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Abstract

Down syndrome, which arises in individuals carrying an extra copy of chromosome 21, is 

associated with a greatly increased risk of early-onset Alzheimer disease. It is thought that this risk 
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is conferred by the presence of three copies of the gene encoding amyloid precursor protein (APP) 

— an Alzheimer disease risk factor — although the possession of extra copies of other 

chromosome 21 genes may also play a part. Further study of the mechanisms underlying the 

development of Alzheimer disease in people with Down syndrome could provide insights into the 

mechanisms that cause dementia in the general population.

Down syndrome (DS) is a complex, highly variable disorder that arises from trisomy of 

chromosome 21. It was one of the first chromosomal disorders to be identified1 and occurs 

with an incidence of approximately 1 in 800 births2. Its prevalence within a given 

population is influenced by infant mortality rates, access to health care, termination rates, 

average maternal age3 and life expectancy. Indeed, despite the increased availability of 

prenatal diagnosis and access to the option of termination, the global prevalence of DS is 

rising because of improvements in life expectancy: the number of adults with DS aged over 

40 years has doubled in northern Europe since 1990 and, in the United Kingdom, one-third 

of the estimated 40,000 people with DS are thought to be over 40 years of age4.

DS is the most common form of intellectual disability. In addition to the features that are 

found in everyone with the disorder, such as the characteristic facial dysmorphology, there 

are many DS-associated phenotypes that have variable penetrance and severity. For 

example, approximately 40% of individuals with DS have heart malformations (usually 

atrioventricular septal defects)5. A key feature of DS is a striking propensity to develop 

early-onset Alzheimer disease (EOAD). Complete trisomy of chromosome 21 universally 

causes the development of amyloid plaques and neurofibrillary tangles (NFTs), which are 

typical characteristics of AD brain pathology, by the age of 40, and approximately two-

thirds of individuals with DS develop dementia by the age of 60 (REFS 6,7). However, rates 

of dementia do not reach 100%, even in older individuals, suggesting that some individuals 

with DS are protected from the onset of AD (FIG. 1).

All of the features of DS arise because of aberrant dosages of coding and/or non-coding 

sequences present on chromosome 21. Among these sequences, the gene encoding amyloid 

precursor protein (APP) is thought to have a key role in the pathology of AD. The additional 

copy of APP may drive the development of AD in individuals with DS (AD-DS) by 

increasing the levels of amyloid-β (Aβ), a cleavage product of APP that misfolds and 

accumulates in the brain in people with AD. Consistent with this hypothesis, individuals 

with small internal chromosome 21 duplications that result in three copies of APP — a rare 

familial trait known as duplication of APP (Dup-APP) — also develop EOAD8–15. 

Conversely, partial trisomy of chromosome 21 that does not result in the presence of an 

extra APP does not lead to AD16,17. Several additional genes on chromosome 21 are 

proposed to modulate the course of AD-DS, but further work is required to determine their 

role and relative importance.

The aim of this Opinion article is to present an overview of clinical and pathological features 

of AD-DS and, by comparing these to other forms of AD (particularly AD induced by Dup-

APP), to highlight shared genetic, pathogenic and protective mechanisms and to discuss key 

future research areas. Similarities in the aetiologies of AD-DS and other forms of AD may 

highlight common disease mechanisms, whereas differences between these forms of AD 
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may help to identify novel genes and pathways that are important in particular aspects of 

AD. Recent advances in genetic, cellular and neuroimaging technologies have provided the 

means to comprehensively explore the link between AD and DS, and recent improvements 

in the life expectancy of people who have DS mean that more individuals than ever before 

are developing AD-DS. The growing interest in AD-DS is long overdue, given the high AD 

burden in the DS population, and it is likely that research into AD-DS may also lead to a 

better understanding of AD in the general population.

Prevalence of AD-DS

A loss of cognitive function in middle-aged adults with DS was described soon after the 

identification of the syndrome18, and it was later shown that this loss resulted from the onset 

of AD dementia. As indicated above, AD is now common in adults with DS who are over 

the age of 40 years and, like other genetic forms of EOAD, develops two to three decades 

earlier in individuals with DS than in the general population. Data describing the prevalence 

of AD-DS vary between studies because of diagnostic issues, such as the presence of 

variable premorbid deficits, and survey methodology19. However, the prevalence of AD in 

people who have DS is <5% under the age of 40 (REF. 20) and then roughly doubles with 

each 5-year interval up to the age of 60. Hence, approximately 5–15% of individuals with 

DS aged 40–49 years and >30% of those aged 50–59 years experience significant cognitive 

decline, indicating dementia (FIG. 1). Thus, as with AD in the general population, age is a 

strong independent risk factor for AD-DS21. By the age of 65, 68–80% of individuals with 

DS have been shown to have developed dementia6,7 (FIG. 1; Supplementary information S1 

(table)), and some studies of institutionalized people with DS suggest that rates are even 

higher6,20,22. However, not all older individuals with DS develop dementia, with some 

reaching their 70s without significant symptoms of AD despite having full trisomy of 

chromosome 21 (REF. 23). After the age of 60, prevalence rates decrease, probably owing 

to the high mortality rate that is associated with dementia21.

The average age at which menopause begins in women with DS correlates with the age of 

onset of dementia24–26; however, unlike the incidence of AD in euploid individuals, gender 

does not affect the incidence of AD-DS20,21. The reasons for this difference between the two 

populations are unknown, although it is possible that trisomy may cause changes in 

hormonal or cardiovascular biology that alter AD risk. The influence of gender on dementia 

development is complex in both the DS and euploid populations, and warrants more-

extensive, longitudinal, population-based study.

