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ABSTRACT

 -REx (Tau Retrieval of Exoplanets) is a novel, fully Bayesian atmospheric retrieval code custom built for
extrasolar atmospheres. In Waldmann et al., the transmission spectroscopic case was introduced, and here we
present the emission spectroscopy spectral retrieval for the  -REx framework. Compared to transmission
spectroscopy, the emission case is often significantly more degenerate due to the need to retrieve the full
atmospheric temperature–pressure (TP) profile. This is particularly true in the case of current measurements of
exoplanetary atmospheres, which are either of low signal-to-noise, low spectral resolution, or both. We present a
new way of combining two existing approaches to the modeling of the said TP profile: (1) the parametric profile,
where the atmospheric TP structure is analytically approximated by a few model parameters, (2) the layer-by-layer
approach, where individual atmospheric layers are modeled. Both of these approaches have distinct advantages and
disadvantages in terms of convergence properties and potential model biases. The  -REx hybrid model presented
here is a new two-stage TP profile retrieval, which combines the robustness of the analytic solution with the
accuracy of the layer-by-layer approach. The retrieval process is demonstrated using simulations of the hot-Jupiter
WASP-76b and the hot-super-Earth 55 Cnc e as well as the secondary eclipse measurements of HD 189733b.
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1. INTRODUCTION

The characterization of extrasolar planets through the
spectroscopic measurements of their atmospheres has become
a well established field today (Tinetti et al. 2013). In Waldmann
et al. (2015), we presented the  -REx (Tau Retrieval of
Exoplanets) suite for transmission spectroscopic measurements.
In this paper, we introduce the corresponding retrieval for
emission spectroscopic data.

Transmission and emission spectroscopy carry highly
complementary aspects. Whereas transmission spectroscopy
is less sensitive to thermal gradients, the emission spectroscopy
case probes the full temperature–pressure profile (TP-profile
hereafter) of the atmosphere. This makes the emission case
significantly harder to constrain without the luxury of in situ
measurements. King (1958) was the first to suggest remote
sensing of the planetary atmospheric temperature structure
through the infra-red, thermal radiance of the planet. Kaplan
(1959) expanded on this pioneering work by laying the
foundations of retrieving exact TP-profiles from emission
spectroscopic measurements. Remote sensing of planetary
atmospheres in our solar system has been a long story of
success (e.g., Wark & Hilleary 1969; Conrath et al. 1970;
Hanel et al. 1972, 1981; Conrath et al. 1973; Rodgers 1976;
Fletcher et al. 2007; Irwin et al. 2008; as well as Hanel et
al.2003, and references therein). More recently, emission
spectroscopy remote sensing has been expanded to exoplane-
tary atmospheres (Madhusudhan & Seager 2009; Lee
et al. 2011; Line et al. 2012; Griffith 2014). Line et al.
(2013) provides a comparison of existing exoplanetary
emission spectroscopy retrieval codes.

1.1.  -REx

 -REx is a novel, Bayesian atmospheric spectroscopy
retrieval suite designed for extrasolar planets. In Waldmann
et al. (2015, hereafter W15), we introduce the overall
architecture, data handling, minimization/sampling routines,

handling of molecular line lists, Bayesian model selection and
the transmission spectroscopy forward model. In this publica-
tion, we present the emission spectroscopy forward model as
well as the atmospheric TP profile retrieval implemented.
Figure 1 shows a schematic diagram of the  -REx

architecture for the emission retrieval. The program can be
subdivided into five sections.

1. Inputs: program inputs such as parameter files, molecular
line-lists (ExoMol Tennyson & Yurchenko 2012),
(HITEMP Rothman et al. 2010), stellar spectra (PHOE-
NIX, Allard et al. 2012), and spectroscopic observations
to be analyzed.

2. Model and Data handling: the Central Data Module
manages all calls to the TP-Profile and Forward Model
Modules and provides a standardized, common interface
to different sampling routines implemented.

3. Sampling:  -REx features three independent sampling
routines: Maximum Likelihood estimation (MLE, based
on the LM-BFGS minimization in W15), Markov Chain
Monte Carlo (MCMC), and Nested Sampling (NS). We
refer the reader to W15 for implementation details.

4. Post analysis and refinement: This stage differs from
W15 by providing two iteration stages for the determina-
tion of the TP-Profile, see Section 3.

