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Abstract—The surge of search based software engineering
research has been hampered by the need to develop customized
search algorithms for different classes of the same problem.
For instance, two decades of bespoke Combinatorial Interaction
Testing (CIT) algorithm development, our exemplar problem,
has left software engineers with a bewildering choice of CIT
techniques, each specialized for a particular task. This paper
proposes the use of a single hyperheuristic algorithm that learns
search strategies across a broad range of problem instances,
providing a single generalist approach. We have developed a
Hyperheuristic algorithm for CIT, and report experiments that
show that our algorithm competes with known best solutions
across constrained and unconstrained problems: For all 26
real-world subjects, it equals or outperforms the best result
previously reported in the literature. We also present evidence
that our algorithm’s strong generic performance results from its
unsupervised learning. Hyperheuristic search is thus a promising
way to relocate CIT design intelligence from human to machine.

I. INTRODUCTION

Over the past decade, research in Search Based Software
Engineering has been growing at a rapid pace [1]. One
limitation of much of this work is that search algorithms must
be customized for specific instances or equivalence classes
of the problem. For example, the existence of constraints in
the data set to be optimized often requires a different set
of search operators [2]. Hyperheuristic search (HS) is a new
class of optimisation algorithms that may provide a substantial
improvement to this bespoke approach [1]. HS algorithms
use dynamic adaptive optimisation to learn strategies without
active supervision [3], [4]. Hyperheuristics have been success-
fully applied to many operational research problems outside
of software engineering [4]. However, though they have been
advocated as a possible solution to dynamic adaptive optimi-
sation for software engineering [3], they have not, hitherto,
been applied to any software engineering problem [5]–[7].

In this paper, we examine the feasibility of using HS in
search based software engineering. To achieve our goal we se-
lect a mature and well studied search problem as our exemplar,
Combinatorial Interaction Testing (CIT). CIT aims to generate
samples that cover all possible value combinations between
any set of t parameters, where t is fixed (usually between 2 and
6). Software product lines [8], operating systems, development
environments and many other systems are typically governed

by large configuration, parameter and feature spaces for which
CIT has proved useful [9].

Over two decades of research has gone into the development
of CIT test generation techniques, each of which is tailored
and tuned to a specific problem [10]–[16]. For example,
some CIT algorithms have been tuned and evaluated only
on unconstrained problems [10], [15], [17], [18], while others
have been specifically tuned for constrained interaction testing
[2], [19], which prohibits certain configurations. Still other
CIT approaches target specific problem structures, such as
parameter spaces with few available parameter value choices
[13], [20], or are tuned to work on a particular set of
real-world problems [21]. Colbourn maintains a website of
results from many different sources and techniques [22], both
published and unpublished in the CIT literature, while the
pairwise.org web portal contains almost 40 tools for
pairwise instances of CIT alone. There is also a framework
that collates the many different CIT algorithms [23], but none
of these frameworks or portals can help the tester to choose
which algorithm to apply to each CIT problem instance.

Even when attention is restricted to a single kind of CIT
algorithm, such as simulated annealing, there remain further
choices to be made: For general unconstrained problems, the
single-mutation-at-a-time variant yields a smallest test suites
[10], but for binary-valued problems a different simulated
annealing variant would be recommended [24], while still
another variant would be preferred for highly constrained prob-
lems [2], [25]. The tester is therefore presented a bewildering
choice between different techniques and implementations from
which to choose, each of which has its own special properties.
It is unreasonable to expect practicing software testers to
perform their own experiments to decide on the best CIT
algorithm choice for each and every testing problem. CIT users
in the research community also find the choices overwhelming.
For example Lopez-Herrejon et al. ask “With all these pairwise
testing approaches available the question now is: how do they
compare?” [26]. We cannot expect each testing organisation
to hire an algorithm designer to build bespoke CIT testing
implementations for each testing scenario they face. We need
a more general CIT approach.

To evaluate the feasibility of using HA as a generalist
approach we introduce a simulated annealing hyperheuristic
search based algorithm for CIT. Our hyperheuristic algorithm



learns the best CIT strategy to apply dynamically, as it is
executed and the chosen strategy may change over time. This
single algorithm can be applied to a wide range of CIT prob-
lem instances, regardless of their structure and characteristics.

For our new algorithm to be acceptable as a generic solution
to the CIT problem, we need to demonstrate that it is effective
and efficient across a wide range of CIT problem instances,
when compared to other possible algorithm choices. To assess
the effectiveness of CIT solutions we use test suite size, which
Garvin et al. [2] show to have the greatest impact on overall
test efficacy. To assess efficiency we report computational time
(as is standard in CIT experiments), but we also deploy the
algorithms in the cloud to provide a supplementary assessment
of monetary cost (as has been done in other studies [27]).

We compare our hyperheuristic algorithm, not only against
results from state-of-the-art search CIT techniques, but also
against the best known results in the literature, garnered over
20 years of analysis of CIT. This is a particularly challenging
‘quality comparison’ for any algorithm, because some of these
best known results are the product of many years of careful
analysis by mathematicians, not machines.

We show that our hyperheuristic algorithm performs well
on both constrained and unconstrained problems and across
a wide range of parameter sizes and data sets. Like the best
known results, some of these data sets have been designed
using human ingenuity. Human design ensures that these
benchmarks capture especially pathological ‘corner cases’ and
problems with specific structures that are known to pose
challenges to the CIT algorithms. Overall, our results provide
evidence to support the claim that hyperheuristic search is a
promising solution for CIT which suggests it may be useful
on other search based problems.

The primary contributions of this paper are:
1. The formulation of CIT as a hyperheuristic search prob-

lem and the introduction of the first hyperheuristic algorithm
(HHSA) for solving it. It is the first use of hyperheuristic
learning in the software testing literature.

2. A comprehensive empirical study showing that HHSA is
both effective and efficient. The study reports results across
a wide range of 59 previously studied benchmarks. We also
study 26 problem instances from two previous studies where
each of the 26 CIT problems is drawn from a real-world
configurable system testing problem.

3. A study using Amazon EC2 cloud to measure the real
computational cost (in US dollars) of the algorithms studied.
These results indicate that, with default settings, our hyper-
heuristic algorithm can produce competitive results to state-
of-the-art tools at a reasonable cost; all pairwise interaction
tests reported in the paper for all 26 real-world problems and
the 44 pairwise benchmarks cost only $2.09.

4. A further empirical study is used to explore the nature
of online learning employed by our algorithm. The results of
this study show that the hyperheuristic search productively
combines heuristic operators that would have proved to be
unproductive in isolation and that our algorithm adapts its
choice of operators based on the problem.

