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Abstract 

Increased awareness of pain in the newborn has led to the development of numerous assessment tools for 

use in neonatal intensive care units.   Here I argue that we still know too little about the neurophysiological 

basis for infant pain to interpret data from clinical observational measures.   With increased understanding of 

how the neural activity and CNS connections which underlie pain behaviour and perception develop in the 

newborn will come better measurement and treatment of their pain.  This review focusses upon two 

interconnected nociceptive circuits, the spinal cord dorsal horn and the somatosensory cortex in the brain, to 

highlight what we know and what we do not know about infant pain.  The effectiveness of oral sucrose, widely 

used in clinical practice to relieve infant pain, is discussed as a specific example of what we do not know.   This 

hot topic highlights the importance of new laboratory based neurophysiological research for the treatment of 

newborn infant pain.  

Introduction 
Pain is the most urgent and demanding of all our senses.  It is essential for survival but when it persists it can 

become a significant clinical problem.  Individual variability in the nature of pain makes it difficult to measure 

and treat and this is an particular problem for newborn infants, who not only lack the ability to verbalise their 

experiences, but also have an immature central nervous system, including pathways and networks involved in 

somatosensory and emotional processing. 

The study of postnatal central pain processing is of both biological and clinical interest, but these interests do 

not always entirely overlap.   The physiologist or neuroscientist wants to know how thoughts, feelings and 

behaviour arise from activity in individual neurons and neural networks and so understand how pain 

perception emerges in the developing brain.    This information will, they hope, provide a biological basis for 

treatment of pain in infants in the future.   The clinician, on the other hand, faces infants in pain every day in 

the clinic and, quite reasonably, seeks a reliable measure of infant pain as an output measure in order to trial 
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effective methods of pain relief and improve clinical practice as soon as possible.    All agree that the underlying 

science is the key. 

Studying the spinal cord and brain activity of infants in the Neonatal Intensive Care Unit (NICU) provides a 

unique opportunity to study the development of human nociceptive circuits.   Epidemiological studies report 

that infants in the NICU are subjected to an average of 11 painful procedures a day, not including the high 

numbers of failed attempts (up to 15)(Carbajal et al., 2008; Roofthooft et al., 2014).  These clinically required 

procedures can be incorporated into ethically approved investigative studies of CNS pain activity.   Pioneering 

studies of the distinct pain behavioural and physiological responses to such stimuli (Craig et al., 1993) formed 

the basis of clinical assessment measures and indicators in this field, resulting in greater clinical awareness 

and improved clinical practice (Maxwell et al., 2013; Lee & Stevens, 2014).    Thus the Neonatal Facial Coding 

System (NFCS), which analyses detailed facial expression in infants following tissue damaging stimuli, provided 

important and objective evidence of pain in infants at a time when many doubted the ability of infants to 

perceive pain (Grunau et al., 1998; Ahola Kohut & Pillai Riddell, 2009).    An unfortunate side-effect of these 

studies was a perception among some clinical practitioners of ‘job done’ and a resistance to healthy scientific 

questioning which was seen as a form of infant ‘pain denial’ (Rodkey & Pillai Riddell, 2013).     

Recently, the field has turned to exciting new evidence of pain induced activity in the brain of human infants 

which offer real insight into how pain is processed at higher levels of the newborn CNS (Slater et al., 2006, 

2010c; Fabrizi et al., 2011; Williams et al., 2015; Goksan et al., 2015).   This has provided previously unknown 

information about how much noxious information reaches the newborn brain and has opened the door to 

new research into the functional development of early nociceptive circuits in the somatosensory cortex and 

other brain areas in man.    This new field will benefit enormously from the fast moving adult research in this 

area, but should also learn from the mistakes of the past, avoiding simplistic notions of specific ‘pain centres’ 

or ‘pain matrices’ in the brain (Davis et al., 2015).  Before we assume that these novel cortical measurements 

will produce a new ‘read-out’ of clinical pain in infants, we need to make sure that we understand what we 

are doing.         