Although increased levels of triglycerides and total body fat and low rates of exercise are 

reported in adults with DS27, and higher cholesterol levels have been associated with the 

risk of developing dementia in this group28, individuals with DS have lower rates of other 

cardiovascular risk factors — including hypertension, atherosclerosis and smoking29,30 — 

that are thought to contribute to the development of dementia in the general population31. 

Further studies are required to understand how trisomy alters the biology of the 

cardiovascular system and what impact this has on neurodegeneration in people who have 

DS.
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The brain reserve hypothesis is based on the observation that, in the general population, 

individuals with higher levels of education and/or more-active social and intellectual 

lifestyles have a lower risk of developing dementia32. The hypothesis predicts that 

individuals with more-severe premorbid cognitive impairment will have an increased risk of 

developing dementia. However, no convincing relationship between severity of intellectual 

disability (or intelligence quotient (IQ) score) and risk of AD has been found in people with 

DS33, possibly because of diagnostic difficulties in those with severe impairments. Survival 

time for AD-DS does not differ much from that for late-onset AD (LOAD), with estimates 

varying between 3.5 years (s.d 2.2)34 and 6.24 years (s.d. 4.1)6. However, individuals with 

severe intellectual disability and dementia were found to have a longer survival time after 

diagnosis than those with milder intellectual disability6, further suggesting that reduced 

brain reserve does not accelerate disease progression in AD-DS.

Thus, people who have DS are at a greatly increased risk of developing dementia, with 

approximately 70% of individuals developing the condition by the age of 65. However, 

unlike the situation for LOAD, gender and cognitive reserve do not seem to influence AD-

DS onset.

Clinical features of AD-DS

The early symptoms of AD-DS include features that are typical of other forms of AD, such 

as a decline in memory and language skills that may be present several years before 

dementia is diagnosed35–37. However, changes in personality and behaviour are more 

common in the early stages of AD-DS than they are in other forms of AD: individuals 

typically display either apathy, lack of motivation and stubbornness, or increasing 

behavioural excesses and impulsivity. These ‘non-cognitive’ changes (also referred to as 

behavioural and psychological symptoms of dementia (BPSDs))38–42 are associated with 

deficits in executive functioning and with the frontal atrophy that is visible on MRI scans, 

which may indicate frontal lobe dysfunction40,43. These changes may be related to pre-

existing deficits in the integrity of the frontal tracts that have been observed in individuals 

with DS44 and that may be worsened by Aβ deposition in the frontal lobes45. Although 

BPSDs are very prominent in early AD-DS, this presentation is not unique to these 

individuals — it also occurs, albeit at lower rates, during the early stages of LOAD46 and 

EOAD47, particularly in cases arising from mutations in the AD risk gene presenilin 1 

(PSEN1; which maps to chromosome 14). Further studies are required to determine the 

earliest changes associated with the development of dementia in people who have DS, and to 

delineate other clinical differences between AD-DS, LOAD and familial forms of EOAD, 

such as the frequencies of co-morbidities that may affect the onset and progression of 

dementia (for example, cardiovascular disease and systemic infections).

Another feature of AD-DS is the more-frequent and earlier appearance of neurological 

symptoms such as gait disturbance and seizures19 when compared with LOAD. Although 

heterogeneous, seizures associated with AD-DS often initially present with myoclonic jerks 

before progressing to tonic–clonic seizures and later to non-epileptic myoclonus with 

cerebellar signs; electroencephalograms show diffuse slowing and spike-and-wave 

patterns48–50. In individuals with LOAD, both complex partial and tonic–clonic seizures 
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have been reported to be the predominant type51,52. Although seizures are reported to occur 

in 0.5–64% of people with LOAD51, more-recent population studies have suggested that 

seizure incidence in LOAD is relatively low, occurring in <5% of cases of the disease53. By 

contrast, most people with AD-DS eventually develop seizures, and a sudden onset of 

seizures in older adults with DS is highly suggestive of AD. Co-morbid seizures are 

associated with a more-aggressive course of AD-DS54 and a greater dementia-associated 

mortality rate6. The mechanism underlying this striking clinical feature of AD-DS is not 

understood, and the study of this may provide significant insights into neurodegeneration, in 

particular how changes in neuronal structure and organization affect disease progression.

Similarly to other forms of AD, the decline through middle-stage AD-DS dementia 

progressively affects more cognitive domains and results in symptoms such as dyspraxia, 

increasing incontinence and pathological grasping and sucking reflexes55,56, as well as 

symptoms of parkinsonism22. In summary, BPSDs may be an important early feature of 

AD-DS, and seizures are commonly associated with AD-DS. However, further comparative 

and mechanistic studies are required to unravel the importance of these clinical observations.

Neuropathological changes in AD-DS

The similarity between the neuropathological changes that occur in AD-DS and those that 

characterize AD in other individuals was first noted in 1929 (REF. 57) and was important 

for the widespread recognition of dementia in people who have DS. This discovery also had 

a key role in the identification of Aβ as the major constituent of amyloid plaques58, the 

identification of the first AD gene, APP59, and the subsequent development of the amyloid 

cascade hypothesis60.

