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ABSTRACT: Background: Adenylyl cyclase 5

(ADCY5) mutations is associated with heterogenous

syndromes: familial dyskinesia and facial myokymia;

paroxysmal chorea and dystonia; autosomal-dominant

chorea and dystonia; and benign hereditary chorea. We

provide detailed clinical data on 7 patients from six new

kindreds with mutations in the ADCY5 gene, in order to

expand and define the phenotypic spectrum of ADCY5

mutations.
Methods: In 5 of the 7 patients, followed over a

period of 9 to 32 years, ADCY5 was sequenced by

Sanger sequencing. The other 2 unrelated patients

participated in studies for undiagnosed pediatric hyper-

kinetic movement disorders and underwent whole-

exome sequencing.
Results : Five patients had the previously reported

p.R418W ADCY5 mutation; we also identified two novel

mutations at p.R418G and p.R418Q. All patients pre-

sented with motor milestone delay, infantile-onset

action-induced generalized choreoathetosis, dystonia,
or myoclonus, with episodic exacerbations during

drowsiness being a characteristic feature. Axial hypoto-

nia, impaired upward saccades, and intellectual disabil-

ity were variable features. The p.R418G and p.R418Q
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mutation patients had a milder phenotype. Six of seven

patients had mild functional gain with clonazepam or

clobazam. One patient had bilateral globus pallidal DBS

at the age of 33 with marked reduction in dyskinesia,

which resulted in mild functional improvement.
Conclus ion: We further delineate the clinical features

of ADCY5 gene mutations and illustrate its wide pheno-

typic expression. We describe mild improvement after

treatment with clonazepam, clobazam, and bilateral pal-

lidal DBS. ADCY5-associated dyskinesia may be under-
recognized, and its diagnosis has important prognostic,
genetic, and therapeutic implications. VC 2016 The
Authors. Movement Disorders published by Wiley Peri-
odicals, Inc. on behalf of International Parkinson and
Movement Disorder Society

Key Words: adenylyl cyclase; dyskinesia; chorea;
dystonia; cerebral palsy

In 2001, Fernandez and colleagues reported a single
kindred with a novel clinical syndrome described as fami-
lial dyskinesia and facial myokymia (FDFM;
OMIM#606703).1 Affected members presented with
childhood- or adolescent-onset distal choreiform move-
ments with facial myokymia. In 2012, whole-exome
sequencing of 1 member of this original kindred revealed
a c.2176G>A (p.A726T) mutation in the adenylyl cyclase
5 (ADCY5) gene. The pathogenicity of this change was
supported by its absence in control cases and transmission
in affected family members shown by cosegregation anal-
ysis.2 Subsequently, a novel c.1252C>T (p.R418W)
ADCY5 mutations in 2 sporadic cases of childhood-onset
paroxysmal chorea and dystonia was identified.3

Recently, 2 additional kindreds with autosomal-dominant
mode of inheritance (p.R418W and c.208811G>A lead-
ing to haploinsufficiency)4,5 and 1 sporadic patient
(p.R418W)4 have been reported with a syndrome of cho-
rea and dystonia without paroxysmal episodes.4,5

In 2011, at the 5th International Dystonia Symposium
in Barcelona, we reported on 4 patients with a syndrome
we described as “familial choreoathetosis with exacerba-
tions during drowsiness”6 (Supporting Fig. 1). All were
initially diagnosed with dyskinetic cerebral palsy, but
based on their clinical features, we suspected they had an
unique, probably genetically determined, syndrome.
Here, we provide detailed descriptions of those patients
and report that all 4 patients have now been shown to
harbor an identical ADCY5 gene mutation, as well as an
additional sporadic case with the identical phenotype and
mutation. Two further probands with milder, but over-
lapping, phenotypes had previously been diagnosed syn-
dromically as autosomal-dominant myoclonus-dystonia
and sporadic, infantile-onset chorea without dystonia
before the discovery of their novel ADCY5 mutations.
From these data and a review of the other 6 kindred
reported in the literature, we describe detailed clinical
findings and highlight the clinical spectrum of ADCY5-
related neurological disorders.

