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0.1 Abstract

The goal of this dissertation is to study the infrared absorption spectrum of
the C3 (carbon three) molecule. In particular, the aim is to investigate its
ground electronic state up to 12.500 cm−1, as this affects the atmospheres of
cool C-rich stars.

The linear C3 molecule shows very unusual properties for a linear molecule:
a high degree of floppiness, no permanent dipole moment and a strong bent-
stretch interaction. Consequently, the C3 spectrum presents particular fea-
tures such as overtones, hot bands, and, as has been recently detected in
Carbon stars and molecular clouds, a quite low fundamental bending fre-
quency (63 cm−1) when in the ground electronic state. This dissertation
aims to address each of these features.

The first section discusses the context for this work: the stars. It provides
a brief introduction about the Astrophysics related to this research project.
A review at the recent literature is provided and the experimental results
which provide the goal for the results of the theoretical work in the rest of
the dissertation are set out.

The second section introduces the C3 molecule and outlines its properties.
Previous C3 studies are discussed and the theoretical approach used to study
ro-vibrational spectra of triatomic molecules is set out. Preparatory tests
and calculations are carried out to allow a theoretical reproduction of C3

roto vibrational spectrum in the infrared region to be produced.

The third part of the thesis expands on the nuclear motion calculations of
section 2 and presents the results of the large scale calculations performed us-
ing the DVR3D suit programs written by Tennyson et al. [1]. This program
allows the calculation of energy levels, wave-functions, expectation values
and Einstein Coefficients. It takes as input the Potential Energy Surface
(PES) and a Dipole Moment Surface (DMS) constructed a priori (in section
2) by solving the electronic problem within the Born-Oppenheimer’s approx-
imation.

Because the quality of the PES sets the accuracy of the ro-vibrational cal-
culations tests on different C3 PESs and DMSs are performed. To repro-
duce accurate spectra of cool stars atmosphere in the temperature range of
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2000 − 4000 K it was necessary perform calculations with high rotational
quantum number. For this reason, tests with J À 0 were necessary to op-
timize the DVR3DRJZ parameters in order to guarantee a certain degree of
accuracy and energy levels convergence.

The results of these calculations and associated C3 line-lists should be very
useful to support the observations and model atmospheric studies.

This work was generously supported by the QUASAAR Marie Curie Net-
work.
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Chapter 1

Modelling the Opacity of Cool
Stars

The number of molecular species observed in space is about 140 and their
formation is determined by the surrounding environment. Many of these
species are found in the atmosphere of stars. Stars therefore, and in particular
Carbon stars are the main target of this study.

In this section we discuss the properties of astrophysical environments. Our
overall aim is to look at properties that will affect results from spectroscopy.
Spectroscopy is the technique of analysing light coming from space to deter-
mine the properties of a remote object. Depending on the physical conditions
of the particular environment under investigation, matter presents different
structure, phase and composition.

We first introduce the method of spectroscopy before looking at the stellar
parameters that affect it. The main ones will be brightness, radiation transfer
and opacity effects. Finally we will give a brief explanation of stellar evolution
and how the stellar parameters determine where in the evolutionary sequence
a star is.
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1.1 Molecular Spectroscopy

Molecular Spectroscopy is a technique for investigating the microscopic prop-
erties of molecules. Nowadays it is known to be the most powerful tool for
finding detailed microscopic information about molecular systems. As such,
many experiments and computational chemical investigations using this tech-
nique have been completed in the past few years.

A molecule is made up of a number of atoms and ions; these may be positive
or negatively charged. The distribution of these charges create what is known
as a dipole moment; a measure of the strength of charge and geometry of the
molecule.

The basic principle behind Molecular Spectroscopy is that infra-red radiation
(the electromagnetic spectrum with wavelength between 0.78 and 1000mm)
is energetic enough to stimulate vibrations or rotations within a molecule.
The alternating electrical field of the infra-red radiation interacts with fluctu-
ations in the dipole moment of a given molecule. When the radiation matches
the vibrational frequency of the molecule, radiation will be absorbed. This
means that at this frequency there will be a reduced intensity of infra-red
radiation. Each molecule therefore gives a characteristic �fingerprint�with
varying intensities of radiation at different frequencies [2].

Every molecule possesses a unique spectrum or �fingerprint�. This means
that by looking at a series of �fingerprints �from a remote environment (a star
for example) the molecular make-up of that environment can be determined.
This means that qualitative and quantitative information about observed
astrophysical objects such as planets, stars, interstellar medium, nebulae
and so on can be determined.

In astrophysics, spectroscopy therefore sometimes represents a powerful tool
for astrophysical investigation. For this reason it is really important know
a-priori the features of a molecule to be able to identify it through spectra.
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1.2 Stellar Parameters

1.2.1 Brightness

As you can see on a clear night – stars shine and some are brighter than
others. In order to quantify this idea of brightness we consider the amount
of energy emitted by a star that reaches us – the observer.

The amount of radiation at a given frequency ν coming from a star sited at
distance d from the observer. The energy flux [3] is the rate of transfer of
energy dE through a unit area S at a particular frequency ν i.e.

Fν =
dE

dν dt dS
. (1.2.1)

The luminous power or intrinsic luminosity of a star of radius r at a given
frequency ν is

Lν = 4πr2Fν,S, (1.2.2)

where Fν,S is the energy flux through the stellar surface S1 see Figure 1.1.

If we imagine the star as a point and we consider the sphere centred on the
star with radius d, the distance between the star and the observer, then all
the energy emitted by the star that reaches the earth must pass through the
surface of this sphere. The energy flux at the surface S2 can be expressed by
the equation:

Fν,T =
Lν

4πd2
, (1.2.3)

and from Equation 1.2.2 we can write it as:

Fν,T =
4πr2Fν,S

4πd2
, (1.2.4)

=
r2Fν,S

d2
. (1.2.5)

8



Supposing that the radiation coming out from a stellar surface will travel
through the empty space to reach the observer on earth, the observed bright-
ness Fν,T of a star will need to be adjusted for its size.

The solid angle under which a star is observed, ∆Ω, is a measure of how big
that object appears to an observer looking from that point (see Figure 1.1)
and can be expressed with the following equation:

∆Ω ≈ S

d2
, (1.2.6)

≈ πr2

d2
. (1.2.7)

We therefore define the intensity (or brilliance) of the radiation Iν as the
power radiated in a certain direction:

Iν =
Fν,T

∆Ω
, (1.2.8)

Using Equations 1.2.5 and 1.2.7

Iν =
Fν,S

π
. (1.2.9)

As can be seen from equation (1.2.9), intensity is independent of the distance
d between the star and earth.

The analytical description of radiation emitted from stars is based on compar-
ative assumptions with ”black body radiation”. This is the radiation emitted
by any object that has the property of absorbing any radiation that hits it
at all λ and emitting the same amount of radiation it absorbs. As it neither
gains nor loses energy a black body’s radiation is therefore in thermodynamic
equilibrium and it has a spectrum that depends only on its temperature T .

Experiments to reproduce and study black body radiation were performed in
the 19th century by Kirchoff. The radiation coming out from a small hole in
the reflective walls of a hot cavity in thermodynamic equilibrium was used
as an approximation of black body’s radiation.
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Figure 1.1: Schematic representation of the Star-Observer system.

Light in the cavity can be thought of as standing waves. The number of
normal modes (resonant frequencies) of this oscillating system grows expo-
nentially with the frequency. From a classical point of view, an oscillating
system presents the same probability for all modes to be produced. However,
it was observed in experiments that there were in fact less high frequency
modes that the classical theory could explain. The only way to have a correct
theorization of the experimental results was found by introducing quantum
effects.

It was Planck who was the first to introduce quantum mechanics to explain
the behaviour of light at high frequencies where the classical expression was

10



not adequate. Using quantized modes, he showed that higher frequency
modes are less probable than lower ones. Planck built an expression for the
brilliance of a black body to explain correctly observations over the whole
spectrum:

Bν,T = Iν,BB =
2hν5

c3

1

e
hν
kT − 1

, (1.2.10)

where ν is the frequency, h is Planck’s constant (6.626068 × 1034m2kg/s),
k is Boltzmann constant (1.3806503 × 1023m2kgs−2K−1), c is speed of light
(3× 108ms−1).

Integrating equation (1.2.10) over the whole range of frequencies, the Stefan
law is obtained:

∫
Iν,BBdν = σT 4, (1.2.11)

where σ = 5, 67051 × 10−8m−2WK−4 is known as the Stefan-Boltzmann
constant. Considering that ν = c × λ−1 with c the speed of light and λ the
wave length, it is possible to calculate the value of λ which corresponds to
the maximum of radiance. This is obtained from equation (1.2.10):

λmax =
C

T
, (1.2.12)

where C = 2.9× 10−3mK and T is the temperature expressed in Kelvin see
Reference [4].

It is possible describe the brilliance of a star comparing it to the brilliance
of an idealized black body.

Iλ,STAR = Iλ,BB (1.2.13)

Therefore, from equation (1.2.9) the energy flux is given by

Fλ,S =
Iλ,BB

π
, (1.2.14)

= C
(
e

hc
kλT − 1

)−1

, (1.2.15)
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where C = 2πhc2/λ5.

From equation (1.2.15) we can calculate:

Temperature of Brilliance Tλ The temperature of a black body emitting,
at wavelength λ, the same amount of radiation as detected from the star
under investigation.

Tλ =
λ4

2c

Fλ

π
, (1.2.16)

Surface Temperature TSURF The temperature obtained using the equa-
tion (1.2.12) expressing the value of the wavelength corresponding to the
maximum radiance:

TSURF =
C

λmax

, (1.2.17)

with C = 2.9× 10−3mK.

Effective Temperature TEff The temperature obtained considering the ra-
diance integrated over the whole range of wavelengths from equation (1.2.11):

TEff =

(
F

σ

) 1
4

, (1.2.18)

where σ =
2π5k4

15c2h3
and h is Planck’s constant, k is Stefan-Boltzmann con-

stant, c is speed of light.

Results of Brightness Measurements

We have seen that from the measurement of brightness at different wave-
lengths that it is possible to discover various properties about remote bodies.
In particular we have seen that the temperature and luminosity of a remote
body can be inferred from these measurements. These two properties in turn
can be used to determine which group a star belongs to.

Surface temperature and luminosity are the parameters used by Hertzsprung
and Russell to classify stars into groups: main sequence; giant branch; white
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dwarf sequence; and very bright but rather cool stars known as supergiants
(these groups will be discussed in greater detail in Section 1.3). This sequence
is known as a H-R (Hertzsprung-Russell) diagram and is shown in Figure 1.2.

1.2.2 Transport Models

The radiation produced by nuclear reactions in a star’s core passes through
internal layers and emerges from the surface before travelling towards earth
and the spectrometer we may use to look at the ‘fingerprint’ of the star.

Figure 1.2: Hertzsprung-Russell Diagram from website www.bigear.org
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The light, passing through internal layers experience several absorption and
emission mechanisms [5]:

Electron Scattering happen when a photons’ direction changes due to the
interaction with electrons of the medium.

