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Consolidation of Complex Events via Reinstatement in
Posterior Cingulate Cortex
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It is well-established that active rehearsal increases the efficacy of memory consolidation. It is also known that complex events are
interpreted with reference to prior knowledge. However, comparatively little attention has been given to the neural underpinnings of
these effects. In healthy adults humans, we investigated the impact of effortful, active rehearsal on memory for events by showing people
several short video clips and then asking them to recall these clips, either aloud (Experiment 1) or silently while in an MRI scanner
(Experiment 2). In both experiments, actively rehearsed clips were remembered in far greater detail than unrehearsed clips when tested
a week later. In Experiment 1, highly similar descriptions of events were produced across retrieval trials, suggesting a degree of seman-
ticization of the memories had taken place. In Experiment 2, spatial patterns of BOLD signal in medial temporal and posterior midline
regions were correlated when encoding and rehearsing the same video. Moreover, the strength of this correlation in the posterior
cingulate predicted the amount of information subsequently recalled. This is likely to reflect a strengthening of the representation of the
video’s content. We argue that these representations combine both new episodic information and stored semantic knowledge (or “sche-
mas”). We therefore suggest that posterior midline structures aid consolidation by reinstating and strengthening the associations
between episodic details and more generic schematic information. This leads to the creation of coherent memory representations of
lifelike, complex events that are resistant to forgetting, but somewhat inflexible and semantic-like in nature.
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Memories are strengthened via consolidation. We investigated memory for lifelike events using video clips and showed that
rehearsing their content dramatically boosts memory consolidation. Using MRI scanning, we measured patterns of brain activity
while watching the videos and showed that, in a network of brain regions, similar patterns of brain activity are reinstated when
rehearsing the same videos. Within the posterior cingulate, the strength of reinstatement predicted how well the videos were
remembered a week later. The findings extend our knowledge of the brain regions important for creating long-lasting memories
for complex, lifelike events. j

ignificance Statement

A proposed mechanism for consolidation is via offline rein-
statement of neuronal activity elicited during encoding (Marr,
1971; McClelland et al., 1995). Neuronal reinstatement relating
to consolidation has been described in rodents (Davidson et al.,
2009; Karlsson and Frank, 2009; Foster and Wilson, 2006) and

Introduction

Memory consolidation, whereby memories are stabilized via inter-
actions between medial temporal lobe regions and the neocortex
(Dudai, 2004; Wixted, 2004), is often considered to be a passive
process, occurring in the absence of explicit, active recall of the mem-
oranda. (Skaggs, 1925; Della Sala et al., 2005; Dewar et al., 2012).
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humans (via rhinal cortex “ripple” events; Axmacher et al., 2008).
Multivariate fMRI studies have shown that, for simple stimuli,
reinstatement of patterns of BOLD activity occurs spontaneously
between encoding and test, and that the degree of reinstatement
is associated with subsequent memory strength (Deuker et al.,
2013; Staresina et al., 2013). Moreover, several other studies have
used fMRI to show that BOLD activity following memory encod-
ing is related to subsequent memory performance despite there
being no overt instruction to rehearse (Tambini et al., 2010; Ben-
Yakov and Dudai, 2011; Ben-Yakov et al., 2013; Elman et al,,
2013; Staresina et al., 2013; Tambini and Davachi, 2013; Ben-
Yakov et al., 2014).

In contrast to this apparently effortless mechanism of consol-
idation, Conway (2009) noted that detailed memories of events
are typically forgotten within a week; they are presumably not
fully consolidated or are lost in a transformation to a gist-like
representation. Nevertheless, even detailed memories for some
events are well retained for long periods. A feature of such mem-
ories is that they are often actively retrieved many times; and
indeed, active rehearsal of information is a powerful method of
boosting later recall (Roediger and Karpicke, 2006). In addition,
memory for complex events differs from memory for simple
stimuli in that, to comprehend the sequence of unfolding actions,
it is necessary to interpret them with reference to our prior
knowledge of similar situations, sometimes referred to as mem-
ory “schemas” or “scripts” (Bartlett, 1932; Bransford and John-
son, 1972; Bower et al., 1979; Brewer and Treyens, 1981).
Therefore, memory for a complex lifelike event is never a straight-
forward representation of the incoming information, but is instead a
combination of this and our stored semantic knowledge.

A network of brain regions are involved in long-term mem-
ory, including the hippocampus and medial temporal lobes as
well as parts of the thalamus, frontal lobes, and medial parietal
regions, such as the precuneus, posterior cingulate, and retro-
splenial cortex (Scoville and Milner, 1957; Rudge and War-
rington, 1991; Squire, 1992; Aggleton and Brown, 1999;
Eichenbaum, 2001; Wagner et al., 2005). It has been suggested
that these latter regions are important for spatially coherent vi-
sual imagery of environments (Byrne et al., 2007), and they have
also been associated with semantic memory processes (Binder et
al., 2009).