II. PRELIMINARIES

In this section we will give a quick overview of the notation
used throughout the paper. CIT seeks to select a set of N
test cases that cover all possible value combinations between
any set of t parameters. It produces the selected test set in a
Covering Array (CA) notation, which is typically represented
as follows in the literature:

CA(N ; t, vk1
1 vk2

2 ...vkm
m )

where N is the number of selected tests (array size), the sum of
k1, ..., km is the number of parameters (or factors) in each test
case (denoted by k), each vi stands for the number of values
for each of the ki parameters in turn and t is the strength of the
array; a t-way interaction test suite aims to cover all possible
t-way combinations of values between any t parameters.

Suppose we want to generate a pairwise (aka 2-way) inter-
action test suite for an instance with 3 parameters, where the
first and second parameter can take 4 different values and the
third one can only take 3 different values. Then the problem
can be formulated as: CA(N ; 2, 4231) and the model of the
problem is 4231. In order to test all combinations one would
need 4 ∗ 4 ∗ 3 = 48 test cases; pairwise coverage reduces this
number to 16. We can also introduce the following constraint:
the first value of the first and third parameters cannot be
combined together. It turns out that adding multiple constraints
can significantly reduce test suite size. These naturally occur
in real-world problems, thus constrained CIT is well-fitted for
industrial applications [28].

Many different algorithms have been introduced to generate
covering arrays. Each algorithm is customised for specific
problem instances. For example, there are many greedy algo-
rithms, such as AETG [15] , IPOG [16] and PICT [29]. These
methods either generate a new test case on-the-fly, seeking to
cover the largest number of uncovered t-way interactions, or
start with a small number of parameters and iteratively add
new columns and rows to fill in the missing coverage.

Other approaches include metaheuristic search algorithms,
such as simulated annealing [2], [10], [20] or tabu search [13].
These metaheuristics are usually divided into two phases or
stages. In the first stage, binary search, for instance, is used to
generate a random test suite, r of fixed size n. In the second
stage, metaheuristic search is used to search for a test suite
of size n, starting with r, that covers as many interactions as
possible. And there are other unique algorithms, such as those
that use constraint solving or logic techniques as the core of
their approach [17], [23].

III. HYPERHEURISTIC CIT ALGORITHM

There are two subclasses of hyperheuristic algorithms:
generative and selective. Generative hyperheuristics combine
low level heuristics to generate new higher level heuristics.
Selective hyperheuristics select from a set of low level heuris-
tics. In this paper we use a selective hyperheuristic algorithm.
Selective hyperheuristic algorithms can be further divided into
two classes, depending upon whether they are online or offline.
Online hyperheuristics are unsupervised, learning strategies



while the algorithms are solving the problem. Offline ones
require an additional training step prior to solving the problem.
We use online selective hyperheuristics.

The hyperheuristic algorithm takes the set of navigation
operators as input. A navigation operator is a lower level
heuristic which transforms a given solution into a new solution
in the search space. The algorithm layers the heuristic search
into two levels that work together to produce the overall
solution. The first (or outer) layer uses a normal metaheuristic
search to find solutions directly from the solution space of
the problem. The inner layer heuristic searches for the best
candidate operators for the outer layer heuristics in the current
problem state. As a result, the inner search adaptively identifies
and exploits different strategies according to the characteristics
of the problems it faces.

Our algorithm uses Simulated Annealing (SA) as the outer
search. We choose SA because it has been successfully applied
to CIT problems, yet, even within this class of algorithms,
there is a wide choice of available approaches and implemen-
tations [2], [10], [20], [25], [30]. We use a reinforcement learn-
ing agent to perform the inner layer selection on heuristics.
Our overall algorithm, Hyper Heuristic Simulated Annealing
(HHSA), is depicted in Figure 1 and set out more formally as
Algorithm 1.

Simulated Annealing

Outer layer search

Get next operator

Apply the operator 
to current solution

Send the delta 
fitness value

Reinforcement 
Learning Agent

Inner layer search

Operator 
Selection
Soft max 

Reward 
Assignment
Action value 

Random init 
solution

Navigation 
Operators

Operator 1

Operator 2

Operator n

. .
 . 

Update solution  
with

Update 
temperature

fitness / T e

Fig. 1. Hyper Heuristic Simulated Annealing

A. The Outer Layer: Simulated Annealing

A standard Simulated Annealing (SA) algorithm is used
as the outer layer search. The SA algorithm starts with a
randomly generated N × k array as an initial solution. The
fitness value for each solution is the number of uncovered
t-tuples present in the current array. The fitness value is
also used to represent the current state of the problem (i.e.
how many tuples remain to be covered). This ‘problem state’
is used to understand how our algorithm learns throughout
different stages of the problem.

In each iteration, the SA algorithm asks the reinforcement
learning agent to choose a best operator for the current
problem state. It then applies the operator and passes the
change in fitness value (delta fitness) back to the agent. The

SA algorithm accepts the new solution if its fitness is the
same as or better than the fitness of the previous solution.
Otherwise it uses a probability, e∆fitness/T , for accepting the
current solution based on the current temperature T .

As the SA algorithm proceeds, the temperature, T , is pro-
gressively decreased according to a cooling schedule. Decreas-
ing the temperature reduces the probability of SA accepting
a move that reduces fitness. The temperature and cooling
schedule settings used in the SA are reported in section IV-B.
The SA algorithm stops when the current array covers all
t-tuples or it reaches a preset maximum number of non-
improving moves.

Many real-world CIT models contain constraints (or depen-
dencies) between parameters. To incorporate the constraints,
the outer SA first preprocesses the constraints and identifies
all invalid tuples which must not be covered. Since previous
work [2], [25], [30] used a SAT-solver, MiniSAT, for constraint
solving, we also use it in our implementation. Other constraint
solvers could be used, but we wish to be able to compare
effectiveness to these existing state-of-the-art CIT systems and
the best results reported for them.

The outer SA checks constraint violations after applying
each operator and proposes a repair if there are any violations.
The constraint fixing algorithm is a simple greedy approach
that checks each row of the covering array, one at a time.
When the algorithm finds a term violation in a row, it attempts
to fix the row by changing the value of the parameter which
violates the term to a random valid value. The algorithm is set
out formally as Algorithm 2.

If the outer SA fails to fix the array, it reapplies the current
heuristic operator to generate a new solution.

Input : t, k, v, c, N, MaxNoImprovment
Output: covering array A
A ← initial_array (t,k,v,N)
no improvement ← 0
curr missing ← countMissingTuples (A )
while curr missing 6= 0 and MaxNoImprovment 6=
no improvement do

op ← rl_agent_choose_action ( curr missing )
A′ = local_move (op, A )
while fix_cons_violation (A′, c ) do

A′ = local_move (op, A )
end
new missing ← countMissingTuples (A′ )
∆fitness = curr missing − new missing
rl_agent_set_reward ( op, ∆fitness )

if e∆fitness/Temp > rand_0_to_1 () then
if ∆fitness = 0 then

no improvement ← no improvement + 1
else

no improvement ← 0
end
A ← A′

curr missing ← new missing
end
Temp ← cool ( Temp )

end
ALGORITHM 1: HHSA

We enclose the SA in a binary search procedure to deter-
mine the array size N . This outer binary search procedure is a
commonly used solution to iteratively find covering arrays for



different values of N [10], [25], [30], until a smallest covering
array of size N can be found. The outer binary search takes
an upper and lower bound on the size of array as input, and
returns the covering array with a smallest possible size.