The overall distribution and biochemical composition of plaques (largely composed of Aβ) 

and NFTs (largely composed of tau protein (encoded by microtubule-associated protein tau 

(MAPT))) in people who have DS, EOAD and LOAD are similar58,61–63. However, a greater 

deposition of plaques and tangles occurs in the hippocampus in AD-DS than in EOAD64 

and, consistent with this, histological studies suggest that the earliest Aβ deposition in AD-

DS occurs in the hippocampus65, whereas in LOAD the earliest deposition occurs in the 

basal cortex66. Furthermore, a lower density of Aβ plaques has been reported in the cortex in 

AD-DS than in LOAD64,67,68. These differences may relate to amyloid plaques in AD-DS 

having a more amorphous morphology and a larger average size than those present in 

LOAD69,70, resulting in a lower density caused by the presence of fewer but larger plaques. 

In addition, the aggregation kinetics of Aβ may differ in people with DS because of a higher 

concentration of the peptide resulting from their additional copy of APP. Alternatively, 

differences in plaque load may result from the neurodevelopmental differences that occur in 

people who have DS, resulting in changes in synaptic activity, which is known to regulate 

Aβ production71.

In AD-DS, intracellular accumulation of Aβ precedes extracellular plaque accumulation72–75 

but becomes less prominent in older individuals with extensive pathology, as also observed 

in LOAD76. Additionally, in AD-DS, diffuse plaques composed of non-fibrillary deposits of 

Aβ develop before those with dense cores that are composed of amyloid (Supplementary 
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information S2(table))34,64,65,73,74,77–88. Diffuse plaques are typically not associated with 

other forms of neuropathology, such as activated glial cells or synaptic loss, whereas dense-

core plaques are often associated with dystrophic neurites and activated astroglia and 

microglia89. Also, Aβ42 — a form of Aβ that has a high tendency to aggregate — 

accumulates before deposition of Aβ40 in AD-DS73,74,80, which is consistent with the higher 

abundance of Aβ42 reported in plaques in other forms of AD89. Cerebral amyloid angiopathy 

(CAA) — the deposition of Aβ within cerebral blood vessels — is also observed in older 

individuals with DS74,80,87,90. However, unlike in LOAD, infarcts64 and vascular dementia 

seem to be rare in AD-DS91, although cases of CAA-associated cerebral haemorrhage have 

been described92–95.

In contrast to the findings of the histological studies described above, in vivo amyloid 

imaging by positron emission tomography (PET) indicates that the earliest site of Aβ 

accumulation in AD-DS, as in EOAD, could be the striatum96 and that enhanced deposition 

may occur in the frontal and parietal cortex97. This discrepancy may be because amyloid 

imaging recognizes only a subset of Aβ aggregates, thus not all deposition may be 

detected98. Nonetheless, most individuals with DS have amyloid-positive PET scans by the 

age of 50 (REFS 45,96,99,100). Amyloid load, as measured by PET, does not correlate well 

with cognitive function in adults who have DS in cross-sectional studies45,99, highlighting 

the importance of factors other than amyloid in the development of dementia. However, 

longitudinal imaging studies in this population have yet to be undertaken and may be highly 

informative45,99.

No NFTs have been reported in AD-DS in the absence of dense-core plaque pathology, 

which is consistent with the predictions of the amyloid cascade hypothesis. The density of 

NFTs triples between the fourth and fifth decade of life in AD-DS77, mirroring the onset of 

dementia, and NFT formation rather than amyloid deposition correlates best with cognitive 

decline34, which is consistent with similar findings in LOAD. Thus, changes in tau may 

result in neuronal dysfunction in both AD-DS and LOAD. Interestingly, smaller relative 

changes in nucleolar volume and a trend of reduced cell loss have been reported in the 

cortex and locus coeruleus in AD-DS compared with LOAD, despite comparable NFT 

loads, although similar cell loss was observed in other brain areas68. This may reflect a 

differential response of the trisomic CNS to accumulation of aggregated tau — suggesting, 

intriguingly, that chromosome 21 could encode a gene (or genes) that is neuroprotective 

when triplicated. Further study is required to determine whether trisomy 21 may provide 

protection from neurodegeneration.

As with people in the euploid population, people who have DS may have extensive amyloid 

deposition but no clinical signs of dementia (FIG. 1). Understanding how pathological 

changes due to AD relate to cognitive dysfunction is therefore a key research challenge. 

Identifying the processes that cause an amyloid-laden brain to convert from cognitively 

intact to impaired is crucial for understanding and successfully treating AD. As people who 

have DS develop amyloid deposition and NFTs by the age of 40, study of this group of 

individuals is likely to provide an important insight into the factors that cause dementia. 

Indeed, observations of AD-DS neuropathology already underpin our mechanistic 
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understanding of AD, providing a detailed sequence of pathological changes and how these 

may relate to changes in cognition.

Pathological features other than plaques and NFTs also develop in both AD-DS and LOAD. 

Neuronal accumulation of ubiquitylated and aggregated transactive response DNA-binding 

protein 43 (TDP43; also known as TARDBP) in the cytoplasm and neurites is similar in 

AD-DS (7–14% of cases) and familial AD (10–14% of cases), whereas TDP43 

neuropathology occurs more frequently in LOAD (29–79% of cases), perhaps because of the 

later disease onset101,102. Lewy bodies, particularly in the amygdala, occur at a similar 

frequency in AD-DS and LOAD103, but dementia with Lewy bodies (DLB), which is 

characterized by cognitive decline with hallucinations and parkinsonism features, is rare in 

DS104. Granulovacuolar degeneration, the formation of electron-dense granules in double-

membrane-bound cytoplasmic vacuoles, associated with plaque and NFT pathology occurs 

at a similar frequency in AD-DS and AD64. How this pathology relates to the very early 

endosomal abnormalities that are reported to occur before birth in individuals with DS105 is 

unclear and warrants further investigation. Recent AD-related genome-wide association 

studies have highlighted the importance of the endosomal system in LOAD106, indicating 

that this system may be of particular significance to disease.