To investigate memory for extended lifelike events, we used
videos as memoranda and probed memory over 1 or 2 weeks.
After watching the videos, participants rehearsed their content,
either by describing them aloud (Experiment 1) or silently to
themselves while in an MRI scanner (Experiment 2). Experiment
1 investigated the effect of active rehearsal on the durability of
memories. Experiment 2 aimed at identifying whether reinstate-
ment of BOLD activity can be detected when the memoranda are
unfamiliar trial-unique videos and whether the strength of rein-
statement during periods of active rehearsal is associated with
subsequent memory recall.

Materials and Methods

Participants

All participants gave written consent and were paid for participating, as
approved by the local Research Ethics Committee. All were right-handed
with normal or corrected-to-normal vision and reported to be in good
health with no history of neurological disease. Experiment 1 involved 13
participants (6 female, mean age 22.3 years, range 1830 years). Experi-
ment 2 involved 16 participants (10 female, mean age 26.6 years, range
20-34 years).
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Stimuli

A total of 26 videos were used. The videos were clips taken from short
films or videos posted on www.YouTube.com. The clips lasted on aver-
age 38 s (range = 29-48 s) and were presented without sound. All the
videos depicted live action, taking place outside (15 videos) or inside (11
videos). Of the 26 videos used, 10 involved multiple characters interact-
ing, 11 involved interactions between two main characters, and 4 in-
volved just one character or no characters (1 video). Thirteen videos
involved humorous content. None of the videos involved distressing or
highly emotionally negative content.

Procedure for Experiment 1

Twenty-one of the 26 videos were used, divided into three sets of seven
(Sets 1, 2, and 3). Pilot studies ensured that the average number of details
recalled for the videos in each set was approximately the same. The ex-
periment used a within-subjects design with three recall conditions (Fig.
1A). The assignment of Sets 1, 2, and 3 to the three conditions was
counterbalanced across participants. All participants watched all 21 vid-
eos in a single encoding session. The seven videos in Condition 1 were
then recalled on days 1, 8, and 18. The seven videos in Condition 2 were
recalled on days 1 and 18. The seven videos in Condition 3 were recalled
on days 8 and 18.

Participants were told that their task was to watch videos and try to
remember their content for a memory test. They were then shown a
practice video similar to the ones used in the main task. Immediately after
watching the practice video, participants were asked to describe the video
in as much detail as possible, while the experimenter scored their recall
for the content of the video. Following this, the participants were shown
a checklist of details contained in the video, with the experimenter’s
“ticks” indicating those details that had been successfully recalled. The
purpose of this was to emphasize that descriptions of the videos should be
as detailed as possible and that credit would be given for the recall of any
detail that was specific to the video.

In the encoding phase, participants watched all 21 videos, presented on a
computer monitor via PowerPoint. After the action finished, the screen
would freeze, and the participants would press a key to start the next video.
Each video had a title that was presented above the video throughout its
duration. Participants were instructed to attend to the title as well as the
video. In the rehearsal/recall phase, participants were prompted with the
video’s title and asked to describe it in as much detail as possible. The order of
the videos in the test phase was pseudo-randomized according to the day and
the experimental conditions (see design). Responses were audio recorded
and later scored for the number of individual details recalled.

Recall of the videos was scored in a similar way to commonly used
“prose recall” tests of memory, where a point is awarded for every “idea”
correctly recalled (e.g., Wilson et al., 1991). Pilot work identified a num-
ber of details that were consistently recalled for each of the videos. These
constituted a “checklist” of details that served as a framework for scoring
recall of each video. Points were awarded for correctly recalling actions
(e.g., “someone swiped their card to open the door”) and specific de-
scriptions (e.g., “a balding man” but not “a man”). In some cases, points
awarded for specific descriptions were capped (e.g., if the video involved
4 adults in their twenties, one point was awarded for “adults in their
twenties” rather than 4 points for describing each individual in turn as
“in their twenties”). Correct details were always awarded a point regard-
less of whether they were included on the checklist. Redundant informa-
tion, for example, simply restating information that was in the video’s
title, was not credited.

If a participant was unable to recall anything about the video when
given the title, then “hints” were provided to cue recall. These hints were
based on the checklist of details for each video. The first hint would
describe a salient feature of the opening scene; for example, it would
describe the characters present or the location of the opening scene. The
purpose of giving hints was to cue recall of any details of the video that the
participant could remember. Therefore, hints would be provided until
(1) the majority of the video had been described or (2) the participant
indicated that they had no memory of the particular video. Points were
awarded for any details recalled that were additional to the information
contained in the hints. On subsequent recall sessions, credit would not be
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given for recalling details that had been pro- A
vided in a hint during a previous session. Er-

rors in recall were not formally analyzed. The
responses were all scored independently by two

raters (the authors C.M.B. and L.P.1.), and the

mean score was used as the measure of recall.

