Gelat, P;
Yang, J;
Thomas, PJ;
Hutchins, DA;
Akanji, O;
Davis, LAJ;
Freear, S;
... Saffari, N; + view all
(2016)
The dynamic excitation of a granular chain for biomedical ultrasound applications: contact mechanics finite element analysis and validation.
In:
(Proceedings) 14th Anglo-French Physical Acoustics Conference (AFPAC).
(pp. 012005).
IOP Publishing
Preview |
Text
Gélat_2016_J._Phys.%3A_Conf._Ser._684_012005.pdf - Published Version Download (1MB) | Preview |
Abstract
There has been recent interest in the transmission of acoustic signals along granular chains of spherical beads to produce waveforms of relevance to biomedical ultrasound applications. Hertzian contact between adjacent beads can introduce different harmonic content into the signal as it propagates. This transduction mechanism has the potential to be of use in both diagnostic and therapeutic ultrasound applications, and is the object of the study presented here. Although discrete dynamics models of this behaviour exist, a more comprehensive solution must be sought if changes in shape and deformation of individual beads are to be considered. Thus, the finite element method was used to investigate the dynamics of a granular chain of six, 1 mm diameter chrome steel spherical beads excited at one end using a sinusoidal displacement signal at 73 kHz. Output from this model was compared with the solution provided by the discrete dynamics model, and good overall agreement obtained. In addition, it was able to resolve the complex dynamics of the granular chain, including the multiple collisions which occur. It was demonstrated that under dynamic excitation conditions, the inability of discrete mechanics models to account for elastic deformation of the beads when these lose contact, could lead to discrepancies with experimental observations.
Type: | Proceedings paper |
---|---|
Title: | The dynamic excitation of a granular chain for biomedical ultrasound applications: contact mechanics finite element analysis and validation |
Event: | 14th Anglo-French Physical Acoustics Conference (AFPAC) |
Location: | Frejus, FRANCE |
Dates: | 14 January 2015 - 16 January 2015 |
Open access status: | An open access version is available from UCL Discovery |
DOI: | 10.1088/1742-6596/684/1/012005 |
Publisher version: | http://dx.doi.org/10.1088/1742-6596/684/1/012005 |
Language: | English |
Additional information: | Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. |
Keywords: | Science & Technology, Technology, Acoustics, SOLITARY WAVES |
UCL classification: | UCL UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Medical Sciences UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Medical Sciences > Div of Surgery and Interventional Sci UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Medical Sciences > Div of Surgery and Interventional Sci > Department of Surgical Biotechnology UCL > Provost and Vice Provost Offices > UCL BEAMS UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Engineering Science UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Engineering Science > Dept of Mechanical Engineering |
URI: | https://discovery.ucl.ac.uk/id/eprint/1485339 |
Archive Staff Only
View Item |