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Abstract

The free surface flow and the hydrodynamic loads generated by impact be-

tween a liquid wedge and a permeable solid body are investigated. The study

is carried out within the framework of self-similar solution, which is realistic

for this kind of configuration and over the short period of impact. We study

the effect of liquid penetration through the porous/perforated solid surface on

the pressure distribution and flow pattern. An integral hodograph method is

employed to convert the differential equation in the fluid domain into integral

equations along the axes of a parameter plane, from which the problem cor-

responding to the impermeable solid surface is a special case. The system of

integral equations are solved numerically using the method of successive approxi-

mations. The results are presented for streamline patterns, pressure distribution

along the solid surface of permeable wedges.

Key words: Liquid/solid impact; Permeable body ; Self-similar flow; Integral

hodograph method.

1. Introduction

Liquid/structure impact is a widely observed natural phenomenon. Exam-

ples include wave impacts on marine structures and coastline, slamming of ships,

landing of aircrafts on a water surface, motion of planing crafts and droplet im-

pact on aircrafts. High speed liquid impacts can generate very high loading
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on a solid body that may cause structural damage or failure. Perforated and

porous solid structures have been proposed as a way to reduce hydrodynamic

loading during wave impacts [1]. A perforated body allows liquid penetration

though its surface, which decreases the hydrodynamic pressure. Examples of

perforated structures include wave breakers and ”stabilizer” of the Roseau tower

which consists of an open-ended square box attached to the frame of the tower

subjected to wave impacts. Another example of a perforated structure is a tubu-

lar frame, usually used as a protection for subsea installations on the seabed.

Arrays of renewable energy devises or their elements in some cases also can be

considered as a perforated structure for its interaction with incoming waves.

Review of practical applications of perforated structures in offshore and coastal

engineering as well as methods predicting hydrodynamic forces was presented

by Molin [1]. In order to understand better the fluid structure interaction of

the processes mentioned above and provide an effective way to predict the wave

loadings, it is necessary to account for permeability of the structure in the wave

impact processes.

Impacts of interest usually lasts for a very short period of time, during

which the pressure and fluid velocity vary rapidly both with time and in space.

In general, the process is fully transient and the temporal and spatial variables

are fully independent. One way to solve this kind of problem is based on the

Wanger’s theory together with the technique of matched asymptotic expansions,

especially in the context of marine applications [2, 3, 4]. However, in many cases,

especially at initial stage and in some local areas, the flow may be treated as self

similar. Moreover, at this stage the hydrodynamic force may reach its maxima

value that is important to estimate safety and reliability at the design stage.

In the studies mentioned above, the bodies in the impact are usually consid-

ered as rigid and impermeable. However there are publications, notably those

by Molin and Korobkin [5], Iafrati and Korobkin [6], and Iafrati et al. [7], in

which the effect of permeability on the hydrodynamic force during wave impacts

is investigated. In this study we will obtain analytical/numerical solution for

self similar flow to study an effect of permeability of a solid structure on hy-
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drodynamic loads which are important for assessing safety and reliability of the

structure. The Integral hodograph method [8, 9] which is an extension of the

classical hodograph method is applied. The method enables the original par-

tial differential equation with nonlinear boundary conditions to be converted

into a set of integral equations along the straight lines, which are then solved

numerically. It has been successfully used in variety of water impact problems

[8, 10, 11]. However the application of the method to the present problem has

some new major challenges. On the impermeable solid surface, the normal veloc-

ity is unknown a priori and depends on the pressure which has to be determined

from the solution. The boundary condition is given in terms of a relationship

between the pressure and the normal component of the velocity trough the body

surface which is satisfied under iteration procedure.

Various case studies related to the permeability of the solid body are pre-

sented. Both the solid body and the wave front are considered in the form of

a wedge of various angles. It includes the cases of impact of the wave crest on

to the perforated wall as well as water entry of the perforated wedge into half

- space of the liquid. The terms porous and perforated solid surfaces are used

to distinguish the difference in the boundary condition for penetration of the

liquid through the body surface. In the first one a linear relationship between

the pressure and normal velocity through non deforming body boundary is em-

ployed, that corresponds to a porous body when the diameter of holes are much

smaller that its length and the holes are finely distributed in the body [6]. In

the second case, a perforated body is considered, for which the quadratic rela-

tionship between the pressure and the normal velocity trough the non deforming

body surface is used [5]. These two laws of the liquid penetration are related to

the applications in coastal and offshore engineering [1, 5, 12] where a massive

of wave breakers or a cover subsea installations, forms the porous/perforated

structure, used to reduce the fluid impact on a structure.