One rater (C.M.B.) was blind to the experi-

mental conditions from which each recording

came.

Procedure for Experiment 2

Before scanning, participants performed a
practice trial with the examiner according to
the same procedure as for Experiment 1. They
were then instructed that the task they would

Condition

Condition

Condition
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Day 1

Day 8

Day 18

Watch 7 Recall 7 Recall 7 Recall 7
videos videos videos videos
Watch 7 Recall 7 Recall 7
videos videos videos
Watch7 Recall 7 Recall 7
videos videos videos

perform in the scanner would be similar to this.
However, rather than describe the videos out B
loud, they were requested to rehearse the con-
tent of the videos silently to themselves. Partic-

Day 1 (in scanner) Day 7

ipants were informed that their recall of the
videos would be tested a week after the scan.
The experiment was performed in two runs,

Watch 13
videos

Watch 13
videos

Recall 26
videos

Rehearse
10 videos

Rehearse
10 videos

with each run comprising an encoding phase

and a rehearsal phase (Fig. 1 B, C). Each encod-
ing trial involved showing a video while the
title was displayed at the top of the screen C
throughout. At the end of the video, the final
frame remained on screen until the participant
pressed a button. This was to ensure that the
participants concentrated on the task. A blank
screen was shown during the intertrial interval
(ITT) between the button press and the start of

| Encounters at the office |

the next video. The ITI was jittered between 6 ~g
and 10 s (mean = 8 s). The rehearsal phase

Mean =~ 40

used a cued recall paradigm, with the video title
serving as the rehearsal cue. On each rehearsal
trial, the title of the video appeared on screen
for 2.5 s and then faded but remained visible.
Participants were instructed to spend approxi-

Remember the
clip “Encounters
at the office”

How vivid was your
memory?
5= High

mately the same amount of time rehearsing the
video as the video had originally lasted. After Il l

1= Low

rehearsal, the participant pressed a button to
indicate they had finished. They were then
asked to rate how vividly they could remember
the video on a visual analog scale from 1 to 5. A
blank screen was shown during the ITI between
rating the vividness and the subsequent cue.
The ITI was jittered between 4 and 9 s (mean =
6.5 s). There were a total of 26 encoding trials
and 20 rehearsal trials. The 6 unrehearsed trails
served as a baseline for memory performance
after a week given no instruction to rehearse.
In the testing phase, performed a week after
scanning, participants were prompted with the video’s title and asked to
describe it in as much detail as possible. Responses were audio recorded
and later scored for the number of details correctly recalled. Scoring
followed the same procedure as for Experiment 1. Responses were scored
by one rater (C.M.B. or L.P.I.) who was not blind to the experimental
condition because the same videos were allocated to the two experimen-
tal conditions for all participants. These scores were then checked, but
not scored independently, by a third rater (C.O., see Acknowledgments).

~6.5

Figure 1.

MRI acquisition

BOLD-sensitive T2:#-weighted fMRI measurements were acquired on
a 3T Siemens Allegra scanner using a gradient-echo EPI pulse se-
quence with the following parameters: repetition time, 2880 ms; echo
time, 30 ms; flip angle, 90°; slice thickness, 2 mm; interslice gap, 1
mm; in-plane resolution, 3 X 3 mm; field of view, 192 mm ?; 48 slices
per volume. The sequence was optimized to minimize signal dropout
in the medial temporal lobes (Weiskopf et al., 2006). In addition, a

Mean =~50 <4 Time/s

A, Study design for Experiment 1. All 21 videos were watched consecutively on day 1, and the videos from Conditions
1and 2 were rehearsed/recalled (i.e., described aloud in response to the video title), with the experimenter present, after a break
of 5 min. Videos from Conditions 2 and 3 were rehearsed/recalled on day 8. All 21 videos were recalled on day 18. B, Study design
for Experiment 2. On day 1, 26 videos were watched, and 20 of these were silently rehearsed in an MR scanner. The watching and
rehearsal periods were divided into two runs. A week later, all 26 videos were recalled in the presence of an experimenter. (,
Procedure for Experiment 2. Each video was shown with its title present. The videos were cued using their title in the rehearsal
period, and this period was terminated by the participant and followed by a vividness rating. Used with permission from the group.

field map using a double-echo fast, low-angle shot sequence was re-
corded for distortion correction of the acquired echo planar images
(Weiskopf et al., 2006). After the functional scans, a T1-weighted
structural image (1 mm? resolution) was acquired for coregistration
preprocessing steps.