Patients and Methods

Patients and Genetic Analysis

All study participants gave written informed consent
for genetic testing as well as for disclosure of results

and videos. The study was approved by the local
ethics committee and was carried out in accord with
the Declaration of Helsinki.

Four patients from 3 kindreds (K1, K2, and K5) and
1 sporadic patient (K3-1) followed in one institution
over a period of 9 to 32 years were suspected of har-
boring ADCY5 mutations based on their clinical fea-
tures. Thus, for subjects K1-1, K2-1, K3-1, and K5-1
(Fig. 1), as well as the clinically unaffected parents of
K3-1, Sanger sequencing of exons 2, 8, and 10 (har-
boring mutations reported in the literature) and corre-
sponding exon-intron junctions (a minimum of 50
base pairs of intronic DNA flanking each of the three
analyzed exons) of the ADCY5 gene was carried out
using an ABI 3500XL automated sequencer (Applied
Biosystems, Foster City, CA). In addition, we per-
formed haplotype analysis in the 3 unrelated carriers
of the p.R418W (cases K1-1, K2-1, and K3-1) change
by genotyping five short tandem repeat markers situ-
ated in close proximity (D3S3674, D2S3636,
D3S1269, and D3S3573) or within (D3S1267) the
ADCY5 gene.

A further 2 unrelated patients (K4-1 and K6-1 and
their clinically unaffected parents) who participated in
a whole-exome sequencing study of undiagnosed pedi-
atric movement disorder cases were also identified as
having ADCY5 mutations and included in the clinical
analysis (Supporting Methods).

Genetic analysis was targeted to genes causing child-
hood dyskinesia. Identified ADCY5 variants were con-
firmed in cases K4-1 and K6-1 as well as its absence
in their parents with direct Sanger sequencing of the
relevant exon using standard techniques.

For the in silico prediction of pathogenicity/func-
tional importance of the identified mutations we used:
(1) MutationTaster7; (2) PolyPhen28; (3) SIFT9; and
(4) combined annotation-dependent depletion
(CADD)10 tools. In addition, we assessed the fre-
quency of the detected changes in the Exome Aggrega-
tion Consortium (ExAC) Browser.11

Literature Review

Previous case reports of ADCY5 mutation were col-
lected from published articles and its reference list,
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found on Pubmed using the following keywords:
“adenylyl cyclase 5” and “adenylate cyclase 5.”

Results

The kindred pedigrees and mutations are displayed
in Figure 1. The clinical data from our patients as well
as the 6 previously reported kindreds with ADCY5
mutations are summarized in Table 1 and Supporting
Table 1. Detailed history, examination findings, and
investigations in our patients are available in the Sup-
porting Materials (History and examination and Sup-
porting Table 2). Our patients had a variable
phenotype, but with overlapping clinical features. We
will summarize the phenomenology, genetic findings,
and genotype-phenotype correlations.

Phenomenology
Dyskinesias

The dominant feature in our patients is the infantile-
or early childhood-onset dyskinesia. The movements
were initially episodic in all our subjects occurring for
seconds to hours in duration. Although exacerbating
factors could often be identified, they lacked the ster-
eotyped trigger and duration of many paroxysmal
movement disorders, leading us to prefer the term epi-
sodic rather than paroxysmal. The dyskinesias were
similar in all subjects, being characterized by brief
jerks and twitches that were commonly classified as
chorea, ballism, or choreoathetosis. The label choreoa-
thetosis was used when there were slower writhing
movements,12 usually in the upper limbs, in addition

to the superimposed choreiform movements. They
were worse with mental activity, anxiety, and promi-
nent during action. Often, classification of the phe-
nomenology was uncertain, even by movement
disorder specialists. Although classified as predomi-
nantly myoclonus only in patient K5-1 (who also had
some slower, choreiform movements), most of the
other patients in our series also had their dyskinesias
labeled as myoclonus by some clinicians, emphasizing
their twitchy or jerky character. The distribution of
the dyskinesia was generalized, and 4 of 7 had facial
dyskinesia. In 3 of 7 patients, the dyskinesias became
more continuous or constant with increasing age, but
involuntary movements could still be absent at rest.
The dyskinesias are illustrated in the video files that
accompany this article (see Video 1, Segment 1; Video
2, Segment 2; and Video 3, Segments 2 and 3).