5. Output: the final posterior distributions are analyzed and
the final model spectrum, TP-Profile, and mixing ratios
are returned.

2. FORWARD MODEL

We briefly describe the radiative transfer forward model; for
a more exhaustive discussion, we refer the reader to the
standard literature (e.g., Chandrasekar 1960; Goody &
Yung 1989; Liou 2002; Hanel et al. 2003; Mihalas &
Mihalas 2013). In what follows, we closely follow the
nomenclature of Liou (2002). For non-scattering atmospheres
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in local thermodynamic equilibrium, the basic equation
describing the thermal radiation of an atmosphere is given by
the Schwartzschild equation:
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where lI is the intensity per wavelength, λ, lB is the Planck
function at temperature T, m q= cos is the upward
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Here Vl m, is the absorption cross section, χm is the column
density, and rN is the number density. We can now express the
upward welling radiance as
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where the first right-hand side term is the radiation at the
planetary surface (or defined surface pressure for gaseous
planets), and the second term denotes the integrated emission
contributions for individual plane-parallel layers. The mono-
chromatic transmittance and its derivative (weighting function)
can be defined as
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Hence we express the total integrated radiation at the top of the
atmosphere (TOA, t = = ¥z0, ) as
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where τs and Ts are the optical depth and temperature at the
planetary surface. The final exoplanetary emission spectrum is
now given by
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where I* is the stellar intensity. By default  -REx interpolates
the stellar flux from a library of PHOENIX1 stellar spectra,
gridded at 100 K intervals. Alternatively,  -REx can approx-
imate the stellar intensity using a blackbody at the stellar
temperature.

3. TP PROFILE

The determination of the vertical atmospheric temperature
profile (also referred to as the temperature–pressure profile or
TP-profile for short) is one of the key challenges in the retrieval
of atmospheric emission spectra. Typically, two approaches
exist in the retrieval of the TP-profile: (1) layer-by-layer
retrieval and (2) analytic parameterization.
(1) The layer-by-layer approach consists of modeling the

temperature of each plane-parallel atmospheric layer indepen-
dently. This approach is usually adopted for retrieval work of
the Earth’s atmosphere and solar system planets (Rodgers 2000;
Hanel et al. 2003). The advantage of such an approach is its
non-parametric nature, i.e., no prior knowledge is imposed on
the temperature retrieval nor is the solution limited by potential
restrictions and biases of an analytic TP-profile. The obvious
disadvantage lies in the potentially poor convergence properties
of such an approach in low signal-to-noise ratio (S/N)
scenarios. Often, data quality or sparse spectral sampling do
not allow for a pure layer-by-layer retrieval due to the large
number of free parameters incurred. This is particularly true for
current exoplanet spectroscopy data, which is either of
relatively low S/N, low spectral resolution, or both. A
common approach adopted is to impose a “regularization” of
the TP-profile based on the physical reality that adjacent
atmosphere layers should exhibit some correlation in
temperature.
(2) The second approach to the TP-profile retrieval is to

adopt an analytic (here also referred to as “parametric”) model.
Such models analytically approximate the mean underlying
physics of the atmospheric thermal structure. Such models have
the advantage of containing far fewer free parameters compared
to the layer-by-layer approach, hence they converge faster.
However, the solution is constrained within the bounds of the
model assumed.
In summary, the layer-by-layer methodology is most

objective but features poor convergence properties, while the
parametric model is less objective, but converges more
robustly. For a review of existing implementations of both
approaches in the field of exoplanet atmospheric retrieval, we
refer the reader to Line et al. (2013).
As described in Section 3.2,  -REx employs a hybrid model

combining both parametric and layer-by-layer approaches in a

Figure 1. Flowchart illustrating the modular design of  -REx. This flowchart
is an update from Waldmann et al. (2015), reflecting the differing architecture
of the emission spectroscopy code.

1 http://www.hs.uni-hamburg.de/EN/For/ThA/phoenix/index.html
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two stage retrieval process. In Section 3.1, we briefly describe the
parametric models implemented in  -REx as part of the  -REx
retrieval framework.