The CASA tool for CIT [2], [25] uses a more sophisticated
version of the binary search. It first tries the same size multiple
times and then does a greedy one sided narrowing to improve
the final array size. Our implementation also performs this
‘CASA-style’ greedy approach to finding the array size, but
the use of this approach is tunable.

Input : covering array A, constraints c
Output: has violation
has violation ← False
fix time ← 0
foreach row R in A do

recheck: foreach clause in c do
foreach term in clause do

if R has term then
has violation ← True

else
has violation ← False
break

end
end
if has violation then

if fix time = MaxFixTime then
break

end
term =clause_get_random_term (clause )
R = random_fix_term (R, term )
fix time = fix time +1
go to recheck

end
end

end
ALGORITHM 2: Constraint Violation Fixing

B. The Reinforcement Learning Agent
The goal of the inner layer is to select the best operator

at the current problem state. This operator selection problem
can be considered an n-Armed Bandit Problem, in which the
n arms are the n available heuristics and the machine learner
needs to determine which of these heuristics offers the best
reward at each problem state. We designed a Reinforcement
Learning (RL) agent for the the inner search, as RL agents
are known to provide generally good solutions to this kind of
so-called ‘Bandit Problem’ [31].

As shown in Figure 1, the RL agent takes a set of operators
as input. In each annealing iteration, the RL agent repeatedly
chooses the best fit operator, a, based on the expected reward
of applying it at the current problem state. After applying the
operator a, the RL agent receives a reward value from the
outer layer SA algorithm, based on performance. At the end
of the iteration, the RL agent updates the expected reward for
the chosen operator with the reward value returned.

The goal of the RL agent is to maximise the expected
total reward that accrues over the entire run of the algorithm.
Because the reward returned by SA is the improvement of
SA’s fitness value, the RL agent will thus ‘learn’ to choose the
operators that tend to maximise the SA’s fitness improvement,
adapting to changes in problem characteristics.

Our RL agent uses an action-value method [31] to estimate
the expected rewards for each of the operators available to it
at a given problem state. That is, given a set of operators A =
{a1, a2, . . . , ai}, let Ri = {ri1, ri2, . . . , rik}, be the returned
reward values of operator ai at the kth iteration at which ai
is applied.

Let Rai be the estimated reward for ai, which is defined
as the mean reward value, ri1+ri2+...+rik

k , received from SA.
To balance the twin learning objectives of exploration and
exploitation, the RL agent uses a SOFTMAX selection rule [31].

The SOFTMAX selection rule is a greedy approach that gives
the operator with the best estimated reward the highest selec-
tion probability. For each operator ai, the selection probability
is defined based on the Gibbs distribution: eRai

/T∑n

j=1
e
Raj

/T , which

is commonly used for the SOFTMAX selection [31]. A higher
value of temperature T makes the selection of all operators
more equal while a lower value makes a greater difference in
selection probability.

C. Search Space Navigation Operators

We have selected a set of six operators to investigate the per-
formance and feasibility of this approach to adaptive learning
for CIT. Like any general process, we choose operators that
can be widely applicable and which the learner might be able
to combine in productive ways. Since we must be general, we
cannot exploit specific problem characteristics, leaving it to the
learner to find ways to do this through the smart combination
of the low level heuristics we define.

We have based our operator selection on the previous
algorithms for CIT. None of the operators consider constraints
directly, but some have been used for constrained and some
for unconstrained problems. Like other machine learning ap-
proaches we need a combination of ‘smart’ heuristics and
‘standard’ heuristics, since each can act as an enabler for
the other. The first three operators are ones we deem to be
entirely standard; they do not require book keeping or search
for particular properties before application. The second set
contains ones that we deem to be somewhat smart; these are
designed with domain knowledge and use information that one
might expect could potentially help guide the outer search. The
operators are as follows:

1. Single Mutation (Std): Randomly select a row r and a
column c, change the value at r, c to a random valid value.
This operator matches the neighbourhood transformation in
the unconstrained simulated annealing algorithm [10].

2. Add/Del: (Std): Randomly delete a row r and add a new
row r′ randomly generated. While CASA also includes a row
replacement operator, it does not just randomly generate a row.

3. Multiple Mutation (Std): Randomly select two rows,
r1 and r2, and crossover each column of r1 and r2 with a
probability of 0.2.

4. Single Mutation (Smart): Randomly select a missing
tuple, m, which is the combination of columns c1, . . . , cn.
Go through each row in the covering array, if there exists
a duplicated tuple constructed by the same combination of



columns c1, . . . , cn, find a row containing the duplication
randomly and change the row to cover the missing tuple m.
Otherwise randomly select a row r and change the row to
cover the missing tuple m.

5. Add/Del: (Smart): Randomly delete a row r, and add a
new row r′ to cover n missing tuples. We define n as the
smaller value from k/2 (where k is the number of parameters)
and the number of missing tuples. This is a simple form of
constructing a new row used by AETG [15].
6. Multiple Mutation (Smart): Randomly select two rows, r1

and r2, and compare the frequency of each value at each
column, fc1 and fc2. With probability of 0.2, the column
with higher frequency will be mutated to a random value.

IV. EXPERIMENTS

To assess the usefulness of using HHSA as a general
approach to CIT, we built a version and posed the following
research questions:
RQ1 What is the quality of the test suites generated using

the hyperheuristic approach?
One of the primary goals of CIT is to find a smallest test

suite (defined by the covering array) that achieves the desired
strength coverage. It is trivial to generate an arbitrarily large
covering test suite – simply include one test case for each
interaction to be covered. However, such a naı̈ve approach to
test generation would yield exponentially many test cases. All
CIT approaches therefore work around the problem of finding
a minimal size covering array for testing. The goal of CIT is
to try to find a smallest test suite that achieves 100% t-way
interaction coverage for some chosen strength of interaction
t. In our experiment, we compare the size of the test suites
generated by the HSSA in three different ways. We compare
against the:
1. Best known results reported in the literature, produced by
any approach, including analysis and construction by mathe-
maticians, as is reported in [2].
2. Best known results produced by automated tools.
3. A state-of-the-art SA-based tool that was designed to run on
unconstrained problems and a state-of-the-art SA-based tool
that was designed to handle constrained problems well.

RQ2 How efficient is the hyperheuristic approach and
what is the trade-off between the quality of the results
and the running time?