Free - Free (Bremsstrahlung) mechanism occurs when electrons interact
with a positive electrical field and photons are emitted.

Bound - Free (photo-ionization) process is that mechanism happening
when energetic photons are absorbed by atoms producing electron release.

Bound - Bound process is the absorption and successive reemission of
photons by atoms or molecules.

Depending on the physical properties of the layers crossed, several energy
transport processes may occur.

We discuss each of these processes in turn:

Radiative Transport High-energy photons are able to excite atoms which
in turn generate lower energy photons. This process is called radiative trans-
port and takes place on the surface layers of a star or near the core where
high-energy photons are available.

Conductive Transport The heat of a star’s core increases the kinetic en-
ergy of the material around it which will slowly diffuse towards the surface
through particle collisions.

Convective Transport When the chaotic motion of heated material gains a
preferential direction towards the surface, heat will be released to the cooler
external layers and the cell will move back toward the centre, creating a
circular motion known as convection.

Conduction is not an efficient transport mechanism in stars due to the much
lower mean free path of particles respect to the photons and smaller speed
of the particles [6].

Transport mechanisms are governed by a radial gradient depending on the
temperature and pressure of the material defined by:
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∇ = (
∂ ln P

∂ ln T
), (1.2.19)

= (1− ζ)∇R + ζ∇A, (1.2.20)

with P and T pressure and temperature; ∇R and ∇A the radiative and con-
vective gradients respectively. ζ is a parameter measuring the convection
energy transport efficiency and depends on the temperature, density, chemi-
cal composition and opacity of the material. It can take values: 0 < ζ < 1.
Convection is a mechanism more efficient than radiative diffusion. The star
needs to transfer the radiation produced in its nucleus to the external lay-
ers establishing the mechanism that is sufficient to maintain the mechanical
stability (a balance between internal pressure and gravitational attraction).
When the physical parameters of the stellar material such as temperature,
density, chemical composition and opacity assume certain critical values, ra-
diative diffusion is not anymore a mechanism sufficient to maintain stability;
as consequence, convective transport is necessary. This competition between
radiative and convective transport see equation (1.2.20) can be represented
as follows:

ζ = 0 ∇ = ∇R Radiative diffusion is predominant.

ζ = 1 ∇ = ∇A Convection is predominant.

ζ À 1 Radiative diffusion and convection are coexisting.

It is clear from above that when ∇ À ∇R convection starts. This is known
as the Schwarzschild criterion [5].

The energy transfer processes are very important in understanding the stars
evolutionary process explained in Section 1.3.

The simplest model is to ignore the dynamic transportive effects (conduction
and convection) and consider just the radiative transfer mechanism. As dis-
cussed at the beginning of this section, stellar spectra contain information
about stellar atmospheric chemical abundances and physical conditions such
as temperature and pressure. They are characterized by a continuum energy
distribution with many absorption or emission lines (a drop or a spike in the
continuum radiation at the associated wavelength).
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However, we should be aware that spectra can show asymmetry in the line
profiles. Time variability and doubling effects can occur as a result of is
coupling effects between convective motion, radiation and instability. In
this case the interpretation of the spectra becomes more complicated and
the simple radiative transfer models excluding dynamical effects caused by
convection are not reliable. In general however, models built just considering
radiative transfer models are often used as approximation.

The Radiative Transport Model

The standard radiative transfer model is that based on the local thermo-
dynamic equilibrium mentioned in the previous section where the radiation
distribution curve of a star’s atmosphere can be approximated by the Black
Body (or Planck) curve.

When energy is transferred through radiative processes, photons diffuse random-
walking through the atmospheric layers and experience scattering process
(Compton scattering) due to the interaction of photons with electrons. This
process is predominant when the interaction between radiation and matter
is weaker. The direction of diffusion is towards lower temperature. This
means that as the temperature decreases in the external layers, the density
of the photons drops being proportional to T 3; This enhances the probability
of process such as Bremsstrahlungh, photo-ionization, atomic and molecular
absorption. The absorbed radiation is remitted and redistributing through
scattering processes [7]. Scattered light disappears along the direction of ob-
servation and this corresponds to a drop of intensity in the spectrum. The
interaction between radiation and matter can be described considering the
drop in radiation intensity shown in Figure 1.3:

Iλ(h) = Iλ(h0) + dIλ(h0). (1.2.21)

The magnitude of the intensity variation depends on intrinsic properties of
the material crossed and these are absorption and emission coefficients re-
spectively κν (in cm−1) and εν (in erg cm−2Hz−1s−1sterad−1cm−1).

Iν(h) = Iν(h0)− κνIν(h0)dh + ενdh, (1.2.22)

16



dIν(h) = −κνIν(h0)dh + ενdh. (1.2.23)

Integrating from h0 to h:
∫

dIν(h) =

∫
−κνIν(h0)dh +

∫
ενdh, (1.2.24)

and considering that under the black body approximation the relation be-
tween absorption and emission coefficient is given by:

εν

κν

= Bν,T . (1.2.25)

Equation (1.2.23) becomes:

Iν(h) = Iν(h0)e
−κν∆h + Bν,T κν,T ∆h, (1.2.26)

where the first term is the Lambert-Beers’ expression that describes how
intensity decreases when radiation crosses a layer of thickness ∆h with ab-
sorption coefficient κν (cross section times the number of absorbers) at tem-
perature T (see Figure 1.3). It represents the absorption due to the intrinsic
properties of the material crossed. The second term takes into consideration
also the thermal properties of the layer crossed.

Opacity

Opacity is the resistance that atmospheric layers make to the passage of
electromagnetic radiation coming from the stellar interior. This property
strictly depends on the physical conditions and chemical abundances. For
example, the temperature is lower in outer stellar layers, this increases the
abundances of atomic and molecular species and as a result the opacity is
greater.

It is important to introduce the �opacity parameter for a better description
of the atmospheric absorption in stars keeping into account all the physical
processes that can happen at a particular height characterized by certain
physical parameters. It is expressed by the following equation:
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Kν =
κν

ρ
, (1.2.27)

with κν the absorption coefficient and ρ the material density. Opacity repre-
sents the cross section of all the physical processes that might occur and can
depend on the temperature, density and chemical composition of the layer.

The total opacity is the sum of terms describing the single opacities coming
from each of the physical process occurring and already described in Section
1.2.2. Introducing a parameter called �Resistivity �(χ) we can write:

χ =
1

Kν,TOT

=
1

κν,Scatteringe−
+

1

κν,free−free

+
1

κν,bound−free

+
1

κν,bound−bound

.(1.2.28)

This expresses the resistance of the material to the passage of the radiation in
analogy with electrical resistances put in parallel and opposing to the passage
of electricity.

κν,Scattering is the opacity due to the electron scattering processes (or the
Compton Effect). It depends on the concentration of Hydrogen atoms that
give us a measure of the availability of free electrons and it is predominant
in internal stellar layers where there are high values for the temperature and
low density conditions.

At higher densities the major contributors to the total opacity are free-free
(Bremsstrahlung) and the photo-ionization processes expressed by

κν,free−free and κν,boun−free both depending on the temperature T−3.5 and
density ρ. The temperature decreases going towards outer star layers i.e. dT/ dh
and Bound-Bound processes become an important opacity source:

κν,bound−free depending on T−2.5 and density ρ0.5.

Analysing the intensity profile of the radiation at a certain wavelength, it
is possible to calculate from which depth the radiation is coming from (see
Figure 1.4).

Atmospheric models can therefore be constructed using the temperature T
and density ρ at different heights h as input and the abundances varied until
computed and observed spectra coincide.
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Figure 1.3: Schematic representation for two adjacent atmospheric layers at
distance ∆h apart with temperature difference ∆T .

Line-opacity

We have described the radiation intensity parameterized in terms of the opac-
ity of the material κν . The absorption and emission of light by the material
is determined by the quantum mechanics of the constituents. A material sys-
tem subjected to irradiation will absorb photons changing its energy status.

An atom in the outer layers of a star when hit by a photon of a specific
frequency will change its energy status by a specific amount. This absorp-
tion is known as line-opacity. The relation between energy level populations
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Figure 1.4: Layers of an Asymptotic Giant Branch (AGB) star (taken from
www.shef.ac.uk)

corresponding to the number of molecules that in that instant occupy that
particular energy state, assuming a local thermodynamic equilibrium can be
described by the Maxwell−Boltzmann distribution:

Nm

Nn

=
gm

gn

exp
(
−χm,n

kT

)
, (1.2.29)

where gi is the statistical weight of the i = n and m levels, χm,n is the
difference in energy levels, T is the temperature, k the Boltzmann constant
and Ni is the occupation number of the energy level i = n or m. If a volume
V containing molecules is immersed in an electromagnetic field, the number
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of energy levels for unity of volume is:

s =
8πν2dν

c3
, (1.2.30)

and the occupation number w is [4]:

w =
s

exp
−hν
kT −1

, (1.2.31)

The density energy is:

Uνdν = νw (1.2.32)

=
8πhcν3dν

exp (− hν
kT

)− 1
. (1.2.33)

Absorption and emission processes between two generic energy levels En and
Em can be explained using the Einstein coefficients. Einstein introduced
some parameters known as Amn, Bmn and Bnm expressing respectively the
probabilities for spontaneous emissions, induced emission and absorption be-
tween energy levels. The relation between these processes is:

NnBnmUν = AmnNm + UνBmnNm, (1.2.34)

Extracting the density of energy Uν from the above equation, using equation
(??) and comparing it with the density energy expressed by (??), we obtain
the relation between Einstein parameters:

Anm = 8πhcν3Bnm, (1.2.35)

Opacity is not a directly observable quantity but is instead determined by
the energy levels and occupation numbers (or Einstein coefficients) of the
constituent parts of an atmospheric layer.

Line strength

When the radiation electro-magnetic field interacts with the dipole moment
of a molecule it produces a transition. The line strength associated with this
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transition is

S(m ← n) =
∑

φm,φn

∑
A=X,Y,Z

|< φm | µ̂A | φn >|2, (1.2.36)

where φm and φn are eigenfunctions corresponding to energy levels Em and
En. µA is the dipole moment operator with respect to the A = X, Y, Z
molecular coordinate system.

The notation
∫

φ∗mOpφn d3r =|< φm | Ôp | φn >| (1.2.37)

denotes the transition moment integral where Op is the transition moment
operator. The transition moment operator represents a function that op-
erates on a quantum state represented by wave function φn to reproduce
another state φm. Note that the squares of the absolute values | φ |2 give the
probability distribution that the system will be in any of the possible states.
In this case the operator is the molecular dipole moment and performs the
transition between two vibro-rotational states of a molecule.

Note also that

σ ∝ |< Ψm | Ôp | Ψn >|2 ∝ Amn, (1.2.38)

where σ is the cross section (in this case it represents absorption probability
of photons by molecules) and A is the Einstein coefficient for spontaneous
decay. So the intrinsic line strength will be proportional to both σ and A.