A notable characteristic was that all of our subjects
reported exacerbations of dyskinesia that interrupted
sleep. Four of seven subjects had a history of dyskine-
sias during drowsiness that prevented sleep initiation,
sometimes writhing for hours after retiring to bed,
whereas the other subjects reported dyskinesias associ-
ated with awakening in early morning after sleep. Sub-
ject K3-1 had a sleep study at age 26 and it showed
poor sleep efficiency (32%) because of long sleep
latency associated with the presence of dyskinesias.
There was also mild hypopnea preceding involuntary
movements of the upper limb followed by trunk, then
hip and knee flexion movements mostly on sleep
arousal and once during stage 2 sleep. These move-
ments lasted for up to 30 seconds, too long for peri-
odic limb movements and with no evidence of

FIG. 1. Kindred pedigrees. Arrowheads indicate probands of each pedigree; black symbols, affected; white symbols, unaffected members; slashed
symbols, deceased individuals. In the genetically analyzed individuals, 1 denotes the presence of the ADCY5 mutation, – denotes the absence of
ADCY5 mutation.
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epileptiform EEG activity (Supporting Fig. 3). After
commencement of clonazepam (0.01-0.20 mg/kg) or
clobazam at (0.2 mg/kg), 4 and 2 of 7 of our subjects,

respectively, reported improvement in dyskinesia that
previously disrupted sleep. Whereas most subjects
reported no benefit with carbamazepine and worsen-
ing of episodic dyskinesia with caffeine, 1 subject
reported benefit with caffeine and another with carba-
mazepine. Treatment with levodopa, sodium val-
proate, tetrabenazine, trihexyphenidyl, pregabalin,
gabapentin, phenobarbitone, or baclofen were inevita-
bly ineffective. Bilateral pallidal DBS was performed
in subject K2-1 and resulted in improvement in her
choreoathetosis. In 2 of 7 subjects, episodic dyskinesia
worsened in early adulthood associated with motor
regression and loss of ambulation. Two of the relative
milder affected subjects (K5-1 and K6-1) had an
increase in dyskinesia during childhood that caused
falls without motor regression or loss of ambulation
(see Video 3, Segment 4). Surface electromyography
(sEMG) study was available for 2 subjects. In subject
K3-1, upper limb sEMG study revealed action-induced
choreoathetosis (Supporting Fig. 4). In subject K5-1,
at age 16, sEMG of the upper limbs revealed frequent
100- to 250-ms bursts of muscle activity with sus-
tained bursts between 500 and 2,500 ms during nose-
targeted position associated with cocontraction of
antagonistic muscle groups, consistent with the combi-
nation of myoclonus and dystonia13-15 (Supporting
Fig. 5).

Dystonia

Axial hypotonia was prominent in 6 subjects, caused
significant functional impairment, and was associated
with a more severe phenotype. Infantile axial hypoto-
nia with motor milestone delay was the presenting fea-
ture in 5 of 7 of our subjects. This led to a distinctive
“frog-like” method of ambulation observed in 2 of
our subjects during childhood (see Video 1, Segment
3; Video 2, Segment 1). Interestingly, clonazepam sig-
nificantly reduced axial hypotonia in 2 of 6 subjects,
leading to an improvement in ambulation (see Video
2, Segment 3) and stability during sitting. Despite the
choreoathetosis improving in subject K2-1 after pal-
lidal DBS, axial dystonia did not improve, leading to
limited improvement in functional ability.

In 6 of 7 subjects, action-induced dystonic posturing
was observed in addition to their chorea, leading to
the labeling of the movements as choreoathetosis.
Generalized dystonic spasms were observed separate
to their episodic dyskinesia in 3 subjects. These dys-
tonic spasms consisted of truncal extension, retrocol-
lis, and upper limb extension lasting for seconds (see
Video 3, Segment 3), but which could recur in clusters
lasting hours, especially during intercurrent illness.
One subject had short dystonic spasms provoked by
laughter and sneezing, and another subject experi-
enced longer duration dystonic spasms with intercur-
rent illness or high ambient temperature.

