












ity of WDR and NS neurons to brush, punctate mechanical,
cold, and heat stimuli. To our knowledge, this study provides
the first evidence of a gain in brush sensitivity of NS neurons
in the VP nuclei in SNL rats, altered population coding to cold
temperatures, unaltered levels of spontaneous activity in NS
neurons, and modality-selective attenuation of evoked hyper-
sensitivity but not aberrant spontaneous activity by pregabalin.

After a peripheral nerve injury, dorsal horn and gracile nucleus
neurons do not display marked changes in frequency-dependent
firing to mechanical, cold, or heat stimuli (Chapman et al. 1998;
Palecek et al. 1992; Patel et al. 2014a; Patel et al. 2014b; Suzuki

and Dickenson 2002). Although seemingly contradictory to be-
havioral hypersensitivity, this paradox could be explained by the
denervation and loss of input as a result of nerve injury coupled
with central sensitization, and resembles the clinical scenario of
sensory loss commonly existing alongside allodynia/hyperalgesia.
Hence, we aimed to examine how spinal hyperexcitability and
nonspinal mechanisms, namely, the dorsal column pathway that
mainly innervates the VPL without many spinal terminations
(Miki et al. 2000; Suzuki and Dickenson 2002), may converge
onto thalamic relays, because this could aid in identifying the
mechanisms and range of sensory abnormalities in SNL rats and

Fig. 6. Single-unit histogram traces of WDR neurons pre- and post-pregabalin dosing. Pregabalin reduced neuronal responses to punctate mechanical stimulation
in SNL rats (A) but not in sham rats (B). Pregabalin selectively reduced noxious heat-evoked responses in SNL rats (C) but had no effect in sham rats (D).
Pregabalin reduced firing frequency to dynamic brushing in SNL rats (E) but not in sham rats (F).
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the roles of WDR and NS neurons within this ascending pathway.
Furthermore, excitability of thalamic neurons is influenced by
cortical modulation (Monconduit et al. 2006), and thus the roles of
WDR and NS neurons in the thalamus can be examined within the
context of being subjected to “bottom-up” and “top-down” pro-
cessing mechanisms.

In neuropathic conditions, it could be expected that if NS
neurons gained sensitivity to low-threshold stimuli, i.e., be-
came “WDR like,” that a disproportionate number of WDR
neurons would be identified in neuropathic rats. We found little
evidence for widespread changes in neuronal profiles. Like-
wise in the dorsal horn, sciatic nerve ligation does not induce

Fig. 7. Pregabalin reduces evoked NS neuronal responses in SNL rats. Neuronal responses to punctate mechanical (A and B), heat (C and D), cold (E and F),
and brush stimuli (G and H) in SNL and sham rats pre- and post-pregabalin dosing. SNL, n � 8 neurons from 5 rats(A, C, E, and G); sham, n � 7 neurons from
4 rats (B, D, F, and H). Data represent means � SE. *P � 0.05; **P � 0.01. Single-unit histogram traces of NS neurons pre- and post-pregabalin dosing show
that pregabalin reduced neuronal responses to punctate mechanical stimulation in SNL rats (I) but not in sham rats (J). Pregabalin also reduced firing frequency
to dynamic brushing in SNL rats (K) but not in sham rats (L).

166 VENTRAL POSTERIOR THALAMIC ACTIVITY IN NEUROPATHY

J Neurophysiol • doi:10.1152/jn.00237.2016 • www.jn.org

 by 10.220.33.6 on S
eptem

ber 20, 2016
http://jn.physiology.org/

D
ow

nloaded from
 

http://jn.physiology.org/


changes in the frequency distribution of WDR and NS spi-
noparabrachial lamina I neurons (Andrew 2009), although it
has been proposed that the stimulus-response dynamics of
deeper dorsal horn spinothalamic NS neurons are altered after
nerve injury whereas spinothalamic WDR firing frequencies
are unaffected (Lavertu et al. 2014). Our data support the
possibility that WDR neurons and not NS neurons encode
hypersensitivity to low-threshold punctate mechanical and cool
stimuli within this ascending channel. This conflicting conclu-
sion with the latter study may arise from methodological
differences in characterizing neuronal response profiles and
from their reliance on correlations with spinal reflexes and the
interpretation of the roles of WDR and NS neurons by consid-
ering only spino-bulbo processing mechanisms.

