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Abstract
We report molecular genetic analysis of 42 affected individuals referred with a diagnosis of

aniridia who previously screened as negative for intragenic PAX6mutations. Of these 42,

the diagnoses were 31 individuals with aniridia and 11 individuals referred with a diagnosis

of Gillespie syndrome (iris hypoplasia, ataxia and mild to moderate developmental delay).

Array-based comparative genomic hybridization identified six whole gene deletions: four

encompassing PAX6 and two encompassing FOXC1. Six deletions with plausible cis-regu-
latory effects were identified: five that were 3ʹ (telomeric) to PAX6 and one within a gene

desert 5ʹ (telomeric) to PITX2. Sequence analysis of the FOXC1 and PITX2 coding regions

identified two plausibly pathogenic de novo FOXC1missense mutations (p.Pro79Thr and p.

Leu101Pro). No intragenic mutations were detected in PITX2. FISH mapping in an individual

with Gillespie-like syndrome with an apparently balanced X;11 reciprocal translocation

revealed disruption of a gene at each breakpoint: ARHGAP6 on the X chromosome and

PHF21A on chromosome 11. In the other individuals with Gillespie syndrome no mutations

were identified in either of these genes, or in HCCS which lies close to the Xp breakpoint.

Disruption of PHF21A has previously been implicated in the causation of intellectual disabil-

ity (but not aniridia). Plausibly causative mutations were identified in 15 out of 42 individuals

(12/32 aniridia; 3/11 Gillespie syndrome). Fourteen of these mutations presented in the

known aniridia genes; PAX6, FOXC1 and PITX2. The large number of individuals in the

cohort with no mutation identified suggests greater locus heterogeneity may exist in both

isolated and syndromic aniridia than was previously appreciated.

Introduction
Abnormal development of the iris is a feature of a variety of congenital human ocular anoma-
lies, of which, the best characterized is complete aniridia (MIM 106210), a dominantly inher-
ited condition with an incidence of less than 1 in 50,000 [1]. Aniridia presents as congenital
absence of the iris, although a visible partial rim or sector of iris tissue strand is often present
[2]. Foveal hypoplasia, cataract, keratopathy and glaucoma sometimes develop in second or
third decade contributing to visual morbidity [3]. Non-ocular anomalies including hyposmia
and structural brain changes are sometimes observed in individuals with complete aniridia [4].

At least 90% of aniridia cases are caused by heterozygous loss-of-function mutations in
PAX6 [5]. Almost all cases of classical aniridia associated with PAX6 haploinsufficiency present
with foveal hypoplasia. Heterozygous, presumed hypomorphic, missense mutations in PAX6
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have also been associated with other ocular diseases including anterior segment dysgenesis [6]
and optic nerve malformations [7]. Rarely, isolated aniridia is caused by mutations in FOXC1
[8,9] or PITX2 [10]. Mutations in these genes are more commonly associated with juvenile-
onset glaucoma [11] and anterior segment dysgenesis [12–14] presenting with syndromic fea-
tures of rare cardiac anomalies for FOXC1 and hypodontia and umbilical anomalies for PITX2.

Several syndromic forms of iris developmental anomalies have been described. The best
known is WAGR (Wilms’ tumour, aniridia, genital anomalies and mental retardation; MIM
194072), a contiguous deletion syndrome on 11p13 [15]. Gillespie syndrome (MIM 206700) is
characterized by a pathognomonic iris anomaly; absence of the pars pupillaris of the iris and
the pupillary border. Individuals with Gillespie syndrome are also distinguished from complete
aniridia by having a normal fovea and no evidence of progressive opacification of the cornea
and lens, nor development of glaucoma. The extraocular features are non-progressive cerebel-
lar ataxia and psychomotor delay [16]. Several cases of Gillespie syndrome have been reported
[17–39].

In the literature, Gillespie syndrome has been most commonly considered to be an autoso-
mal recessive disorder [36–38]. Analysis of the PAX6 gene in six Gillespie syndrome patients
revealed no intragenic mutations [20,26,40]. PAX6mutations have been reported in two indi-
viduals [33,39] described as Gillespie syndrome but with significantly atypical features such as
corectopia and ptosis (33). A single affected girl described as having a Gillespie syndrome-like
phenotype has been reported with an apparently balanced X:autosome reciprocal translocation
t(X;11)(p22.32;p12) [22] and atypical features of superior coloboma, foveal hypoplasia and ver-
mis hypoplasia. This case is included in this study as individual 1371.