The absorption coefficient is calculated under the thermal equilibrium ap-
proximation using the equation

I(m ← n) =
8π3NAνnmexp(−Em

kT
)[1− exp(−hνnm

kT
)]

(4πε0)3hcQ
S(m ← n), (1.2.39)

where h, c, k, NA, ε0 are respectively Planck’s constant, the speed of light,
Boltzmann’s constant, Avogadro’s number and magnetic permeability in vac-
uum. νnm is the transition wave number (cm−1) corresponding to the energy
levels Em and En and Q the partition function describing the statistical prop-
erties of a system of particles in thermodynamic equilibrium at temperature
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T distributed over w energy levels Ew with degeneracy factor gw. It is given
by

Q =
∑

w

gwexp(−Ew

kT
). (1.2.40)

Line Lists

A line list is a measure of opacity at a given wavelength and gives a molecule’s
“fingerprint”. When no line list is available for a specific molecule then we
can build one considering the quantum properties of the molecule.

A spectral line originates in the photosphere of a star and its absorption is
usually measured relative to the flux mean opacity over the continuum.

Using a line list it is therefore possible to calculate molecular abundances
in a star. However, in order to interpret a star’s line list an accurate repre-
sentation of a line list for each molecule must be available. As we shall see,
in the case of C3 (which is not abundant on earth) such a line list must be
calculated theoretically.

Weak Lines

For higher energies where the number of absorption systems in a particular
spectral range is fewer, the line absorption coefficient will be relatively small
and it will result in a �weak line �.

It turns out that even though they are weak, these lines play an impor-
tant role and must be included in any reliable atmospheric model. Even
though weak lines do not significantly contribute to the absorption coeffi-
cient integrated over the whole spectrum, they can change the stellar model
atmosphere structure by several orders of magnitude due to the relatively
big change of the (still weak) absorption in selected intervals of the spectrum
(see Jorgensen et al. [8]).
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1.3 Stellar Evolution

This section describes evolutionary processes in stars. It is necessary to
understand these processes in order to better describe stellar spectra features
[5].

1.3.1 The Beginning – A Dust Cloud

Material in the universe such as simple molecules and grains are constantly
subject to random fluctuations in pressure, temperature and density due to
evolutionary events happening across the whole universe. This continuous
compression and rarefaction motion can sometimes develop into a growing
instability where the increase of density is maintained and enlarged. In fact,
attraction between molecules or grains is governed by two fundamental forces

� Gravitational law The force between two bodies FGRAV is given by

FGRAV = G
mM

r2
, (1.3.1)

where m and M are the masses of the two bodies respectively, r is the
distance between them and G is the gravitational constant.

� Pressure The force due to the change in pressure p with radius is given
by

FPRESS = −m

ρ

dp

dr
, (1.3.2)

where ρ is the density of the material.

In hydrostatic equilibrium these forces balance so that:

dp

dr
= −G

ρM

r2
. (1.3.3)

The high density values leads to a local gravitational collapse of the sur-
rounding material. In fact, when the mass of the material reaches a critical
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value known as Jean mass, the kinetic energy of the material is not able to
resist the gravitational collapse, leading to the stellar formation begins.

The Jeans mass depends on the temperature and density of the material as
shown below [5]:

MJ = (
5k

Gµmu

)
3
2 (

3

4π
)

1
2 T

3
2 ρ−

1
2 . (1.3.4)

It describes how a decrease in temperature reduces the critical value for the
Jean mass and the probability for the cloud collapse enhances.

1.3.2 From Protostars to the Main Sequence

During the emission processes (as energy is being radiated away) tempera-
ture, internal energy and therefore pressure decrease. Equation (1.3.3) says
that the gravitational force must increase to try to balance this reduction
in pressure. This means that more material from the surroundings fall to
the centre of this newly formed spherical gas cloud which is called a pro-
tostar. During this stage, called pre-main sequence, a star’s luminosity is
high enough to allow it to be detected. In this stage pulsating motions are
observed due to a structural stabilization process still ongoing. Stars in this
stage have some peculiarities that allow them to be recognized and classified
as T Tauri stars.

The opacity of the material starts to increase, until emission of radiation in
the VIS (visible region) is totally prevented; The cloud follows its collapse and
the gravitational energy becomes more negative as a consequence of material
contraction. When the rise in opacity prevents emission in the IR (Infra-
red region) the contraction ends (the stellar radius becomes constant) and
the kinetic energy of free fall is converted into internal heat. A shock wave
spreads across the external layers raising the temperature and the stellar
luminosity. The ionization process starts and the star evolves on the Hayashi
track in the H-R Diagram. During this stage the convective mechanism (∇ >
∇A see Section 1.2.2 ) to transport energy from the centre to the surface
is necessary in order to re-establish �Virial equilibrium �that occurs when
the energy released from the gravitational contraction is half of the energy
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required for the ionization processes. As result, the superface temperature
and radius of the star are almost constant. Convective contraction follows
through equilibrium stages. The stellar radius decreases and the temperature
starts to rise until the radiative transport mechanism becomes predominant.
The star is now in the stage denoted as Henyey track in which the luminosity
is approximately constant and the core temperature of the star keeps on
growing. The star is now approaching the Main-Sequence stage.

Jumping the Main Sequence!

� For stars with masses less than 0.05 M¯ (where M¯= solar mass =
1.988921030 kg), core temperatures will never be high enough to ac-
tivate nuclear reactions and gravitational contraction will result in a
drastical increase in density towards the centre. Electrons in the core
will occupy, in pairs, the lowest energy state available and they will be
frozen into a kind of crystalline pattern. When a total degenerate state
is reached, no internal heat is produced; contraction stops and proto-
stars go directly into the white dwarf stage without passing through
the main sequence.

� Rare stars with masses greater then 50 M¯ will not go through the
main sequence stage. They are identified as super massive objects with
evolutionary tracks that are still not clear.

1.3.3 Main Sequence

During the Pre-Main sequence stages the main source of energy in a star is
the gravitational contraction. This raises the core density and temperature
up to critical values where nuclear reactions occur.

When nuclear reactions are steadily active in the core the star is officially on
the track denoted as the Main-Sequence. Those points in the evolutionary
curve at which the star contraction ends and hydrogen burning starts, define
the zero−age main sequence (ZAMS). A star’s evolutionary curve maps how
surface temperature and luminosity vary with time (H-R diagram). This
curve will cross the H-R diagram (discussed in Section 1.2.1) at a certain
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position depending on the initial mass and chemical composition of the initial
gas cloud.

Stars with higher mass and lower values of metallicity cross the ZAMS at
higher values of luminosity and temperature (the left high-side of the H-R
diagram). This is because when the metallicity of stars is lower, the opacity
and UV absorption decrease and the values for the temperature and the
luminosity increase.

Nuclear Fusion

Two different processes can occur in the core of stars to transform Hydrogen
(H) into helium (He):

� PP process Conversion of hydrogen into helium through three dif-
ferent branches where the last two produce beryllium (Be).

� CNO process Conversion of hydrogen into helium through a combi-
nation of carbon (C), nitrogen (N) and oxygen (O).

Unlike the CNO mechanism, the PP (proton-proton) process does not have
a strong dependence on temperature and as a result the H-burning region is
much more extended around the core; Nuclear reactions release an amount of
energy that needs to be transported efficiently through radiative or convective
transport to the external layers in order to assure the thermo-mechanical
stability of the star: a balance between the amount of energy produced in
the core, the amount dispersed in the interstellar medium through the surface
and the gravitational energy.

Mass is also the decisive parameter in determining the heat transport be-
haviour (see Section 1.2.2) during a star’s time on the main sequence. In
stars with a mass:

� M < 1.1M¯ with a Radiative core(in which the PP process is pre-
dominant) an extensive area around the nucleus is permeated by ra-
diative transport mechanisms and just a thin surface layer shows a
predominance of the convective transport mechanism.
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� M > 1.1M¯ with a Convective core(in which the CNO process is
predominant) a small area of convection around the nucleus is present
and an extended layer where the radiative transport mechanism is pre-
dominant.

Stars are formed by concentric layers over the core. These are:

� The Photosphere

� The Chromosphere

� The Corona

Solar-type stars (see Figure 1.4) have convective envelopes and a lower sur-
face temperature than those stars with a convective core; they can possess
chromospheres and coronas accompanied by a stellar wind.

The star then reaches a stable phase where there is a balance between internal
pressure (gas and radiation pressure) and gravitational attraction. For each
value of the mass of a star it is possible calculate the �Eddington limit�;
this is the value of the luminosity for which gravitational pressure equals the
radiation pressure.

During H-burning the core radius decreases leading to increase in stellar
luminosity and radius.

1.3.4 The End

After billions of years the hydrogen in the core of a star is exhausted and it
no longer has a source of nuclear energy to balance gravitational contraction.
After the main sequence stage stars will follow a different evolutionary path
depending on their masses. If the mass of the star is:

1. M < 2.5 M¯ after Hydrogen exhaustion in the core, the star goes
through several stages and processes such as the red giant branch stage;
helium-burning; asymptotic giant branch stage; and it will end up as a
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planetary nebulae and white dwarf. This evolutionary curve is shown
in Figure 1.5.To describe more in detail the evolutionary stages for this
group of stars: depending on the mass the star will have two different
structures (respectively with a radiative or a convective core) during
the H-burning stage.

� M < 1.4 M¯ with a Radiative core, H-burning processes are
faster in the centre of the star and the energy released is trans-
ported through radiative mechanisms. The absence of convective
motions and mixing of the material lead to a continuous decrease
of the quantity of hydrogen in the nucleus up to hydrogen exhaus-
tion and the subsequent formation of an inert helium core. An
isothermal status is established and the central density rises to
balance external pressure. The density growth is opposed by a
partial core degenerate condition. A thin shell around the inert
helium-nucleus warms up and H-burning reactions are activated.
This shell is the source of energy for promoting the expansion
of external layers; this results in a to the stellar radius increase,
density and superficial temperature decrease, superficial opacity
growth and convection activation. Convective motions are respon-
sible for the process called dredge-up where material is stirred and
reaction products are transported to the outer layers. Luminosity
will increase and the star reaches the red giants branch (RGB).

� 1.4M¯ < M < 2.5M¯ with a Convective core, differences to
the low mass case exist; the hydrogen burning rate is constant in
all parts of the core thanks to convective stirring. This leads to the
formation of an isothermal and inert helium core; this contracts
so that the central temperature rises the central temperature and
H-burning is activated in a shell surrounding the core. The star
envelope expands and the star will evolve towards the red-giant
branch (RGB).