3.1. Parametric Models in the Literature

Analytical global-average TP-profiles exist in various flavors
ranging from two-stream purely radiative to radiative-con-
vective approximations and global circulation models (GCMs).
We refer the reader to the relevant literature for a more in-depth
discussion on the various analytic approaches (e.g., Liou 2002;
Hubeny et al. 2003; Burrows et al. 2008; Hansen 2008;
Madhusudhan & Seager 2009; Showman et al. 2009;
Guillot 2010; Pierrehumbert 2010; Heng et al. 2012, 2014;
Robinson & Catling 2012). For the Stage 1 approach,  -REx
features a purely radiative two-stream model as well as a choice
of simpler TP-profiles based on purely geometric considera-
tions (see 3.1.1). As described in Section 3.2, the exact form of
the TP-profile is less relevant in our case because the results
will be refined in a second stage fitting.

Following Guillot (2010), the mean global temperature
profile for a simple radiative downstream–upstream approx-
imation can be expressed as
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where Tint is the planet internal heat flux, Tirr is the solar flux at
the top of the atmosphere, and
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where g k k= n1 IR is the ratio of mean opacities in the
optical (kn) and infra-red (kIR) and E2 is the second-order
exponential integral given by
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We note that similar parameterizations exist in the literature
(e.g., Equation (18), Robinson & Catling 2012; Pierrehum-
bert 2010). We also include the variation by Line et al. (2012)
and Parmentier & Guillot (2014) including two optical opacity
sources kn1 and kn2 and a weighting factor between optical
opacities (left as a free parameter) α,
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The temperature as a function of opacity τ can be mapped to a
pressure grid by assuming the following relation
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3.1.1. Other TP-profiles

In addition to the above TP-profiles, we include an
isothermal profile as well as a “3-point” and “4-point” profile.
The 3-point profile is purely geometric and keeps the top of
atmosphere temperature, TTOA, the tropopause temperature and
pressure, T1, P1, and the surface (or 10 bar pressure)
temperature T10bar as free variables. The TP-profile is then
linearly interpolated in ln P( ). The 4-point profile adds an extra
variable TP point to the profile.

3.2. The  -REx Hybrid Model

In  -REx, we have worked toward a hybrid solution of the
above mentioned approaches in which the final solution is not
bound by a parametric model, but does not inherit the
potentially poor convergence properties (and susceptibility to
noise) of a layer-by-layer approach. Here we proceed in two
stages: (1) we perform a parametric model retrieval and (2) we
take the retrieval solution to “guide” a second layer-by-layer
retrieval, relaxing the parametric model constraint and thereby
fine-tuning the TP-profile.

3.2.1. Stage 1

In Stage 1, we adopt a classical parametric model retrieval
using one of the TP-profile parameterizations implemented in
 -REx. The idea is to constrain an initial best-fit of the model
and while a realistic model (i.e., one well suited to describe the
underlying TP-profile) is preferable, it is not a hard require-
ment. We now fit the solution using either of  -REx’s
sampling routines (MLE, MCMC, NS). The error on the
sampled parametric model parameters is converted to one σ
lower and upper temperature bounds for a layer-by-layer
model. This is done using a numerical model permutation
analysis of the Stage 1 parameters.
We then calculate the following distance matrix

s sD = - + +T T , 13ij i j i j
2 2 2( )∣ ˆ ˆ ∣ ( )

where T̂ is the maximum likelihood temperature estimator of
the parametric model fit for the ith and jth atmospheric layer
and σ is the respective error. Equation (13) captures the layer to
layer temperature variations in the TP-profile and is hence
conceptually similar to the Jacobian of the profile. We
normalizeΔij in terms of the minimal and maximal temperature
variations found in the TP-profile,

 = -
D - D

D
1.0

argmin

argmax
14ij

ij ( )

which can be understood as a positively defined temperature
correlation matrix with layers most similar in temperature
featuring the highest correlation and layers most dissimilar
resulting in a very low correlation. An example of  for a given
TP-profile can be found in Figure 2.