To outline briefly, the present study generalizes the previous integral form of

solution [8, 10] for liquid impacting onto impermeable rigid bodies to permeable

ones. Section 2 describes the mathematical formulation and the solution proce-
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Figure 1: Sketch of the problem for impact between a liquid wedge (dotted line at the time

of impact) and an permeable solid wedge: (a) similarity plane and (b) parameter plane.

dure based on the integral hodograph method which reduces the problem to a

system of integral equations. The numerical results, their analysis and physic

implications based on the flow patterns, pressure distribution and free surface,

as well as the flux into the permeable body are discussed in Section 3.

2. Formulation of the problem and the solution procedure

We consider the impact problem between a liquid and solid permeable wedge

of half-angle α and αA, respectively. The liquid is assumed to be ideal and

incompressible, the flow to be irrotational, and the incoming velocity is constant.

The gravity and surface tension effects are ignored. The flow is self similar and

will be studied in the frame of reference with its origin attached to the solid

wedge. A sketch of the problem is shown in figure 1.

The Cartesian coordinate system xy with origin at point A is defined with y

axis along the line of the flow symmetry. The liquid wedge has uniform velocity

V along the y-axis, which is marked as v∞ in the similarity plane in figure 11a.
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The fluid particle at point A when t = 0 coincides with point O. After impact, a

jet with a tip of angle µ moves to point O along the permeable wedge side. The

symbol vn in the figure is the normal velocity due to body surface permeability,

and it tends to zero at the contact point O, where the pressure tends to ambient

pressure.

For a constant impact velocity of the liquid wedge, the time-dependent prob-

lem in the physical complex plane Z = X + iY can be written in the stationary

similarity plane z = x + iy in terms of the self-similar variables x = X/(V t),

y = Y/(V t), where t is time. As a result the inflow velocity at infinity v∞ = 1

at points B and C in figure 1a. The complex velocity potential W (Z, t) for the

self-similar flow can be written as

W (Z, t) = V 2tw(z) = V 2t[ϕ(x, y) + iψ(x, y)] (1)

The problem is to determine the function w(z) which conformally maps the

similarity plane z onto the complex potential region w. We choose the first

quadrant of the plane in figure 1b as the parameter region to derive expressions

for the non dimensional complex velocity, dw/dz, and for the derivative of the

complex potential,dw/dζ , both as functions of the variable ζ. Once these

functions are found, the velocity field and the relation between the parameter

region and the physical flow region can be determined as follows:

vx − ivy =
dw

dz
(ζ), z(ζ) = z(0) +

∫ ζ

1

dw

dζ ′
/
dw

dz
dζ ′, (2)

where vx and vy are the x- and y-components of the velocity nondimensionalized

by V .

Conformal mapping allows us to fix three arbitrary points in the parameter

region, which are chosen O, B (a point at infinity) and A as shown in figure

1b. In this plane, the positive part of the imaginary axis (0 < η < ∞, ξ = 0)

corresponds to the free surface OB. The interval (0 < ξ < 1, η = 0) of the real

axis corresponds to the wetted part of the wedge, and the rest of the positive

real axis (1 < ξ < ∞, η = 0) corresponds to the symmetry line AC. The point

ζ = 1 in figure 1b is the image of the point A from the similarity plane ζ.
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2.1. Expressions for the complex velocity and the derivative of the complex po-

tential, dw/dζ

. When the body surface is an impermeable rigid, the normal component of

the velocity relative to the body surface equals zero, and therefore the velocity

on the body surface is directed along its tangential direction. In the present

problem we consider a permeable body surface, where the normal component

of the velocity is nonzero and the direction of the velocity on the body surface

becomes unknown. It presents an additional challenge to the solution procedure.

The boundary-value problem for the complex velocity function is formu-

lated in the parameter plane. At this stage we introduce function β(ξ) =

− arg (dw/dz) along the interface OA, i.e. on the interval 0 < ξ < 1 of the

real axis of the parameter plane, and function v(η) which is the velocity modu-

lus along the free surface OB, or along the positive part of the imaginary axis

of the ζ - plane. With these notations, we have

χ(ξ) = arg(dw/dz) =

 −β(ξ), 0 < ξ < 1, η = 0,

−π/2, 1 < ξ <∞, η = 0.
(3)

v(η) =

∣∣∣∣dwdz
∣∣∣∣ , 0 < η <∞, ξ = 0. (4)

