Laverty, DC;
(2016)
Structural and functional studies of a chimeric GABA-A receptor.
Doctoral thesis , UCL (University College London).
Preview |
Text
Duncan Laverty thesis FINAL April 2016.pdf Download (11MB) | Preview |
Abstract
GABA-A receptors are ligand-gated ion channels principally responsible for inhibitory neurotransmission in the mammalian CNS. GABA binding initiates a series of conformational changes causing the receptor to transition from inactive (shut/closed) to active (open) ion channel states; and during prolonged agonist exposure, to a desensitized (closed) state. Critical to the fine-tuning of inhibitory responses in vivo is the allosteric modulation of GABA-A receptors by an array of compounds, many of which impart their effect through binding within the receptor’s transmembrane domain. Beyond the importance of GABA-mediated inhibition in maintaining nervous system function, GABA-A receptors are established therapeutic targets for psychiatric and neurodevelopmental disorders. Despite this, an understanding of the structure of these receptors at atomic resolution is crucially lacking; particularly with regards to the structural elements underpinning channel gating and allosteric modulation. Therefore, GABA-A receptor ion channels were subjected to atomic-resolution structural analyses using chimeric receptors, in addition to comparative studies with bacterial ion channel homologues. A functional receptor was formed from chimeras between the extracellular domain of the prokaryotic ion channel GLIC and the transmembrane domain of GABA-A receptor α1 subunits. These receptors exhibited GABA-A receptor-like properties with respect to their response to brain neurosteroids. The amenability of this receptor to high-level expression and purification was assessed. The baculovirus-insect cell expression system was identified as an appropriate system for generating receptor of sufficient quantity and purity to generate diffracting protein crystals. Additional studies of GABA-A receptor modulators at the bacterial homologs GLIC and ELIC identified previously unreported effects prompting further structural investigation using X-ray crystallography, cryo-electron microscopy and native mass spectrometry. In conclusion, these studies reveal a new system for atomic structural resolution investigation of GABA-A receptor subunits, likely to be applicable to other receptors. These receptors are potentially powerful tools for understanding the mechanism of GABA-A receptor allosteric modulation.
Type: | Thesis (Doctoral) |
---|---|
Title: | Structural and functional studies of a chimeric GABA-A receptor |
Event: | University College London, London |
Open access status: | An open access version is available from UCL Discovery |
Language: | English |
UCL classification: | UCL UCL > Provost and Vice Provost Offices UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Life Sciences UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Life Sciences > Div of Biosciences UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Life Sciences > Div of Biosciences > Neuro, Physiology and Pharmacology |
URI: | https://discovery.ucl.ac.uk/id/eprint/1485727 |
Archive Staff Only
View Item |