3.2.2. Stage 2

In the second stage of our TP-profile retrieval, we relax the
original solution found in Stage 1 and, by that, “fine-tune” the
TP-profile. We construct a second correlation matrix imposing
an exponential correlation length across pressure levels

3
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(Rodgers 1976, 2000)

= -
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟S S S

P P

c
exp

ln
, 15ij ii jj

i j1 2( ) ( )
( )

where c is the correlation length in terms of atmospheric scale
heights. We set c = 3.0 by default, but it can otherwise be user
defined. Rodgers (2000) gives an advisable range between 1.0
and 8.0, with Irwin et al. (2008) using a default of c = 1.5 and
Line et al. (2013) c = 7.0. Larger values of c correspond to a
stronger regularization of the TP-profile (i.e., smoothing). A
stronger regularization can be useful in poorly constrained data
sets (either low S/N, sparsely sampled, or both). Equation (15)
is identical to that used in the layer-by-layer approach by Irwin
et al. (2008). We now construct a hybrid correlation matrix by
combining Equations (14) and (15)

 a a a= + - S1 , 16ij ij ij( ) ( ) ( )

where α is a scaling factor ranging from zero to one. Figure 3
shows instances of  a( ) at varying values of α. We now
correlate our layer-by-layer TP-profile with  a( ) whereby

leaving α as free parameter to be fitted. By allowing α to vary,
we can dynamically relax the parametric model solution from
Stage 1, a = 1.0, to an unconstrained solution, a = 0.0.
The advantage of such an approach is twofold: (1) since the
Stage 1 fitting should have already achieved a solution close to
the real maximum likelihood, convergence in the second stage
toward the volume of lowest χ2 is significantly faster and (2)
 -REx can freely decide to relax the Stage 1 solution should
this be favored by the data. Practically, this happens frequently
at later stages of the fitting. Whereas  -REx initially converges
toward the Stage 1 solution (i.e., a  1), at later stages of the
fitting the code begins to reject the parametric model (i.e.,
a  0) as it “fine-tunes” the original solution. This “tuning”
can achieve significantly higher maximum likelihoods than the
Stage 1 fitting alone.

3.3. Nonlinear Sampling

In the approach explained in Section 3.2, we keep an even
sampling of atmospheric layers in log(P) for Stage 2. For well
sampled and high S/N data, this approach is adequate.
However, for coarsely sampled and/or poor S/N data, it is

Figure 2. Left: a given Temperature–Pressure Profile without inversion. Right: correlation matrix , Equation (14), of the TP-profile on the left. Atmospheric layers
with similar temperatures feature a high layer–layer correlation while layers with temperature differences feature lower correlations.

Figure 3. Hybrid correlation matrix , Equation (16), at different values of α. The left most is the pure Stage 1 correlation matrix, , whereas the right plot is the pure
correlation-length-only matrix S, Equation (15). Over-plotted are contours of  a .( ) The middle panel shows an intermediate state of left (60%) and right (40%).

4

The Astrophysical Journal, 813:13 (11pp), 2015 November 1 Waldmann et al.



often advisable to reduce the number of free parameters to a
minimum to aid convergence. In these cases, we can utilize the
sparsity of the Stage 1 TP-profile solution to devise a nonlinear
sampling of the exoplanetary atmosphere. We base our
compression algorithm on the fact that only changes in the
TP gradient need to be modeled, i.e., an isothermal TP-
profile can be perfectly described by a single temperature

parameter whereas areas of non-isothermal structure need more
parameters to capture variation. The compression algorithm
uses the Stage 1 correlation matrix  to only retain TP-profile
layers corresponding to a>2% change in the TP gradient with
respect to the previously retained layer. We graphically depict
this in Figure 4. In addition to TP-profile layers sampled this
way, we also include an extra sampling layer whenever no
change in thermal gradient was detected for >10 layers. The
majority of the TP-profile variations should be captured by the
Stage 1 retrieval and Stage 2 is “fine-tuning” this solution. The
inclusion of a coarse sampling in isothermal regimes does
allow the Stage 2 retrieval to deviate from any Stage 1 solution,
should this be supported by a higher global likelihood. Using
the nonlinear sampling, we can reduce a 100 layer atmospheric
model to typically 15–25 free parameters.

Figure 4. Nonlinear TP-profile sampling on correlation matrix  (same as in
the right hand plot in Figure 2). Starting at the top of the atmosphere (red dot),
we retain all layers in the TP-profile that correspond to a change in gradient
>2% with respect to the previously retained layer until the bottom layer (green
dot) is reached. The selected layers are denoted by white dots and arrows
represent the path of the compression algorithm across the correlation matrix .
Should no gradient change be detected for>10 layers, an extra sampling point
is introduced (black dots).