When we approach point A along the interface OA, the velocity direction

β(ξ) = tan−1(vy/vx)ξ→1−ε, ε → 0, tends to the value π/2, or coincides with

the direction of the y-axis, since vx(ξ)ξ→1−ε → 0 due to the flow symme-

try, and vy(ξ)ξ→1−ε > 0 for any small permeability of the interface. For the

impermeable interface there is a jump in the function β(ξ) at point ξ = 1,

since the velocity direction coincides with the direction of the interface, or

β(ξ) = tan−1(vy/vx)ξ→1−ε → π/2− α, ε → 0. The formulation of the problem

corresponds to the permeable body surface, and the case of the impermeable

body surface is a particular one for which the liquid flowrate through the body

tends to zero. Thus, for both cases the function χ(ξ) in Eq.(3) is continuous

function at point A and along the whole real axis.
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We can confirm that the integral formula [8, 9] for F (ζ) = dw/dz below

F (ζ) = v∞ exp

 1

π

∞∫
0

dχ

dξ
ln

(
ζ + ξ

ζ − ξ

)
dξ − i

π

∞∫
0

d ln v

dη
ln

(
ζ − iη

ζ + iη

)
dη + iχ∞

 ,
(5)

satisfies the given conditions on the real and imaginary axes of the first quadrant

in Eqs.(3) and (4), or: χ(ξ) = arg[F (ζ)]ζ=ξ, 0 < ξ < ∞, η = 0, and v(η) =

|F (ζ)|ζ=iη, 0 < η < ∞, where v∞ = v(η)η→∞, χ∞ = χ(ξ)ξ→∞. Using the

known value in the first line of Eq.(3), Eq.(5) becomes

dw

dz
= v0 exp

 1∫
0

dβ

dξ
ln

(
ξ − ζ

ξ + ζ

)
dξ − i

π

∞∫
0

d ln v

dη
ln

(
iη − ζ

iη + ζ

)
dη − iβ0

 . (6)

where v0 = v(η)η=0 and β0 = β(ξ)ξ=0 = π/2 − αA are the velocity magnitude

and direction at point A. The functions β(ξ) and v(η) will be determined later

from the free surface kinematic and dynamic boundary conditions.

In order to obtain expression for the derivative of the complex potential in

the parameter plane, dw/dζ, it is useful to introduce the unit vectors n⃗ and τ⃗ on

the fluid boundary, which are normal and tangent to the surface, respectively.

The former is directed outward from the liquid region, and while moving in the

latter direction along the boundary, the spatial coordinate s increases and the

liquid region is on the left hand side (see figure 1a). With this notation, we

have

dw = (vs + ivn)ds, (7)

where vs and vn are the tangential and normal velocity components along the

flow boundary, respectively. Let θ(η) = tan−1(vn/vs) and γ(ξ) = tan−1(vn/vs)

denote the angles between the velocity vector with τ⃗ on the flow boundary.

The former is defined along the imaginary axis of the parameter and therefore

corresponds to the free surface OB in the similarity plane, while the latter is

on the real axis and corresponds to the interface and the symmetry line. Eq.(7)

allows us to determine the argument of the derivative of the complex potential,

7



 

 

 

 

i  

C 

B 

O A 

1 

vn 

O+ 

B 

 +  

O-  A- 

vs 

A+ 

A 

C 

Figure 2: (a) Behaviour of the velocity angle to the flow boundary, tan−1(vn/vs): the solid

lines for the continuous changes while the dashed lines for the step changes. (b) The corre-

sponding variation in the parameter region.

ϑ = arg(dw/dζ):

ϑ(ζ) = arg

(
dw

dζ

)
= arg

(
dw

ds

)
+arg

(
ds

dζ

)
=

 γ(ξ), 0 < ξ < 1, η = 0,

θ(η) + π/2, ξ = 0, 0 < η <∞.

(8)

By analyzing the behaviour of the velocity angle along the whole flow bound-

ary in figure 2, we can see the variation of tan−1(vn/vs). It is continuous along

the free surface OB (defined as θ(η)) and on the permeable surface OA (de-

fined as γ(ξ)) respectively, as shown by solid lines. The function θ(η) has step

changes or discontinuities at points O, B and C, while for the function γ(ξ) the

discontinuity occurs at point A. These step changes are shown by dashed lines

in figure 2a. They may lead to singularities in the expression for the derivative

of the complex potential.