AD-DS versus Dup-APP-associated AD

Dup-APP is a rare cause of familial EOAD, and comparison with AD-DS yields 

pathogenetic insights, as an additional copy of APP is present in both diseases. They 

therefore differ from other forms of familial AD that are the result of mutations in APP, 

PSEN1 or PSEN2 that modulate the processing of APP and the generation of Aβ. In Dup-

APP, regions of chromosome 21 triplication vary in size8–15,47,107,108 (FIG. 2); the smallest 

known duplication contains only an additional copy of APP and no other coding genes8. By 

contrast, in AD-DS, triplication of any chromosome 21 gene in addition to APP may 

modulate the development of dementia. Studying these genes may therefore provide novel 

insights into AD mechanisms.

The age of onset of dementia in individuals with Dup-APP ranges from 39 to 64 years 

(mean age ~52 years), and dementia shows virtually complete penetrance by the age of 65 

years. By contrast, there is a broad variation in age of onset in AD-DS, and many individuals 

present with significant cognitive decline only after the age of 55 years, or even escape it 

altogether. This is remarkable given the usual co-morbid health issues and relative lack of 

brain reserve in individuals with DS. Thus, a possible protective mechanism (or 

mechanisms) from triplication of an unknown gene (or genes) on chromosome 21 may be 

important for resistance to dementia in people with DS. Moreover, intracerebral 

haemorrhage (ICH) is common in individuals with Dup-APP (occurring in 20–50% of 

cases)9–14,47,108, whereas individuals with DS are generally protected from this pathology, 

with only occasional reports. Thus, triplication of a chromosome 21 gene (or genes) may 

protect against some AD co-morbidity, and further comparative study of AD-DS and Dup-

APP is required to understand the mechanisms underpinning this observation.
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The few histopathological Dup-APP studies that have been carried out report diffuse atrophy 

with associated neuronal loss, deposition of plaques, CAA and accumulation of 

intraneuronal Aβ40 and NFTs11,109, and this pathology seems to be similar to AD-DS 

pathology (Supplementary information S3 (table)). However, further studies are 

needed75,109. Clinical DLB and cortical Lewy bodies have been observed in a few 

cases11,13,109, but currently there are insufficient data on these phenotypes to compare Dup-

APP with AD-DS or LOAD. As in AD-DS, there is a greatly increased risk of dementia-

associated seizures in Dup-APP10–13,47, in contrast to LOAD, in which seizures are 

relatively rare. This suggests that duplication of APP, and possibly of other genes located 

nearby, could be epileptogenic; however, as late-onset seizures often follow onset of 

dementia, they may also be related to synaptic deterioration that results in abnormal 

synchronization of neuronal networks and hyperexcitability110.

Genes and mechanisms in AD-DS

The presence of three copies of a dosage-sensitive gene (or genes) on chromosome 21 

results in greatly enhanced risk of AD. Chromosome 21 carries 233 coding genes, 299 long 

non-coding genes (Ensembl release 78) and 29 microRNAs (miRBase release 21)111; thus, 

one or more of these must have a key role in AD. The phenotype resulting from a dosage-

sensitive gene depends on the number of copies of the gene in the genome. However, not all 

genes are dosage sensitive, as homeostasis often prevents a gene from being overexpressed 

and the regulation of expression is often dependent on environmental context112. 

Furthermore, trisomy 21 causes widespread transcriptional dysregulation112,113, which may 

be the result of aneuploidy rather than of triplication of a specific gene. The importance of 

this in AD-DS remains unclear. Finally, acceleration of the epigenetic changes associated 

with ageing occurs in the DS brain114 — whether this alters gene expression or modulates 

the development of AD is an important area for future study.

The development of neuropathology and dementia varies significantly between individuals 

with DS, and understanding the factors (genetic or environmental) that cause this variation is 

likely to provide key insights into disease mechanisms. Below, we describe the genes that 

are currently implicated in the development of AD-DS and highlight the importance of 

further study of the genetics of AD-DS to understand how variation in the whole genome 

influences the development of disease.

Triplication of APP

The key dosage-sensitive gene for AD-DS is likely to be APP, as an additional normal copy 

of this gene is sufficient to cause EOAD in the absence of trisomy of the rest of chromosome 

21 (REFS 8–15,47,107). The additional copy of APP in DS does not typically cause 

substantial Aβ accumulation until the second or third decade of life, although amyloid 

pathology has been demonstrated in a few childhood post-mortem examinations (BOX 1; 

FIG. 1). This lack of early Aβ accumulation may be due to APP not becoming dosage 

sensitive until adulthood, as suggested by both mouse and human studies115–117. However, 

increased levels of soluble Aβ42 are found in ~50% of trisomy 21 fetal brains118, suggesting 

that APP may be dosage sensitive during fetal development of individuals with DS but that 

this change may not be sufficient to cause extensive Aβ deposition in the developing brain 
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— perhaps because of efficient clearance. Consistent with this, overexpression of APP 

and/or increased levels of Aβ have been reported in trisomy 21 human cell models, 

including in induced pluripotent stem cells (iPSCs) derived from infants or young adults 

with DS119–122. Although triplication of APP does not necessarily lead to enhanced 

expression of APP and subsequent increase in Aβ accumulation in all contexts, 

overexpression of APP is strongly linked to Aβ deposition in adult life. Thus, elucidating the 

factors that control the regulation of APP expression will considerably aid our understanding 

of AD.