During the RGB stage, the convective motion provides hydrogen to
the internal layers of the star where H-burning is still active. As a
consequence the temperature increases, the mass of the helium nucleus
is enhanced and it starts to contract. The core temperature rises and
helium starts to burn fast in the core under degenerate conditions (He
flash). This stage is indicated as Zero Age Horizontal Branch or ZAHB.
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When helium is exhausted, the Carbon-Oxygen nucleus contracts and
the stellar envelope expands leading to an increase in luminosity. The
star moves onto the Asymptotic Giant Branch (AGB) track where ther-
monuclear runaway processes will be responsible for what is called a
‘Thermal Pulse’. The luminosity and radius will increase and the tem-
perature decreases below the value necessary for hydrogen burning.
Convective motions will extends to the inner regions causing dredging
up of carbon atoms towards the outer atmospheric layers where car-
bon will then become more aboundant than oxygen and the H-shell
will continually supply the necessary quantity of helium for the next
thermal pulse.

This process causes mass loss from the surface and the H-shell be-
comes unstable as the star starts to pulsate. When the envelope mass
decreases to under 0.001 M¯ the mass loss ends and super winds ob-
scure totally the star. In the H-R diagram the star moves towards the
Post-AGB phase where the AGB outflow will form a planetary nebula.
Finally the star’s core cools down atconstant radius. This is known as
the white dwarf stage.

The second group of stars are those with masses between:

2. 2.5M¯ < M < 8M¯ with Convective cores. The evolutionary path
up to the red giant branch stage is the same as the ones described
for stars with masses M < 2.5M¯ and with a convective core. After
the RGB phase the star shows: helium-burning,the blue loop, dredge
up, asymptotic giant branch stage, thermal pulsing.Until the conditions
allow explosive phenomena well known as Supernovae (see Figure 1.6).

Let us describe in more details the processes after the RGB stage.
When the inert helium core reaches the Schoenberg-Chandrasekhar
limit (MHe > MCH = 1.4M¯) , the core will contract rapidly and the
temperature will increases to activate (ignite) helium burning (108K)
in the core and hydrogen burning in shells around it. The radius of
the star’s envelope increases drastically and the surface temperature
decreases. The hydrogen burning processes in the shells around the
core result in an increase of the superfice temperature whilst the lu-
minosity remains constant. The star is tracking the stage known as
the Blue Loop. When the helium-burning process ends, the star has a
inert Carbon-Oxygen nucleus and shells burning hydrogen and helium
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Figure 1.5: Schematic representation of the evolutionary track for stars with
M < 2.5 M¯

around it. The core starts to contract again, the radius increases and
the surface temperature decreases. This leads to an increase in opacity
and to the activated of convection motions. Another dredge up process
is activated at the end of the blue loop. This mixing provides the core
with new helium atoms to burn and nuclear reactions again start in the
core. The luminosity increases and the star moves towards the AGB
stage where the star exhibits thermal pulsing processes and mass loss.
At this point the final destiny of the star is different and depends on
the remaining mass of the core after the thermal pulsing. In fact if:
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� M > MCH = 1.4M¯
The mass reaches the Schoemberg-Chandrasekhar limit

The C-O nucleus collapses and an explosive C-burning process
starts up to expel all the outer envelope of the star. This is a
supernova.

� M < MCH = 1.4M¯
The mass is below the Schoemberg-Chandrasekhar limit

The star evolves as a planetary nebula and becomes white dwarf.
If the star is not in a binary system the cooling-off could lead to
a supernovae explosion. If the star is part of a binary system,
mass can be transferred between the two stars. This mass trans-
fer allows the core to reach the Schomberg-Chandrasekhar limit;
carbon deflagration occurs and the star will end up as a supernova.

3. M > 8M¯ H-burning carries on with carbon-burning up to silicon and
beyond to iron. When the iron core mass has exceeded the Chan-
drasekhar limit, it will collapse forming a neutron star or a black hole.

1.4 Cool Carbon Rich Stars and Stellar Opac-

ity

Stars which are rich in carbon (C : O À 1) and have an extended atmosphere
(those in the Asymptotic Giant Branch (AGB) stage) have very low densities
and their photospheres are cool enough (less then about 4500 K) to allow
molecules to form.

An example of these characteristics can be found in those stars classified as
the Mira variable type. This type of stars presents other peculiarities such as:
excess brightness in the infra-red spectrum; pulsations; mass loss; emission
lines (hydrogen, silicon and iron); absorption lines (metals) and molecular
absorption bands.

A very peculiar and interesting dynamics exists in the atmospheres of stars
during the AGB evolution phase. Energy from the inner layers is transferred
to the surface by the convection mechanism (as discussed in Section 1.2.2).
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Figure 1.6: Schematic representation of the evolutionary track for stars with
2.5M¯< M < 8 M¯

This creates irregular pulsations with shock waves propagating towards the
surface where matter is expelled as wind.

As a consequence spectra of AGB star atmospheres are very complex showing
an enormous number of atomic and molecular lines. A radiative-hydrodynamic
model inclusive of coupling effects between convective motion, radiation and
instability effects is necessary to explain the asymmetries in the line profiles,
time variability (due to the Doppler effect) and doubling effects. Theoretical
calculations can help in the analysis of the observations, not just predicting
the line positions but also giving fundamental coefficients (such as intensities)
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[9].

This report presents the preliminary work carried out to perform a compu-
tational study of the C3 system in order to obtain an accurate and complete
line list to test against experimental results and astronomical observations
of AGB stars.
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Chapter 2

Molecular Properties of the C3
Molecule

In recent years, there has been increasing interest in pure carbon molecules,
sometimes referred to as polycarbons or Cn (see for example Weltner and
Van Zee [10]). New experimental methods have been developed to study the
quite peculiar and complex spectroscopic properties of these Cn species up
to n = 200.

At the moment, there are just few observations of Cn species in space. C3

and C5 have been detected in comets, the diffuse interstellar medium and
in the circumstellar shells, of some late type giant carbon stars (see Section
1.3) [11].

The C3 molecule plays an important role in the growth of carbon chains
and the determination of its abundance in the interstellar and circumstellar
media could improve our understanding of the chemistry prevailing in these
objects [12].

The 12C3 molecule is formed of three symmetrically equivalent boson nuclei.
This means that the total spin of the particles forming nuclei of carbon is an
integer.
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2.1 Coordinate Systems and Notation

Before looking at the properties of the molecule it is important to establish
the various notations and coordinate systems used:

Notation

Coordinate Systems

It is convenient to describe the molecule using a Cartesian coordinates refer-
ence system (x, y, z) centred on the centre of mass of the molecular system
as shown on the Figure 2.1.

The symmetric and antisymmetric stretch coordinates coordinate system is
(X1, X2, θ) with X1 = q1 + q2 − 2re as the symmetric stretch coordinate,
X2 = q1 − q2 is the antisymmetric stretch coordinate where q1, q2 are the
two bond-lengths, θ the angle between bonds and re is the bond-length at
equilibrium configuration.

Jacobi or scattering coordinates r, R and α are r = q2, R is the distance
between q2 centre of mass and the other carbon atom - see Figure 2.1.

2.2 Rotation-Vibration Spectra

Using Infrared Spectroscopy (IR) (see Section 1.1) it is possible to study
the vibrational and rotational frequencies of triatomic molecules which cor-
respond to discrete energy levels. We discuss each of these in turn.

2.2.1 Vibrational Frequencies

A molecule with n atoms can vibrate in 3n − 6 normal modes. Linear tri-
atomic molecules have 3n − 5 modes (if n = 3 it has 4 vibrational modes)
Figure 2.2 . We label these:
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Figure 2.1: The bond-length coordinate system (q1, q2, θ) and Jacobi coordi-
nates (r,R, α) chosen to study C3. The z axes of the Cartesian system (x,y,z)
is embedded along the q2 bond-length.

� Symmetric-stretching (parallel to the linear axis)

� Anti-symmetric stretching (parallel to the linear axis)

� Bending (perpendicular to the linear axis and double degenerate indi-
cating the two directions in which the molecular system bends).

In terms of spectra (working in a Cartesian coordinate system (x, y, z)) these
vibrational modes are called:
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Figure 2.2: C3 Table showing C3 fundamental modes’ properties.

� Parallel bands: The anti-symmetric and symmetric stretching motion
parallel to the z molecular axis.

� Perpendicular bands: The perpendicular bending motion along x, y
axes.

Within the harmonic oscillator approximation, the vibrational energy levels
of a molecule are given by:
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E (νi) =
∑

i

hνi

(
νi +

di

2

)
, (2.2.1)

where di is the degeneracy of the ith mode with frequency νi and h is Planck’s
constant.

A simple way of describing vibrational motions is to treat them as harmonic
oscillator systems with actual potential energy and dipole moment functions
depending on the distance between atoms. Real molecules, however, are
more complex systems and the vibrations possess anharmonic features. The
analytical forms used to describe their motion have to be chosen taking into
account molecular chemical properties and geometry.

Harmonic oscillators have selection rules ∆ν = ±1 with a fundamental vi-
brational band ν = 1 ↔ 0 and hot bands (transitions between excited levels)
νi+1 ↔ νi with νi 6= 0.

Molecules which posses anharmonic oscillations have overtone transitions
with selection rules ∆ν = ±2,±3, ... are allowed but generally much weaker
than fundamental transitions.

The harmonic oscillator model presents fundamental modes and also a com-
bination of them (νi + νj) with i 6= j. The combination transitions rely on
anharmonic effects.

A molecule shows pure strong rotational transitions if it possesses a per-
manent dipole moment; vibrational transitions, instead, require a change in
dipole. The dipole moment describes the polarity of a system of electric
charges [3]:

~µ = q~ri, (2.2.2)

where q is the charge and ri is the charge separation.

Polyatomic molecule dipole moments can be expressed using analytical func-
tions. An example of a functional form for one mode in a diatomic molecule
is:

µ (ri) = µe +
dµ

dri

|re (ri − re) +
1

2

d2µ

dr2
|re (ri − re)

2 + · · · , (2.2.3)
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where µe is the permanent dipole moment and the other terms express the
higher order dependency with internuclear separation. Molecules can have

� µe = 0 and
dµ

dri

= 0 Dipole moment is zero and molecules do not show

IR transitions (for example homonuclear diatomic molecules).

� µe = 0 and
dµ

dri

6= 0 Molecules show ro-vibrational transitions but no

pure rotational spectra.

� µe 6= 0 and
dµ

dri

6= 0 Molecules have ro-vibrational and pure rotational

transitions.

2.2.2 Rotational Frequencies

Molecular rotation can be described by considering a reference system (x, y, z)
with the centre of mass at the origin and its moment of inertia about the
axes

Ip =
∑

i

mir
2
ip, (2.2.4)

where p = x, y or z, mi is the atom’s mass and rip the distance from the axes
p.

Molecules can be classified in terms of their inertia as

� Linear molecules Ix = Iy, Iz = 0.

� Spherical Top Ix = Iy = Iz.

� Symmetric Top Ix = Iy 6= Iz.

� Asymmetric Top Ix 6= Iy 6= Iz.
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Within the rigid rotor approximation the rotational energy levels of a closed
shell linear molecule is given by

Erot = BJ(J + 1), (2.2.5)

where B is the rotational constant measured in MHz and J is the rotational
quantum number 0, 1, 2, 3.....