Another important issue in CIT is the time to find a test
suite that is as close to the minimal one as possible given
time budgeted for the search. Depending on the application,
one might want to sacrifice minimality for efficiency (or vice-
versa). This question investigates whether HHSA can generate
small test suites in reasonable time.

If the answers to the first two research questions are
favourable to our hyperheuristic algorithm, then we will have
evidence that it can be useful. However, usefulness on our
set of problems, wide and varied though it is, may not be
sufficient for our algorithm to be actually used. We seek to
further explore whether its value is merely an artefact of the

operators we chose for low level heuristics. We also want to
check whether the algorithm is really ‘learning’. If not, then it
might prove to be insufficiently adaptive to changing problem
characteristics. The next two research questions investigate
learning.

RQ3 How efficient and effective is each search navigation
operator in isolation?

In order to collect baseline results for each of the operators
that HHSA can choose, we study the effects of each operator in
isolation. That is, we ask how well each operator can perform
on its own. We also study the effects of making a random
choice from all operators at each stage.

Should it turn out that there is a single operator that per-
forms very well across subjects, then there would be no need
for further study; we could simply use the high performing
operator in isolation. Similarly, should one operator prove to
perform poorly and to be expensive then we might consider
removing it from further study.

RQ4 Do we see evidence that the hyperheuristic approach
is learning?

Should it turn out that HHSA performs well, finding com-
petitively sized covering arrays in reasonable time, then we
have evidence to suggest that the adaptive learning used by
the hyperheuristic approach is able to learn which operator to
deploy. However, is it really learning? This RQ investigates, in
more detail, the learning strategies as the algorithm searches.
We explore how the problem difficulty varies over time for
each of the CIT problems we study, and then ask which
operators are chosen at each stage of difficulty; is there
evidence that the algorithm is selecting different operators for
different types of problems?

A. Experimental Setup

In this section we present the experiments conducted1.
Subjects Studied. There are five subject sets used in our
experiments. The details are summarised below:

[Syn-2] contains 14 pairwise (2-way) synthetic models
without constraints. These are shown in the leftmost column
of Table I. These models are benchmarks that have been used
both to compare mathematical constructions as well as search
based techniques [2], [10], [11], [18], [32]. We take these from
Table 7 from the paper by Garvin et al. [2].

[Syn-3] contains 15 3-way synthetic models without con-
straints. These are shown in the second column of Table
I. These models are benchmarks that have been used for
mathematical constructions and search [10], [33], [34]. We
take these from Table 7 from the paper by Garvin et al. [2].

[Syn-C2] contains 30 2-way synthetic models with con-
straints (see Table I, rightmost two columns). These models
were designed to simulate configurations with constraints in
real-world programs, generated by Cohen et al. [35] and
adopted in follow-up research by Garvin et al. [2], [25].

1Supplementary data, models and results, can be found on our website
(http://cse.unl.edu/˜myra/artifacts/HHSA).



TABLE I
SYNTHETIC SUBJECTS SYN-2, SYN-3 AND SYN-C2. THE FIRST SUBJECT SET CONTAINS 2-WAY UNCONSTRAINED SYNTHETIC MODELS FROM [2], [10],
[11], [18], [32]. THE SECOND SUBJECT SET CONTAINS 3-WAY UNCONSTRAINED SYNTHETIC MODELS FROM [10], [33], [34]. THE LAST SET CONTAINS

SYNTHETIC MODELS DESIGNED TO SIMULATE REAL-WORLD PROGRAMS [2], [25], [35].
Subject Set: Syn-2 Subject Set: Syn-3 Subject Set: Syn-C2 Subject Set: Syn-C2

Subjects Model Subjects Model Subjects Unconstr. Param. Constr. Param. Subjects Unconstr. Param. Constr. Param.
S2-1 34 S3-1 36 C2-S1 28633415562 2203341 C2-S16 281334261 23034

S2-3 513822 S3-2 46 C2-S2 28633435161 21933 C2-S17 212833425163 222534

S2-3 313 S3-3 324252 C2-S3 22742 2931 C2-S18 212732425163 2233441

S2-4 41339235 S3-4 56 C2-S4 251344251 21532 C2-S19 217239495364 23835

S2-5 514431125 S3-5 57 C2-S5 215537435564 2323641 C2-S20 213834455467 24236

S2-6 415317229 S3-6 66 C2-S6 2734361 22634 C2-S21 27633425163 24036

S2-7 6151463823 S3-7 664222 C2-S7 22931 21332 C2-S22 2733343 23134

S2-8 716151453823 S3-8 101624331 C2-S8 210932425363 2323441 C2-S23 2253161 21332

S2-9 4100 S3-9 88 C2-S9 25731415161 23037 C2-S24 2110325364 22534

S2-10 616 S3-10 77 C2-S10 213036455264 24037 C2-S25 211836425266 2233341

S2-11 716 S3-11 99 C2-S11 28434425264 22834 C2-S26 287314354 22834

S2-12 816 S3-12 106 C2-S12 213634435163 22334 C2-S27 25532425162 21733

S2-13 817 S3-13 1010 C2-S13 212434415262 22234 C2-S28 2167316425366 23136

S2-14 1020 S3-14 1212 C2-S14 281354363 21332 C2-S29 21343753 21933

S3-15 1414 C2-S15 25034415261 22032 C2-S30 272344162 22032

[Real-1] contains real-world models from a recent bench-
mark created by Segall et al. [21], shown in Table II. There
are 20 CIT problems in this subject set, generated by or for
IBM customers. The 20 problems cover a wide range of ap-
plications, including telecommunications, healthcare, storage
and banking systems.

[Real-2] contains 6 real-world constrained subjects shown
in Table II, which have been widely studied in the literature
[2], [25], [30], [35], [36]. The TCAS model was first presented
by Kuhn et al. [36]. TCAS is a traffic collision avoidance
system from the ‘Siemens’ suite [37]. The rest of the models
in this subject set were introduced by Cohen et al. [30], [35].
SPIN-S and SPIN-V are two components for model simulation
and model verification. GCC is a well known compiler system
from the GNU Project. Apache is a web server application and
Bugzilla is a web-based bug tracking system.
Methodology: All experiments but one are carried out on a
desktop computer with a 6 core 3.2GHz Intel CPU and 8GB
memory. To understand the trade-off between the quality of the
results and the cost of the hyperheuristics approach, we use the
Amazon EC2 Cloud. All experiments are repeated five times.
We report the best and the average results over five runs.
B. HHSA Configuration

There are four parameters that impact the computational
resources used by our hyperheuristic algorithm, HHSA: the
initial temperature, the cooling rate, the cooling step function,
and maximum number of non-improvements allowed before
termination is forced. A higher initial temperature allows
HHSA to spend more effort in exploring the search space.
The cooling rate and cooling step function work together to
control the cooling schedule for HHSA.