TABLE 1. Clinical features and ADCY5 mutations reported
to date

Frequency Range

Clinical Features

No. of

Cases

(Where

Reported)

%

(n 5 20)

%

(Where

Reported)

Our

Series

Presentation
Birth to 6 months 4/19 20 21 3/7
7 months to 2 years 7/19 35 37 3/7
>2 years 8/19 40 42 1/7

Syndrome
CWEDD 5/20 25 25 5/7
MD 1/20 5 5 1/7
IOIC 1/20 5 5 1/7
COPCD 2/20 10 10 0/7
FDFM 6/20 30 30 0/7
EOADCD 2/20 10 10 0/7
BHC 3/20 15 15 0/7

Gene mutation
c.1252C>T 10/20 50 50 5/7
c.1252C>G 1/20 5 5 1/7
c.1253G>A 1/20 5 5 1/7
c.2176G>A 6/20 30 30 0/7
c.208811G>A 2/20 10 10 0/7

Phenomenology
Chorea 18/19 90 95 6/7
Facial dyskinesia 11/20 55 55 5/7
Axial hypotonia 8/16 40 50 6/7
Dystonia 14/17 70 82 6/7
Myoclonus 3/11 15 27 2/7
Spasticity 6/20 30 30 3/7
Intellectual disability 2/20 10 10 2/7
upward gaze palsy 7/13 35 54 4/7
Motor regression 6/20 30 30 2/7
Epilepsy 1/19 5 5 0/7

Duration of episodic exacerbation
Minutes to hours 8/10 40 80 6/7
Hours to days 1/10 5 10 0/7
Constant 1/10 5 10 1/7

Exacerbating factors
Action 8/16 40 50 6/7
Stress 10/16 50 63 4/7
Awakening 3/16 15 19 0/7
Drowsiness 7/16 35 44 6/7

Improvement with
Clonazepam 4/15 20 27 4/7
Clobazem 2/15 10 13 2/7
Carbamazepine 1/15 5 7 1/7
Propranolol 1/15 5 7 NT
Acetazolamide 2/15 10 13 NT
Trihexyphenidyl 3/15 15 20 0/7
Tetrabenazine 2/15 10 13 NT
Caffeine 1/15 5 7 1/7
Action 1/15 5 7 0/7

NT, not tried; CWEDD, choreoathetosis with exacerbation during drowsi-
ness; MD, myoclonus dystonia; COPCD, childhood onset paroxysmal chor-
eiform and dystonic movements; FDFM, Familial dyskinesia and facial
myokymia; EOADCD, early onset autosomal dominant chorea and dystonia;
IOIC, infantile onset isolated chorea; BHC, benign hereditary chorea
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Gait

Six of seven subjects had delayed motor milestones.
Sitting was achieved between age 1.5 years to 7 attrib-
uted to axial hypotonia, and only 2 subjects with a
milder phenotype could walk independently by the age
of 3. All other subjects required gait assistance and
achieved this between age 2.5 years and 13. Their gait
impairment is secondary to axial hypotonia and
action-induced episodic dyskinesia. Without a walker,
2 subjects had distinctive “frog-like” gait—sitting or
lying prone with the legs crossed, then uncrossing
them to propel the body forward while using their
arms to commando crawl.

In early adulthood, 2 subjects lost the ability to
walk with support secondary to axial hypotonia and
increased episodic dyskinesia. One subject temporarily
had reduced axial hypotonia and dyskinesia on a com-
bination of clonazepam and L-dopa and regained the
ability to walk for a few years. Subject K5-1 had falls
secondary to truncal extension dystonic spasms and
this improved after clonazepam.

Cognitive Development

Five subjects had delayed language development,
speaking single words between age 2 and 7. Speech
delay was associated with the presence of facial dyski-
nesia, which was present in 4 of these 5. However, 3
subjects subsequently acquired normal language ability
and cognition. Two subjects had intellectual disability,
and neuropsychological testing revealed mild-to-
moderate impairment in learning, reasoning, and com-
plex problem solving ability. Three of five subjects
with a severe motor phenotype nevertheless had nor-
mal cognitive function. Both of the milder affected
patients (K5-1 and K6-1) had normal cognitive
function.