Selection rules are ∆J = 0,±1 or labelled as Q P R branches when associ-
ated with vibrational transitions. Vibrational perpendicular bands present P
and R branches and parallel band PQR. More degenerate vibrational modes
(bending modes of a linear molecule for example) possess a vibrational an-

gular momentum ~l and the spectrum shows an l-doubling effect due to the
coupling between vibrational and rotational quantum number:

~JTOT = ~JRot +~l, (2.2.6)

with | l |= ν, ν − 2, .....1 or 0 for a degenerate bending frequency ν.

2.3 Symmetry Properties

12C3 possess a centre of symmetry and is formed by three symmetrically
equivalent Boson nuclei. A consequence of this is �missing �lines in the
observed spectra. To understand this particular behaviour, we should briefly
look at the symmetry properties and statistics of the C3 system.

Using the Born-Oppenheimer approximation and separating vibrational and
rotational motion we can see that the complete wave-function ψTOT is a
product of the electronic ψe, vibrational ψv, rotational ψr and nuclear spin
ψn:

ψTOT = ψeψvψrψn. (2.3.1)

The total wave function must be symmetric because carbon atoms follow
Bose-Einstein statistics. The ground electronic wave-function is symmetric
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Figure 2.3: Vibrational and rotational energy levels including l-doubling ef-
fect for a transition between vibrational modes labelled following the molec-
ular symmetries rules [13].

as is the nuclear one; it follows that the product between rotational and
vibrational part must be symmetric too.

Because vibrational and rotational wave functions are both symmetric, the
spectra �misses �the lines that arise from states associated with an antisym-
metric rotational-vibrational wave-function.

An example is shown in Figure 2.3. This shows the ro-vibrational transitions
between the ground vibronic state and the fundamental bending band with
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Figure 2.4: Fundamental bending mode of C3 at 63.4166 cm−1. Spectrum
by R.Gendriesh et al. 2003, Z. Naturforsch. 58a,129.

the vibrational angular momentum l = 1 and where just the lines with J =
even are observable.

The parameter l describes the vibration angular moment which increases
when the molecule is more bent.

The low fundamental bending frequency (i.e. extreme floppiness) of C3,
results in a very large l-doubling. In the linear configuration, degeneracy in
l is observed. As the molecule becomes more and more like an asymmetric
top this degeneracy is increasingly broken.
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In conclusion, although C3 is a linear molecule, it is possible to treat it as a
special case of an asymmetric top and the l-doubling can be handled like the
k-doubling (this is the doubling caused by the projection k of the molecular
angular moment J along the rotation axis) in an asymmetric top. This means
that calculations can be carried out using computer programs written for the
calculation of the vibration-rotation spectra of non-linear triatomic molecules
provided this program treats the transition from non-linear to linear geometry
correctly.

2.4 Linear or Quasilinear Equilibrium Geom-

etry?

An interesting problem for C3 is determining its equilibrium geometry struc-
ture.

Molecules can show a linear, nonlinear or quasilinear geometry at the equi-
librium configuration. The first two are self-explanatory. A molecule with
quasilinear structure has a bent equilibrium structure but vibrates through
the linear configuration even in its vibrational ground state [14].

For C3, early CI-SDQ calculations (a method using Configuration of Iteration
with single, double and quadruple excitation) performed by Kramer et al. [15]
predicted a slightly bent equilibrium geometry with an equilibrium angle of
161.6 ◦ and an effective bending potential that shows a linear configuration
in state (v1, v3 = 0) and (v1 = 0, v3) (as result of strong bend-stretching
coupling).

Molecules with “floppy” large amplitude vibration may present a large l-type
doubling indicating a strong rotation-vibration coupling. As a consequence,
they present fascinating features such as:

� Barriers to linearity due to the unusual low bending frequency that
coupled with the symmetric and antisymmetric modes constrain the
molecule to not easily reach the linear configuration.

� Mixing, inversion and splitting (resolving) of degenerate levels of the
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same J-rotational quantum number and different values of l; The l-
doubling effect splits the rotational level J in two levels f and e (or
− and + parity levels) with usually e levels lower in energy than the
f . But it has been observed that in C3 these levels could show as
already said mixing and inversion features due to extrem floppyness in
the bending mode.

� Anarmonicity and the presence of overtones.

Bunker [14] introduced a semi-empirical numerical method “Semi-rigid Ben-
der Analysis” to determine the structural configuration of a molecule by
analysing the shape of the electronic Potential Energy Surface. Also it has
been found that the energy level splitting behaviour can be a good structure
indicator.

Experimental studies due to Nortrup and Rolphing [16, 17] analyse respec-
tively the bent-symmetric-stretch (v1, v2, 0) and the bend-antisymmetric-
stretch (0, v2, v3) combination levels.

A Semi-rigid Bender Analysis also performed by Nortrup and Rolphing [18]
demonstrated a linear equilibrium geometry. They analysed the J = 2 split-
ting between l = 0e and l = 2e (sigma-delta splitting). They show that
the experimental splitting decreases as v2 increases. Also in v1 states the σ
(l = 0) and δ (l = 2) state are inverted.

Nortrup and Rolphing therefore propose that a potential that exhibits a
barrier to linearity cannot reproduce the small splitting (i.e.the low bending
vibrational frequency). They therefore conclude that C3 is linear.

Jensen reported that the l-splitting in the rotational structure of a given
vibrational level is extremely sensitive to details of the potential surface [16].
In fact, the Potential Energy Surface chosen in this work to study C3 [19]
(from now on labelled AHM PES) shows an l-splitting that is too small in
comparison with the experimental results. The AHM PES bending curve for
the ground electronic level X1Σg and for the first exited electronic state A1

is shown in Figure 2.5. These bending curves are obtained fixing the values
for the bond-length coordinates and plotting the potential energy variation
with the angle θ. As seen in the Figure, the first exited electronic state (at
about 24000 cm−1) presents a more complex structure characterized by the
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degeneration removal of the following molecular symmetries configurations
(Πu, Σu, ∆u, Πg) (respectively the blue, the purple, the black and the red
curves). However, the purpose of this project is calculating the line list of
C3 molecule in its ground electronic state and this is the reason why we are
interesting just in the green curve X1Σg of the Figure 2.5. The flatness of
this potential curve is clearly evident; the green curve remains close to the
zero-energy level up to about 130 degree and raises steeply after this value
until it reaches wavelength of 12.500 cm−1. This is a clear indication of the
low bending frequency and the extreme floppiness of this molecule. At the
cyclic geometry (theta equal to 60 degree) the C3 molecule presents a conical
intersection where the ground electronic state and the first exited electronic
state with symmetry ∆u show the same wavelength value of 12.500 cm−1

Figure 2.5.

In this thesis we agree that the C3 molecule could have a linear geometry at
equilibrium but the antisymmetric motion could experience a certain barrier
to the linearity and vibrate through a bent configuration.

2.5 Experimental Research Into the Proper-

ties of C3

Experimental research by Northrup and Sears [20, 16]; Northrup, Sears and
Rohlfing [18]; Rohlfing and Goldsmith et al. [21, 17] show no barrier to linear-
ity in the quite flat bending potential for either the zero point (ν1 = ν3 = 0)
or the equilibrium stretching mode states of the C3 molecule.

By contrast, they see that the molecule develops a barrier (of about 21 cm−1

and a bond angle of 162.5 ◦) in the linear configuration as the anti-symmetric
stretch is excited. Moreover, they observed a strong bend-stretch interaction
in the ground state. This is very unusual for linear molecules where the
rotational constant of the antisymmetric stretching should decrease as the
vibrational excitation increases.

An opposite trend is more usually observed where the molecule becomes more
rigidly linear upon symmetric-stretch and more floppy when anti-symmetrically
stretched.
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Figure 2.5: Potential energy surfaces for the ground electronic state X (green
curve) and for the complex first exited electronic state A in D2h molecular
symmetries (Πu, Σu, ∆u, Πg) as calculated by Ahmed et al. [19]

The experimental research of Northrup et al.suggests that the dramatic rise
in the rotational constant as a function of the anti-symmetric stretching is
correlated with the increasingly larger barrier to linearity in the effective
bending potential. They suggest that �the shape of the potential is fairly
insensitive to small changes in the bond length or with its variation with the
bending angle and the dependence of the bond length on the bending angle
is relevant � [16].

The type of absorption bands observed depend upon the direction in the ro-
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tating molecule of the oscillating electric dipole moment induced by the elec-
tromagnetic radiation (as discussed by Duxbury et al. [2]). In the symmetric
stretching motion, there is no variation in the transition dipole moment; that
means that it can be observed using Raman spectroscopy but not in IR. Ra-
man spectroscopy techniques give information about ro-vibrational features
using scattering light from the molecular system. This reveals information
not displayed by IR spectroscopy.

The anti-symmetric stretching and bending fundamentals are Far Infrared
and Infrared active and they show PR (selection rules ∆J = +1 (P branch)
and ∆J = −1 (R branch)) and PQR (selection rules ∆J = 0 (Q branch))
types of absorption bands respectively. The Q branch in the bending motion
can be observed because a vibrational change can happen without simulta-
neous rotational transitions.

Early theoretical studies by Kramer et al. [15] show a very high transition
dipole moment for the ν3 band in comparison with the one for ν2 band.
Recent laboratory experiments by Schmuttenmaer et al. [22] and theoretical
studies performed by Jensen et al. [23] disagree with Kramer’s theory and in
fact show a similar fractional absorption for the two IR-active bands.

2.6 Summary

In summary the C3 molecule has the following properties:

Linearity of Structure It has a linear or quasi-linear structure in its ground
electronic state.

Symmetry of Structure It has a centre-symmetric structure i.e.it possesses
a centre of inversion.

Dipole Moment It does not have a permanent dipole moment; this means
that strong pure rotational transitions cannot be observed.

πg Electrons πg electrons are electrons in overlapping p-orbitals.

The bending frequency of a molecule is therefore related to the πg electrons
as they act like a “backbone” [24]. The C3 molecule does not possess any of
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these type of electrons and this leads to

Low Bending Frequency An unusually low bending wavenumber of 63.4165
cm−1 (see Walsh [25]).

Potential Energy It has a relatively flat potential energy surface. This
means that at low frequencies it is already possible to observe great vibra-
tional displacements.

Floppiness Due to the low bending frequency the C3 molecule presents a
high degree of floppiness. Indeed, in the first exited state, where πg or-
bital is occupied, the fundamental bending wavenumber go up at about 350
cm−1 [24].

2.6.1 Use of Molecular Properties For Astronomical
Observations

C3 was observed for the first time in astrphysical contexts by Higgins et al. [26]
in emission from comets in 1882 and later by Hinkle [27] in absorption
through its fundamental antisymmetric stretch band (ν3) in the atmosphere
of the cool carbon star IRC +10216. This object is a carbon rich Mira
variable with an unusually thick and dense dust molecular envelope. For
this reason it gives a natural laboratory to understand the interstellar and
circumstellar chemistry (see Cernicharo and Goicoechea [28]).