In this review,   I discuss the results of recent ‘brain’ led studies of infant pain, focussing upon the developing 

connectivity and neural activity which underlie them and which determine pain behaviour and perception in 

infants.     First, spinal and brainstem nociceptive reflexes in the newborn are discussed, and how research on 

developing nociceptive circuits in laboratory animals has helped us to interpret these behaviours in the 

newborn.    Next, we review the evidence for newborn cortical pain processing, emphasising how increased 

knowledge of the developmental neurophysiology of cortical nociceptive circuits in laboratory animals is 

needed to better interpret this data.     This is a ‘hot topic’ of great importance, not only for a fundamental 
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understanding of how pain is first processed in the human brain but also for developing more sophisticated 

methods of assessing and treating infant pain in the future.  

Infant pain and reflex behaviour 

Both preterm (<37 weeks gestational age, GA) and term (≥ 37 weeks GA) newborn infants display clear 

nociceptive reflexes, measurable as lower limb withdrawal and flexor muscle activity, in response to clinically 

required tissue damaging stimuli, such as heel lances.  In adults, such heel lances are considered painful and 

excite cutaneous A delta and C fibre nociceptors (Fabrizi et al., 2013a).   These basic protective reflexes remove 

an affected region from the source of potential injury and can be quantified in terms of thresholds, amplitude 

and duration using surface electromyographic (EMG) recordings from flexor muscles.  All infants display a 

robust and long duration flexion reflex (>4 seconds) to a single noxious skin lance, the magnitude of which 

decreases significantly with gestational age (Cornelissen et al., 2013).  In adults, these nociceptive reflexes are 

evoked by stimulation of small diameter afferent nociceptive fibres and are a reliable and objective reflection 

of an individual's pain experience (Skljarevski & Ramadan, 2002).  We might reasonably expect the same to be 

true of infants, but only if we assume that the infant nervous system functions in the same way as that of 

adults.   Studying spinal cord pain neurophysiology in infant humans and laboratory rat pups casts important 

light on this question.  

(i) Important differences between adult and infant spinal nociceptive reflexes 

The properties of infant nociceptive reflexes differ from those in adults in several important ways.  Firstly, the 

temporal pattern is very different.   In healthy adults, the duration of this reflex is relatively short: high intensity 

cutaneous nerve A delta and C fibre stimulation produces a distinct burst in biceps femoris, which is linearly 

correlated with pain sensation and returns to baseline 100–120 ms poststimulus (Chan & Dallaire, 1989). 

Thermal laser stimulation of the foot also elicits a very brief (∼100 ms), long latency nociceptive reflex that is 

well correlated with pricking pain sensation (Willer et al., 1979). In contrast, the infant flexion reflex is 

remarkably long duration. A single heel lance evokes biceps femoris activity for at least 2–4 seconds, 

decreasing significantly between the preterm and term period, but remaining longer in duration than adult 

reflexes (Cornelissen et al., 2013).     

Secondly, while this is a purely nociceptive reflex in adults, this is not so in newborn infants, where it can also 

be evoked by tactile and punctate innocuous skin stimulation.   Within individual infant comparisons show 

that in 29% of preterm infants, tactile stimulation evokes flexor reflex EMG activity that is indistinguishable 

from noxious stimulation, while in 40% of term infants, tactile responses are also present but significantly 

smaller than nociceptive reflexes (Cornelissen et al., 2013).    Thirdly the spread of the response is much greater 

in infants such that the contralateral flexion response to noxious stimulation is as large as the ipsilateral 

response, while in adults it is entirely ipsilateral (Sandrini et al., 2005).  Finally, repeated innocuous stimulation 
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in infants causes a significant increase in reflex magnitude and a drop in threshold, which are the hallmarks of 

sensitization (Andrews & Fitzgerald, 1994; Cornelissen et al., 2013). In contrast, flexion reflex temporal 

summation or sensitization occurs in adults only after repeated C fibre or noxious stimulation and is associated 

with increased pain ratings (Price, 1972). 

 (ii)  Interpreting spinal cord processing of tactile and nociceptive information.   