The broad changes in evoked hypersensitivity across inten-
sities and modalities are consistent with a postsynaptic change
in spinal neuronal excitability. GABAergic inhibition is re-
duced in the dorsal horn following a peripheral nerve injury
(Moore et al. 2002); however, this does not appear to confer
sensitivity to low-threshold stimuli to substantial numbers
of thalamic NS neurons. Diminished GABAergic inhibition
of spinal NS neurons may be largely restricted to gating of
high-threshold input into the superficial dorsal horn. As a
consequence, VP NS neurons retain the capacity to code to
noxious stimuli in neuropathic conditions but with elevated
firing frequencies. In the absence of frequency-dependent
changes in firing at the spinal level and in the gracile
nucleus, an expansion of neuronal receptive field sizes and
the recruitment of increasing numbers of neurons could
converge onto thalamic relays and underlie the elevated
thalamic neuronal responses observed (Coghill et al. 1993;
Suzuki and Dickenson 2002; Suzuki et al. 2000).

Brush and cold allodynia are frequent occurrences across a
range of neuropathies and are a significant clinical challenge
(Maier et al. 2010). Both WDR and NS neurons exhibit higher
firing frequencies to brushing in SNL rats. Although low in
number, we also find evidence that NS neurons may gain brush
sensitivity in neuropathic conditions. This possibly reflects
disinhibition at the spinal level, resulting in the opening of
polysynaptic interneuronal pathways from deeper to more
superficial laminae (Schoffnegger et al. 2008). Brush sensitiv-
ity of lamina I neurons in the dorsal horn is subjected to tonic
glycinergic inhibition in normal rats (Miraucourt et al. 2007),
and intrathecal strychnine block of glycine receptors can in-
duce brush sensitivity in previously unresponsive NS neurons
in the VPL (Sherman et al. 1997).

In neuropathic patients, cold temperatures can evoke sharp,
stabbing sensations in addition to paradoxical burning, and
likewise in SNL rats, cold hypersensitivity appears to be the
major thermal disturbance. Cold hyperalgesia is hypothesized
to result from spinal disinhibition, which subsequently con-
verges on medial and lateral thalamic pathways, culminating in
the unmasking of burning pain (Craig and Bushnell 1994;
Ochoa and Yarnitsky 1994). Clinical evidence from stroke
patients indicates that lesions to the ventralis caudalis (analo-
gous to the VP in rats), but not extending to the VMpo (a
postulated cold relay), are associated with a loss of cold
sensitivity and hyperalgesia (Greenspan et al. 2004; Kim et al.
2007). Both increases in individual neuronal responses to
cooling and increases in the number of responsive neurons are
apparent in neuropathic rats. Under normal conditions a con-

siderable component of cold input into the thalamus, and
presumably the dorsal horn, is subthreshold, and at the spinal
level, a loss of cross inhibition (McCoy et al. 2013) or an
increase in postsynaptic excitability would be consistent with
these observed changes in neuronal properties. In tandem, the
clinical observations and electrophysiological evidence from
the deep dorsal horn (Patel et al. 2015; Patel et al. 2014b) and
VP supports the importance of the STT–VP–S1-S2 pathway to
normal and aberrant cold sensitivity.

Increased spontaneous activity of spinal neurons has been
reported following spinal nerve and sciatic nerve injury, typi-
cally with irregular patterns of firing (Palecek et al. 1992;
Suzuki and Dickenson 2006). Interestingly, we find evidence
of higher rates of spontaneous firing in WDR but not NS
neurons in the VP. The intrinsic properties of WDR neurons
may be altered, because VP neurons can express rapidly
repriming NaV1.3 channels following spinal cord injury, con-
tributing to an increase in basal neuronal excitability, and
spinal knockdown of Nav1.3 attenuates these thalamic changes
(Hains et al. 2005). Denervation of the thalamus can induce
increased spontaneous activity (Weng et al. 2000), and a large
part of ongoing activity may not reflect spinal neuronal activity
(Fischer et al. 2009; Hains et al. 2005; Miki et al. 2000),
although intrathecal lidocaine can produce conditioned place
preference following nerve injury, and analgesic manipulations
within the anterior cingulate cortex can block ongoing pain but
fail to modulate evoked responses (He et al. 2012; Navratilova
et al. 2015). Elevated spontaneous activity alters the dynamics
within thalamocortical networks and coupling between cortical
and thalamic structures (LeBlanc et al. 2016), and this thalamo-
cortical dysrhythmia has been hypothesized to result in ongo-
ing pain (Alshelh et al. 2016; Henderson et al. 2013). Neuronal
correlates of ongoing pain would be of great importance to the
back- and forward translation of therapeutics, and we have
examined the effects of pregabalin within this context.