In 2000, observations made by Cernicharo et al. [28] showed the detection
at the low bending frequency, again in IRC +10216 and in a massive dense
molecular cloud: Sagittarius B2 which is the richest concentration of molecules
in the Milky Way. The detection of this unusual and quite low fundamen-
tal bending band opened new possibilities to detect other molecular species
without a permanent dipole moment [12], i.e.lacking pure rotational transi-
tions.

Most recently Harris et al.detected the fundamental antisymmetric-stretch
band ν3 in the outer atmosphere of the cool AGB (Asymptotic giant branch)
carbon star WZ Cas [29].
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Chapter 3

Variational Approach to the
Study of Triatomic Molecules

An already tested and successful approach to study the infrared spectra of
molecules is the separation of the electronic problem from the nuclear one us-
ing Born-Oppenheimer’s approximation. This approximation is based on the
fact that electrons are a thousand times less massive than nuclei which allows
setting the nuclear kinetic energy to zero in electronic structure calculations.

As described by Jensen and Bunker [30] there are two ways of solving the
bound state nuclear motion problem which arises as the second step in the
BO approximation: the perturbation theory approach and the variation the-
ory approach. The perturbational approach is based on studying a complex
system approximating it to a simple one and finds an approximate solution
to the Schrodinger equation. Despite being useful for studying several sys-
tems, it is not well suited to describing a molecule with large amplitude
motions such as C3. A variational approach is more suitable for studying
C3 characteristics and a description of this method will be given in the next
section.
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3.1 Quantum mechanics theory

Schrödinger’s equation is used in quantum mechanics to determine allowed
quantum states for microscopic and macroscopic systems. The time-independent
equation states that:

HΨ = EΨ, (3.1.1)

where H is the Hamiltonian Operator, Ψ is the wavefunction of the particle,
and E is the energy of the particle.

The Hamiltonian operator H of any system is given by the sum of its kinetic
and potential energy. For C3, working in Jacobi coordinates, the operator is
written [31]

H(r1, r2) = K1
v + K1

vr + δk′,k〈j′k′|V (r1, r2, θ)|jk〉θ, (3.1.2)

where Kv and Kvr are respectively the vibrational and the ro-vibrational
kinetic energy operators, V (r1, r2, θ) is the potential energy function and
〈j′k′| and |jk〉 the eigenstates for the ro-vibrational transitions with quantum
number j and k. δ is the delta function (it takes the value zero for all k 6= k′).

Vibrational motions and their characteristic frequencies are determined using
analytical functions known as Potential Energy Surfaces (PES) describing
electronic energy interactions between atoms making up a bonded chemical
system.

� Radial basis Symmetric and antisymmetric motions can be approxi-
mated using Morse-like functions [1] with eigenfunction:

| n >= Hn(r) = β
1
2 Nnαexp(−y

2
)y

(α + 1)

2 Lα
n(y), (3.1.3)

with

y = Aexp[−β(r − re)], (3.1.4)
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where

A =
4De

ωe

, β = ωe(
µ

4De

)
1
2 , (3.1.5)

where re is the equilibrium distance, µ is the reduced mass, ωe is the fun-
damental frequency, De is the dissociation energy and NnαLα

n(y) nor-
malized generalized Leguerre Polynomials with α equal to A rounded.

� Angular basis These are Legendre polynomials:

Pn(x) =
1

2nn!

dn

dxn
[(x2 − 1)n], (3.1.6)

The potential energy surface (PES) V (r1, r2, θ) necessary to perform nuclear
motion calculations can be constructed by estimating the electronic energy
for each nuclear geometric configuration (using a program such as MOR-
PLO [32] for example). The quality of the PES sets the accuracy of the
subsequent ro-vibrational calculations. For this reason, much experimental
and theoretical effort has been focused on determining the right shape of the
potential-energy function [23]. It is observed that the most accurate PESs
are computed using ab-initio starting points, with the resulting surface be-
ing empirically adjusted to improve the agreement between the computed
energies and experimental data [33].

Having constructed the PES the bound states of the system can be deter-
mined using a basis set of square integrable eigenfunctions (within Hilbert
space) expressed in a one-dimensional array form and the Hamiltonian H in
a matrix form. The equation can be solved by diagonalizing the H-matrix
and obtaining eigenvalues representing energy levels of the system. Increas-
ing the set of functions forming the H-matrix, the eigenvalues will converge
more and more to their exact value.

Highly floppy molecular motion is better described using a Discrete Variable
Representation (DVR) matrix [31] obtained by performing an orthogonal
transformation in which the basis function set is represented in a coordinate
space rather than in a functional space. Successive diagonalizations and
truncations lead to a reduction in the dimension of the analytical problem
and computational time [31].
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3.1.1 Computational Solution

A program has been written by Tennyson et al. [1] for performing nuclear
motion calculations using variational techniques (this is referred to as the
DVR3D program suite). It requires as input a PES and preliminary tests
are necessary in order to determine if they are appropriate to carry out the
calculations or if they need some adjustments.

DVR3D uses variational techniques, where the wave-functions Ψ are defined
by a complete set of weighted, orthogonal grid points expressed in Jacobi co-
ordinates. The program uses Legendre polynomials as angular basis functions
and either Morse oscillator-like functions or spherical oscillator as radial basis
functions.

In the case of C3, the linear equilibrium geometry encourages the use of Jacobi
coordinates R, r and α (see Figure 2.1) and Morse oscillator-like functions.
These functions are defined in terms of parameters that must be optimized
in order to achieve a balance between computer power, time expense and
the convergence of all the energy levels (the aim for this work is 0.01 cm−1

spectroscopic accuracy).

Due to the nuclear spin statistic of C3, some rotation-vibration symmetry
blocks are �missed �. This means for J even just ee (even-vibrational/even-
rotational wave-function) and oo symmetry will be considered, and for J odd
just the eo and oe blocks.

DVR3D allows not just bound rotation-vibration energy level calculations
but also wave-functions, expectation values and if a Dipole Moment Surface
is supplied, Einstein coefficients and temperature-dependent spectra. The
calculations to obtain an accurate infrared line-list can be very expensive
in terms of computer power and time, and test procedures are necessary to
evaluate the quality and goodness of the PESs and DMSs inputted into the
DVR3D program.
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3.2 Potential Energy Surface

Recently, three-dimensional Potential Energy Surfaces for the carbon trimer
have been constructed by fitting some ab-initio points calculated using the
MOLPRO suite [32] program (see Mladenovic et al.. [34] (MLAD), Jensen
et al. [23] and Ahmed et al. [19] (AHM1)Figure 2.5).

Jensen’s Potential energy surface is too bent to reproduce the l-doubling
sigma-delta splitting and it will not be used to perform test calculations
with DVR3D. The other two potential surfaces MLAD and AHM will be
analysed and tested. Both surfaces V have the following functional form:

V =
∑

i,j,k

Ci,j,kX
i
1X

j
2θ

k (3.2.1)

where X1 = q1+q2−2 and X2 = q1−q2 are the symmetric and antisymmetric
stretch coordinates respectively, θ is the bond-angle and Ci,j,k are parameters
obtained by MLAD and AHM by fitting the ab-initio points to calculate the
C3 PES.

A large basis set has allowed the MLAD PES to reproduce energy levels up
to 300 cm−1, above the zero-point energy, with good agreement (a standard
deviation of 7.3 cm−1) with experiments.

The AHM1 pure ab-initio PES is not as accurate as MLAD’s (it has an
average error of 61.6cm−1). Adjustments by a fitting of a few potential
coefficients to the available experimental data enables the AHM1 Potential
to give vibrational levels up to 8000cm−1 with a standard deviation of 2.8
cm−1 from the experimental data. A comparison between the two PESs is
given in Figure 3.1.

3.2.1 Energy Level Calculations Using the Mladenovic
et al.. and Ahmed et al.. PES

The ro-vibrational energy level calculation with J = 0 obtained using MLAD
and AHM1 PESs as input to the DVR3D program suite are shown in Ta-
ble 3.1.
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Figure 3.1: MLAD and AHM1 PESs as a function of the bond length q1. q2

is fixed at the equilibrium values and θ from the left top assumes the value
10 ◦, 60 ◦, 90 ◦, 120 ◦ respectively.

Table 3.1: Differences, in cm−1, between the experimen-
tal [20, 21, 16, 17, 18, 35, 22, 36] and calculated vibra-
tional energy levels. Calculations performed by Mlade-
novic [34] and Ahmed et al. [19] are compared with
our DVR3D calculations obtained respectively using the
MLAD and AHM PES’s.

Observed Obs−calc

ν1 ν2 ν3 G(ν) [34] MLAD [19] AHM

0 2 0 132.80 0.5 5.7 2.5 2.5
Continued on Next Page. . .
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Observed Obs−calc

ν1 ν2 ν3 G(ν) [34] MLAD [19] AHM

0 4 0 286.11 -2.7 -1.9 -0.7 -0.6
0 6 0 461.09 -11.0 -20.1 0.7 0.7
0 8 0 647.59 -15.1 -56.4 -1.2 -1.2
0 10 0 848.40 -19.1 -2.0 -2.1
1 0 0 1224.20 -5.3 1.9 5.2 5.1
1 2 0 1404.10 -1.0 7.3 1.8 -1.5
1 4 0 1590.05 0.1 3.4 0.1 0.1
0 18 0 1773.37 -0.1 -1.8
1 8 0 1990.52 -6.6 -43.6 -3.4 -3.5
0 0 1 2040.02 0.6 3.3 2.0 2.0
0 2 1 2133.89 4.7 -3.0 0.1 0.1
1 10 0 2210.50 -15.3 -0.7 -0.9
2 0 0 2435.20 -10.5 5.4 2.5 2.4
1 12 0 2439.90 1.4 1.0
0 24 0 2575.92 -0.4 1.0
2 2 0 2656.33 -3.9 -15.3 0.4 0.3
2 4 0 2876.90 -0.4 6.9 1.9 1.8
2 6 0 3099.90 -1.6 -3.6 3.3 3.1
1 0 1 3259.90 1.2 1.1
3 0 0 3636.10 0.1 -0.1
3 2 0 3894.30 -0.1 -0.4
0 0 2 4035.37 0.4 0.1
0 2 2 4110.89 2.4 2.2
3 4 0 4146.30 2.5 2.2
0 4 2 4211.33 3.9 3.6
0 6 2 4339.42 5.1 4.6
3 6 0 4392.78 2.4 2.0
2 0 1 4459.30 -0.8 -1.2
3 8 0 4641.03 2.9 2.4
0 10 2 4651.60 3.4 2.3
0 12 2 4832.50 3.4 2.0
4 0 0 4828.70 -1.3 -1.9
0 14 2 5029.00 4.4 -2.1
0 16 2 5236.60 4.1 -2.0
Continued on Next Page. . .
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Observed Obs−calc

ν1 ν2 ν3 G(ν) [34] MLAD [19] AHM

1 0 2 5265.40 -7.7 -8.3
1 2 2 5367.20 -7.1 -8.0
1 4 2 5495.40 -5.6 -6.4
1 6 2 5643.50 -4.1 -5.1
1 8 2 5809.10 -2.4 -4.0
5 0 0 6013.60 -1.7 -3.1
6 0 0 7191.30 -0.9 -4.8
7 0 0 8361.50 0.3 -6.4

The calculations were performed up to energy levels of 12500 cm−1(Ahmed [19])
where a conical intersection with an electronic exited state PES forbid further
calculations using the present method.