Here, we report genomic copy number and extended mutation analysis in 42 unrelated
affected individuals all of whom had been scored as negative for intragenic PAX6mutations.
Eleven of these probands had been referred to us with a diagnosis of Gillespie syndrome and 31
with non-syndromic aniridia. One of the 11 Gillespie syndrome individuals was the case with
the apparently balanced reciprocal translocation t(X:11)(p22.32;p12) [22]. In this case we used
FISH to map both breakpoints. In total, 15 plausible disease-causing heterozygous loss-of-
function mutations were identified: nine affecting PAX6, four affecting FOXC1, one affecting
PITX2 and one affecting PHF21A. These data suggest that other disease loci or mutational
mechanisms causing aniridia remain to be discovered.

Materials and Methods

Patient samples
All aspects of this study were performed in accordance with the Declaration of Helsinki. Writ-
ten informed consent was obtained from the participants and recorded. The study was
approved by the UKMulticentre Regional Ethics Committee under the number 06/MRE00/76.
All patients were phenotypically characterized by experienced ophthalmologists or geneticists.
The study cohort consisted of 42 unrelated individuals with aniridia or Gillespie syndrome (S1
Table) each of whom had been previously screened for intragenic PAX6mutations by single-
strand conformation polymorphism (SSCP), denaturing high performance liquid chromatog-
raphy (DHPLC) and direct sequencing (S2 Table).

DNA preparation and quality control
Genomic DNA was prepared from either lymphoblastoid cell lines (LCL) or saliva using a
Nucleon DNA extraction kit (Tepnel Life Sciences, UK). DNA quality was checked by agarose
gel electrophoresis and NanoDrop spectrophotometry (Thermo Scientific).
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Array comparative genomic hybridization (aCGH)
Genome-wide analysis of DNA copy number was carried out using the Roche Nimblegen
12X135k whole-genome array (median probe spacing of approximately 12 kb) according to the
manufacturer’s instructions with minor modifications, as described previously [41].

Targeted analysis of genomic deletions/duplications was performed using a customized oli-
gonucleotide microarray (Agilent Technologies) consisting of 44,000 60-mer oligonucleotide
probes (4X44k), designed using eArray (Agilent Technologies). The design consisted of a 3 Mb
genomic region (chr11:30,262,916–33,296,085; hg18) containing the PAX6 gene with an aver-
age probe spacing of 76 bp. ‘Dye-swap’ experiments were performed followed by copy number
analysis, as previously described [42].

Polymerase chain reaction (PCR) and mutation analysis
Primer sequences and PCR conditions used for amplification and sequencing of the FOXC1,
PITX2, PHF21A and ARHGAP6 genes are provided in S2 Table. PCR reactions were performed
in 12μl volumes containing 1μl of 1-in-20 diluted, whole-genome amplified DNA (Genomiphi,
GE Healthcare), 6μl of 2 X ReddyMix PCRMastermix (Abgene), 833 nM of each oligonucleo-
tide primer and 2.4μl of 5 X GC-mix (where appropriate). PCR conditions generally consisted
of an initial denaturation at 95°C for 5 minutes, followed by 32 cycles of 94°C for 60 seconds,
primer annealing for 60 seconds, and 72°C for 60 seconds, and a final cycle of 72°C for 10 min-
utes. The products were visualized using agarose gel electrophoresis to ensure adequate yield
and proper sizing of each exon fragment. Sequencing of PCR products was performed in both
directions as described elsewhere [43]. Sequence traces were analyzed using Mutation Surveyor
sequence analysis software version 3.30.

Fluorescence in situ hybridization (FISH)
Metaphase spreads for FISH were prepared from patient lymphocytes as described elsewhere
[44]. BAC clones were selected from the Ensembl database (http://www.ensembl.org) or the
UCSC Human Genome Browser (http://genome.ucsc.edu) and ordered from the BACPAC
resources centre (Children’s Hospital Oakland Institute). For the initial mapping of the clones,
DNA was isolated using a rapid alkaline lysis miniprep method (Qiagen mini/midi plasmid
kit). Probes were labeled with biotin-16-dUTP or digoxigenin-11-dUTP (Roche) by nick trans-
lation. Probe labelling, DNA hybridization and antibody detection were carried out as
described previously [45]. Following hybridization, slides were mounted with a drop of Vector-
shield antifadent containing DAPI (Sigma). Antibody detection was carried out by fluorescent
microscopy using a Zeiss Axioscop microscope. Images were collected using a cooled CCD
(charged coupled device) camera and analyzed using SmartCapture software (Digital
Scientific).