Image preprocessing

The first five EPI volumes collected in each run were discarded to allow
for T1 equilibration. For GLM analysis, the remaining functional images
were then spatially realigned to the first image in the times series and were
corrected for distortions based on the field map (Hutton et al., 2002) and
the interaction of motion and distortion using the Realign and Unwarp
routine in SPM 8 (Andersson et al., 2001; Hutton et al., 2002). Data were
then corrected for the offset time of slice activation with reference to the
middle slice of the first volume. Using AFNI (Cox, 1996), each subject’s
structural scan was then registered to the first functional volume ac-
quired and warped into Talairach space. The transform parameters esti-
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mated in this normalization step were then applied to the functional data.
The functional data were smoothed with a 6 mm FWHM Gaussian ker-
nel, and scaled to percentage signal change. The data for the representa-
tional similarity analyses were preprocessed in the same way, except that
the functional data were not normalized or smoothed.

Data analysis

GLM. BOLD responses were estimated using a GLM implemented in
AFNT’s 3dDeconvolve program. Task regressors included video presen-
tation and retrieval periods, rating cues, ratings, and button presses. All
experimental periods were modeled as boxcars whose duration matched
the individual length of the modeled period, except for button presses at
the end of each video, which were modeled as impulse functions. In
addition, the six motion parameters estimated from the realignment step
were included in the model, as were baseline Legendre polynomials up to
the eighth order to account for scanner drift. The group-level effects for
videos and retrieval periods were then calculated using a one-sample ¢
test against a null hypothesis of zero. We also performed parametric
analyses to investigate whether BOLD responses during the encoding and
rehearsal periods were modulated by the number of details recalled for
each video a week after scanning (a “detail of recall” subsequent memory
effect). To account for the fact that some videos were recalled better
overall than others, the mean number of details recalled by all partici-
pants for a video was subtracted from the individual’s score for that video
(although note that highly similar results were obtained when simply
using the raw number of details recalled).

Representational similarity. For the representational similarity analyses
(RSA), each of the two runs was analyzed in separate GLMs as described
above, with the exception that each video and retrieval period was modeled
with its own regressor. Searchlight maps for each participant were then gen-
erated as follows: at each voxel, a sphere was created consisting of all the
voxels within 10 mm of the voxel (on average, 160 voxels per sphere). The
vectors of ¢ statistics within this sphere for all the encoding periods of re-
hearsed videos (i.e., 20 of the 26 presented; see above), and all the rehearsal
periods were then correlated, and the resulting Fisher-transformed r value
was assigned to the center voxel of the sphere for each specific encoding-
rehearsal pairing. Thus, each voxel had 400 values associated with it, 20 of
which represented the voxelwise correlation between matching encoding
and rehearsal periods (e.g., watching “Encounters at the office” and rehears-
ing “Encounters at the office”), whereas the remaining 380 represented non-
matching encoding-rehearsal pairs (e.g., watching “Encounters at the office”
and rehearsing a different video).

To identify brain regions whose representations were more similar for
matching than nonmatching pairs, we calculated for each participant the
mean correlation for matching pairs minus the mean of the nonmatching
pairs and assigned this value to each voxel. These maps were tested
against a null hypothesis of zero using a one-sample ¢ test across subjects.
To assess how participants’ memory for individual videos affected the
degree of representational similarity between the encoding and retrieval
periods for that video, we directly contrasted the RSA above with an
analysis in which the contribution of each matching encoding-retrieval
pair was weighted by the number of details a given participant remem-
bered for a given video compared with the participants as a group. For
each subject, we calculated the difference between the weighted mean of
the matching pairs and the unweighted mean of the matching pairs. If the
degree of memory for a given video is unrelated to the similarity of the
encoding-rehearsal pair, then the expected value of this contrast is zero.
However, if the correlation between encoding-rehearsal pairs is in-
creased when more details from that video are remembered, then the
expected value of the contrast is greater than zero. This was assessed by a
one sample ¢ test across subjects.

Results

Experiment 1

The inter-rater reliability for the scores from Experiment 1, as
calculated by the Pearson correlation between the two raters’
scores for each participant’s recall of each video, was 0.93 (p <
0.001). The results from Experiment 1 are shown in Figure 2.
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Figure2. Behavioral results from Experiment 1. Videos that were recalled on days 1, 8, and
18 (Set 1) were recalled best, with only 4.5% of the details forgotten between day 1and day 8
and a 2% improvementin recall on day 18. Videos that were recalled on day 1and day 18 (Set 2)
were also remembered reasonably well, with only 14.7% of the details forgotten by day 18. By
contrast, videos that were not recalled on day 1 but were first recalled on day 8 (Set 3) showed
substantial forgetting, with the number of details recalled being 47.8% lower than the level of
recall on day 1on Sets 1and 2. Performance on Set 3 improved by 7.6% between day 8 and day
18. Error bars indicate SEM.