Interaction of other chromosome 21 genes with APP

Several proteins encoded by other chromosome 21 genes have been suggested to modulate 

APP processing and Aβ generation (BOX 2; FIG. 3). For example, the transcription factor 

ETS2 is thought to transactivate the APP promoter, leading to overexpression123. The 

chromosome 21-encoded proteins small ubiquitin-related modifier 3 (SUMO3) and dual-

specificity tyrosinephosphorylation-regulated kinase 1A (DYRK1A) modify APP post-

translationally, which may alter Aβ generation124–126. Additionally, the chromosome 21 

microRNA miR-155 has been suggested to modulate γ-secretase activity and hence the 

processing of APP, through its effect on the expression of sorting nexin 27 (REF. 127). 

Moreover, the β-secretase responsible for processing APP, β-site APP-cleaving enzyme 1 

(BACE1), has a homologue, BACE2, encoded on chromosome 21, which may influence the 

onset of dementia in people with DS128. BACE2 does not have β-secretase activity, and in 

fact cleaves APP on the carboxy-terminal side of the β-secretase cut site within the Aβ 

region, preventing generation of the peptide. Thus, enhancing BACE2 expression may be 

protective against accumulation of Aβ129. However, BACE2 overexpression does not alter 

Aβ accumulation in a mouse model130, and the protein does not seem to have enhanced 

expression in the adult DS brain115,131. Whether triplication of any chromosome 21 gene 

alters APP biology sufficiently to modulate the development of AD remains to be 

determined.

Genes involved in LOAD

Polymorphisms in genes with important functions in LOAD have similar roles in the 

development of AD-DS; for example, the apolipoprotein E (APOE) ε4 allele is associated 

with greater Aβ deposition, as well as with earlier onset and increased risk of AD-DS, 

whereas the APOE ε2 allele leads to reduced Aβ deposition and a lower risk of 

disease132–138. Similarly, variants of phosphatidylinositol-binding clathrin assembly protein 

(PICALM) and sortilin-related receptor 1 (SORL1) influence age of onset in AD-DS, as they 

do in LOAD132,139,140, further supporting the theory that common mechanisms underlie 

both diseases. Whether variation in other genes with a role in LOAD is also important for 

AD-DS remains to be determined and is an important area for future study. Large-scale 

study of the genetic variants that contribute to the onset of dementia in AD-DS will provide 

an opportunity to gain insights into the mechanisms that underpin variation in the onset of 

dementia.
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Disruption of secretory and endosomal systems

The earliest site of Aβ accumulation in AD-DS is within the neuron72–75, indicating that 

secretory and endosomal systems are central to Aβ generation. Moreover, an extra copy of 

APP is sufficient to cause endosomal enlargement and intracellular trafficking defects141,142 

via an Aβ-independent mechanism143. Enlargement of endosomes in trisomic neurons may 

cause axonal trafficking defects that contribute to neuronal degeneration141.

Triplication of chromosome 21 genes other than APP may also affect the secretory–

endosome system, thereby affecting synaptic function, Aβ production and Aβ clearance. 

Small segmental duplications of the chromosome 21 endosome-to-Golgi-trafficking gene 

DOPEY2 (REF. 144) have been associated with LOAD and mild cognitive 

impairment14,145, although this was not replicated in an independent study146. A reduction 

in the dose of the chromosome 21 gene cystatin B (CSTB), which encodes an endogenous 

inhibitor of lysosomal cathepsins, decreases the accumulation of Aβ and associated 

cognitive deficits147. Overexpression of another chromosome 21 gene, synaptojanin 1 

(SYNJ1), which encodes a phosphoinositide phosphatase that regulates levels of membrane 

phosphatidylinositol-4,5-bisphosphate, has been associated with endosomal enlargement148, 

whereas reduced expression of SYNJ1 lowers Aβ accumulation, as well as neuronal 

dysfunction and cognitive deficits149,150. How endosomal enlargement caused by trisomy 

contributes to neuronal dysfunction and degeneration is another important area for future 

research.

Mitochondria and ROS

Mitochondrial dysfunction and enhanced production of reactive oxygen species (ROS) occur 

in people with DS and in trisomy 21 models151–154, and may contribute to the accelerated 

ageing reported in people who have DS155. Mitochondrial impairment may directly affect 

energy-hungry synapses, contributing to cognitive deficits156. Moreover, increased levels of 

ROS make trisomic neurons more prone to undergoing apoptosis, potentially making them 

more likely to degenerate151. Trisomy 21-associated increases in ROS levels may alter APP 

processing, promoting intracellular accumulation of Aβ119,151. Thus, protecting the trisomic 

brain from ROS may be of therapeutic value, although antioxidant supplementation has 

failed to show efficacy in preventing dementia in this population157. Interestingly, 

superoxide dismutase 1 (SOD1), which has a key role in processing ROS, lies on 

chromosome 21, and upregulation of SOD1 seems to protect against APP and Aβ 

neurotoxicity158, perhaps by modulating Aβ oligomerization159. Consistent with this, higher 

SOD1 enzymatic activity correlates with better memory in adults with DS160. However, 

increased SOD1 activity has also been suggested to cause accelerated cell senescence by 

increasing the levels of hydrogen peroxide, a form of ROS161.

Neuronal development and function

Several processes are likely to contribute to the intellectual disability associated with DS. 