Since newborn laboratory rodents display the same spinal reflex properties as human infants, with lower 

thresholds, in the innocuous range, greater amplitudes and durations than adult rats, they make an excellent 

model for investigating the dorsal horn sensory circuits that underlie these behaviours.   Numerous anatomical 

and electrophysiological studies in rat pups have demonstrated that dorsal horn nociceptive circuits differ in 

early postnatal life from those in adults (Fitzgerald, 2005; Fitzgerald & Walker, 2009).   A key feature is the 

predominant excitation in immature dorsal horn circuits:  larger cutaneous excitatory receptive fields (Torsney 

& Fitzgerald, 2002),  mismatched inhibitory receptive fields (Bremner & Fitzgerald, 2008), excitatory tone from 

the brainstem (Hathway et al., 2009; Schwaller et al., 2015) and pacemaker activity in lamina I cells (Li & Baccei, 

2011).    Also important is the relatively stronger synaptic input from low and high threshold mechanoreceptor 

A fibre afferents relative to C fibre inputs and sensitization of dorsal horn cells by repeated tactile or A fibre 

stimulation in neonates (Koch & Fitzgerald, 2013).   The developmental reversal of dorsal horn GABA currents 

is complete by birth and GABA signalling in newborn spinal cord circuits is inhibitory (Baccei & Fitzgerald, 2004) 

but notably less targeted to specific cell groups than in adults (Koch et al., 2012).   Importantly there is very 

weak glycinergic inhibitory signalling in the newborn dorsal horn (Baccei & Fitzgerald, 2004; Koch et al., 2012). 

These findings not only explain why human infant flexion reflexes differ in temporal, modality and spatial 

characteristics from those in adults, but also reveal the nature of the first stage processing of sensory 

information that will be transmitted to higher centres in the newborn brain.    The newborn dorsal horn 

facilitates sensory inputs and thereby strengthens activity-dependent synaptic connections, but this is at the 

cost of reduced sensory discrimination and poor spatial localization (Cornelissen et al., 2013).  Increased 

excitability is traded for selectivity and focus.  Reflex magnitude and tactile sensitivity decreases and 

nociceptive specificity and spatial organisation increases with gestational age.   

Does the lack of inhibitory processing at the dorsal horn level mean that infants feel more pain than adults to 

a defined noxious stimulus?  Not necessarily, but it may mean that reflex behaviour in newborn infants is not 

tightly linked to the input modality:  low intensity mechanical stimuli, such as light or firm touch can trigger 

the same behaviour newborn infants.  Reflexes provide an enormously useful gateway into studying the 

development and plasticity of sensory and motor circuits but cannot be assumed to be a read-out of infant 

‘pain’ behaviour.   
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Facial expression of pain – a brain stem reflex 

Facial expression of pain is a more complex behaviour than lower limb withdrawal, but it is still a spontaneous 

reflexive reaction to noxious stimuli (Chambers & Mogil, 2015) and, as described above, there is a danger of 

misinterpreting the effectiveness (or lack of) pain relieving procedures that are based upon infant behaviour 

without an appreciation of the neural basis of that behaviour and its underlying development.     Facial ‘pain’ 

reflexes develop early in fetal life in the absence of any noxious stimulation (Reissland et al., 2013) and can 

continue postnatally in the presence of extensive cerebral white matter damage (Oberlander et al., 2002).   

While in later life these reflexes become under the control of brain areas responsible for emotions, this is not 

necessarily so in the newborn.    

The neural mechanisms underlying facial expression is especially important when considering the effects of a 

commonly used analgesic in the newborn, sucrose.  Small amounts of oral sucrose (24%) administered to 

newborn infants before a clinically required tissue breaking procedure, has shown to be a safe and effective 

way of transiently reducing the behavioural and physiological response to pain  (Stevens et al., 2013).  The 

anti-nociceptive effect of sucrose is mediated by the brainstem and persists following midcollicular transection 

in rats (Anseloni et al., 2005).   Indeed physiologists recognise sucrose is an example of ingestion analgesia 

that functions to defend eating from ending and stops when eating is over.  This type of analgesia requires 

ingestion of hedonic foods:  NaCl is an effective analgesic if an animal is sodium depleted (Foo & Mason, 2011).  