Now we determine the functions θ(η) and γ(ξ) along the fluid boundary on

which they are defined, that is, along the positive parts of the imaginary and

real axes of the ζ-plane, respectively. Between points C and A− , 1 < ξ < ∞,

function γ(ξ) ≡ −π, since vn = 0 and vs < 0. When we move in counter

clockwise direction along an infinitesimal semicircle centred at the point ζ = 1

in the parameter plane, the function γ(ξ) = tan−1, changes from −π at A−

8



to −π − αA at A+. This is because velocity components vx → 0 and vy > 0,

which gives vs = −vy cos(αA) and vn = vy sin(αA). Thus, the jump in the

function γ(ξ) at the point A is ∆A = −αA. When we move from point A+

to point O− along the wedge surface, the function γ(ξ) changes continuously

from γA = −π − α to γ0 = −pi at point O−. When we move in counter

clockwise direction along an infinitesimal quarter of the circle centred at the

point ζ = 0 in the parameter plane the corresponding line in the physical plane

passes through the tip O of the tip jet. The jump in the function tan−1(vn/vs)

equals ∆ = µ−π as it is seen from figure 2, where µ = θ(η)η = 0. By taking into

account Eq.(8) we can see that the jump in arg(dw/dζ) equals ∆ϑ = ∆+π/2 =

µ− π/2. The corresponding change of the argument arg(ζ) equals π/2, and so

we can expect that function dw/dζ at point O (ζ = 0) has a singularity of order

dw/dζ ζ2∆ϑ/π. When moving from point O to point B along the imaginary axis

of the parameter plane, the function θ(η) changes continuously from value θ0 to

the value θB = θ(η)η→∞.

We can write function ϑ(ζ) as follows

ϑ(ζ) = arg

(
dw

dζ

)
=


−π, 1 < ξ <∞, η = 0,

−π +∆A + γ(ξ), 0 < ξ < 1, η = 0,

θ(η) + ∆ϑ, ξ = 0, 0 < η <∞.

(9)

The problem is then to find the function dw/dζ in the first quadrant of the

parameter plane which satisfies the boundary condition (9). This is a homoge-

neous boundary value problem, or arg(dw/dζ) is given on the entire boundary.

It can then be confirmed that the function obtained from the following integral

formula [8, 9]

G(ζ) = K exp

 1

π

0∫
∞

dϑ

dξ
ln
(
ζ2 − ξ2

)
dξ +

1

π

∞∫
0

dϑ

dη
ln
(
ζ2 + η2

)
dη + iϑ∞

 ,
(10)

where K is a real factor, ϑ(ζ) = arg[G(ϑ)], 0 < ξ < ∞, η = 0 and 0 < η < ∞,

ξ = 0, ϑ∞ = ϑ(ζ)|ζ|→∞ can meet the condition in Eq.(9). By performing the

integration in Eq.(10) over steps where the value ϑ(ζ) is known, we finally obtain
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the expression for the derivative of the complex potential in the ζ-plane as

dw

dζ
= K

ζ2µ/π−1

(1− ζ2)α/π
exp

 1

π

1∫
0

dγ

dξ
ln
(
ξ2 − ζ2

)
dξ +

1

π

∞∫
0

dθ

dη
ln
(
ζ2 + η2

)
dη

 .
(11)

Integration of Eq.(11) in the parameter region allows us to obtain the func-

tion w(ζ) which conformally maps the parameter region onto the corresponding

region in the complex potential plane:

w(ζ) = wA+K

ζ∫
1

ζ2µ/π−1

(1− ζ2)α/π
exp

 1

π

1∫
0

dγ

dξ
ln
(
ξ2 − ζ2

)
dξ +

1

π

∞∫
0

dθ

dη
ln
(
ζ2 + η2

)
dη

 dζ ′,
(12)

where wA is the complex potential at point A and can be taken as zero without

loss of the generality.

Dividing (11) by (6), we can obtain the derivative of the mapping function

dz

dζ
=

K

v0

ζ2µ/π−1

(1− ζ2)α/π
exp

 1

π

1∫
0

dγ

dξ
ln
(
ξ2 − ζ2

)
dξ +

1

π

∞∫
0

dθ

dη
ln
(
η2 + ζ2

)
dη

− 1

π

1∫
0

dβ

dξ
ln

(
ξ − ζ

ξ + ζ

)
dξ +

i

π

∞∫
0

d ln v

dη
ln

(
η − ζ

η + ζ

)
dη + iβ0

 (13)

The integration of this equation yields the mapping function z = z(ζ) relating

the parameter and similarity planes.

We notice that in contrast to the impact between the liquid and imperme-

able solid wedges [10], the functions β(ξ) and γ(ξ) characterizing respectively

the direction of the velocity vector with x-axis and the angle between the veloc-

ity vector and the permeable solid surface now become unknown on AO. The

first function appears in the expression for the complex velocity in Eq.(6), and

the second appears in the expression for the derivative of the complex potential

in Eq.(11). In addition, at point A, or ζ = 1, γ(ξ) is continuous for the imper-

meable surface but discontinuous for the permeable surface. The latter leads

to an additional singularity in the expression for the derivative of the complex

potential at point A at, ζ = 1, as it can be seen in Eq.(11), which requires

additional attention in the solution procedure.
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The governing equations (6) and (11) - (13) enable to determine the pressure

coefficient at any point of the flow region. By choosing point A as the reference

point in the Bernoulli equation, where wA = 0, and vA = |dw/dzζ=1|, and taking

the advantage of the self-similarity of the flow, we can determine the pressure

coefficient at any point z in the flow region through

c∗p =
P − PA

ρV 2
= ℜ

(
−w + z

dw

dz

)
− 1

2

∣∣∣∣dwdz
∣∣∣∣2 + 1

2
v2A (14)

where P is the pressure at the point z and PA is the pressure at the point A.