These include a reduction in the numbers of neurons and dendritic spines, dendritic 

arborization, an alteration in the excitatory–inhibitory balance and a global impairment in 

network connectivity68,162–166. These perturbations in the structure, function and 

organization of the CNS may profoundly affect its degeneration in AD-DS (BOX 1). 
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Triplication of several chromosome 21 genes contributes to changes in neurodevelopment 

and/or neuronal function. For example, ubiquitin-specific peptidase 16 (USP16) or 

DYRK1A upregulation alters stem cell fate167–169, which may in turn alter neuronal 

differentiation. Additionally, overexpression of several chromosome 21 genes (for example, 

the microRNA gene mir-155 and the protein-coding genes SYNJ1, regulator of calcineurin 1 

(RCAN1), intersectin 1 (ITSN1) and DS cell adhesion molecule (DSCAM)) has been 

implicated in deficits in synaptic structure and function148,170,171. These genes may also 

play a part in AD-DS, perhaps via an effect on APP processing or on cognitive reserve. APP 

overexpression may also affect CNS function independently of the production and 

accumulation of Aβ, because the expression level of full-length APP influences 

neurogenesis, neuronal migration, axonal growth and the maintenance of the excitatory–

inhibitory balance172,173. How the changes in CNS function caused by trisomy of 

chromosome 21 affect neurodegeneration in AD-DS is little understood and is a crucial area 

of future research.

Intracellular signalling and tau

Perturbations in intracellular signalling associated with trisomy 21 (REF. 174) may affect 

the response of the CNS to pathological changes. For example, overexpression of the 

chromosome 21 genes RCAN1 and DYRK1A promotes aberrant phosphorylation of 

tau152,175–177. DYRK1A is dosage sensitive in the adult brain178, and overexpression of this 

gene modulates tau splicing, altering the relative abundance of tau with three or four 

microtubule-binding domains (3-repeat (3R) and 4R tau, respectively), which may affect the 

formation of NFTs179,180. Consistent with this, an increase in the ratio of 3R/4R tau has 

been reported to occur in AD-DS, as compared with LOAD or age-matched euploid 

individuals without dementia179,180. Additionally, an increase in the total amount of tau has 

been reported in the cortex in AD-DS as compared with that in age-matched euploid 

individuals without dementia, and in DS iPSC-derived neurons122,179; this upregulation may 

be the result of increased APP levels181. DYRK1A also downregulates the levels of neural 

restrictive silencing factor (NRSF; also known as REST), a neuroprotective protein168,169, 

which has reduced expression in people with AD182. Variants in DYRK1A have been 

associated with risk of LOAD183, further indicating a possible role in disease pathogenesis, 

although this association was not replicated in an independent study184.

Cholesterol metabolism

Alterations in cholesterol metabolism may contribute to the development of dementia31. 

Total cholesterol levels have been suggested to predict the onset of dementia in people with 

DS, particularly in those individuals who have an APOE ε4 allele28. Clinical trials are 

therefore underway to determine whether statins can prevent decline in older adults with DS, 

which may provide both clinical and mechanistic insights185. The chromosome 21 lipid 

transporter ATP-binding cassette G1 (ABCG1) has been suggested to regulate cholesterol 

efflux and may alter cholesterol metabolism in people with DS186. Whether trisomy of this 

gene is related to the development of AD-DS remains unclear, as ABCG1 overexpression 

has been reported both to increase and to decrease Aβ generation in vitro187,188 and does not 

change Aβ accumulation in vivo189, suggesting that this gene may not be associated with the 

development of AD-DS. Further study is required to understand the mechanisms that 
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underlie the link between increased cholesterol levels and the onset of dementia in 

individuals with DS.

Immune system dysfunction

Growing evidence shows that the immune system plays an important part in the 

development of AD106,190. Individuals with DS are at an increased risk of immune system 

dysfunction: these individuals have a higher incidence of both autoimmune and infectious 

disease191, and show upregulation of pro-inflammatory makers, including interleukin-1, in 

the brain192,193. This dysregulation may contribute to AD-DS through alterations in micro-

glial activation190. Microglia in AD-DS have been reported to be associated with both 

mature Aβ plaques194 and NFTs195, although the contribution of the immune response to 

AD-DS has yet to be fully explored. The chromosome 21 gene S100 calcium-binding 

protein beta (S100B) is expressed in astrocytes and is upregulated in both AD196 and AD-

DS192, and it may contribute to neurodegeneration by promoting Aβ deposition197 and tau 

phosphorylation198 and by creating a neurotoxic environment through the release of 

extracellular signals199.

Translational research

The life expectancy of people with DS is increasing because of better health care and 

improved social inclusion. However, as with the euploid population, ageing brings new 

issues; in people with DS, a major ageing-related issue is a vastly increased risk of EOAD. 

People who have DS develop amyloid plaques and NFTs by the age of 40 years, and many 

individuals subsequently go on to develop dementia. Despite genetic and Aβ differences 

between the various forms of EOAD and LOAD, many similarities in disease process are 

observed such that AD seems to converge on common mechanisms of pathology. Thus, in 

the AD-DS patient population, it is feasible both to determine the factors (genetic and/or 

environmental) that cause conversion from pathological disease to cognitive decline and to 

undertake intervention trials to halt the development of dementia.

As APP gene dosage is the major determinant of AD-DS, it follows that therapies aimed at 

reducing Aβ (such as BACE inhibition or Aβ immunization) might have a beneficial effect 

in the DS population. Such approaches are being trialled for people with familial AD arising 

from APP or PSEN1 mutations200, and similar clinical trials in AD-DS could provide 

valuable additional insight, given the predictable conversion to AD neuropathology and 

subsequent dementia in this population. Other treatment options that require further 

development include DYRK1A inhibitors and ROS modulators. Notably, treatment safety is 

of particular importance because many individuals with DS are unable to consent to their 

own participation in clinical trials and because they will probably need to undergo treatment 

for many years.