To understand the trade-off between the quality of the
results and the efficiency of HHSA, we use three different
configurations: HHSA-L (LOW), HHSA-M (MEDIUM) and
HHSA-H (HIGH). The HHSA-L and HHSA-M configurations
only apply the outer binary search to guide HHSA to search
for a smallest test suite while the HHSA-H configuration
additionally applies the greedy search conducted after the
binary search. The settings are shown in Table III.

TABLE II
REAL-WORLD SUBJECT SETS. REAL-1 (TOP) CONTAINS 20 MODELS

FROM [21]. REAL-2 (BOTTOM) CONTAINS 6 MODELS WITH CONSTRAINTS
FROM [2], [25], [30], [35], [36].

Subjects Unconstrained Parameters Constrained Param.
Real-1: 2-way

Concurrency 25 243152

Storage1 21314151 495

Banking1 3441 5112

Storage2 3461 -
CommProtocol 21071 210310412596

SystemMgmt 253451 21334

Healthcare1 26325161 23318

Telecom 2531425161 2113149

Banking2 21441 23

Healthcare2 253641 2136518

NetworkMgmt 224153102111 220

Storage3 2931536181 238310

Proc.Comm1 233646 213

Services 23345282102 338642

Insurance 26315162111131171311 -
Storage4 25374152627191131 224

Healthcare3 21636455161 231

Proc.Comm2 233124852 142121

Storage5 253853628191102111 2151

Healthcare4 21331246526171 222

Real-2: 2,3-way
TCAS 273241102 23

Spin-S 21345 213

Spin-V 24232411 24732

GCC 2189310 23733

Apache 215838445161 23314251

Bugzilla 2493142 2431

TABLE III
SETTINGS FOR THE HHSA-L, HHSA-M AND HHSA-H

CONFIGURATIONS.

Config. Search InitT Co-Rate Co-Step MaxNo-Imp
HHSA-L binary 0.3 0.98 2,000 50,000
HHSA-M binary 0.3 0.998 10,000 50,000

HHSA-H binary 0.3 0.998 10,000 50,000
greedy 0.5 0.9998 10,000 100,000

We chose these settings after some experimentation so that
all can be executed in reasonable time for one or more use-
cases of CIT. In the low setting, the time taken is low, but the
expected result quality is consequently equally low, whereas
in the higher settings, we can explore if additional benefits are
gained from the allocation of extra computational resources.



TABLE IV
SIZES AND TIMES (SECONDS) FOR SYN-2 (TOP) AND SYN-3 (BOTTOM). THE BEST COLUMN REPORTS THE BEST KNOWN RESULTS FROM [2]. THE SA
AND CASA COLUMNS REPORT THE SIZE OF THE UNCONSTRAINED SA AND THE CASA ALGORITHM. THE SIZE FOR EACH HHSA VARIANT REPORTS
THE BEST RESULT OVER FIVE RUNS. TIME IS THE AVERAGE RUNTIME (SECONDS). DIFF-BEST INDICATES THE DIFFERENCE BETWEEN THE SMALLEST

HHSA VARIANT AND THE BEST COLUMN.

Subject Best SA CASA HHSA-L HHSA-M HHSA-H Diff-Best Diff-SA Diff-CASASize Time Size Time Size Time
S2-1 9 9 9 9 1 9 12 9 44 0 0 0
S2-2 15 15 15 15 1 15 14 15 120 0 0 0
S2-3 15 15 15 15 1 15 14 15 101 0 0 0
S2-4 21 21 22 22 6 21 92 21 1,086 0 0 -1
S2-5 21 21 23 22 1 22 21 21 241 0 0 -2
S2-6 30 30 30 31 4 29 212 29 961 -1 -1 -1
S2-7 30 30 30 30 1 30 41 30 177 0 0 0
S2-8 42 42 46 42 1 42 22 42 175 0 0 -4
S2-9 45 45 46 47 41 46 259 45 2,647 0 0 -1
S2-10 62 62 64 66 2 64 31 63 293 1 1 -1
S2-11 84 87 86 88 3 87 43 86 315 2 -1 0
S2-12 110 112 112 115 6 112 54 111 581 1 -1 -1
S2-13 111 114 114 117 7 115 62 113 644 2 -1 -1
S2-14 162 183 185 195 15 194 98 189 1,201 27 6 4
Overall 757 786 797 814 90 801 975 789 8,586 32 3 -8

S3-1 33 33 33 33 0 33 2 33 5 0 0 0
S2-2 64 64 96 64 0 64 1 64 1 0 0 -32
S3-3 100 100 100 101 1 100 31 100 153 0 0 0
S3-4 125 152 185 176 2 161 21 125 78 0 -27 -60
S3-5 180 201 213 211 3 205 40 202 473 22 1 -11
S3-6 258 300 318 316 4 315 56 308 875 50 8 10
S3-7 272 317 383 345 11 329 123 319 1,893 47 2 -64
S3-8 360 360 360 360 6 360 138 360 498 0 0 0
S3-9 512 918 942 958 39 1,000 187 994 6,966 446 40 16
S3-10 545 552 573 595 14 595 99 575 2,309 30 23 2
S3-11 729 1,426 1,422 1,520 112 1,637 351 1,600 7,206 791 94 98
S3-12 1,100 1,426 1,462 1,440 44 1,530 329 1,496 10,921 340 14 -22
S3-13 1,219 2,163 2,175 2,190 231 2,440 543 2,453 11,138 971 27 15
S3-14 2,190 4,422 4,262 4,760 831 5,080 1,634 5,080 17,679 2,570 338 498
S3-15 3,654 8,092 8,103 9,195 3,684 9,040 5,748 9,039 30,611 5,385 947 936
Overall 11,341 20,526 20,627 22,264 4,982 22,889 9,303 22,748 90,807 10,652 1467 1366

V. RESULTS

In this section we provide results aimed at answering each
of our research questions.

A. RQ1: Quality of Hyperheuristic Search

We begin by looking at the set of unconstrained synthetic
problems (Table IV) for 2- (top) and 3-way (bottom) CIT. We
see the best reported solutions from the literature followed
by a smallest CIT sample and its running time for each of
the three settings of the HHSA. The best column follows the
format of Table 7 from Garvin et al. [2] and includes results
obtained by mathematical or constructive methods as well as
search. We also include the size reported in that paper both
for the unconstrained SA and CASA tools, which is optimized
for constrained problems. Running times for SA and CASA
tools are not reported, since we did not re-run them.

The size and time columns give a smallest size of the
CIT sample found by HHSA, and the average running time
in seconds over five runs. The Diff-Best column reports the
difference between the best known results (first column) and
HHSA’s best results. We have also reported HHSA vs. SA
(Diff-SA) and HHSA vs. CASA (Diff-CASA). A negative
value indicates that HHSA found a smaller sample.

The sizes of test suites found by HHSA are very close to
the benchmarks for all but one of the 2-way unconstrained
synthetic models. In fact, in benchmark S2-6, both the medium
and high settings of HHSA find a lower bound.