To reproduce accurate spectra of cool star atmospheres in the temperature
range of 2000 − 4000 K it is necessary to perform calculations with a high
rotational quantum number. Considering that the calculated and observed
rotational constant is about 0.4cm−1 at an energy of 12000 cm−1, J should
be approximately 86 (from equation 2.2.4). For this reason, energy levels
with J À 0 have been tested. See Tables 3.1 for the MLAD and AHM1 PES
and comparison with experimental data. Both potential surfaces will need
some adjustments and probably a fit with experimental data could increase
the accuracy of the results.

3.2.2 Testing Procedure and Unexpected Levels

As we already said, a potential energy surface represents the electronic po-
tential energy field of a chemically bonded system for each geometric config-
uration of the carbon nuclei.

This surface needs to cover the whole range of nuclear configurations without
regions or points in which the value of the energy is unreliable.
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During the testing procedure to optimize DVR3D parameters, the AHM PES
presented an unexpected and unreasonable behaviour. In particular, when
varying the values of the scattering coordinates R and r over certain values,
unexpected lines are found to appear.

As we have already seen, the AHM potential energy surface is given in sym-
metric and antisymmetric stretch coordinates X1, X2 and θ. A transforma-
tion is therefore necessary to transform into Jacobi coordinates r, R and α
(the coordinate system used in the DVR3D program).

A subroutine written in Fortran performs the transformation between the

Figure 3.2: C3 coordinate systems: Bond-Length and Jacobi
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Bond-Length coordinates (q1, q2 and θ) and the Jacobi coordinates (R, r,
XCOS =cos(α)) using following relationships:

Y Y =
(q2

2

)
(3.2.2)

R = r

(√
q2

1 − q2 cos(β)q1 +
q2

2

4

)
(3.2.3)

r = q2 (3.2.4)

XCOS =

q2
2

2
− q1q2 cos(β)

q2

√
q2

1 − q2 cos(β)q1 +
q2
2

4

(3.2.5)

It seemed that over certain values the PES presented holes that are points (or
molecular configurations) for which it does not give reliable energy values.

It was necessary to make some adjustments to the AHM PES in order to
use it within DVR3D. To calculate where the PES stopped working properly
it was first necessary to perform a coordinate transformation into Jacobi
coordinates in order to have a comparable reference to AHM PES features
(expressed in bond-length). Deriving the expressions for (q1, q2 and θ) from
equation (3.1.2) it is possible to rewrite the PES in Jacobi coordinates as
follows (from equation 3.1.1)

V =
∑

i,j,k

Ci,j,kJ
i
1J

j
2J

k
3 (3.2.6)

where

J1 = r1 − 2re +

√
r1

2

4
− r2 cos(α)r1 + r2

2, (3.2.7)

J2 =

√
r1

2

4
− r2 cos(α)r1 + r2

2 − r1, (3.2.8)
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J3 = cos−1


 r1r2 cos(α)− r1

2

2

r1

√
r1

2

4
− r2 cos(α)r1 + r2

2


 , (3.2.9)

C3 has a conical intersection at 12500 cm−1 (Vlim) as shown already in Fig-
ure 2.5, this is because at the equilateral triangle configuration the ground
state potential energy surface overlaps with an exited state surface; this
means that the energy level calculations should be stopped at V=Vlim in-
cluding a constraint for the AHM PES expression. Introducing deformation
coordinates makes it easy to find out which conditions need to be added in
order to constrain the PES to the region of interest. Deformation coordinates
are defined as

S1 =
Q1 + Q2 + Q3 − 3r√

3
, (3.2.10)

S2 =
Q2 −Q1√

2
, (3.2.11)

S3 =
−Q1 −Q2 + 2Q3√

6
, (3.2.12)

tan φ =
S1

S2

, (3.2.13)

=
√

3
Q2 −Q1

−Q1 −Q2 + 2Q3

, (3.2.14)

φ = tan−1

( √
3(Q2 −Q1)

−Q1 −Q2 + 2Q3

)
, (3.2.15)

S =

√
2

3
(Q1 + Q2 + Q3), (3.2.16)

Q3 =
√

Q2
1 + 2Q2 cos(θ)Q1 + Q2

2. (3.2.17)

Imposing equilateral configurations Q1=Q2=Q3 the above equations become

S1 = 3
Q2− r√

3
, (3.2.18)
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S2 = 0, (3.2.19)

S3 = 0, (3.2.20)

S =

√
2

3
3Q2 =

√
6Q2, (3.2.21)

It was found that the conditions for R < 2.6d0 and R < 2.0689d0 ∗ (r −
1.55d0) correspond avoidance of the regions where the PES shows an incorrect
behaviour (see Figure 3.3). The line

R = 2.0689d0 ∗ (r − 1.55d0), (3.2.22)

was traced so as to cut the surface at the point beyond which the hole appears.
The coefficients of the line were found through an empirical search varying
them until the correct cut was obtained. The constraint S1 > 0.835703437d0
is found from equation 3.1.24. This imposes the maximum value for Q cal-
culated using the triangle rule with the fixed value R = 2.6d0.

All of these conditions need to be combined with the other constraint xcos <
0.45d0 corresponding to the value where DVR3D stops calculating values for
each angular grid-point.

A program was written with MathematicaTMto produce a visual representa-
tion of the PES behaviour and applying the corrections.

The MathematicaTMprogram performs

� PES coordinate transformation from Bond-Length to Jacobi coordi-
nates and plots (see Figure 3.3) representations of PES in Jacobi co-
ordinates. This allows one to visualize the PES holes and the regions
where critical values are encountered.

� contour plots of the surface (Figure 3.4) fixing the range for R and r
and visualizing them together with the lines used to cut the PES, such
as Equation 3.2.22.

The following lines were used in the Fortran subroutine to implement the
constraints when running DVR3D to perform energy levels calculations:
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IF(S1 > 0.835703437d0 ∧ xcos < 0.45d0) ⇒ V = VLim (3.2.23)

IF(R < 2.6d0 ∧ xcos < 0.45d0) ⇒ V = VLim (3.2.24)

IF(R < 2.0689d0 ∗ (r1− 1.55d0) ∧ xcos < 0.45d0) ⇒ V = VLim (3.2.25)

Adding these constraints to the PES the problem of the appearance of un-
expected lines was partially resolved as shown in Table 3.2.

Having constrained the PES to resolve the issue of unexpected lines in the
spectra we must be aware that too many surface constraints could lead to
problems in convergence. The issue of convergence is addressed in the next
section.

3.2.3 Convergence Tests

Definition of Convergence

Convergence describes the tendency of a quantity towards a certain value
and in this particular case sets the accuracy of energy level calculations.

The Energy level convergence needs to be achieved finding optimal value for
the DVR3D parameters. A compromise between accuracy and computational
time needs to be taken into consideration when radial and angular points are
chosen in DVR3D and when the dimensions of the vibrational and rotational
problem are set.

Testing Proceedure

Convergence tests for the pure vibrational problem were performed for J = 0.
Parameters were chosen in order to perform a correct description of the
molecular system using DVR3D as a computational theoretical tool. DVR3D
requires as input a file with 9 lines in which all the settings can be specified
[1].
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Table 3.2: Vibrational energy levels calculations performed by Ahmed
et al. [19] are compared with DVR3D calculations obtained respectively using
the AHM and Corrected AHM PES’s.

Energy (cm−1)

ν1 ν2 ν3 AW04 [19] AHM Corr AHM

0 0 0 0 0 0
0 2 0 137.99 137.97 137.97
0 4 0 294.51 294.46 294.46
0 6 0 468.09 468.08 468.08

653.73
0 8 0 656.49 656.49 656.50
0 10 0 858.1 858.16 858.20
0 12 0 1072.06 1071.32 1072.27

1073.17
1 0 0 1226.7 1226.77 1226.77
0 14 0 1297.43 1296.70 1298.22
1 2 0 1410 1410.08 1410.08

1483.92
0 16 0 1533.97 1537.59 1535.07
1 4 0 1597.65 1597.66 1597.67
0 18 0 1781.17 1764.15 1775.14
1 6 0 1794.51 1794.59 1794.59

1915.63 1978.3
1 8 0 2001.62 2001.73 2001.73
0 20 0 2038.79
0 0 1 2045.72 2045.68 2045.69

2079.16
0 2 1 2141.49 2141.49 2141.49

2158.80
1 10 0 2218.9 2219.03 2219.07

2235.25
0 4 1 2268.92 2268.92
0 22 0 2306.43 2315.56 2411.92
0 6 1 2418.38 2418.40
2 0 0 2440.4 2440.514 2440.52
1 12 0 2446.2 2446.24 2446.63

2472.79
0 24 0 2584.02 2521.45
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Figure 3.3: 3D Plots for AHM PES expressed in Jacobi coordinates fixing α
values (π/4, 6π/20, 7π/20, 8π/20, 9π/20, π/2))

� NPNT1/NPNT2 number of DVR points in R/r from Gauss-(associated)
Laguerre quadrature.

� NALF number of DVR points in θ from Gauss-(associated) Legendre
quadrature.

� MAX3D maximum dimension of the final Hamiltonian.

� EMAX2 is the second cut-off energy in cm−1 with the same energy
zero as the potential.

64



Figure 3.4: Contour plots in Jacobi coordinates fixing α values
(π/4, 6π/20, 7π/20, 8π/20, 9π/20, π/2) and line equation used to cut the po-
tential energy surface to avoid holes.

� ZCUT= True final dimension selected using an energy cut-off given
by EMAX2.

� ZCUT= False final dimension determined by MAX3D.

The number of radial and angular points and the Hamiltonian dimension
were chosen. The initial values were set considering specific properties of the
molecule and its PES, and then iteratively optimized.
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First step Radial numbers (NPNT1, NPNT2) optimization.

� Morse oscillator parameter (re, ωe, De) varied until the stability of
energy levels results is demonstrated.

� fixing Morse parameters NPNT is varied until the energy level differ-
ences between previous and successive calculations are at the accuracy
of order of 0.01 cm−1.

Second step Number of angular functions (NALF) and Hamiltonian dimen-
sion optimization.

� Setting values for ZCUT = False, NALF = 80 and MAX3D = 2000
(these are set according to experience from previous calculations) the
output at the calculation will give a value for the energy in wavenumber
E∗.