Does this make sucrose an effective analgesic?  In a double-blind, randomised controlled trial of 59 newborn 

infants undergoing a clinically required heel lance, infants were assigned to receive sucrose or sterilised 

water(Slater et al., 2010a).  While observational pain (PIPP) scores were significantly lower in infants given 

sucrose than in those given sterile water and significantly more infants had no change in facial expression after 

sucrose administration, as reported previously (Stevens et al., 2013), there was no difference in spinal 

nociceptive reflex withdrawal activity in the two groups.   Furthermore, there was no significant difference in 

the brain activity evoked by the heel lance, recorded with EEG electrodes (see below), between the sucrose 

and sterile water groups.   Thus oral sucrose acts at the level of the brainstem and does not significantly affect 

activity in neonatal brain or spinal cord nociceptive circuits, and as such might not be an effective analgesic 

drug. The ability of sucrose to reduce clinical observational scores after noxious events in newborn infants 

should not be interpreted as pain relief.    While noxious inputs activates both brainstem reflexes and higher 

cortical areas, such that pain reflexes and pain perception are frequently correlated in adults (Mancini et al., 

2015), the two can function independently in infants (Slater et al., 2008, 2010a) and need not be causally 

linked.    Understanding the underlying physiology of these different pain responses is therefore essential to 

assess the efficacy of analgesic management. 
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Infant pain and the cerebral cortex 

While reflex measurements provide interesting insights into the maturation of human nociceptive behaviours, 

to understand newborn pain we need to know whether the information processed in the spinal cord and 

brainstem is transmitted centrally to the cerebral cortex.   This is a necessary, if not sufficient, requirement for 

true pain experience.  The discovery that noxious sensory information is indeed transmitted to the newborn 

infant cerebral cortex was demonstrated only a decade ago, using real-time near-infrared spectroscopy, 

(Slater et al., 2006) and has proved a robust finding.    

Haemodynamic measures 

Noxious stimulation, in the form of a clinically required heel lance produces a clear cortical response, 

measured as an increase in total hemoglobin concentration [HbT] in the contralateral somatosensory cortex.  

This is observed in even the youngest premature infant of 25 weeks gestational age and increases in amplitude 

with gestational age at study (Slater et al., 2006).  Time-locking a heel lance stimulus reveals an predominant 

response in the contralateral somatosensory cortex (Slater et al., 2006) but longer duration noxious events 

(venepuncture) are linked also to the ipsilateral cortex and the motor cortex (Bartocci et al., 2006; Bembich et 

al., 2015), and no doubt many other areas in time, most likely at a longer latency, as would be expected from 

intracortical connections.    

Clinically required, tissue breaking stimuli are hard to adapt to magnetic imaging so fMRI studies have relied 

on experimental brushing, von Frey hair (vFh) punctate and pinprick stimulation of the skin (Williams et al., 

2015; Goksan et al., 2015).  In a study of 19 term infants with a mean age of 13 days, distinct patterns of 

functional brain activation were evoked by brush and vFh punctate stimulation, which were reduced, but still 

present, under chloral hydrate sedation.  Brain activation increased with increasing von Frey hair stimulus 

intensity (Williams et al., 2015) revealing the ability of the newborn brain to code stimulus intensity.   A 

feasibility study in a single full-term infant (Williams et al., 2015) laid the foundation for a fMRI study of ten 

newborn infants, which identified the network of brain regions that are active following pinprick stimulation 

(Goksan et al., 2015).  The blood-oxygen-level dependent (BOLD) response in newborn infants was compared 

to that observed following the same pinprick stimulation in adults and significant infant brain activity was 

observed in 18 of the 20 active adult brain regions, including primary somatosensory cortices, anterior 

cingulate cortex (ACC), bilateral thalamus, and all divisions of the insular cortices, but not in the infant 

amygdala or orbitofrontal cortex. It should be noted that most of these areas are also activated by any salient 

stimulus (Iannetti & Mouraux, 2010).  Several areas were only active in infants: bilateral parietal lobe, 

pallidum, and precuneus cortex (only contralateral in adults), bilateral auditory cortices, hippocampus, and 

caudate (Goksan et al., 2015).   
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What do these BOLD studies from tell us about newborn infant pain?  They tell us that information about 

cutaneous noxious stimulation activates a wide range of brain regions, both cortical and subcortical in 

newborn infants.  Some of these are brain regions that encode sensory and affective components of pain in 

adults, but others are not.   While this data has been interpreted as evidence that the infant pain experience 

closely resembles that seen in adults (Goksan et al., 2015), it more likely reflects the existence of 

thalamocortical connections at both ages.   The increased bilateral activity and greater number of active 