Table 1
Retrieved Abundances for Hot-Jupiter WASP-76b

Input Model Stage 1 Retrieval Stage 2 Retrieval

log(E) NA −43.92 36.20

log(H2O) −4.0 −3.458 ± 0.104 −3.660 ± 0.107
log(CO) −4.69 −4.352 ± 0.143 −4.548 ± 0.113
log(CO2) −6.0 −5.374 ± 0.120 −5.428 ± 0.114

Note. Top row: log Bayesian Evidence for Stage 1 and Stage 2 models.
Differences above D =Elog 5∣ ( ) ∣ are very significant. Here
D = +Elog 80.12( ) , indicating a significantly improved fit in Stage 2.

Table 2
Retrieved Abundances for Hot-super-Earth 55 Cnc e

Input Model Stage 1 Retrieval Stage 2 Retrieval

log(E) NA 75.40 168.90

log(H2O) −4.0 −4.168 ± 0.795 −4.055 ± 0.571
log(CO) −5.0 −5.764 ± 1.248 −5.613 ± 1.172
log(CO2) −5.0 −5.236 ± 1.112 −5.136 ± 1.019

Note. Top row: log Bayesian Evidence for Stage 1 and Stage 2 models.

Figure 5. Correlation matrix, , derived from Stage 1 TP-profile shown in
Figure 7. The input model TP-profile is shown as a black continuous line.
Otherwise identical to Figure 3.

Figure 6. Showing the input spectrum of a WASP-76b-type hot-Jupiter, gray,
and Stage 1 and 2 fitting on the top and bottom respectively. Both fits
converged but the Stage 2 fit reached a higher maximum likelihood.
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4. VALIDATION OF  -REX

We demonstrate the emission spectroscopy retrieval with two
simulations and the secondary eclipse spectrum of HD 189733b.
The simulations are as follows: (1) high S/N observation
simulation of a hot-Jupiter similar to WASP-76b and (2)
observations of the hot-super-Earth 55 Cnc e, simulated for a 1 m
class spectroscopic space mission. In our simulations, we opt for
two oxidized atmospheres at high temperatures (>1500K).

For each retrieval stage, we calculate the global Bayesian
Evidence of the solution set. Here the Bayesian Evidence (E, or
simply Evidence hereafter) is given as the integral of the
product of the global likelihood and the prior space

 ò q q q= xE P P d, , 17( ∣ ) ( ∣ ) ( )

where qP ( ∣ ) is the prior over the parameter space q, for
retrieval model. qxP ( ∣ ) is the likelihood for the observed
data vector x given the parameter space and retrieval model.
Retrieval Evidences are reported in Tables 1 and 2.

4.1. WASP-76b

WASP-76b (West et al. 2013) is a very hot-Jupiter orbiting a
late F7 star. It is highly inflated at -

+1.83 0.04
0.06 RJup, 0.92

0.03MJup, and ~T 2200equ K. We take its bulk and orbital
properties and generate a simulated observation at a resolution
of 300, a spectral range of 0.5–20 μm, and 100 ppm errors.
We set the atmospheric composition to ´ -1 10 4 H2O,
´ -1 10 5 CO, and ´ -1 10 5 CO2. The input TP-profile is

shown in Figure 7 (black line). It is important to note that here
(as well as in Section 4.2) the input TP-profile was generated
using a script external to  -REx with no relation to either Stage
1 parametrization. This provides an adequate test-bed for the
Stage 1 fitting to accurately retrieve an arbitrary atmospheric
profile.
As described in Section 3.2, we retrieve the TP-profile and

abundances in two stages. For computational efficiency
reasons, here we only compute the NS solutions (which are
also the most accurate, see W15). Tests were run with both
maximum-likelihood retrievals and MCMC retrievals and
solutions between all sets of solutions are in good agreement.
The NS Stage 1 solution returns four local likelihood

maxima of which the global maximum was selected. Figures 6
(top), 7 (left), and Table 1 show the retrieved spectrum, TP-
profile, and retrieved abundances respectively. The Stage 1 TP-
profile mostly captures the input TP-profile but shows
unrealistic bumps and wiggles as well as unrealistic distribu-
tions of the one sigma error bar. These are artefacts of the
parameterization in Section 3.1. The three local maxima TP-
profiles shown in Figure 7 underestimate the bulk temperature
of the planet, driving the retrieval to assume unrealistically low
abundances of molecular trace gases. In this example, this is
found to be a numerical effect that disappears by increasing the
sampling grid density of the NS. Nonetheless, the potential
degeneracy between TP-profile and molecular abundances in
atmospheric retrievals is worth noting.