Because the study did not use a fully factorial design, perfor-
mance within conditions was compared across days and perfor-
mance within days was compared across conditions using
planned paired-sample ¢ tests. There were 9 separate compari-
sons, giving a Bonferroni-corrected p value of 0.0056 to be signif-
icant at a level of @« = 0.05. For Set 1, performance was
significantly lower on day 8 compared with day 1 (¢, = 4.65,
p < 0.001), but there was no difference between performance on
day 8 and day 18. For Set 2, there was a significant reduction in
performance on day 18 compared with day 1 (#,,, = 10.8, p <
0.0001). For Set 3, there was no difference in performance on day
8and day 18. On day 1, recall in Sets 1 and 2 was not different. On
day 8, there was a highly significant difference in the number of
details recalled between Set 1 and Set 3 (t,,) = 10.3, p < 0.0001).
On day 18, the difference between Sets 1 and 2 was significant
(t(12) = 3.4,p = 0.0050), and the differences between Set 1 and Set
3 and between Set 2 and Set 3 were significant (¢,,) > 5.5, p <
0.001 for both comparisons).

It is possible that our findings reflect large numbers of videos
being forgotten (no details recalled) in Condition 3, whereas the
remaining videos were vividly recalled. To investigate this possi-
bility, we excluded from the analysis any video where a hint had
been provided to aid recall. Hints were only provided for 6.0% of
the video descriptions, although the majority of hints were pro-
vided for videos in Condition 3 (29 of 38 hints). Removing these
video descriptions had negligible effects on the data; the biggest
differences were for Condition 3, where the day 8 recall scores
were 5.4 versus 5.7 and the day 18 recall scores were 5.7 versus 6.1
(latter scores reflect the mean number of details recalled after
removing videos where hints were provided). Therefore, re-
hearsal appears predominantly to boost the number of details
recalled in the videos, rather than result in fewer forgotten videos.

When scoring the descriptions of the videos, it was striking
that they were highly consistent within individuals across the
testing sessions. This was not only the case for correctly recalled
information but also for incorrect details. For example, one par-
ticipant falsely recalled a kiss between two characters when tested
on day 1, and then repeated this on day 8. To quantify the simi-
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larity in recall across sessions, we calcu-
lated the correlation between details
recalled by the same participants across
sessions with different participants who
performed at the same level on the first
session (calculated separately for each
video). The mean within-participant cor-
relation between details recalled on day 1
and day 8 was r = 0.79 (SD = 0.11),
whereas the mean between-participant
correlation was r = 0.27 (SD = 0.19), with
the difference between these values being
highly significant (£.,o) = 11.2, p < 0.001).

Follow-up analyses revealed no signif-
icant differences in subsequent memory
that were related to the content of the vid-
eos (e.g., “outside” vs “inside”; details
available upon request).

Experiment 2

Behavioral data

This experiment investigated the brain re-
gions involved in remembering the con-
tent of video clips. In total, there were 20
videos that were rehearsed while in the
scanner on day 1 and 6 that were not. The
mean number of details recalled on day 7
from the rehearsed videos was 8.50
(SEM = 0.35), whereas the mean number
of details from the nonrehearsed videos
was 2.65 (SEM = 0.31). This difference is
highly significant (¢,5, = 14.1,p < 0.001),
replicating Experiment 1. A follow-up analysis investigated
whether there was a relationship between recall vividness ratings
from day 1 and subsequent memory scores on day 7. At an indi-
vidual level, there was a significant (p < 0.05) correlation be-
tween vividness ratings given in the scanner on day 1 and
subsequent memory on day 7 in 7 of 16 participants. To analyze
the significance of the relationship between vividness and subse-
quent memory across the whole group, we Fisher-transformed
the Pearson correlation coefficients for each individual and tested
this against 0, using a one-sample ¢ test. This was significant
(t(15y = 5.03, p < 0.001), indicating that there was a robust rela-
tionship between vividness and subsequent memory at the group
level.

Figure 3.