Conclusions

Many questions remain to be answered in AD-DS, including, most importantly, the 

mechanisms underlying the later onset of dementia as compared with Dup-APP, how 

neurodevelopmental perturbations affect neurodegeneration and the identity of any 
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chromosome 21 gene (or genes) that may protect against dementia. We now have a 

remarkable set of tools for studying AD-DS, ranging from new model systems to genomics 

studies. Although there are undoubtedly specific problems in both analysing and treating 

people who have DS for AD, such as issues of informed consent, trisomy 21 is an extremely 

important disorder for learning about the development of neurodegeneration and for testing 

potential therapeutic strategies to the benefit of everyone at risk of AD.
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Glossary

Dyspraxia Disrupted fine or gross motor coordination.

Early-onset 
Alzheimer disease

(EOAD). Occurrence of Alzheimer disease before the age of 65 

years.

Euploid Having a normal chromosome number (46 chromosomes in 23 

pairs in humans).

Executive 
functioning

Mental processing skills involving the frontal cortex; used for 

planning, attention focusing, working memory, mental flexibility 

and self-control.

Incidence The rate of new occurrences of a disorder within a specified period 

of time.

Lewy bodies Protein aggregates typically containing α-synuclein.

Myoclonic jerks Brief involuntary muscle twitches that are a medical sign of various 

neurological disorders.

Parkinsonism A clinical syndrome including bradykinesia (slow movements), 

muscle rigidity and tremor, often due to the neurodegenerative 

condition Parkinson disease but also associated with other 

neurological conditions, toxins and medications.

Prevalence The number of cases of a disorder at one time within a population.

Tonic–clonic 
seizures

A common type of epileptic seizure with a tonic phase (stiffening 

of muscles and loss of consciousness) followed by a clonic phase 

(rapid, rhythmic jerking of arms and legs).
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Box 1

Identifying risk and protective factors for AD in young children

It may seem counterintuitive to study infants and young children to understand a disease 

that presents only in adulthood. However, Alzheimer disease (AD) does not have an 

abrupt onset but emerges from a lengthy developmental trajectory in which precursors 

(for example, prodromal changes) surface well before overt dementia symptoms. Several 

genes involved in neurodevelopment have been suggested to have an important role in 

AD (including components of the WNT and reelin signalling pathway201,202). 

Additionally, cultures of cells derived from infants with Down syndrome (DS) show 

clear overexpression of amyloid precursor protein (APP)119–122, and amyloid-β (Aβ) 

plaques have been found in the brains of children with DS who are as young as 8 years of 

age65. Thus, the syndrome offers a longitudinal perspective on the multilevel effects of 

Aβ and tau pathology during development.

DS is diagnosed prenatally or at birth, and all infants with DS are at a significantly 

increased risk of subsequently developing AD, although not all will present with 

dementia, even as ageing adults. It is possible that in adults with DS, patterns of 

individual differences between those with AD and those without AD are already rooted 

in their individual differences when they are just infants, at the genetic, cellular, neural, 

cognitive, behavioural, sleep and/or environmental levels. The challenge is to identify 

individual differences in childhood that pinpoint risk and protective factors for 

subsequent AD outcome in adulthood. We can then identify biomarkers and devise early 

intervention strategies, initially for individuals with DS and subsequently for members of 

the euploid population, revolutionizing our understanding of the pathways that lead to 

AD. Thus, a developmental approach is essential, especially as it has already been shown 

that differences that can be observed in infancy in individuals with DS (for example, in 

the simple planning of saccadic eye movements) have cascading effects on cognitive 

outcomes in childhood and adulthood (for example, on numerical processing, language 

and face processing)203. Therefore, to fully comprehend AD in adults, it is crucial to 

study its full developmental trajectory, and understanding DS makes this possible.
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Box 2

Modelling AD-DS in mice and in human iPSCs

Amyloid precursor protein (APP) overexpression in mouse models causes dysfunction of 

basal forebrain cholinergic neurons and synaptic and behavioural changes141,204–206. 

However, increased expression of wild-type APP, even at levels in excess of those 

present in Down syndrome (DS), is insufficient to cause extensive Alzheimer disease 

(AD) neuropathology207. Only mice expressing mutant APP and/or other AD-associated 

genes recapitulate aspects of AD neuropathology and/ or cognitive change207. Similarly, 

although altered expression of many chromosome 21 genes modifies mouse models of 

familial AD, whether a single extra copy of these genes is sufficient to affect pathology 

and behaviour remains unclear. However, chromosome engineering, which enables the 

generation of mouse models with large genomic duplications, may help to elucidate the 

effects of trisomy on neurodegeneration208.

Reprogramming human somatic cells into induced pluripotent stem cells (iPSCs; which 

are in an embryonic stem cell-like state) is revolutionizing AD modelling, and advances 

in three-dimensional differentiation now permit the development of extensive amyloid-β 

(Aβ) and tau pathology in vitro. Comparisons have been made between euploid and 

trisomy 21 iPSCs derived from multiple sources, including different individuals (non-

isogenic)122,209; isogenic lines generated in cell culture, spontaneously or by 

selection154,210; lines in which one of the three copies of chromosome 21 has been 

silenced211; monozygotic twins that were discordant for trisomy 21 (REF. 169); and non-

integration-reprogrammed isogenic lines from an adult with mosaic DS (a condition in 

which only a percentage of an individual’s cells carry an extra copy of chromosome 