The last subject, S2-14 is interesting because it is patho-
logical and has been studied extensively by mathematicians.
The model 1020, has 20 parameters, each with 10 values.
The use of customizations for this particular problem, such as
symmetry has led to both constructions and post optimizations.
The discussion of this model consumes more than half a page
in a recent dissertation which is credited with the bound2 of
162 [38]. The best simulated annealing bound, of 183, is close
to the high setting of HHSA (189).

There is a larger gap between the results generated by
HHSA and best known results on 3-way synthetic models.
On the smaller models, HHSA seems to generate sample sizes
between the unconstrained SA technique and CASA. However,
on the larger size models HHSA does not fare as well. We
do see improvement as we increase from low to high, and
these are all very large search spaces; we explore the cost-
effectiveness trade-off in RQ2.

We now turn to the constrained synthetic models seen in
Table V. In this table the column labelled ‘Best’ represents
the best known results for CASA (the only tool on which
these synthetic benchmarks have been reported to date). For
the constrained problems HHSA performs as well or better
than the best known results (except in one case) despite the
fact that CASA is optimized for these subjects. HHSA requires
39 fewer rows overall than the best reported results.

2This bound was recently reduced by others to 155.



The last comparison we make is with the Real benchmarks.
Table VI shows a comparison for all of our real subjects
against a set of existing tools which were reported in the
literature. Again we see that the HHSA performs as well or
better than all of the other tools. For the Real-1 benchmarks,
HHSA reduces the overall number of rows in our samples by
52, and for the open source applications HHSA reduces the
2-way by 3 rows, and the 3-way by 54 rows.
Summary of RQ1. We conclude that the quality of results
obtained by using HHSA is high. While we do not produce
the best results on every model, we are quite competitive and
for all of the real subjects we are as good as, or improve upon
the best known results.

TABLE VI
SIZES AND TIMES (SECONDS) FOR REAL-1 2-WAY (TOP), REAL-2 2-WAY
(MIDDLE) AND REAL-2 3-WAY (BOTTOM). THE BEST KNOWN COLUMN
SHOWS THE BEST RESULTS IN THE LITERATURE, AND THE TOOLS THAT
PRODUCED THE RESULTS. REFERENCES WHERE THESE ARE REPORTED

ARE LISTED. THE SIZE COLUMNS FOR EACH VARIANT REPORT THE BEST
RESULT OVER FIVE RUNS.

Sub.
Best Known HHSA-L HHSA-M HHSA-H

Diff
Size Tools Size Time Size Time Size Time

Tools: A-ACTS, F-FoCuS, J-Jenny, P-PICT, C-CASA, T-Ttools
Subject set: Real-1, 2-way [21]

Con. 5 A,J 5 0 5 9 5 76 0
Sto.1 17 F 17 2 17 67 17 396 0
Ban.1 14 F 13 1 13 24 13 205 -1
Sto.2 18 F 18 1 18 23 18 100 0
Com. 16 F 16 3 16 86 16 898 0
Sys. 16 F 15 1 15 16 15 103 -1
Hea.1 30 A,F 30 2 30 49 30 193 0
Tel. 30 F 30 2 30 40 30 163 0
Ban.2 10 A 10 1 10 28 10 96 0
Hea.2 18 A,P,F 14 1 14 17 14 143 -4
Net. 115 F 110 2 110 63 110 229 -5
Sto.3 52 A,F 50 5 50 136 50 578 -2
Pro.1 28 J 23 1 22 14 22 123 -6
Ser. 102 F 100 10 100 266 100 1,008 -2
Ins. 527 A,P,F 527 13 527 411 527 1,549 0
Sto.4 130 P,F 117 3 117 80 117 345 -13
Hea.3 35 F 34 2 34 34 34 189 -1
Pro.2 32 A 28 5 27 54 27 66 -5
Sto.5 226 F 215 17 215 415 215 1,501 -11
Hea.4 47 F 46 3 46 45 46 230 -1
Overall 1,468 - 1,418 75 1,416 1,877 1,416 8,191 - 52

Subject set: Real-2, 2-way [39] [25]
TCAS 100 C,T 100 6 100 166 100 578 0
SPIN-S 19 C 19 1 19 27 19 144 0
SPIN-V 32 C 33 11 31 212 31 1,725 -1
GCC 19 C 19 43 17 578 18 2,552 -2
Apache 30 C,T 31 71 30 656 30 3,676 0
Bugzilla 16 C,T 16 3 16 28 16 119 0
Overall 216 - 218 135 213 1,667 214 8,794 -3

Subject set: Real-2, 3-way [39] [2]
TCAS 401 T 400 141 400 4,636 400 13,808 -1
SPIN-S 95 C 95 14 80 200 80 680 -15
SPIN-V 232 C 217 818 202 7,942 195 37,309 -37
GCC 94 C 102 7,562 94 83,324 - - 0
Apache 177 C 193 25,258 176 191,630 - - -1
Bugzilla 59 C,T 61 156 59 1,769 60 1,726 0
Overall 1,058 - 1,068 33,949 1,011 289,501 - - -54

B. RQ2: Efficiency of Hyperheuristic HHSA

Table VII summarizes the average execution time in seconds
per subject within each group of benchmarks, using the three
configurations of HHSA. The average execution time for

the experiments with low configuration is about 17 minutes.
Despite the overall average of 17 minutes, the majority of the
executions require fewer than 5 minutes. The 3-way experi-
ments running GCC and Apache in the Real-2 benchmarks
take the longest (1.6 hours on average). The high setting for
this subject set was not finished after 3 days so we terminated
it (indicated by ‘-’). HHSA-M is about 12 times slower overall
than HHSA-L. However, most of the subjects still run within
10 minutes. The runtime for HHSA-H is about 7 times slower
than for HHSA-M and takes at most 1.5 hours for the majority
of the subjects.

On the right side of this table we see the ‘Time Ratio’
between the HHSA-L vs. HHSA-M and HHSA-M vs. HHSA-
H, as well as the ‘Size Improvement’ which indicates how
much smaller the second variant is. As we can see, while it
costs us 12 times more to run the HHSA-M variant, it reduces
our sample sizes by almost 3%.

Moving from HHSA-M to HHSA-H improves our results
by another 1%, while the cost is 7 times more in algorithm
runtime. If we also consider the time to run test suites for this
sample (see [2]), then this may make a practical difference.
Consider if it takes overnight to run a full test suite for each
configuration in our sample. The extra computation time for
construction may pay off.

We next examine the practical implications of running the
different variants of our algorithm. For this experiment we run
all of the 2-way subjects in the Amazon EC2 (Elastic Compute
Cloud) with the High-CPU On-Demand Instance (c1.medium)
[40], and record not only the time, but the actual cost for
obtaining our results.