Then, the pressure coefficient based on the ambient pressure, Pa, which can be

represented by the pressure PO = Pa at point O, can be determined as follows

cp(ξ) =
P − Pa

ρV 2
= c∗p(ξ)− c∗p(0) (15)

The governing equations (6) and (11) - (13) contain the unknown parameter

K and the functions γ(ξ), β(ξ), θ(ξ) and v(η), all to be determined from physical

considerations, as well as the dynamic and kinematic boundary conditions on

the free surface and the permeable body surface.

At the moment of impact, the tip of the liquid wedge will move into the

body surface due to permeability. At the same time it will also spread along

the body surface, which will depart from the body surface at point D and

will eventually become point O. We notice that when the flow is self similar

the velocity at point O is constant. Thus the coordinate position of point

O can be decided by its velocity VO = V v0 relative to point A. This gives

ZO = V tzO = V0te
iβ0 = V tv0e

iβ0 , which further gives zO = V tv0e
iβ0 , where

v0 = v(η))η=0 and β0 = β(ξ)ξ=0. The same argument was used Semenov, Wu &

Oliver [11] for the liquid/liquid impact. From this, the distance between points

A and O in the similarity plane equals v0, which can be used to determine the

parameter K:

K

∣∣∣∣∣
∫ 1

0

1

K

dz

dζ

∣∣∣∣
ζ=ξ

dξ

∣∣∣∣∣ = v0. (16)
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2.2. Determination of the functions θ(η) and v(η) on OB from boundary con-

ditions on the free surface.

The dynamic boundary conditions on the free surface OB for an arbitrary

self-similar flow can be derived in the following form [8], by exploiting the

Bernoulli equation and the fact that the acceleration of a liquid particle is

orthogonal to the free surface with constant pressure

dθ

ds
=
v + s cos θ

s sin θ

d ln v

ds
, (17)

1

tan θ

d ln v

ds
=

d

ds

[
arg

(
dw

dz

)]
. (18)

Multiplying both sides of Eqs.(17) and (18) by ds/dη = |dz/dζ|ζ=iη we obtain

the following integro-differential equation for the function θ(η):

dθ

dη
=
v + s cos θ

s sin θ

d ln v

dη
, (19)

where s = s(η) is obtained from integration of the expression −|dz/dζ|ζ=iη

along the imaginary axis of the parameter plane. Determining the argument of

the complex velocity from Eq.(6) and substituting the result into Eq.(18), the

following integral equation for the function d(ln v)/dη is obtained:

− 1

tan θ

d ln v

dη
+

1

π

∞∫
0

d ln v

dη′
2η′

η′2 − η2
dη′ =

1

1 + η2
+

1

π

∞∫
0

dβ

dξ

2ξ

ξ2 + η2
dξ. (20)

The system of equations (19) and (20) enables us to determine the functions

θ(η) and d(ln v)/dη along the imaginary axis of the parameter domain. Then,

the velocity magnitude on the free surface can be obtained from

v(η) = v∞ exp

−
∞∫
η

d ln v

dη′
dη′

 (21)

where v∞ = 1 is the reference velocity at infinity. This gives the velocity at

point O, v0 = v(η)η=0.

2.3. Determination of functions γ(ξ) and β(ξ) from the kinematic boundary

condition on the permeable solid surface.

In the porous media, the velocity of the fluid flow is proportional to the

pressure gradient, based on Darcy’s law. When the solid becomes very thin
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with a pressure jump from one side of the surface to the other side, the velocity

normal to the body is then proportional to the difference of pressures from

both sides. In our case, at the initial stage of the impact, which is usually of

main interest, we assume that the pressure on the back side of the solid surface

remains to be ambient pressure Pa, therefore, the normal component of the

velocity through the wetted surface can be written as :

Vn = αp(P − Pa) (22)

where the coefficient αp characterizes the porosity of the thin wall. When αp →

0, Vn → 0 in Eq.(22). This returns to the impermeable boundary condition.