� Test the energy level stability with values ZCUT = True, NALF = 90,
MAX3D = 3000 and Emax3D = E∗.

Then optimal values for: re, we, De should be found for both radial and Jacobi
coordinates.

Results

The final optimized values are:

� Radial number of points for R = 56, for r = 26 and the angle is α = 80.

� Hamiltionian dimension is 2000.

� Morse oscillators optimized parameters expressed in a.u. are

– re = 3.675, e1 = 0.005, De1 = 0.3

– re = 2.585, e2 = 0.010, De2 = 0.3.
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Issues and Futher Work

An important parameter to determine is the size of the Hamiltonian in the
DVR3D rotation module ROTLEV3. This value called IBASS has to be
determined empirically in order to reach energy level convergence. It was
partially determined but further tests are necessary.

Tests were also done for several quantum numbers J . When looking at
large J , a problem was encountered with the program used to perform the
calculations.

Early test results for J = 20 shows that the possible value for IBASS has to
be greater than 750. Further tests to find a value for IBASS are necessary
with J at larger than at least 40.

3.3 Dipole Moment Surface

The second thing needed to calculate a line-list is a reliable Dipole Moment
Surface (DMS).

3.3.1 Constuction of a DMS

As described for the PES, a DMS is built by interpolating ab-initio dipole
moment components estimated for each nuclear geometric configuration using
appropriate functional forms. The C3 molecule has no permanent dipole
moment but the displacements from equilibrium induce a dipole moment
component.

Comparison of ab-initio and Fitted Dipole Moment Surfaces for C3

If a working DMS is already available, one can compute transition intensities
without performing ab-initio calculations and interpolation. In the case of
C3, ab-initio dipole moment calculations are already available. These were
kindly provided by Colin Western, School of Chemistry, University of Bristol.
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The 587 ab-initio points (for each component) were calculated by Ahmed at
et al. [19] (AHM2) using the MRCI (Multi-Reference Configuration Iteration)
method with the MORPLO Package [32].

Despite the availability of ab-initio dipole surfaces for C3 previously con-
structed by Jorgensen et al.. [37] (JORG) and Jensen et al. [23] (JENS),
we decide to built a new DMS due to the higher quality of AHM ab-initio
calculations for the reason explained below.

3.3.2 The Jorgensen and Jensen DMS

The surfaces of Jorgensen [37] were obtained to an accuracy sufficient for the
astrophysical predictions that their work required. It will not be tested here
but these results have been compared with my calculations (see table 3.5
and 3.4). While Jorgensen placed less emphasis on describing the properties
of the molecule near equilibrium geometry, Jensen et al.. [23] focused their
study instead on the behaviour near the equilibrium configuration.

The JENS DMSs were tested and comparisons made to test the new DMS.
The JENS DMS was constructed by fitting the p and q molecular dipole
moment components (see Figure 3.5 where axes x and z represent p and q
axes) for θ between 180 ◦ (linear) and 90 ◦ and bond lengths from 1.16 to 1.43
Å. Dipole moments were calculated using the MOLECULE-SWEDEN code
[38]. But JENS final fit shows insufficient numerical stability; for this reason,
and because of the larger AHM ab-initio grid points range, we believe that
the AHM MRCI ab-initio calculations should be used instead.

3.3.3 A New Formulation of the DMS

AHM’s functions were calculated for θ between 180 ◦ (linear) and 60 ◦ (equi-
lateral triangle geometry) and bond lengths ranging from 0.4 Å to 1.29497Å.

AHM ab-initio points were fitted using a functional form proposed by Par-
tridge and Schwenke(PS) [33] to study the water problem. It has been neces-
sary to perform a coordinate transformation between the coordinate reference
system used by AHM and the one used by Partridge. The carbon atoms are
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set in the xz plan with the central atom at the origin of the system and the

remaining atoms having coordinates (atom 1) x = q1 cos(
θ

2
), z = q1 sin(

θ

2
)

and (atom 2) x = q2 cos(
θ

2
) , z = −q2 sin(

θ

2
). The coordinate system is shown

in Figure 3.5.

Figure 3.5: Partridge and Schwenke(PS) [33] coordinates system C3.
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1) The PS Function

The choice of the dipole moment functional form is important to describe
the correct behaviour.

The PS function is given by

~µ (q2, q1, θ) = q (q1, q2, θ) ( ~xC1 − ~xC2) +

+q (q2, q1, θ) ( ~xC3 − ~xC2) (3.3.1)

with

q (q1, q2, θ) = exp(−β(q1 − re)
2)

(
nr∑

i=1

Ci

(
q2 − re

re

)i
)

+ exp(−βq1 − re)
2)

∑

ijk

Cijk

(
q2 − re

re

)i (
q2 − re

re

)j

× (cos θ − cos θe)
k (3.3.2)

with the second sum having:

i + j + k ≤ nθ, (3.3.3)

j + k > 0, (3.3.4)

i + j ≤ nr, (3.3.5)

nr ≤ nθ (3.3.6)

The PS function is controlled by two terms nr and nθ and their value is
limited by the number of radial and angular points. The parameters Cijk

Ci are calculated using a linear least-squares fit. The fit was obtained for q
using a Mathematica program written by Lorenzo Lodi (UCL). This is set
out in Table 3.3.

During the fitting procedure some points have been added to constrain be-
haviour in equilateral triangle configurations where a zero dipole moment is
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expected by symmetry. The final fit chosen has nθ = 7 and nr = 4, Table
3.3 gives the results. The value used for re is 2.46 a.u and θe corresponds to
the linear configuration.

Table 3.3: AHMPS Fit parameters in a.u, with nr = 4,
nθ = 7 and β = 3.7

i j k q i j k q

0 0 0 -0.1854 1 1 0 0.0467
1 0 0 1.0897 1 1 1 15.0394
2 0 0 -6.1417 1 1 2 -102.5349
3 0 0 28.6315 1 1 3 224.6806
4 0 0 -31.7287 1 1 4 -190.0721
0 0 1 0.1920 1 1 5 53.2123
0 0 2 -1.4374 1 2 0 4.5036
0 0 3 7.4693 1 2 1 -177.7461
0 0 4 -17.7946 1 2 2 712.8167
0 0 5 20.8125 1 2 3 -935.1822
0 0 6 -11.8490 1 2 4 387.0837
0 0 7 2.6297 1 3 0 8.2939
0 1 0 -0.2030 1 3 1 -67.2054
0 1 1 -1.4017 1 3 2 -61.9312
0 1 2 10.8417 1 3 3 71.1487
0 1 3 -31.3581 2 0 1 -3.5201
0 1 4 42.5052 2 0 2 64.7173
0 1 5 -28.4328 2 0 3 -172.0531
0 1 6 7.7838 2 0 4 158.1754
0 2 0 0.4010 2 0 5 -46.1796
0 2 1 11.7281 2 1 0 -12.0753
0 2 2 -59.9290 2 1 1 93.3593
0 2 3 123.2878 2 1 2 -367.7184
0 2 4 -104.7863 2 1 3 492.3506
0 2 5 30.5536 2 1 4 -207.8296
0 3 0 -3.9754 2 2 0 -6.0008
0 3 1 -42.3832 2 2 1 -74.5952
0 3 2 108.2957 2 2 2 361.8279
Continued on Next Page. . .
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i j k q i j k q

0 3 3 -90.6804 2 2 3 -239.6715
0 3 4 24.3682 3 0 1 -28.6117
0 4 0 -23.7117 3 0 2 118.5863
0 4 1 234.0460 3 0 3 -168.7359
0 4 2 -387.7413 3 0 4 67.9076
0 4 3 174.0015 3 1 0 34.6425
1 0 1 0.5393 3 1 1 -336.1718
1 0 2 -7.2829 3 1 2 474.0681
1 0 3 19.9636 3 1 3 -217.1211
1 0 4 -25.0169 4 0 1 -91.5287
1 0 5 16.7842 4 0 2 290.5264
1 0 6 -5.0748 4 0 3 -164.9791

3.3.4 Comparison of DMSs

Having constructed a DMS we are faced with the problem of evaluating how
good it is. In order to choose a good DMS we need to perform tests and make
comparisons between all data available. The problem is that there are not
many experimental or observational absolute intensity measurements. The
data available are from Treffers and Gilda [39], Kramer and Jorgesen [37]and
Jensen et al.. [23].

A program to calculate dipole transition intensities, the DIPOLE3, is avail-
able as part of the DVR3DRJ package [1].

Vibrational transition moments reported by Jensen [23] were compared with
values obtained using DIPJ0DVR [40]. This program needs as input an
accurate and smooth DMS to perform detailed investigations.

Comparison between previous calculations and the new one using the AHM-
PART DMS are shown in Table 3.4.
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The AHMPART DMS shows a good agreement with all data available and
this is the one I recommend using to perform the C3 transition intensity
calculations. Calculations using the AHMPART DMS fit with DIPOLE3
module and comparison with previous calculations performed by Jensen [23]
are shown in Table 3.5

In conclusion, a wide overview of the C3 molecular system and all prepara-
tory work for line list calculation have been described. Future work will
involve performing other necessary tests and starting the actual calculations
to complete this line list computational project.
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Chapter 4

Conclusion

4.1 Summary

In conclusion, a wide overview of the C3 molecular system and all prepara-
tory work for line list calculation have been described. The preparatory
work for calculating the C3 line list aimed to carry out testing procedures
and building analytical tools needed to develop the final calculations for the
line list. Investigations of properties of this molecule and theoretical calcula-
tions of its infrared absorption spectrum are important for determining some
essential parameters used in modelling reliable dynamics of atmospheres of
cool C-rich stars. The program used to calculate C3 energy levels (DVR3D)
needs as input a Potential Energy Surface (PES). This function describes the
electron energy distribution for each nuclear configuration. The quality of
the PES determines the accuracy of the energy level calculations. In order
to select the most reliable, tests on two C3 PESs taken from the literature
have been performed. Energy level convergency tests have been carried out
and DVR3D parameter optimization has been described. Further, a dipole
moment surface (DMS) was built fitting ab-initio dipole component points
[19] using a PS functional form [33]. The DMS can be used in DVR3D to
determine the transition intensities. What is next?
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4.2 Future Work

Future work will involve performing other necessary tests and starting the
actual calculations to complete this line list computational project. First, it
will be necessary to test and choose the value for IBASS as explained in the
last section. This is the only parameter left to test in DVR3D before start-
ing performing energy level calculations. The output file printed out running
ROTLEV is used by the DIPOLE module to perform transition intensity
calculations. The parameters to set in DIPOLE are the number of eigen-
functions considered and the energy of the ground state [1]. Calculations of
a large enough number of energy levels allows the use of Boltzmann statis-
tics to determine partition functions. It is the module SPECTRA in DVR3D
that allows one to perform those calculations. Accurate opacity value for C3

could allow a better modeling of atmospheric dynamics in those stars where
C3 molecules play an important role. I hope the preparatory work explained
in this report can support future work.
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