UCL Discovery
UCL home » Library Services » Electronic resources » UCL Discovery

Sex hormone measurements using mass spectrometry and sensitive extraction radioimmunoassay and risk of estrogen receptor negative and positive breast cancer: Case control study in UK Collaborative Cancer Trial of Ovarian Cancer Screening (UKCTOCS)

Fourkala, EO; Blyuss, O; Field, H; Gunu, R; Ryan, A; Barth, J; Jacobs, I; ... Menon, U; + view all (2016) Sex hormone measurements using mass spectrometry and sensitive extraction radioimmunoassay and risk of estrogen receptor negative and positive breast cancer: Case control study in UK Collaborative Cancer Trial of Ovarian Cancer Screening (UKCTOCS). Steroids , 110 pp. 62-69. 10.1016/j.steroids.2016.04.003. Green open access

[img]
Preview
Text
Menon2_Blyuss et al_Sex hormone measurements using mass spectrometry and sensitive extraction radioimmunoassay and risk of er negative and positive breast cancer _2016.pdf

Download (514kB) | Preview

Abstract

INTRODUCTION: Associations of endogenous sex hormone levels and all as well as estrogen-receptor (ER)-positive breast cancers are well described. However, studies investigating their association with ER-negative tumours are limited and none use accurate assays such as mass spectrometry. METHODS: Within the UK Collaborative Trial of Ovarian Cancer Screening (UKCTOCS), a nested case-control study was undertaken of postmenopausal-women who developed ER-negative (n=92) or ER-positive (n=205) breast cancer after sample donation and 297 (1:1) age-matched controls. Androgens (testosterone and androstenedione) were measured using mass spectrometry and estradiol by extraction radioimmunoassay (RIA). Bioavailable estradiol and testosterone were calculated using the total hormone level and the sex hormone-binding globulin concentration. Subjects were classified according to the quartile range among controls. Logistic regression was used to estimate odds-ratio (OR) and 95% confidence-intervals (CI) of the associations between two factors and breast cancer risk. A separate analysis was done by stratifying the women based on whether they provided their samples less than or more than 2years before diagnosis. RESULTS: Estradiol and free estradiol were significantly higher prior to diagnosis of ER-negative breast cancer compared with controls while androgens and SHBG did not show any difference. Estradiol, free estradiol, free testosterone and SHBG were significantly higher before ER-positive breast cancer diagnosis compared with controls. Women had a twofold increased ER-negative breast cancer risk if estradiol and free estradiol were in the top quartile but not androgens (testosterone and androstenedione) or SHBG. These associations remained significant only when samples closer (median 1.1y before) to diagnosis were analyzed rather than farther from diagnosis (median 2.9y before). Women had a 2.34 (95% CI: 1.21-4.61, p=0.001), 2.21 (95% CI: 1.14-4.38, p=0.001), 2 (95% CI: 1.05-3.89, p=0.005) fold increased ER-positive breast cancer risk if estradiol, free estradiol and free testosterone respectively were in the top quartile. These associations remained significant regardless of whether the samples were collected less than or more than 2years prior to diagnosis. CONCLUSION: In postmenopausal women increased estrogens but not androgens are associated with ER-negative breast cancer. Previously reported associations of estradiol and free testosterone with ER-positive breast cancer are confirmed. The use of mass spectrometry and sensitive RIA add validity to these findings.

Type: Article
Title: Sex hormone measurements using mass spectrometry and sensitive extraction radioimmunoassay and risk of estrogen receptor negative and positive breast cancer: Case control study in UK Collaborative Cancer Trial of Ovarian Cancer Screening (UKCTOCS)
Location: United States
Open access status: An open access version is available from UCL Discovery
DOI: 10.1016/j.steroids.2016.04.003
Publisher version: http://doi.org/10.1016/j.steroids.2016.04.003
Language: English
Additional information: © 2016 Elsevier Inc. All rights reserved. This manuscript version is made available under a Creative Commons Attribution Non-commercial Non-derivative 4.0 International license (CC BY-NC-ND 4.0). This license allows you to share, copy, distribute and transmit the work for personal and non-commercial use providing author and publisher attribution is clearly stated. Further details about CC BY licenses are available at https://creativecommons.org/licenses/. Access may be initially restricted by the publisher.
Keywords: Breast cancer risk, Estrogen-receptor positive and negative, Sex steroid hormones
UCL classification: UCL
UCL > Provost and Vice Provost Offices
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Medical Sciences
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Population Health Sciences
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Population Health Sciences > Inst of Clinical Trials and Methodology
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Population Health Sciences > Inst of Clinical Trials and Methodology > MRC Clinical Trials Unit at UCL
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Population Health Sciences > UCL EGA Institute for Womens Health
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Population Health Sciences > UCL EGA Institute for Womens Health > Womens Cancer
URI: https://discovery.ucl.ac.uk/id/eprint/1482697
Downloads since deposit
76Downloads
Download activity - last month
Download activity - last 12 months
Downloads by country - last 12 months

Archive Staff Only

View Item View Item