Results

Patient cohort
Our study cohort consisted of 42 unrelated individuals (14 male, 28 female) with iris develop-
mental anomalies (Table 1, S1 Table). Eleven of these individuals (2 male, 9 female) had been
referred to us with a diagnosis of Gillespie syndrome including individual 1371 who had been
previously reported with an apparently balanced reciprocal translocation: t(X;11)(p22.32;p12)
[22]. Each proband had been scored negative for intragenic PAX6mutations by SSCP, DHPLC
and/or direct sequencing in our lab.
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DNA copy number analysis of the PAX6 locus
To identify causative segmental aneuploidy, two array-based comparative genomic hybridiza-
tion (aCGH) approaches were used: a 135k whole-genome array and a custom-designed tar-
geted array covering a contiguous 3 Mb genomic region (chr11:30,262,916–33,296,085; hg18)
encompassing PAX6. This identified four individuals with heterozygous deletions, all encom-
passing PAX6 and ranging in size from 96 kb to 650 kb: individual 2193 (chr11:31,199,000–
31,849,000; hg18), individual 377 (chr11:31,394,000–31,914,000; hg18), individual 1510
(chr11:31,779,000–31,933,000; hg18) and individual 1977 (chr11:31,698,271–31,794,414; hg18)
(Table 1, Fig 1, S1 Fig). Five individuals had deletions with breakpoints immediately telomeric

Table 1. Details of the clinical diagnoses and genetic pathology identified in individuals in this study.

Individual ID DECIPHER ID Clinical feature Genetic pathology Genomic coordinates (hg18)

1851 (control) 323119 Aniridia PAX6 deletion (previously identified by FISH) chr11:21,254,000–32,564,000

2193 323118 Aniridia PAX6 whole-gene deletion chr11:31,199,000–31,849,000

377 323104 Aniridia PAX6 whole-gene deletion chr11:31,394,000–31,914,000

1510 323113 Aniridia PAX6 whole-gene deletion chr11:31,779,000–31,933,000)

1977 323116 Aniridia PAX6 whole-gene deletion chr11:31,698,271–31,794,414

1514 323114 Aniridia PAX6 telomeric deletion chr11:30,874,642–31,654,833

753 323108 Aniridia PAX6 telomeric deletion chr11:30,967,000–31,704,000)

555 323106 Aniridia PAX6 telomeric deletion chr11:31,108,579–31,649,842)

2014 323117 Gillespie syndrome PAX6 telomeric deletion chr11:31,234,395–31,751,815

659 323107 Aniridia PAX6 telomeric deletion chr11:31,379,000–31,708,000)

1449 323112 Gillespie syndrome FOXC1 whole-gene deletion chr6:1,543,591–1,675,085

1246 323110 Aniridia FOXC1 whole-gene deletion chr6:1,543,591–1,675,085

1839 Aniridia FOXC1 c.235C>A p.(Pro79Thr) de novo Not applicable

1634 Aniridia FOXC1 c.302T>C p.(Leu101Pro) de novo Not applicable

1194 323109 Aniridia PITX2 telomeric deletion chr4:111,994,000–115,504,000

1371 n/a Gillespie syndrome Translocation t(X;11)(p22.32;p12) See Fig 5

doi:10.1371/journal.pone.0153757.t001

Fig 1. Identification of PAX6whole-gene deletions.Genome-wide array CGH analysis identified a 650 kb deletion in individual 2193 (chr11:31,199,000–
31,849,000), a 520 kb deletion in individual 377 (chr11:31,394,000–31,914,000), a 154 kb deletion in individual 1510 (chr11:31,779,000–31,933,000) and a
96 kb deletion in individual 1977 (chr11:31,698,271–31,794,414), all involving PAX6. Red bars show the position of the deletions. Genes transcribed on the
forward strand are in blue and those transcribed on the reverse strand are in green, also indicated by arrows. Genomic coordinates are based on the Human
Genome Assembly hg18.

doi:10.1371/journal.pone.0153757.g001
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to PAX6: individual 1514 (chr11:30,874,642–31,654,833; hg18), individual 753
(chr11:30,967,000–31,704,000; hg18), individual 555 (chr11:31,108,579–31,649–842; hg18),
individual 2014 (chr11:31,234,395–31,751,815; hg18) and individual 659 (chr11:31,379,000–
31,708,000; hg18) (Table 1, Fig 2, S2 Fig). Combining these with published data, we suggested a
243.9 kb critical region for PAX6 transcriptional activation between chr11:31,379,000 (hg18)
and chr11:31,622,916 (hg18) (Fig 2).