Neuroimaging data: univariate analyses of brain regions involved
in encoding and rehearsal
These first analyses aimed to identify regions independently in-
volved in both encoding and rehearsal, separately comparing the
encoding and rehearsal periods with baseline (the unmodeled ITI
and rest periods; Fig. 3). This analysis revealed very extensive regions
of activity, largely in “visual” regions, including visual cortex, the
ventral visual stream (Mishkin et al., 1983; Goodale and Milner,
1992), and large regions of the thalamus during encoding. In addi-
tion to these areas, the superior parietal cortex bilaterally and the
right temporal pole showed significant activity, as did the left middle
frontal gyrus. There were also large regions showing significant “de-
activations” during task performance compared with baseline,
which are discussed below.

The second analysis identified regions more active during re-
hearsal compared with baseline (Fig. 4). This analysis revealed exten-
sive regions of posterior portions of the frontal lobes, both medially
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Brain regions involved in memory encoding compared with rest periods. Orange regions were more active when
encoding videos. Blue regions were deactivated during encoding periods compared with rest. Increased opacity of the color
corresponds to higher t values. Regions significant at p << 0.001 (uncorrected for multiple comparisons) are outlined in black.

and laterally, although activations were greater in the left hemi-
sphere. The superior parietal lobe bilaterally and left posterior lateral
temporal lobe were also identified in this analysis.

A rather similar, though not identical, network of regions was
significantly deactivated during both encoding and rehearsal rel-
ative to rest. These regions include medial prefrontal cortex and
posterior midline areas, such as the precuneus and retrosplenial
cortex. This finding is consistent with numerous previous reports
of so-called “default network” activity during rest periods (Buck-
ner et al., 2008).

Planned follow-up analyses of the univariate contrasts inves-
tigated whether BOLD activity during encoding and rehearsal
periods of each video correlated with the number of details sub-
sequently recalled for those videos. However, no brain regions
showed a significant effect.

Multivariate analyses of memory reinstatement during rehearsal
We used representational similarity analyses (Kriegeskorte et al.,
2008) to identify areas where the spatial pattern of activity across
local groups of voxels was greater during encoding and rehearsal
of the same video clip versus encoding and rehearsal of different
video clips (see Fig. 6; Table 1). That is, we looked for regions in
which the pattern of BOLD activity when encoding a particular
video is reinstated to some extent when rehearsing that particular
video. This analysis identified the medial parieto-occipital cortex
(posterior cingulate cortex including the retrosplenial cortex, and
precuneus), angular gyrus, and the posterior portion of the mid-
dle temporal gyrus extending into the parahippocampal gyrus
and hippocampus on the left (Fig. 5).

Itis interesting to note that the region of medial parietal cortex
identified in the RSA overlaps considerably with areas showing
deactivation during encoding and retrieval compared with rest.
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Figure 4.

Therefore, task relevant information was clearly still being pro-
cessed despite the overall reduction in BOLD signal compared
with rest.

In asecond RSA, we investigated regions in which the strength
of correlation of patterns of activity between encoding and re-
hearsing a video was associated with subsequent memory for
details from that video after 1 week. This identified a 226 voxel
region in the posterior cingulate that partially overlapped the
large posterior midline area identified in the previous analysis
(Fig. 6; Table 1). A third RSA investigated regions where the
strength of reinstatement correlated with recall vividness ratings
taken while in the scanner. This analysis also identified a region of
posterior cingulate, but at a slightly reduced threshold (p < 0.005
uncorrected; further details available upon request).

Discussion

Recent memories are susceptible to interference until a period
of consolidation has elapsed, rendering the memory more sta-
ble (e.g., Dudai, 2004). Memory can be improved by a period
of inactivity following learning, presumably because consoli-
dation mechanisms can operate unhampered by interfering
cognitive activity (Skaggs, 1925; Della Sala et al., 2005; Dewar
et al., 2012). The present study considers the effectiveness of
active rehearsal in consolidating episodic memories, and the
relationship between consolidation and rehearsal-related re-
instatement of encoding-related patterns of brain activity.
Participants viewed short video clips, each depicting a separate
complex event. Successful consolidation of the content of the
videos was dependent on the opportunity to rehearse them
shortly after they were viewed, either by recalling the videos
aloud or silently rehearsing them.

Brain regions involved in memory rehearsal compared with rest periods. Orange regions were more active when
rehearsing the videos. Blue regions were deactivated during rehearsal periods compared with rest. Increased opacity of the color
corresponds to higher t values. Regions significant at p << 0.001 (uncorrected for multiple comparisons) are outlined in black.
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A week after watching the videos, partic-
ipants in Experiment 1 recalled approxi-
mately twice as many details about videos
that had been actively rehearsed than those
that had not been rehearsed. Was this sim-
ply because there was no (passive) rehearsal
period for these other memories to consoli-
date in? We believe that this is unlikely to be
the sole explanation. In a study of the effect
of 10 min of wakeful rest on memory reten-
tion over a week, the improvement in recall
was ~11 story units versus just <9 story
units (Dewar et al., 2012). This contrasts
with our study where the improvement due
to rehearsal was ~10 details versus 5.