On the surface of a perforated body, the relationship between the normal

component of the velocity and the pressure can be written as Vn|Vn| = χ0(P −

Pa)/ρ, as Vn is expected to be positive [1, 5]

Vn = χ0

√
(P − Pa)/ρ, χ2

0 =
2νκ2

1− κ
. (23)

where ν is a discharge factor, and κ is the ratio between the area of the holes

and the total area, ρ is the liquid density as defined previously. As κ → 0, the

impermeable boundary condition is recovered. In the following, non-dimensional

parameters are used based on the definitions of vn = Vn/V , α0 = αpρV , while

χ0 is already non-dimensional. Eqs.(22) and (22) can be respectively written as

vn = α0cp, (24)

vn = χ0
√
cp, (25)

The tangential component of the velocity on the wedge side OA can be deter-

mined with the notation in Eq.(7) as

vs(ξ) = ℜ
(
dw

dz

dz

ds

)
= ℜ

(
dw

dz

∣∣∣∣
ζ=ξ

eiδA

)
(26)

where δA = −π−α is the direction of the vector τ⃗ . Then, the function γ(ξ) can

be obtained

γ(ξ) = tan−1

(
vn(ξ)

ℜ (eiδAdw/dzζ=ξ)

)
(27)
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where the normal component of the velocity, vn, will be detrmined in the follow-

ing. Taking the argument of Eq.(13), we obtain δA = β+γ, that gives equation

for the function β(ξ) as follows

β(ξ) = δA − γ(ξ) (28)

The integral equation (20) with Eq.(19) allows us to obtain the functions θη

and v(η), together with the functions γ(ξ) and β(ξ) determined from Eqs.(27)

and (28). Once these functions are found, the velocity at point O, v0, and the

angle of the tip of the splash jet, µ, can also be found.

The numerical solution of the system of equations, which is strongly nonlin-

ear, is based on the iteration with the relaxation coefficient used for the functions

βξ and γ(ξ) being 1/5 of that for the functions θ(η) and v(η). It starts with

β(ξ) ≡= β0, γ(ξ) ≡= −π, vn(ξ) = 0 on the wedge side OA and θ(η) = α,

v(η) = 1 on free surface OB, as initial values. The unknown K is obtained from

Eq.(16) at each iteration. Eq.(15) gives pressure from which vn is determined

from Eqs. (24) or (25), for porous and perforated bodies, respectively. New

functions βξ and γ(ξ) are then determined from Eq, (27) and Eq.(28), respec-

tively. The functions θ(η) and v(η) are determined from Eq.(19) and Eq.(20),

respectively, which give the free surface shape OB. The iteration returns to

Eq.(16) and the process is repeated until the convergence has been achieved.

3. Numerical results

3.1. Numerical approach

The numerical approach employed in the present study is based on the

method of successive approximations, which is similar to that used by Semenov

& Wu [10], for solving self-similar impact problems between the impermeable

solid and liquid wedges. Let us consider two sets of points distributed along

the part of the real axis, 0 < ξj < 1, j = 1 . . .M , and the imaginary axis,

0 < ηi < ηN , j = 1 . . ., where ηN is sufficiently large. The integrals within

each segment in the system of equations are evaluated explicitly, using the lin-

ear interpolation for the functions γ(ξ), β(ξ), θ(η) and v(η), on the intervals

14



α0 µ/π cpmax

N=150 N=300 N=600 N=150 N=300 N=600 (I&K)

0 0.00962 0.00985 0.00989 6.99 6.90 6.88 6.88

0.1 0.00534 0.00562 0.00567 5.82 5.70 5.68 5.68

0.2 0.00281 0.00310 0.00315 5.05 4.90 4.88 4.88

0.3 0.00139 0.00165 0.00170 4.49 4.32 4.29 4.29

0.4 0.00066 0.00085 0.00089 4.03 3.86 3.83 3.83

0.5 0.00031 0.00043 0.00045 3.65 3.49 3.46 3.45

Table 1: Convergence study and comparison for water-entry of a porous solid wedge αA = 60◦

into the half-space of the liquid (α = 90◦).

(ξj−1, ξj) and (ηi−1, ηi), respectively. The results contain the unknowns coeffi-

cients ∆γj = γj−γj−1, ∆βi = βi−βi−1, ∆θi = θi−θi−1 and ln(vi/vi−1), which

are determined from the system of equations (19), (20), (27), (28).

3.2. Impact between liquid and solid porous wedges.

Effect of body porosity on the flow parameters including the slamming pres-

sure peak has been studied using the boundary element method (BEM) by

Iafraity & Krobokin [6] for a porous wedge entering the flat water surface. Sim-

ilar problem of a permeable block sliding along an inclined beach has been

studied by Iafrati, Miloh & Korobkin [7], in the context of violent free surface

flow generated by landslide.