Mutation analysis of the FOXC1 locus
An apparently identical 131 kb deletion (chr6:1,543,591–1,675,085; hg18) encompassing
FOXC1 was identified as a de novo occurrence in two unrelated individuals 1449 and 1246
(Table 1, Fig 3). Each of these deletions had been confirmed in an independent UK laboratory
using an alternative method. Furthermore, the two individuals were shown to be distinct based
on their aCGH profile of genome-wide copy number variants (data not shown). We then
screened FOXC1 in our cohort by direct sequencing. Two individuals were found to carry mis-
sense mutations in the FOXC1 fork-head domain (Table 1, Fig 3). Individual 1839 had a C>A
transversion in codon 79 (c.235C>A, p.(Pro79Thr)) and individual 1634 had a novel T>C
transition in codon 101 (c.302T>C, p.(Leu101Pro)). In both individuals, the mutations were
absent from the unaffected parents and had most likely occurred de novo (Fig 3). The amino
acid substitution p.(Pro79Thr) has been reported previously in a family with classical Axen-
feld-Rieger syndrome and the mutant protein has impaired nuclear localization and transacti-
vation activity [46]. The novel p.(Leu101Pro) mutation is predicted to disrupt the second alpha
helix of the fork-head domain.

Fig 2. Identification of regulatory deletions telomeric to PAX6. Regulatory deletions telomeric to PAX6were identified in individual 1514
(chr11:30,874,642–31,654,833), individual 753 (chr11:30,967,000–31,704,000), individual 555 (chr11:31,108,579–31,649–842), individual 2014
(chr11:31,234,395–31,751,815) and individual 659 (chr11:31,379,000–31,708,000). The schematic diagram shows how the ‘critical region’ (delimited by
grey dotted lines) required for PAX6 transcriptional activation was delineated by combining our data with published deletions with known coordinates
[55,67,68]. PAX6 regulatory deletions from the present study are shown by red blocks. Genes transcribed on the forward strand are in blue and those
transcribed on the reverse strand are in green, also indicated by arrows. Genomic coordinates are based on the Human Genome Assembly hg18.

doi:10.1371/journal.pone.0153757.g002
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Mutation analysis of the PITX2 locus
Array CGH identified a 3.5 Mb deletion of 4q25-q26 (chr4:111,994,000–115,504,000; hg18) in
individual 1194 (Table 1, Fig 4). This deletion encompasses 8 genes (Fig 4). The centromeric
breakpoint is located in a gene desert 230 kb telomeric (5ʹ) to PITX2 encompassing several con-
served PITX2 enhancer elements [47]. Subsequent screening of the PITX2 coding sequence in
our cohort revealed no plausible disease-causing mutations.

Fig 3. Mutation analysis of the FOXC1 locus. (A)Genome-wide array CGH identified two deletions encompassing the FOXC1 gene in individuals 1449
(chr6:1,543,591–1,675,085) and 1246 (chr6:1,543,591–1,675,085). (B) Direct sequencing of the FOXC1 coding region identified a heterozygous substitution
in individual 1839 (c.235C>A, p.(Pro79Thr)) and another in individual 1634 (c.302T>C, p.(Leu101Pro)). FOXC1mutation screening in unaffected parents of
both patients showed that the mutations had occurred de novo. The locations of both mutations within the fork-head domain of the FOXC1 protein are
indicated by vertical arrows. Genes transcribed on the forward strand are in blue and those transcribed on the reverse strand are in green, also indicated by
arrows. Genomic coordinates are based on the Human Genome Assembly hg18. The genomic sequence identifier for FOXC1 is NG_009368.

doi:10.1371/journal.pone.0153757.g003
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Breakpoint mapping of a translocation in an individual with Gillespie
syndrome
FISH was used to map the previously reported t(X;11)(p22.32;p12) reciprocal translocation in
individual 1371 (Fig 5). The breakpoint on chromosome 11 (now 11p11.2) lay within a single
BAC, RP11-618K13 [48], which contains 5 known genes, CRY2,MAPK8IP1, PEX16,
GYLTL1B, and PHF21A (also known as BHC80), located approximately 14.1 Mb centromeric
to PAX6. The breakpoint was shown to lie within PHF21A using probes generated by long-
range PCR from exons 14–16 (telomeric to the breakpoint) and exons 4–11 (centromeric to
the breakpoint) (data not shown). The X chromosome breakpoint (now Xp22.2) was spanned
by two overlapping BACs (RP11-121K9 and RP11-311A17) [48] covering two genes, AMELX
and ARHGAP6 (Fig 5). Using a probe generated by long-range PCR, the breakpoint was local-
ized within a large intron of ARHGAP6 (Fig 5).