Eye Movements

Abnormal saccades were present in 5 of 6 patients
where eye movements were documented. Four had
absent saccadic upgaze (with 1 also initiating horizon-
tal saccades with head thrust), whereas subject K4-1
had prolonged vertical saccadic latencies. Only 1 sub-
ject had normal vertical saccadic eye movements. All
subjects had normal pursuit. One subject (K6-1) did
not have detailed eye movement examination.

Spasticity

Three of seven had lower limb spasticity on exami-
nation with increased tone, hyper-reflexia, and exten-
sor plantar responses.

Genetic Studies

Each of the probands in kindreds K1 to K4 carried
a previously reported ADCY5 c.1252C>T (p.R418W)

mutation.3,5 The mutation was absent in the parents
of K3-1 and K4-1. None of the other family members
of K1 and K2 (including the clinically affected
parents) were available for genetic testing. Genotyping
analysis performed in the probands of K1, K2, and K3
revealed no shared haplotype.

Cases K5-1 and K6-1 had novel heterozygous mis-
sense changes (c.1252C>G; p. R418G and
c.1253G>A; p.R418Q, respectively). Both of the novel
variants were not present in >60,000 exomes from
the ExAC Browser, and the amino acid they affect is
highly conserved throughout different species (Sup-
porting Fig. 2). In addition, they were predicted to be
pathogenic by three different prediction tools and their
functional importance is indicated by very high CADD
scores (Supporting Table 3). Mutations in other genes
causing childhood-onset dyskinesia were excluded in
patient K6-1 (Supporting Table 2).

Phenotype-Genotype Correlations

Given the relatively small number of families, defini-
tive conclusions about phenotype-genotype correlation
are not possible. However, it was notable that all 4
kindreds presenting with the more severe phenotype,
in terms of dyskinesias, axial hypotonia, and motor
developmental delay, had the ADCY5 p.R418W muta-
tion. The other 2 probands who presented with milder
phenotype had ADCY5 p.R418G and p.R418Q muta-
tions, respectively.

Discussion

To date, 6 kindreds and 15 sporadic patients with
ADCY5 gene mutations have been reported in the lit-
erature.1,3-5,16 In the present study, we report novel
clinical and genetic findings in 7 new cases (4 belong-
ing to three unrelated families and 3 sporadic cases).
Our findings are of significance given that, in addition
to reporting two novel mutations, we expand and
more clearly delineate the phenotypic spectrum of
ADCY5-related disease.

Clinical Spectrum of ADCY5 Mutations

We have shown that patients with various ADCY5
gene mutations can present with a wider variety of
movement disorder syndromes, similar to what was
previously reported.16,17 We describe novel clinical
features associated with ADCY5-related dyskinesia
that distinguish this disorder from other hyperkinetic
movement disorders. The frog-like gait in childhood
and worsening of episodic choreoathetosis during
drowsiness are distinct features not observed in other
hyperkinetic movements disorders.

The importance of intermittent exacerbations of
choreoathetosis in ADCY5 gene mutation carriers was
first suggested in the report of familial dyskinesia and
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facial myokymia kindred in 20011 (although the latter
disproven by subsequent neurophysiological studies as
facial chorea17) and in reports of “paroxysmal” cho-
rea in 2014.3 We prefer to use the term “episodic”
exacerbations because of the variable duration of the
exacerbations and lack of precise triggers observed in
ADCY5 gene mutation patients, as opposed to sudden
self-limited episodes in response to consistent triggers
that characterizes paroxysmal dystonia18 or paroxys-
mal dyskinesia.19 The duration of the episodic worsen-
ing of choreoathetosis lasts minutes to hours in our
patients, and even up to days during intercurrent ill-
ness. A further important point differentiating ADCY5
gene mutations from other classical causes of paroxys-
mal dyskinesia is the presence of a normal neurologi-
cal examination between episodes in the latter,20 with
the exception of GLUT1 mutations.21 Last, the major-
ity of movement disorders improve during sleep,22,23