To evaluate the accuracy and mesh-independence of the results, several dis-

tributions with different numbers of nodes have been employed. Table 1 gives

results with N = 150, N = 300 and 600 for a porous wedge of half-angle impact-

ing the liquid wedge with α = 90◦, which is in fact a problem of a solid porous

wedge entering a flat free surface. It can be seen from the table that the contact

angle µ/π and the maximum pressure coefficient have converged well with the

number of nodes. The converged pressure coefficients are virtually identical to

those of Iafrati & Korobkin [6] (I&K) obtained through BEM .
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Figure 3: (a) Streamlines with ∆ψ = 0.2 and the free surface shape (solid lines), and the

pressure distribution (dashed lines) along the porous surface for αA = 60◦ and α = 90◦: (a)

α0 = 0; (b) α0 = 0.1; (c) α0 = 0.3 and (d) α0 = 0.5.

Further results for streamline patterns, the free surface shape and the pres-

sure distributions for the case in Table 1 are given in figure 3. As discussed

by Wu & Sun [13], when a fluid particle moves towards an impermeable body

surface, its path is blocked and has to make a sharp turn to move along the body

surface. This leads to a large acceleration and therefore large pressure gradient

near the jet root, as shown in figure 3a. When the body surface is permeable,

the blockage to path of the fluid flow is less solid. The peak pressure near the

jet root decreases. This decrease continues as the permeability coefficient α0 in-

creases. This makes the difference between the peak pressure and the ambient

pressure on the other side of the body or insider the jet much smaller. We notice

that when α0 increases, more liquid will move through the body surface, which

can be reflected by vn = α0cp. In fact we can let the stream function ψ = 0 on

the symmetry line or the y−axis. With the same increment ∆ψ = 0.2 in figures

3a to 3d, the number of streamlines intersecting the body surface from the tip

of the wedge to the jet root is approximately equal to the flux rate into the
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Figure 4: (a) Streamline pattern with ∆ψ = 0.1 and the free surface shape (solid lines), and

the pressure distribution (dashed lines) along the porous surface for αA = 30◦ and α = 90◦:

(a) α0 = 0; (b) α0 = 1.3.

body surface. It is evident that this rate increases with increase of α0. When

more liquid passes through the body surface, the position of the jet root moves

towards the y−axis. The jet becomes thinner and shorter, and the contact angle

µ becomes smaller. When α0 → ∞, Eq.(24) gives cp → 0 to provide the a finite

value of vn. This means that the wetted solid surface has become a free surface.

The velocity field in the whole flow region becomes undisturbed. The wetted

length of the solid wall tends to the distance between tip of the body and its

intersection with the undisturbed liquid wedge.

For αA = 30◦ the results for streamline patterns, the free surface shape and

the pressure distributions are shown in figure 4. At α0 = 0 the pressure on the

wedge side is much lower than that for αA = 60◦, and the pressure peak near

the root of the splash jet in figure 3 is absent. This agrees with previous studies

of water impact problems [14]. It leads to a smaller normal component of the

velocity according to Eq. (24) and, consequently, smaller flow rate through the

porous surface of the wedge.
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Although the permeability coefficient α0 is larger than for the case αA = 60◦

in figure 3, the flowrate trough the permeable surface corresponding to the 4th

streamline, crossing the wedge side in figure 4b, is q = 4∆ψ = 0.4, or about

70% of the total flowrate Q = v tan 30◦ ≈ 0.58 trough the cross-section of the

solid wedge and the undisturbed free surface. Here, ∆ψ = 0.1 is the increment

of the stream function between two neighbour streamlines in figure 4. Thus,

although the α0 is about 2.6 times larger for the case shown in figure 4b, the

relative flowrate trough the permeable wedge side is approximately the same as

for the case αA = 60◦ in figure 3d. This occurs due to the lower pressure on the

permeable wedge side for αA = 60◦ and α0 = 0.

3.3. Impact of the liquid wedge on the perforated body.

Perforated body is used widely in coastal and offshore engineering [1, 5, 6]

as a mean to decrease the contact area by allowing the part of the liquid to

flow through the body surface. This also reduces a high-pressure peak and the

total force during wave impact. Iafrati, Miloh & Korobkin [7] considered the

liquid impact caused a perforated block sliding into the water along a sloping

beach. Because the gravity effect is ignored, we can rotate the beach in their

case to become the y−axis and the problem then becomes the same as that

shown in figure 1a. Besides, Iafrati & Korobkin [6] also considered a perforated

wedge entering into the calm free surface. In both cases, the permeability of the

body surface is characterized by the coefficient χ0 in Eq. (25). Another model

for perforated structures has been proposed by Cooker [15]. He considered a

perforated wall as a cascade of impermeable bodies with some gap between

them, through which the liquid passes in the form of free streamline jets. Such

a model gives the possibility to determine the coefficient χ0. However this is

only for some simple geometries of the wave-breaker structures.