Mutation analysis of breakpoint genes in Gillespie syndrome patients
Direct sequencing of the coding exons and essential splice sites of PHF21A and ARHGAP6
revealed only polymorphic variants in the 10 individuals with Gillespie syndrome who lacked a
detectable chromosomal abnormality at these loci.HCCS is located approximately 150 kb telo-
meric to the X chromosome breakpoint in individual 1371. Mutations in this gene have been
associated with microphthalmia with linear skin defects (MIM 309801). Direct sequencing of
HCCS revealed no mutations in the 10 non-translocation Gillespie cases.

Discussion
A high proportion of cases of aniridia is caused by loss-of-function mutations in a single gene,
PAX6. Here we studied individuals with aniridia and Gillespie syndrome, who had previously

Fig 4. Identification of a potential PITX2 regulatory deletion.Genome-wide array CGH identified a deletion of approximately 3.5 Mb in individual 1194
(chr4:111,994,000–115,504,000) (red bar). The deletion is located telomeric to the PITX2 gene on chromosome 4. The positions of conserved elements (CE)
in the deleted region, as identified by Volkmann et al., 2011 [47] are marked by orange ellipses. Genes transcribed on the forward strand are in blue and
those transcribed on the reverse strand are in green, also indicated by arrows. Genomic coordinates are shown on the x-axis and are based on the Human
Genome Assembly hg18.

doi:10.1371/journal.pone.0153757.g004
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scored negative for intragenic PAX6mutations, using a variety of molecular approaches to
identify causative mutations. The rationale for the analysis was that we had a strong prior
expectation that this cohort would be heavily enriched for causative structural chromosomal
anomalies involving PAX6 itself, but also for possible new disease loci and/or novel mutational
mechanisms. In the event, we identified deletions that result in PAX6 haploinsufficiency in

Fig 5. Fluorescence in situ hybridization (FISH) was used to map the translocation breakpoints on chromosomes 11 and X in individual 1371. The
breakpoint-spanning BAC clones RP11-311A17 (Xp22.2; left panel) and RP11-618K13 (11p11.2; right panel) show signals on both the derivative 11 and
derivative X. The schematic diagram demonstrates the position of the BAC clones and the genes involved, to scale. Breakpoint-spanning BACs are coloured
in red, with the approximate position of the breakpoints shown by orange bars, as determined by long-range PCR. Genes transcribed on the forward strand
are in blue and those transcribed on the reverse strand are in green. Genomic coordinates are shown on the x-axis and are based on the Human Genome
Assembly hg18.

doi:10.1371/journal.pone.0153757.g005
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only 9/42 probands: four encompassing PAX6 itself and five removing 3ʹ (telomeric) cis-regula-
tory elements that are essential for PAX6 function. A wealth of evidence exists from animal
models [49–52] and human translocation breakpoint mapping [53,54] showing that genomic
elements located in a region ~120kb 3ʹ to the transcription unit are essential for the transcrip-
tional activation of PAX6. For chromosomal deletions the most convincing evidence is from
somatic cell hybrid analysis of two deletions that were shown to abolish PAX6 transcription
[55]. The deletions studied in this somatic cell hybrid analysis both overlap with the 3ʹ deletions
identified here (Fig 2) and by combining our data with the published data we suggest a new
244 kb ‘critical region’ which contains essential cis-regulatory elements (Fig 2). The patient
cohort in the present study is part of a larger cohort of iris developmental anomalies patients in
which one individual with aniridia was recently found to have a plausibly causative de novo sin-
gle nucleotide variant (SNV) in a conserved non-coding element within the ‘critical region’
[56]. While it is possible that similar mutations may exist in other cis-regulatory elements, it is
significant that most of the individuals in the present study were included in the cohort of 60
individuals screened for PAX6 regulatory mutations by Bhatia et al. [56] and no further muta-
tions were identified in the regions analyzed.