It is possible that rehearsal prompted
the participants to decide upon a version
of what happened in the video, and it was
this version that was recalled later. This
proposal is supported by the observation
that the recalled descriptions were highly
similar over time, sometimes repeating
exactly the same phrases. Others have
noted that individuals commonly retrieve
their own descriptions of events rather
than remember the events themselves
(Williams et al., 2008).

It has been argued (e.g., Winocur and
Moscovitch, 2011) that memories for events
undergo transformation over time, chang-
ing from being episodic and context-
specific to semantic or schematic. If our
participants were creating a “story” of what
happened, then this representation of the memory would necessarily
be rather fixed and inflexible, which are characteristics of semantic
memories rather than episodic memories (Tulving, 1972; Cermak,
1984). Our results suggest that rehearsal of events might accelerate
this transformation process. We note that our participants’ descrip-
tions remained highly detailed, which is contrary to the notion that
semanticized memories are generic in nature (Winocur and Mosco-
vitch, 2011), but is consistent with the observation that even very
densely amnesic patients are often able to recall some stories from
their pasts in considerable detail, although such anecdotes are typi-
cally repeated verbatim on each occasion (e.g., Cermak, 1984; Stein-
vorth et al., 2005).

There are alternative explanations for why active rehearsal
boosts recall. First, rehearsal of a subset of the videos may inhibit
consolidation of the nonrehearsed set and this inhibition may
result in unrehearsed videos being largely forgotten (“retrieval-
induced forgetting”) (Anderson et al., 2000; Wimber et al., 2015).
Although this explanation does not explain why active rehearsal
is such a good method for retention of detail over long periods
(Roediger and Karpicke, 2006), it may explain why recall for
nonrehearsed videos was so poor. A second mechanism that
might serve to stabilize the memories is the strengthening of a
hippocampal-dependent “episodic” representation of the events.
This is discussed further below.

Using RSA, Experiment 2 identified a network of regions where
patterns of BOLD activity elicited during the encoding of a video
were reinstated during active rehearsal of that specific video (Fig. 6;
Table 1). This network included the hippocampus and posterior
midline regions (posterior cingulate, retrosplenial cortex, and pre-
cuneus). These regions are all strongly implicated in episodic mem-
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Table 1. Brain regions showing RSA for encoding and retrieval”

Bird, Keidel et al. ® Consolidation in Posterior Cingulate Cortex

Region Size (voxels) Peak x Peak y Peak z t-statistic
RSA between encoding and rehearsal of the same video
Bilateral precuneus/posterior cingulate cortex 4579 -3 =55 20 9.2
Left middle temporal gyrus/parahippocampal gyrus/inferior parietal lobule/hippocampus/superior temporal sulcus 3747 —45 =59 8 8.86
Right superior temporal gyrus/angular gyrus/inferior parietal lobule 3606 45 —53 20 12.33
Right parahippocampal gyrus 757 35 -39 —6 7.34
Right insula/middle frontal gyrus/white matter 304 39 9 18 5.96
Modulation of regions showing RSA between encoding and rehearsal by the number of details subsequently recalled
Bilateral posterior cingulate cortex/precuneus 224 -3 -4 32 5.72

“All clusters are significant when whole-brain family-wise error was corrected for cluster size.

ory processes (e.g., Aggleton and Brown,
1999; Eichenbaum, 2001). Therefore, the
results support the proposal that active re-
hearsal not only enables a putative transfor-
mation process to take place, but also
strengthens the episodic representation of
the memory. Moreover, within posterior
midline regions, the strength of representa-
tional similarity in the posterior cingulate
correlated with the number of details re-
called from each video a week after scan-
ning. Given that the rehearsal period
appears to be critical for robust memory
consolidation (Experiment 1) (see also Roe-
diger and Butler, 2011), this finding suggests
that the posterior cingulate plays a crucial
role in active consolidation of complex
memories.

Posterior midline structures have long
been associated with memory and visual
imagery in humans (Rudge and War-
rington, 1991; Fletcher et al., 1995; Wagner
et al,, 2005) and spatial memory in rodents
(Sutherland et al., 1988; Vann and Aggleton,
2004). They are also a central component of
the “default network” of brain regions that
are commonly more active during rest peri-
ods compared with task periods (Shulman
et al., 1997; Spreng et al., 2009) and have
been associated with processing under-
pinning “self-projection” (Buckner and
Carroll, 2007) and “scene construction”
(Hassabis and Maguire, 2007).