Figure 7. TP-profiles for Stage 1 and 2 results for WASP-76b in Figure 6.
Solid lines represent the mean and shaded regions the one sigma error bars.
Solid black lines are the input TP-profile. Stage 2 takes the initial parametric
TP-profile fit of Stage 1 and relaxes the solution. Four solutions were obtained
for Stage 1, the highest maximum likelihood solution (blue) traces the input
TP-profile well, while local maxima underestimate the bulk temperature, see
the text. The Stage 2 solution feature a significantly lower χ2 (or higher global
Evidence) than all Stage 1 solutions.

Figure 8. Left: retrieved TP-profile, right: contribution functions for WASP-76b. First and second rows: best-fit TP-profiles and corresponding emission contribution
functions as function of pressure and wavelength for Stage 1 and Stage 2 respectively. Bottom row: difference between both stages. Contribution difference is given as
normalized fraction.
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As described earlier, we computed the TP-profile covariance,
 (Figure 5), and tuned the Stage 1 retrieval by relaxing the
parametric solution. Figures 6 (bottom), 7 (right), and Table 1
show the Stage 2 retrieval results. Inspecting Figure 6, both
Stage 1 and Stage 2 retrievals fit the input spectrum sufficiently
well but Stage 2 comes significantly closer to the “true” TP-
profile and trace gas abundances. Figure 8 shows the normal-
ized emission contribution functions of both retrievals and their
difference. This shows the planetary emission mainly emanat-
ing in the non-isothermal regions (up to the tropopause) of the
TP-profile, as expected. However, Stage 2 emissions originate
significantly lower (by nearly an order of magnitude) in the
atmosphere (blue band in the bottom panel).

4.2. 55 Cnc e

We simulated an emission spectrum of the hot-super-Earth
55 Cnc e (Fischer et al. 2008). We use trace gas compositions
of ´ -1 10 4 H2O, ´ -1 10 5 CO, and ´ -1 10 5 CO2 and a

sharp TP-profile shown in Figure 10. Because the previous
WASP-76 example is currently unrealistically optimistic, given
the combination of high S/N, moderate resolution (R ∼ 300)
and a very broad wavelength coverage, we opt for a more
realistic example here. We calculated the expected resolution
and S/N for 100 co-added eclipses obtained by a one-meter-
class transiting spectroscopy space-mission (e.g., the ESA M4
proposal ARIEL) over a wavelength range spanning 2–8 μm.
Using EChOSim, an end-to-end simulator for transit spectro-
scopy space-missions (Pascale et al. 2014; Waldmann &
Pascale 2014) developed for the ESA M3 EChO proposal
(Tinetti et al. 2012), we calculated realistic error bars for this
hot super-Earth, shown in Figure 9.
Similarly to Section 4.1, Figures 9–11 show the Stage 1 and

2 retrieved spectra, TP-profiles, and Stage 1 TP-profile
covariance respectively. Table 2 shows that Stage 2 retrieval
converges at a significantly higher global Evidence and
presents an improvement in the accuracy of abundances
retrieved as well as the TP-profile retrieved. Figure 12 shows
the absolute difference between the Stage 1 and Stage 2 model
fits at a spectral resolution of 1000. Here the discrepancies
between both spectral fits are of the order of ´ -2 10 5 or less.
This is not very significant in terms of a naive χ2

fit to
relatively low S/N data, but does significantly drive the
retrieval of the TP-profile and trace gas abundances. This is

Figure 9. Input spectrum of a 55 Cnc e-type atmosphere, gray, and Stage 1 and
2 fitting on the top and bottom respectively. Both fits converged but the Stage 2
fit reached a higher global Evidence.

Figure 10. TP-profiles for Stage 1 and 2 results for 55 Cnc e in Figure 9. Both
solutions converge within the calculated error bar. Stage 2 features a significant
improvement in maximum likelihood achieved.

Figure 11. Correlation matrix, , derived from Stage 1 TP-profile shown in
Figure 10. Otherwise identical to Figure 5.

Figure 12. Showing the model fit difference between Stage 1 and Stage 2 at
spectral resolution of 1000. Model fit difference are of the order of ´ -2 10 5

or less.
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reflected in the Bayesian Evidence measured for Stage 1 and
Stage 2 models. Figure 13 shows the contribution functions for
both retrievals. Here we have positive and negative temperature
differences (see bottom left plot), resulting in a more complex
contribution differential (bottom left plot) than for WASP-76b.
It should be noted that this contribution differential is highly
wavelength dependent and illustrates the sensitivity of varying
wavelength ranges on the TP-profile retrievability.