Figure 5 show the results for impact of a liquid wedge hitting on a per-

forated flat wall. Provided are the streamlines, free surface and the pressure

distributions along the impermeable wall and a perforated wall with χ = 0.5.

The angle of the liquid wedge has been taken as α = 10◦, α = 30◦ and α = 60◦.
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Figure 5: (a) Streamline pattern, free surface (solid lines), and the pressure distribution

(dashed lines) along a flat wall: α = 10◦, (a) χ0 = 0 and (b) χ0 = 0.5; α = 30◦, (c) χ0 = 0

and (d) χ0 = 0.5; α = 60◦, (e) χ0 = 0 and (f) χ0 = 0.5.

As expected, the pressure on the wall will decrease when it is perforated. The

reduction of the pressure is more pronounced at the locations where the corre-

sponding pressure on the impermeable wall is higher. This is because at higher

pressure more liquid moves into the wall as it can be seen from Eq. (25). The

larger pressure is, the bigger pressure reduction occurs. We also notice that the

jet root moves towards the centre of the impact for the perforated surface. This

effectively reduces the area affected by the hydrodynamic pressure. The tip of

the jet also moves towards the centre and the jet itself becomes thinner.

In figure 6 the flow configuration, streamlines and pressure distribution are
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Figure 6: (a) Streamline patterns, free surfaces (solid lines), and the pressure distribution for

impact of liquid and solid wedges with αA = 135◦: α = 10◦, ∆ψ = 0.05 (a) χ0 = 0 and (b)

χ0 = 0.5; α = 30◦, ∆ψ = 0.05 (c) χ0 = 0 and (d) χ0 = 0.3.
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Figure 7: (a) Streamline patterns, free surfaces (solid lines), and the pressure distribution

for the liquid and solid wedges αA = 45◦ and α = 45◦, increment in the stream function

∆ψ = 0.1, and (a) χ0 = 0 and (b) χ0 = 1.0.

shown for the two deadrise angles ∆f , which is the angle between the solid

surface and the undisturbed liquid surface, ∆ = 180◦ − α− αA = 35◦ for cases

(a) and (b), and ∆f = 15◦ for (c) and (d). For cases (a) and (c), χ = 0, the

sparse distribution of the streamlines near the apex of the solid wedge indicates

the low-velocity, or almost a stagnation region. For ∆f = 35◦ the low-velocity

region also occurs near the apex of the solid wedge. The tip jet, or the jet

attached on the body surface, becomes very thin at χ = 0.5. At even larger

χ, the jet will be even thinner, which would cause computational difficulty.

Because of that at ∆f = 15◦ the maxima χ for which the converged results are

obtained is 0.3.

Comparing the results in figures 5 and 6 we can see that the smaller deadrise

angle causes the larger pressure peak near the root of the tip jet as well as the

larger pressure on the entire wedge surface. However, larger permeability of

the solid wedge leads to larger reduction of the high pressure due to the larger

flowrate through the wedge surface for both linear (Eq. (24)) and quadratic

(Eq. (25)) relationships between the normal velocity and the pressure.
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Results for the angles of the liquid and solid wedges αA = α = 45◦ are shown

in Figure 7. For the impermeable surface in case (a), the pressure decreases

almost linearly from the wedge apex to the root of the tip jet, while in case (b)

the pressure decreases more mildly and then faster near the root of the tip jet.

This is caused by larger pressure reduction near the apex of the wedge due to

the larger flowrate into the wedge side there.

4. Conclusions

We have developed a method which generalizes previous water-impact stud-

ies and accounts for certain essential features associated with a permeability of

the solid body. The focus is on some configuration in which the flow can be

treated as self similar at earlier stage of the impact. The mathematical approach

is based on the integral hodograph method, which enables the original problem

in a physical domain to be reduced to a system of integro-differential equa-

tions along the straight lines. These equations are solved numerically through

the method of successive approximation. The numerical procedure has been

verified by convergence study and comparison with some known results.

The presented calculations confirmed the reduction of the hydrodynamic

pressure for a porous or perforated wedge entering the flat free surface and

revealed the similar effect for a liquid wedge impacting a permeable wedge.

This effect magnifies in the case of smaller deadrise angle between the side of

the solid and the undisturbed liquid surface. The permeability of the body also

affects the tip jet which becomes a much thinner liquid film on the body surface

even at moderate permeability condition.
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