Four individuals had deletions or intragenic mutations which are likely to result in FOXC1
haploinsufficiency. One individual had a large deletion upstream of PITX2 that plausibly
impairs developmental expression of this gene by removing known enhancer elements. Dele-
tions of FOXC1 were previously shown to account for a considerable proportion of individuals
with anterior segment dysgenesis, who also presented with extraocular features such as hearing
defects and mental retardation [57]. FOXC1 and PITX2 encode transcriptional regulators that
physically interact with each other and are co-expressed in a number of tissues during develop-
ment including the periocular mesenchyme [58]. Mutations in these genes have most com-
monly been associated with Axenfeld-Rieger syndrome [59], but aniridia has been reported for
both [8,9,60]. Of note, 3 of the 4 individuals reported here with FOXC1 haploinsufficiency, and
the individual with the PITX2 cis-regulatory mutation have congenital glaucoma associated
with their aniridia phenotype. However, none of the nine individuals with PAX6mutations
had congenital glaucoma. Digenic inheritance of FOXC1 and PITX2mutations was reported in
a severely affected individual in a family with several affected members presenting with variable
ocular phenotypes associated with Axenfeld-Rieger syndrome [13]. The presence of both
FOXC1 and PITX2 mutations impaired the transactivation activity of these proteins in vitro
significantly more than when only one mutation was present. The cellular and developmental
interactions between PAX6, FOXC1 and PITX2, and physical co-binding at regulatory ele-
ments in the developing iris are as yet poorly understood. This is presumably due to the diffi-
culty in obtaining sufficient tissue, although the available human genetic data suggest that this
would be an informative area of study.

We assessed the occurrence of particular descriptive phenotype terms (partial/variant aniri-
dia, corneal anomalies, cataracts, glaucoma, microphthalmia/coloboma and extraocular fea-
tures) in cases with and without a molecular diagnosis (S3 Table). The results showed an over-
representation of individuals with partial/variant aniridia in whom no genetic defect was
detected (approximately 60%) when compared to those with the same descriptive term but no
genetic diagnosis (approximately 26%). This finding can be explained by the presence of 8/11
Gillespie syndrome patients in whom a genetic mutation is yet to be identified. The glaucoma
feature appeared to be present in 26% of individuals with a molecular diagnosis (particularly in
FOXC1 and PITX2mutation-positive patients) compared to 7% of those without a diagnosis.

Finally, we report a more complex mutation associated with the breakpoints of a balanced
X:autosome translocation in a single individual. On chromosome 11 the breakpoint disrupts
PHF21A, which encodes a plant-homeodomain zinc finger protein and is highly expressed in
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brain tissue including the cerebellum [61]. The PHF12A protein is a component of the BRAF-
histone deacetylase co-repressor complex, which mediates transcriptional repression of neu-
ron-specific genes in non-neuronal cells [62]. Multiple translocation breakpoints disrupting
PHF21A have been reported as causing intellectual disability [63] and alteration of PHF12A
expression in the cerebellum might contribute to the ataxia seen in this case but we were unable
to find any evidence that PHF21A could be causing the iris malformation. The breakpoint on
the X chromosome disrupts ARHGAP6, which is highly expressed in kidney, heart, skeletal
muscle, retina and fetal brain. ARHGAP6 encodes a guanine nucleotide exchange factor that
activates Rho-GTPase to regulate signaling interactions within the actin cytoskeleton [64,65].
However, there is no human genetics evidence as yet that mutations in this gene are associated
with any developmental disorder. We were also unable to find mutations in the neighbouring
gene, HCCS, in the other Gillespie syndrome cases in our cohort.HCCS has been associated
with syndromic microphthalmia [66]. It seems reasonable to consider individual 1371 as hav-
ing a composite phenotype with PHF21A-disrupting breakpoint exacerbating the neurodeve-
lopmental problems but the Gillespie syndrome being, as yet, unexplained.

Perhaps the most significant finding in this study is that we were unable to identify muta-
tions in 27/42 individuals with aniridia and no detectable intragenic mutations in PAX6.
Although there could be unidentified mechanisms for disrupting PAX6 function, our results
also suggests that there may be as yet undiscovered genetic loci responsible for a considerable
proportion of aniridia. Whole genome sequence analysis would be an attractive technique for
the identification of novel causative mutations in the PAX6 region, and others involving new
loci in PAX6-negative individuals with syndromic or isolated aniridia. The high frequency of
cis-regulatory mutations that we have identified in this cohort highlight the importance of sur-
veying the whole genome. This study has also confirmed that the majority of cases with Gilles-
pie syndrome are not associated with detectable mutations at the PAX6 locus.
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