4.3. HD 189733b

Finally, we test  -REx on the emission spectrum of the hot-
Jupiter HD 189733b. Its emission spectrum is among the most
complete and best studied (e.g., Madhusudhan & Seager 2009;
Swain et al. 2009; Lee et al. 2011; Line et al. 2012, 2014). We
have compiled data sets ranging from the NIR (1.4 μm) to the
MIR (24μm), namely: Hubble Space Telescope/NICMOS
(Swain et al. 2009), Spitzer/IRAC 3.6, 4.5 μm (Knutson

et al. 2012), 8.0 μm (Agol et al. 2010), Spitzer/IRS spectro-
scopy (Grillmair et al. 2008), Spitzer/IRS 16 and 24 μm
photometry (Charbonneau et al. 2008). As in previous studies,
we consider the active trace gasses H2O, CH4, CO, and CO2

and otherwise assume a hydrogen dominated atmosphere.

Figure 13. Contribution functions for 55Cnc e, otherwise the same as Figure 8.

Figure 14. Emission spectrum of a HD 189733b, black circles, and Stage 1 and
2 fitting on the top and bottom respectively; blue: the fitted emission spectrum
at R = 1000; red squares: spectrum fit binned to data resolution; gray:
photometric passbands for Spitzer/IRAC and MIPS. Both fits converged, but
the Stage 2 fit reached a higher global Evidence. Table 3

Retrieved Abundances for Hot-Jupiter HD 189733b

Stage 1 Retrieval Stage 2 Retrieval

log(E) −43.23 78.52

log(H2O) −3.918 ± 0.207 −4.978 ± 0.602
log(CH4) −6.732 ± 0.719 −6.768 ± 0.487
log(CO2) −3.722 ± 0.482 −4.204 ± 0.488
log(CO) −2.671 ± 1.387 −2.689 ± 0.769

Note. Top row: log Bayesian Evidence for Stage 1 and Stage 2 models.
D = +Elog 121.75( ) indicating a very significant improvement in the Stage
2 fit compared to Stage 1.

Figure 15. TP-profiles for Stage 1 and 2 results for HD 189733b in Figure 14.
Both solutions converge within the calculated error bar. Stage 2 features a
significant improvement in maximum likelihood achieved.
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Figure 14 shows the retrieved emission models with
retrieved abundances and log(Evidence) reported in Table 3.
Figures 15 and 16 report the retrieved Stage 1 and Stage 2 TP-
profiles and associated Stage 1 TP-covariance, respectively.
Figures 17 and 18 are the marginalized and conditional
posteriors for the active trace gasses considered. Figure 19

illustrates the difference between Stage 1 and Stage 2 emission
spectra.
As described above, the Stage 1 retrieval was first performed

using the parmetric TP-profile by Guillot (2010) with the
additional optical opacity terms proposed by Line et al. (2012).
Here, all parameters of the TP model were allowed to vary. We
modeled the atmosphere over 25 scale heights sampled onto a
150 pressure-layer grid. Following this initial retrieval, the TP-
covariance was computed resulting in a predominantly
isothermal atmosphere down to the lowest ∼20 layers (∼0.1
bar pressure). The obtained TP-profile is well constrained but
shows systematics (e.g., at 5×10−4 bar) typical of this type of
parametrization. The posterior distributions of the active trace
gases, Figure 17 shows good constrains on abundances. From
Figure 17, we can see the retrieved values for methane to only
constitute an upper limit.
The Stage 2 hybrid model contained 22 free parameters on

its nonlinearly sampled TP-profile grid. All parameters were
allowed to vary freely between fully constrained (a = 1.0 in
Equation (16)) and unconstrained scenarios. Figure 15 (right)
shows the Stage 2 TP-profile with a = 0.54, indicating a
significant shift away from the parametric solution of Stage 1.
The Stage 2 model features a lower tropopause pressure along
with reduced water and carbon-dioxide abundances to achieve
a very significant increase in Bayesian Evidence, see Table 3
and the discussion in Section 5. The Stage 2 TP-profile error
bounds are slightly larger. Given a significantly higher
Evidence for Stage 2, it is indicative of Stage 1 TP-profile
errors to be underestimated by the parameterization used. The

Figure 16. Correlation matrix,  , derived from Stage 1 TP-profile shown in
Figure 15. Most of the atmosphere is found to be best fit with an isothermal
profile, but the lowest ∼20 atmospheric layers (∼0.1 bar). Otherwise identical
to Figure 5.