21)121. Neurons derived from iPSCs show cellular phenotypes underpinning AD 

pathology, such as increased Aβ production, abnormal subcellular distribution of 

phosphorylated tau, mitochondrial abnormalities and accelerated cellular 

ageing121,122,154,212. DS iPSC models can be used to dissect the effect of trisomy of 

individual chromosome 21 genes (for example, by genome editing using clustered 

regularly interspaced short palindromic repeat–CRISPR-associated protein 9 (CRISPR–

Cas9) technology), to develop high-throughput screening assays for phenotype-correcting 

compounds and to investigate cellular phenotypes in iPSCs generated from individuals 

with DS with very early versus very late ages of onset of dementia.
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Figure 1. Development of pathology and dementia in AD-DS and Dup-APP
The graphs show the cumulative frequency of amyloid plaque deposition (measured using 

histological methods and positron emission tomography with Pittsburgh compound B (PiB), 

a radioactive analogue of thioflavin that binds to amyloid) and neurofibrillary tangle (NFT) 

development (measured using histological methods), and the cumulative frequency of 

dementia in people with Alzheimer disease and Down syndrome (AD-DS)6,33 and in 

individuals with familial AD induced by duplication of amyloid precursor protein (Dup-

APP). As shown, people who have DS can live for many years with substantial amyloid 

deposition before the development of dementia. Solid lines are based on the data described 

in Supplementary information S1–S3 (tables). Dashed lines indicate hypothesized 

development of pathology for which there are currently no data available. Further 

pathological and clinical studies directly comparing these two populations are required to 

verify the apparent differences in clinical dementia onset and to determine whether the 

development of pathology differs from that proposed here. Aβ, amyloid-β.
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Figure 2. Regions of chromosome 21 duplicated in Dup-APP EOAD and ICH
Schematic illustrating the genetic regions affected in reported cases of early-onset 

Alzheimer disease (EOAD) accompanied by duplication of amyloid precursor protein (Dup-

APP)8–15,108. The minimal duplicated region is shown in blue: the only gene duplicated in 

all cases is APP. ADAMTS1, a disintegrin and metalloproteinase with thrombospondin 

motifs 1; ATP5J, ATP synthase-coupling factor 6; BACH1, BTB and CNC homologue 1; 

BTG3, BTG family member 3; C21orf91, chromosome 21 open reading frame 91; CCT8, 

chaperonin containing TCP1 8; CHODL, chondrolectin; CLDN17, claudin 17; CXADR, 

coxsackie virus and adenovirus receptor homologue; CYYR1, cysteine- and tyrosine-rich 1; 

GABPA, GA repeat-binding protein-alpha; GRIK1, glutamate receptor ionotropic, kainate 1; 

HSPA13, heat shock protein 70 kDa 13; ICH, intracerebral haemorrhage; JAM2, junction 

adhesion molecule 2; LIPI, lipase member I; LTN1, listerin E3 ubiquitin protein ligase 1; 

MAP3K7CL, MAP3K7 carboxy-terminal like; MRPL39, mitochondrial ribosomal protein 

L39; N6AMT1, N-6 adenine-specific DNA methyltransferase 1; NCAM2, neural cell 

adhesion molecule 2; NRIP1, nuclear receptor-interacting protein 1; PED, pedigree; 

POTED, POTE ankyrin domain family member D; RBM11, RNA-binding motif protein 11; 

RWDD2B, RWD domain-containing 2B; SAMSN1, SAM domain, SH3 domain and nuclear 

localization signals 1; TMPRSS15, transmembrane protease serine 15; USP, ubiquitin-

specific peptidase.
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Figure 3. Schematic of suggested mechanisms that are important in AD-DS and their related 
genes
Several genes may modulate processes that are relevant to the development of Alzheimer 

disease in people with Down syndrome (AD-DS); these include non-chromosome 21 genes, 

such as apolipoprotein E (APOE; which could alter disease by influencing cholesterol 

metabolism and possibly many other pathways), phosphatidylinositol-binding clathrin 

assembly protein (PICALM), sortilin-related receptor 1 (SORL1; which may influence 

disease via the endocytosis system and amyloid precursor protein (APP) processing) and 

microtubule-associated protein tau (MAPT). Tau aggregates to form neurofibrillary tangles 
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(NFTs). Numerous chromosome 21 genes have also been suggested to influence the 

development of AD-DS, including genes that may influence APP processing and synaptic 

function via their role in the secretory–endosome system (including cystatin B (CSTB), 

DOPEY2, synaptojanin 1 (SYNJ1), intersectin 1 (ITSN1) and the microRNA gene mir-155), 

APP processing (including small ubiquitin-like modifier 3 (SUMO3), ETS2 and beta-site 

APP-cleaving enzyme 2 (BACE2)), cholesterol metabolism (including ATP-binding cassette 

G1 (ABCG1)), cellular signalling and tau phosphorylation (including dual-specificity 

tyrosine-phosphorylation-regulated kinase 1A (DYRK1A) and regulator of calcineurin 1 

(RCAN1)), inflammation (including mir-155 and S100 calcium-binding protein beta 

(S100B)), synaptic function (including DOPEY2, SYNJ1, ITSN1, RCAN1 and mir-155), 

neurodevelopment (including ubiquitin-specific peptidase 16 (USP16), DYRK1A and DS 

cell adhesion molecule (DSCAM)) and oxidative stress (superoxide dismutase 1 (SOD1)). 

The relative importance of these processes to the development of dementia in AD-DS 

remains unclear and constitutes an area for future study. Chromosome 21 genes and gene 

products are shown in purple; non-chromosome 21 genes and gene products are shown in 

green. Aβ, amyloid-β.
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