We run the CASA tool as a baseline and the HHSA-L and
HHSA-M settings. The results are shown in Table VIII. The
times shown represent the average total time for all programs
in the respective benchmarks. Note that the runtimes reported
in Table VIII are much slower than the times reported in Table
IV-VI. This is due to the fact that the computational power
of the Amazon EC2 instances used in these experiments are
slower than the desktop machine used for prior experiments.
The HHSA-L setting took about 8 tenths of an hour to run all
of the benchmarks, but cost only 13 cents. CASA took more
time than the HHSA-L variant (2.9 hours) and cost $0.49. The
HHSA-M required the longest runtime (12.7 hours), but still
only cost us $2.09.
Summary of RQ2. We conclude that the HHSA algorithm is
efficient when run at the lowest level (HHSA-low). When run
at the higher levels we see a cost-quality trade-off. In practice,
the monetary cost of running these algorithms is very small.

C. RQ3: Search Navigation Operator Comparison

We now examine how efficient and effective each of the
search navigation operators are in isolation. We built seven
versions of the simulated annealing algorithm, all using the
HHSA-M settings. Each of the first six versions contains a
single operator. For the seventh version, HH-Random, we
include all operators, but the operator to use at each stage
is chosen at random (with no intelligence).



TABLE V
SIZES AND TIMES (SECONDS) FOR SYN-C2. THE BEST COLUMN REPORTS THE BEST RESULTS FROM CASA. THE SIZE COLUMNS FOR EACH HHSA
VARIANT REPORTS THE BEST RESULT OVER FIVE RUNS. THE DF COLUMN IS THE DIFFERENCE BETWEEN THE BEST HHSA SETTING AND THE BEST.

Sub. Best HHSA-L HHSA-M HHSA-H Df Sub. Best HHSA-L HHSA-M HHSA-H DfSize Time Size Time Size Time Size Time Size Time Size Time
CS1 38 39 16 37 563 36 3,093 -2 CS16 19 24 27 24 177 24 689 5
CS2 30 30 30 30 391 30 1,074 0 CS17 39 41 16 36 575 36 2,648 -3
CS3 18 18 2 18 24 18 130 0 CS18 43 44 31 41 397 39 5,779 -4
CS4 20 20 7 20 164 20 448 0 CS19 47 50 96 46 1,134 44 10,685 -3
CS5 47 49 59 45 894 44 8,731 -3 CS20 53 55 90 52 1,286 50 12,622 -3
CS6 24 24 16 24 149 24 1,248 0 CS21 36 36 23 36 411 36 2,513 0
CS7 9 9 3 9 74 9 364 0 CS22 36 36 12 36 345 36 2,234 0
CS8 39 41 22 38 875 37 5,362 -2 CS23 12 12 2 12 11 12 188 0
CS9 20 20 27 20 253 20 682 0 CS24 44 46 18 41 283 40 3,909 -4
CS10 43 46 53 43 611 40 8,902 -3 CS25 49 51 37 47 748 46 6,399 -3
CS11 41 43 21 39 222 38 3,096 -3 CS26 30 31 17 28 348 27 1,927 -3
CS12 40 40 32 37 952 36 4,097 -4 CS27 36 36 8 36 151 36 671 0
CS13 36 36 45 36 598 36 3,309 0 CS28 50 53 77 50 902 48 10,709 -2
CS14 36 37 20 36 304 36 1,780 0 CS29 27 30 32 26 528 26 2,995 -1
CS15 30 30 11 30 239 30 628 0 CS30 17 19 12 17 158 16 1,405 -1

Ov. 1,009 1,046 862 990 13,767 970 108,317 -39

TABLE VII
RUNNING TIMES (SECONDS) OF THE THREE LEVELS OF HHSA. EACH TIME REPRESENTS THE AVERAGE FOR EACH INDIVIDUAL MODEL WITHIN THE

BENCHMARK. TIME RATIO SHOWS THE AVERAGE RATIO AND PERCENTAGE OVER FIVE RUNS (RESPECTIVELY) BETWEEN THE L/M AND M/H. SIZE IMPR.
SHOWS THE IMPROVEMENT RATIO FOR THE AVERAGE AND THE (BEST) RESULTS. ‘-’ INDICATES THAT NO RESULT WAS OBTAINED AFTER 3 DAYS. THE

AVERAGE ROW REPORTS THE AVERAGE VALUES OVER ALL INDIVIDUAL MODELS OVER THE 6 SUBJECT SETS.

Subject Sets HHSA-L Time HHSA-M Time HHSA-H Time HHSA-L vs. HHSA-M HHSA-M vs. HHSA-H
Time Ratio Size Impr. (best) Time Ratio Size Impr. (best)

Syn-2 6 70 613 11 2.6% (1.6%) 9 1.6% (1.5%)
Syn-C2 29 459 3,611 16 6.1% (5.4%) 8 1.8% (2.0%)
Syn-3 332 620 6,054 2 -0.6% (-2.8%) 10 0.4% (0.6%)
Real-1 4 94 409 25 0.3% (0.1%) 4 0.1% (0.0%)
Real-2 23 278 1,466 12 2.5% (2.3%) 5 0.9% (-0.5%)
Real-2(3way) 5,658 48,250 - 9 6.1% (5.3%) - -
Average 1,009 8,295 2,431 12 2.8% (2.0%) 7 1.0% (0.7%)

TABLE VIII
SIZES, TIMES (SECONDS) AND DOLLAR COSTS FOR RUNNING EACH OF THE BENCHMARK SETS TO COMPLETION IN THE AMAZON EC2 CLOUD WITH THE

HIGH-CPU ON-DEMAND INSTANCE (C1.MEDIUM) [40]. THE TIME AND COST COLUMNS FOR EACH HHSA VARIANT REPORT THE AVERAGE RESULTS.
THE SIZE COLUMN REPORTS BOTH AVERAGE AND (BEST) RESULTS.

Subjects CASA HHSA-L HHSA-M
Time (s) Cost$ Size (best) Time (s) Cost $ Size (best) Time (s) Cost$ Size (best)

Syn-S2 5,777 0.26 808 (793) 220 0.01 820 (810) 2,350 0.11 805 (800)
Syn-C2 4,440 0.20 1,053 (1,011) 2,029 0.09 1,067 (1,049) 34,736 1.59 1,005 (991)
Real-1 119 0.01 1,451 (1,422) 185 0.01 1,421 (1,417) 4,660 0.21 1,417 (1,416)
Real-2 265 0.01 233 (223) 383 0.02 222 (217) 3,971 0.18 216 (213)
Overall 10,601 0.49 3,545 (3,449) 2,817 0.13 3,530 (3,493) 45,717 2.09 3,443 (3,420)

The results for operator comparison are shown in Table IX.
Each operator is listed in a row (Op1-Op6). The numbers
correspond to their earlier descriptions (Section III-C).