with the exception of familial paroxysmal hypnogenic
dystonia, usually a manifestation of nocturnal frontal
lobe epilepsy, which mostly occurs out of, rather than
at the onset or initiation of, sleep.22,24 Nevertheless, in
all of our subjects, the nocturnal exacerbations led to
the suspicion of a seizure disorder and investigation
with video-EEG telemetry, which was invariably nega-
tive. Our study is the first to further delineate the rela-
tionship between dyskinesia exacerbation and sleep.
Previous studies reported worsening of paroxysmal
dyskinesia during sleep,3,16,25 but our study is the first
to provide formal polysomnographic data on patients
with ADCY5 mutation. Our patients display marked
exacerbation during both drowsiness, associated with
a prolonged sleep latency, and during sleep arousal.
We suggest that exacerbations of choreoathetosis dur-
ing drowsiness with prolonged sleep latency are a
major clue to the presence of ADCY5 mutations. An
explanation for dyskinesia worsening during sleep
could be the distribution of adenylyl cyclase 5 in the
brain and its function. Adenylyl cyclase 5 is the major
isoform of adenylyl cyclase in the nucleus accum-
bens.26 In animal studies, neuronal firing frequency in
the nucleus accumbens has been shown to control the
level of cortical arousal during the sleep-wake cycle
and also pharmacologically stimulated motor activ-
ity.27-29 Therefore, a gain of function in adenylyl
cyclase 5 could potentially lead to increased arousal
during sleep and increased motor activity in the form
of dyskinesia. The frequent sleep arousal from gain of
function could be the cause of the long sleep latency
and exacerbation of dyskinesia, rather than dyskinesia
preventing a restful sleep. Our study also reports
symptomatic benefit with clonazepam or clobazam.16

Clonazepam and clobazam have an indirect inhibitory
effect on adenylyl cyclase 5 activity,30-32 potentially
counteracting the gain of function that has been
shown to occur with the p.R418W mutation.

Our study is also the first to report marked improve-
ment of choreoathetosis, albeit with only mild func-
tional improvement, after bilateral globus pallidus
DBS. The subject acquired independence in feeding
and usage of the communication board. The lack of
improvement in the dystonia severity scale can be
explained by the limited effect of DBS on her axial
hypotonia.

Most of the patients in our series were initially diag-
nosed with dyskinetic cerebral palsy, raising the possi-
bility that ADCY5-associated dyskinesia may be
under-recognized. Greater recognition of the distinc-
tive clinical features that we and others2,6,17 have
described should prompt testing for ADCY5 gene
mutation in patients with infantile- or childhood-onset
hyperkinetic disorder. The diagnosis of an ADCY5
gene mutation has potential prognostic, genetic coun-
seling, and therapeutic implications.

Family K5 was given a syndromic diagnosis of
myoclonus-dystonia, but tested negative for mutations
the epsilon sarcoglycan gene (SGCE).33 On review of
the phenomenology (see Video 3, Segment 2),
although some of the involuntary movements could be
labeled as chorea, there are also other movements that
are shock-like, occurring in the distal and proximal
upper limbs, face, and trunk. Phenotypic overlap
between myoclonus-dystonia and benign hereditary
chorea has previously been acknowledged.34,35 When
myoclonus and dystonia coexist, it can also be difficult
to differentiate from chorea neurophysiologically,
given that they both produce brief phasic, as well as
tonic, sEMG activity.36 Interestingly, early-onset myo-
clonus and dystonia, especially axial dystonia, have
been reported as being markers of SGCE mutation-
positive versus SGCE mutation-negative myoclonus-
dystonia patients.37 Our proband K5-1 had axial
hypotonia (as observed in 4 of our other ADCY5 kin-
dreds), rather than the more typical axial hypertonia
that is reported in SGCE-positive myoclonus-dystonia.
Therefore, we suggest that ADCY5 gene mutations
should be considered in the differential diagnosis of
patients diagnosed with SGCE-negative myoclonus-
dystonia, especially if there is axial hypotonia rather
than hypertonia. The presence of prominent facial dys-
kinesia may also be an important clue, given that
facial myoclonus is usually absent in SGCE-positive
myoclonus-dystonia.37