There is emerging evidence that a sensory profiling approach
to stratify patients leads to better targeting of treatments in-
cluding gabapentinoids (Baron et al. 2012; Freeman et al.
2014; Simpson et al. 2010), and this concept applied to animal
models could aid translation. The antinociceptive activity of
pregabalin is dependent on the interaction with the �2�-1
subunit of calcium channels (Field et al. 2006; Patel et al.
2013), and the upregulation of �2�-1 in the dorsal root gan-
glion and enhanced descending serotonergic facilitatory drive
following nerve injury are critical mechanisms that determine
the pathophysiological state-dependent inhibition of evoked
hypersensitivity (Bauer et al. 2009; Bee and Dickenson 2008;
Suzuki et al. 2005). Pregabalin was without inhibitory effect in
sham rats but selectively inhibited neuronal responses at inten-
sities evoking elevated responses in SNL rats, with the excep-
tion of cold stimuli. After pregabalin administration, responses
of WDR neurons in SNL rats to brush, punctate mechanical,
and noxious heat were comparable to baseline responses in
sham rats, demonstrating that pregabalin normalizes hypersen-
sitivity to these stimuli at this dose. The greater magnitude of
inhibition of mechanically evoked responses compared with
heat strongly resembles the effect of gabapentinoids on spinal
lamina I and V neurons in neuropathic rats (Bee and Dickenson
2008; Donovan-Rodriguez et al. 2005). These neuronal re-
sponses correspond relatively well to quantitative sensory test-
ing measures in a small cohort of neuropathic patients and in a
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human surrogate model of pain demonstrating a more pro-
nounced reversal of ongoing pain, cold, brush, and pinprick
allodynia compared with heat hyperalgesia (Attal et al. 1998;
Dirks et al. 2002). One possibility is that the discordant effect
against cold hypersensitivity is explained by differential mech-
anisms of acute and chronic pregabalin dosing regimens (re-
viewed by Patel and Dickenson, 2016). Cold hypersensitivity
has been attributed to spinal disinhibition (Ochoa and Yar-
nitsky 1994), whereas descending serotonergic facilitatory in-
fluences are important in mediating mechanical and heat hy-
persensitivity and the effects of pregabalin (Bee and Dickenson
2008; Suzuki et al. 2005). This difference in underlying mech-
anisms likely determines the modality selective effects of
pregabalin in SNL rats.

In contrast to effects on spontaneous spinal activity after
SNL (Suzuki and Dickenson 2006), aberrant spontaneous fir-
ing of VP WDR neurons was not reduced by pregabalin,
consistent with this aspect of thalamic excitability not being
entirely dependent on spinal activity. In SNL rats, pregabalin
reduces elevated spontaneous activity in the right central nu-
cleus of the amygdala, which is associated with affective state
such as fear and anxiety (Gonçalves and Dickenson 2012).
Supraspinal effects of pregabalin might include modulation of
cortico-limbic pathways that relate to affective dimensions of
pain. Although not a neuropathic state, symptoms of central
sensitization are evident in fibromyalgia, and in these patients
reduction of posterior insula activity by pregabalin would be
consistent with the aforementioned notion (Harris et al. 2013).

Conclusion. These data reveal novel features of thalamic
neuronal hyperexcitability in SNL rats. Pregabalin normalized
neuronal hyperexcitability to mechanical and heat stimuli fol-
lowing neuropathy but lacked effect on elevated spontaneous
activity or normal neuronal coding. These findings correlate
with observations that gabapentinoids have a high NNT when
ongoing pain is used as a primary endpoint in clinical trials
(Finnerup et al. 2015; Moore et al. 2009) but improved efficacy
in patient subgroups where mechanical hyperalgesia is prom-
inent (Simpson et al. 2010). These neural substrates provide an
opportunity to examine the effects of analgesics on integrated
sensory processing within the brain.
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