The next row is HH-Random, followed by the HHSA-M
variant. The best operators on their own appear to be the
“mutation” operators. Operator 4 (multiple mutation) seems
to work relatively well on its own as does Operator 1 (single
mutation). The HH-Rand variant performs second best indi-
cating that the combination of operators is helping the search,
and it runs relatively fast. However, without the guidance from
learning it appears not do as well as the HHSA-M algorithm.
Summary of RQ3. We conclude that there is a difference
between effectiveness of each of the operators and that com-
bining them contributes to a better quality solution. No single
operator provides best results.

D. RQ4: Does the Hyperheuristic Algorithm Learn?

To determine if the operators that are selected by the
hyperheuristic SA algorithm are learned, we examine Table

TABLE IX
“NAVIGATION OPERATOR” COMPARISON. OP1 TO OP6 USE THE

STANDARD SA (WITH HHSA-M SETTINGS) WITH AN INDIVIDUAL
SEARCH OPERATOR. HH-RAND MAKES A RANDOM CHOICE AT EACH

EVALUATION. THE SIZE COLUMNS REPORT THE AVERAGE RESULTS OVER
FIVE RUNS FOLLOWED BY THE (BEST) RESULT. TIME IS IN SECONDS.

Subjects
Syn-S2 Syn-C2 Real-1 Real-2 (2-way)

Size (best) Time Size (best) Time Size (best) Time Size (best) Time
Op1 841 (820) 68 1,117 (1,079) 862 1,461 (1,440) 35 227 (223) 117
Op2 1,333 (1,306) 113 1,376 (1,339) 2,033 1,500 (1,481) 111 263 (257) 248
Op3 1,235 (1,121) 359 3,298 (2,249) 5,055 2,715 (2,168) 90 726 (542) 868
Op4 816 (804) 208 1,070 (1,045) 1,639 1,420 (1,417) 159 227 (221) 179
Op5 981 (967) 254 1,198 (1,172) 2,884 1,432 (1,424) 294 237 (233) 282
Op6 880 (851) 383 1,042 (1,022) 3,133 1,454 (1,436) 97 221 (218) 562
HH-Rand 812 (806) 321 1,024 (1,014) 2,903 1,419 (1,417) 113 218 (216) 441
HHSA-M 806 (801) 975 1,003 (990) 13,767 1,418 (1,416) 1,877 216 (213) 1,667

X and Figure 2. We first look at the graphs. The x-axis
represents the different problem states which correspond to the
number of missing tuples that the problem has left to cover. On
the left part of the graph, there are many tuples still uncovered,



and towards the right, very few are uncovered. We plot the
reward scores from our HHSA algorithm for each operator at
each stage (a higher reward score means the operator is more
likely to be selected). We show this data for one synthetic and
one real subject (due to space limitations), S2-8 (top), and
TCAS (bottom). As we can see, early on when the problem
is easier, most of the operators are close to the same reward
value with one or two standing out (Operator 4 in S2-8 and
Operator 5 in TCAS). This changes as we have fewer tuples to
cover; most of the operators move towards a negative reward
with a few remaining the most useful. Not only do we see
different “stages” of operator selection, but we also see two
different patterns.
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Fig. 2. Subject: S2-8 (top) and TCAS (bottom). X-axis shows number of
tuples left to cover. Y-axis shows the HHSA algorithm’s reward scores.

We examine this further by breaking down data from each
benchmark set into stages (see Table X). We evenly split our
data by iteration into an early (S1), middle (S2) and late (S3)
stage of the search. For each, we select the pairs of operators
that are selected most often across each benchmark set. For
instance, Op1+Op4 is selected most often at stage S1 for 6
subjects in the set Syn-2. In stage 1 we see that Op4+Op5 is
selected most often overall, while in stage 2 it is Op1+Op4
and in stage 3 it is Op1+Op6. Within each benchmark we see
different patterns. For instance, in the first stage Op1+Op5
is selected most often by the Syn-C2 (constrained synthetic)
which is different from the others. In stage 2 again we see
that the Syn-C2 has a different pattern of operator selection
with Op1+Op4 being selected 14 times. In other sets such as
the Real 1 we see that the Op4+Op6 combination is chosen
most often.

Summary of RQ4. We see evidence that the Hyperheuristic
algorithm is learning both at different stages of search and
across different types of subjects.

TABLE X
LEARNING STRATEGIES. THREE STAGES OF THE ALGORITHM HHSA-L

(S1-EARLY), (S2-MIDDLE) AND (S3-LATE) SHOWING THE PAIRS OF
OPERATORS CHOSEN THE MOST OFTEN BY STAGE AND SUBJECT SET.

Strategies Syn-2 Syn-C2 Real-1 Real-2 Ov.Stage Operators

S1

Op1 + Op4 6 2 2 0 10
Op1 + Op5 0 11 1 1 13
Op4 + Op5 6 13 12 4 35
Op4 + Op6 1 0 2 1 4
Op5 + Op6 1 4 3 0 8

S2

Op1 + Op3 0 1 0 0 1
Op1 + Op4 0 14 1 2 17
Op1 + Op5 1 2 2 1 6
Op1 + Op6 6 6 2 1 15
Op3 + Op4 0 1 1 0 2
Op3 + Op5 1 0 3 0 4
Op3 + Op6 0 1 0 0 1
Op4 + Op5 0 1 0 0 1
Op4 + Op6 5 3 7 1 16
Op5 + Op6 1 1 4 1 7

S3

Op1 + Op3 2 3 2 1 8
Op1 + Op4 1 2 3 0 6
Op1 + Op5 0 0 1 1 2
Op1 + Op6 3 10 6 3 22
Op2 + Op3 0 0 1 0 1
Op3 + Op5 0 0 1 0 1
Op3 + Op6 7 3 3 1 14
Op4 + Op6 0 10 1 0 11
Op5 + Op6 1 2 2 0 5

VI. CONCLUSIONS

In this paper we have presented a hyperheuristic algorithm
(HHSA) for constructing CIT samples. We have shown that
the algorithm is general and learns as the problem set changes
through a large empirical study on a broad set of benchmarks.
We have shown that the algorithm is effective when we
compare it across the benchmarks and other algorithms and
results from the literature.

We have also seen that the use of different tunings for the
algorithm (low, medium and high) will provide a quality-cost
trade-off with the higher setting producing better results, but
taking longer to run. When we examine the practicality we
see that the monetary cost for running the algorithm is quite
small when using today’s cloud ($2.09).

Finally, we have examined the various stages of learning of
our algorithm and see that the different heuristic operators are
more effective at different stages (early, middle, late) and that
they vary across programs and benchmarks. It is this ability to
learn and adapt that we believe is the most important aspect
of this search.

As future work we will look at alternative tunings for the
algorithm to scale to very large problems (a very low setting)
and to find even smaller sample sizes (a very high setting). We
will also incorporate new operators and alternative algorithms
for the outer layer, such as genetic algorithms.
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