Three of seven of our subjects had involuntary
movements during infancy (K4-1, K5-1, and K6-1).
Infantile onset chorea has a wide differential diagno-
sis, both acquired and hereditary; however chorea
almost always disappears during sleep,38 in contrast to
our subject who had episodic exacerbations of chorea
during arousal from sleep. Contrasting our patient’s
presentation with other acquired and hereditary causes
of childhood-onset chorea, Sydenham chorea tends to
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occur in childhood rather than in infancy and causes
continuous rather than episodic generalized chorea,
often associated with neuropsychiatric symptoms.39

Neuroimaging abnormalities, history of birth injury,
and a nonprogressive course helps to differentiate dys-
kinetic cerebral pallsy from ADCY5 mutations. Benign
hereditary chorea is an autosomal-dominant, nonprog-
ressive infantile or childhood-onset condition present-
ing with generalized chorea that usually diminishes or
disappears with age,40 differing from ADCY5 muta-
tions in which choreoathetosis is often initially epi-
sodic and progressively becomes constant.1,3

Therefore, we propose that infantile-onset chorea,
with exacerbation during drowsiness or arousal,
should alert the clinician to the possibility of an
ADCY5 mutation.

The majority of our subjects had normal cognitive
development despite subjects with initial language
milestone delay. Two subjects had mild-to-moderate
intellectual disability that was nonprogressive. The
lack of cognitive decline differentiates ADCY5 muta-
tion from neurodegenerative conditions such as Hun-
tington’s disease, which presents with chorea and
dementia.

Mutational Spectrum of ADCY5-Related
Disease

The ADCY5 p.R418W mutation present in 5 of our
subjects has previously been reported and its pathoge-
nicity established. Here, we also report two novel
mutations resulting in p.R418G and p.R418Q
changes, which affect the same amino acid in the
adenylyl cyclase protein that is highly conserved across
species. Our in silico analysis and database search, as
well as the phylogenetic conservation3 (Supporting
Fig. 2), of the affected amino acid strongly suggest
that both of the novel mutations we detected are likely
pathogenic. Furthermore, the ADCY5 gene is one of
the top 1% of genes intolerant to rare variants.41 The
p.R418G and p.R418Q ADCY5 mutations replace
positively charged arginine with neutrally charged gly-
cine and glutamine, respectively, and may result in ter-
tiary structural and thus functional change to the
protein product.

The adenylyl cyclase 5 pathway lies downstream
from two known genetic causes of childhood- or
adult-onset dystonia. Mutations in the Tor1A gene are
the most common genetic cause of childhood-onset
generalized dystonia. Cellular models suggest that the
Tor1A gene mutation induces inhibition of the cyclic
adenosine monophosphate response to an adenylyl
cyclase 5 agonist.42 DYT25 causes adult-onset general-
ized dystonia attributed to loss of function in the
GNAL gene.43,44 This gene codes for guanine
nucleotide-binding protein, alpha-activating activity
polypeptide, olfactory type [Ga(olf)], which is

abundant in the striatum45). Ga(olf) protein activates
adenylyl cyclase 5 linked to D1 receptors in the stria-
tum.46 Thus, both genetic causes of dystonia converge
on adenylyl cyclase 5, providing a potential link
between previously known causes of dystonia and
ADCY5-associated neurological disease.

By analyzing parental DNA, we have shown that at
least in our 3 sporadic patients (K3-1, K4-1, and K6-
1), pathogenic mutations arose de novo. Therefore,
the absence of a positive family history does not
exclude the possibility of an ADCY5 mutation in indi-
viduals, and our data suggest that this codon may be
especially susceptible to spontaneous mutations.

Conclusion

In summary, our study further delineates the clinical
features of ADCY5 gene mutations and illustrates its
wide phenotypic and varied phenomenological presen-
tation. We describe, for the first time, functional
improvement post-treatment with clonazepam or clo-
bazam and the potential usefulness of pallidal DBS in
medication refractory cases. This novel condition may
be under-recognized, and its diagnosis has important
prognostic, genetic counseling, and therapeutic impli-
cations for the patients and their families. We propose
that the characteristic clinical findings that provide a
clue to the diagnosis are generalized action-induced
choreoathetosis associated with episodic exacerbations
during the early phase of sleep as well as axial hypoto-
nia.
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