. This makes 

sense intuitively, since GEEexch weights infants in a way that minimises the variance of the 

treatment effect estimate.
19

 When the ICC is low, a set of twins provides almost as much 

information as two singletons and the variance is minimised by giving each twin a weight close 
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to one, similar to GEEind. In contrast, when the ICC is high, a set of twins provides little more 

information than a singleton and the variance is minimised by giving each mother a weight close 

to one, similar to CWGEE. 

 

 Since CWGEE, GEEind and GEEexch are expected to produce different treatment effect 

estimates when a treatment group by multiple birth interaction is present, a method of analysis 

could be chosen after interactions have been investigated, according to Figure 2. If there is 

insufficient evidence of an interaction, treatment effects could be estimated using any GEE 

method. GEEexch may be preferred for maximising efficiency, although efficiency gains 

associated with this method were minimal in our simulation study due to treatment assignment at 

the mother level.
24,25

 If evidence of an interaction is found, treatment effects could be estimated 

using CWGEE or GEEind, depending on whether a mother-level or an infant-level interpretation 

is preferred. GEEexch should not be used in this case, since it fails to estimate a treatment 

parameter of interest.
14

 The alternative to this data-driven approach is to pre-specify a method of 

analysis that remains appropriate across a range of scenarios. Since interactions are often 

plausible, CWGEE or GEEind would be chosen for analysis, depending on the desired 

interpretation. We prefer this approach in the randomised trial setting, since statistical methods 

should be pre-specified before issues such as ICS can be investigated in the data and interaction 

tests are typically underpowered.
26

  

 

 The choice between GEEind and CWGEE will depend on the context. GEEind estimates 

the effect of treatment for a typical infant, while CWGEE estimates the effect of treatment for a 

typical infant from a typical mother.
14

 Since the former interpretation is most relevant for 
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describing the impact of treatment on the total burden of disease and the demand for specialised 

child health or education services, we recommend using GEEind to estimate treatment effects in 

general. This method has appropriate type I error and coverage rates when birth size is 

uninformative,
7
 and has the advantage of producing unadjusted treatment effect estimates that 

are consistent with the raw means or percentages for each treatment group. If the mother's 

perspective is actually of primary interest, this should be justified in the trial protocol and 

CWGEE can then be used for analysis.  

 

 It may be argued that any GEE method can be chosen when the multiple birth rate is low, 

since differences in treatment effect estimates between methods are small in this case. Figure 1 

suggests this may be a reasonable strategy when the multiple birth rate is 5% or less, as would be 

expected in trials recruiting from the general population of pregnant women. However, this 

strategy may be problematic for treatments that have very different effects in singletons and 

multiples, where larger differences between methods are expected, or for outcomes where small 

changes would be considered clinically important. The safest approach is to pre-specify a method 

of analysis that acknowledges the possibility of ICS and produces treatment effect estimates with 

the desired interpretation, irrespective of the multiple birth rate. 

 

 Adjusting for multiple birth status as a main effect had little impact on average treatment 

effect estimates but led to small gains in efficiency. Whether adjustment should be made for 

multiple birth status in practice depends on the context. Adjustment is problematic when there 

are few multiples in a trial, since the outcome may be the same for all multiples, and when 

multiple birth status is determined after treatment commences, since fetal resorption may be 
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influenced by treatment group. However, adjustment can be useful in other settings. It is 

recommended when multiple birth status is used as a balancing factor in the randomisation,
27

 and 

corrects for chance imbalance in the multiple birth rate between treatment groups otherwise. 

Adjustment can also increase efficiency if multiple birth status is associated with the outcome.
28

 

Our results indicate that adjustment doesn't eliminate ICS when treatment effect estimation is of 

interest and the effect of treatment varies according to cluster size.  

 

 Randomised trials including multiple births differ from most settings where GEE 

methods for handling ICS have been investigated previously,
11,15,16,29-32

 due to the small cluster 

sizes and focus on treatment effect estimation. Small clusters were considered in a recent 

simulation study comparing GEEind and GEEexch to within cluster resampling,
11

 which is 

asymptotically equivalent to CWGEE,
15

 in a non-randomised setting. The authors concluded that 

all methods performed well for estimating covariate effects, but that within cluster resampling 

should be preferred if intercept estimation is of interest.
33

 Others have noted that when the 

covariate effects are the same regardless of cluster size, ICS often has little impact on parameter 

estimates aside from the intercept,
34

 which is of limited interest in randomised trials. Our 

findings indicate that treatment effect estimates are also influenced by ICS when the effect of 

treatment varies according to cluster size. As such interactions are often plausible, ICS is a 

serious concern for trials including multiple births. 

 

 ICS can arise in neonatal and perinatal trials whenever clustering is present and cluster 

sizes vary, which may occur for reasons other than multiple births. Our findings can reasonably 

be extended to settings where siblings from different births are present, while further research is 
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needed to understand how methods for handling ICS perform in longitudinal settings. ICS is 

rarely a concern when analysing outcomes that are measured on the mother, since each mother 

can usually be considered independent. 

 

 A limitation of this study is that only randomisation at the mother level was considered. 

This approach is necessary for interventions given to the mother, and is often preferred by 

parents for interventions given to the infant, making it the most common choice in practice.
1,2

 If 

randomisation is performed at the infant level, choosing CWGEE or GEEind over GEEexch in the 

absence of a treatment group by multiple birth interaction is expected to result in greater 

efficiency losses than those observed in our study.
24,25

 A further limitation is that only GEE 

methods for addressing ICS were examined. Clustered data are also commonly analysed using 

mixed-effects models, and methods for handling ICS in this context have been discussed 

previously; see
14

 and references therein. Such approaches may be of limited use in randomised 

trials including multiple births, since GEEs are more popular in practice
1,2

 and perform well in 

this setting.
7
  

 

 In conclusion, informative birth size is always a possibility in randomised trials including 

infants from both single and multiple births, and analysis methods should be pre-specified with 

this in mind. If a treatment group by multiple birth interaction is present, different GEEs are 

expected to produce different treatment effect estimates with different interpretations. We 

recommend estimating treatment effects using standard GEEs with an independence working 

correlation structure to give an infant-level interpretation. 
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Figure 1: Average unadjusted treatment effect estimate for a continuous outcome with an ICC of 

0.5 by varying percentage of mothers with a twin birth when the treatment effect is 4 for 

singletons and (A) 2 or (B) 6 for twins. 

 

Figure 2: Flowchart summarising simulation results and analysis recommendations. 

 

 

 