A related specific computational role
has been proposed for the retrosplenial
cortex and precuneus (Burgess et al.,
2001; Byrne et al., 2007): that the retro-
splenial cortex translates between ego-
centric and allocentric representations
of an environment and, together with
the precuneus, acts as a buffer for this

Figure 5.

Figure 6.

Brain regions involved in memory reinstatement. Heatmap shows regions where the pattern of BOLD signal when
encoding the videos is correlated with BOLD signal when rehearsing the corresponding videos (compared with rehearsing noncor-
responding videos). The map is thresholded at p << 0.001 (whole-brain family-wise error corrected for cluster size).

Region where the strength of reinstatement is associated with the amount recalled 1 week later. In the posterior

information, allowing it to form a visu-
ospatial mental imagine. Consistent
with this, the retrosplenial cortex codes

cingulate cortex, the strength of correlation between the pattern of activity during encoding and rehearsal of matched video clips
was associated with the number of details recalled on day 7. The map is thresholded at p << 0.001 (whole-brain family-wise error
corrected for cluster size).

for both imagined location and imag-

ined heading direction when humans visualize spatial scenes
(Marchette et al., 2014) and activity in this region relates to
mental rotation of viewpoint (Lambrey et al., 2008). Impor-
tantly, this model predicts that common representations will
be formed at encoding and retrieval. It is likely, therefore, that
RSA in posterior midline regions between encoding and re-

hearsal is partly due to reinstatement of visual representations
created during encoding.

Previous studies have shown persistence of, or reinstatement
of, patterns of activity in the hippocampus and posterior midline
regions during tests of object-scene or object-face associations
(Staresina et al., 2013; Tambini and Davachi, 2013). In these
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studies, the stimuli were pairings of two pictures, and these stim-
uli could be retrieved as a single mental image. Nevertheless, our
finding of representational similarity in posterior midline regions
is likely to be driven by more than simply reinstating a single
visual percept. Videos depict an unfolding sequence of actions
that must be interpreted, with reference to prior knowledge or
“schemas,” to create a coherent representation of the whole event
(for relevant evidence from classic studies using complex mem-
oranda, see Bartlett, 1932; Bransford and Johnson, 1972; Bower et
al., 1979; Brewer and Treyens, 1981). Although prior knowledge
was not quantified or manipulated in our study, the descriptions
of the videos frequently referred to external information (for
example, one video was described as being “like the film “Twi-
light,” and in another, a character acted “like James Bond”).
Critically therefore, our effect is likely to reflect the reinstatement
of a coherent representation of the content of the video. It is
interesting to note that, despite the clear evidence for reinstate-
ment in medial parietal regions, overall BOLD activity in these
regions did not significantly increase during encoding or retriev-
al; indeed, activity decreased in several areas (compare Figs. 4, 5
with Fig. 6). This is an important example of how multivariate
analysis can identify stimulus-specific processing even in the ab-
sence of a positive univariate effect.

The posterior cingulate cortex has been identified as a candi-
date region for linking episodic and semantic information (e.g.,
Binder et al., 2009). For example, Maguire et al. (1999) scanned
participants performing a reading comprehension and memory
task where prior knowledge about the stories was manipulated.
The authors concluded that the posterior cingulate cortex played
arole in linking the narrative information with prior knowledge.
Our results are compatible with this conclusion. It should be
noted that our MRI findings relate to the degree of reinstatement
of activity during encoding and the very early stages of episodic
memory consolidation. Although Experiment 1 demonstrated
that memory recall can be very similar across periods of days and
weeks, it remains an open question whether recall reinstates sim-
ilar patterns of brain activity after these delays.

In this paper, we have shown the significant effect of active
rehearsal on retention of episodic detail over the period of a week,
and that participants’ descriptions of the videos were highly sim-
ilar across repeated recall sessions. We also showed that the pat-
tern of brain activity during encoding of the videos was reinstated
during retrieval throughout medial temporal and posterior mid-
line regions, and that the degree of reinstatement in the posterior
cingulate cortex correlated with recall of the videos following a
delay of a week. Thus, in addition to their known role in recollec-
tion and visual imagery, these findings suggest that the posterior
cingulate plays a crucial role in integrating incoming episodic
experience with existing knowledge to create a coherent repre-
sentation of the event (related to the ideas of schemas). Reinstate-
ment of this representation aids consolidation by strengthening
the associations between episodic details as well as more general
schematic information, resulting in a memory that is resistant to
forgetting, but rather inflexible and semanticized.

Notes

Supplemental material for this article is available at http://www.sussex.
ac.uk/psychology/memory/publications/sup-mats. This includes an ex-
ample of a video used in this study, a transcript of a description of this
video a week after watching and silently rehearsing it (Experiment 2), and
a checklist of details that would be awarded a point if recalled. This
material has not been peer reviewed.
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