Figure 17. Marginalized and conditional posterior distributions of the trace gasses of HD 189733b for Stage 1 fitting. All trace gases are well constrained but only an
upper limit to methane can be found.
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posteriors distributions of Stage 2 now show a convergence of
methane beyond the upper-bound constrained of Stage 1.

Compared to Table 3 in Line et al. (2014), we obtain lower
abundances of CH4 and CO2, but higher values for CO.
Whereas these values differ from previous analyses, we find
them significantly closer to the chemical model predictions of
HD 189733b (e.g., Line et al. 2010; Venot et al. 2012; Moses
et al. 2013). Note also that Stage 1 results exhibit the same
trend of lower CH4 and CO2 abundances. We find two aspects
by which our analysis differs from others in the literature: (1) a

finer and complete sampling of correlated likelihoods, in
particular, compared to maximum likelihood methods that are
often less efficient with sparsely sampled data; (2) the
completeness of molecular line-lists used. This is particularly
true for the C/O ratio determination using CH4 and CO/CO2

as tracers. In this work, we use the new YT10to10 CH4 line-list
(Yurchenko & Tennyson 2014).

5. DISCUSSION

In Section 4, we have demonstrated the efficiency of the
 -REx retrieval suite for emission spectroscopy using a
simulated hot-Jupiter, a hot-Super-Earth, as well as secondary
eclipse observations of HD 189733b, as examples.
In all three cases the Bayesian Evidence of the Stage 2

retrieval is significantly higher, log(E) = 36.20 compared to —

43.92, log(E) = 168.9 to 75.40 log(E) = −43.23 to 78.52 for
WASP-76b, 55 Cnc e and HD 189733b, respectively. This is
clearly indicative of Stage 2 results being more robust
statistically. Following the adaptation of the Jeffrey’s scale of
model evidence (Jeffreys & Kendall 1948) by Kass & Raftery
(2012), we can define a strong preference for the Stage 2 model
as D >Elog 5( ) and equally, a strong preference of the
Stage 1 model to be D < -Elog 5( ) . Evidence differences
ranging from −5 to 5 indicate a lesser significance. In the case
of WASP-76b, we find D = +Elog 80.12( ) , D =Elog( )
+132.70 for 55 Cnc e and D = +Elog 121.75( ) for HD
189733b. Furthermore, the improved Stage 2 fit is illustrated by
the better retrieval of the trace gas abundances (Tables 1–3).
This illustrates the importance of accurate TP-profile retrievals

Figure 18. Marginalized and conditional posterior distributions of the trace gasses of HD 189733b for Stage 2 fitting. All trace gases are well constrained.

Figure 19. Model fit difference between Stage 1 and Stage 2 at a spectral
resolution of 1000. Differences between either retrievals are of the order of
5–8 × 10−4 in most wavelengths.

10

The Astrophysical Journal, 813:13 (11pp), 2015 November 1 Waldmann et al.



and the advantage of a two-staged approach, especially in cases
of low resolution and/or low S/N data.

6. CONCLUSION

In this paper, we introduced the emission spectroscopy
retrieval approach for the  -REx retrieval suite framework.
Given a common code basis for transmission and emission
retrieval, allows us to benefit from computational efficiencies
and the high accuracy of molecular line-list handling
introduced in W15. To suite the needs of the TP profile
retrieval, we implemented an extra loop unique to the emission
side of  -REx, which allows a two-staged retrieval. We show
that such a staged retrieval of the emission spectrum (and TP-
profile) allows us to dynamically scale the complexity of the
retrieval problem (from a fully parameterized to a fully
unconstrained model) and has significant advantages in
accuracy and robustness over previously available methods.
Future publications will extend the sensitivity analyses
presented here to include present and future ground and space
instrumentation and a wider range of planets observable in
emission spectroscopy.

We thank the referee for providing useful comments. This
work was supported by STFC (ST/K502406/1) and the ERC
projects ExoLights (617119) and ExoMol (267219)
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