regions in infants suggest that these connections are more widespread in the newborn. The known immaturity 

of cortico-cortical and interhemispheric pathways at this time (Kostović & Jovanov-Milošević, 2006) will have 

fundamental consequences upon cortical function in the newborn.  FMRI studies have been interpreted as 

measures of conscious sensory perception of pain.  While some minimal consciousness and sensory awareness 

has been convincingly argued in the newborn (Lagercrantz, 2014), brain activity cannot simply be equated 

with human perception in infants or adults (Ranger & Grunau, 2015).   Furthermore, comparative 

haemodynamic studies need to be interpreted in the context of developing brain (Colonnese et al., 2008).   

Particularly important is the high energy use in infant brains, correlated to new synaptic connections and 

cortical thickening, which decreases as the cortex thins, connections are pruned and the brain reaches its 

mature state (Harris et al., 2011).  This is due to energy-consuming synapses, ATP consumption in synthesizing 

cellular components, and changes in ligand gated receptor function (Harris et al., 2012) all of which will be 

reflected in the infant BOLD response.    

 (ii) Electroencephalography  

BOLD responses are a surrogate measure of the neuronal activity within the brain.  Electroencephalography, 

on the other hand is a non-invasive neurophysiological method that records the electrical activity of the brain 

at the scalp, largely from superficial regions, such as the somatosensory cortex, as voltage changes dissipate 

from deeper subcortical structures over a certain distance.   It is possible to observe event-related changes in 

the EEG traces following certain stimuli including noxious laser, pinprick and heel lance (Zhang et al., 2012; 

Fabrizi et al., 2013b; Iannetti et al., 2013).   Recently, studies have identified an event-related potential (ERP) 

in newborn infants and infants up to one year old,  that is specific to noxious stimulation (Slater et al., 2010c, 

2010b; Fabrizi et al., 2011; Verriotis et al., 2015). This consists of an early negative-positive (NP) waveform 

that is also present following tactile stimulation, which is followed by a second NP waveform (N420-P560) that 

is only present following noxious stimulation. This ERP is found at central (Cz) and central parietal (CPz) 

electrodes suggesting that it might be related to the sensory-discriminative aspect of pain that arises in the 

somatosensory cortex.   It should be emphasised that most sensory evoked EEG recordings involve multiple 

repetitions of the same stimulus to increase the signal to noise and pick out a significant potential.   This would 

be unethical in newborn studies, but in any case are not necessary as a tissue breaking lance can cause a 50µV 

evoked potential that is easily detectable in a single trial. 
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Furthermore, EEG recording of noxious-evoked activity in infants of different gestational ages has revealed 

how the brain begins to distinguish noxious information from innocuous tactile stimulation in early life (Fabrizi 

et al., 2011).   Recording the brain neuronal activity in response to time-locked touches and clinically essential 

noxious lances of the heel in infants aged 28 to 45 weeks’ gestation reveals a transition in brain response 

following tactile and noxious stimulation from non-specific, evenly dispersed neuronal bursts to modality-

specific, localized, evoked potentials.   These recordings suggest that the haemodynamic recordings in 

premature infants could reflect an increase in spontaneous burst responses, which is greater with noxious 

than tactile stimulation, but that the specific neural circuits necessary to distinguish the qualitative difference 

between touch and nociception emerge from 35 to 37 weeks’ gestation in the human brain (Fabrizi et al., 

2011).   

What do these EEG studies from tell us about newborn infant pain?    They tell us there is a temporal and 

spatial pattern of brain activity that follows a noxious stimulus in the newborn that can be characterised and 

which changes with age.  They show that infant cortical neurons and networks are directly activated by noxious 

information and promise to tell us much more in the future about the distributed networks, frequency 

patterns and coherence of brain activity that underlie pain experience.    

 

How can we discover more about newborn infant pain? 
 

Too much of our current knowledge of infant pain is based upon observations of pain behaviour.  While 

acknowledging the pioneering work on infant pain behaviour, this review has emphasised the importance of 

understanding developing spinal and brainstem sensory and nociceptive circuits to interpret this behaviour.  

Failure to appreciate the changing properties of nociceptive spinal and brainstem circuits may lead to 

behaviour being misinterpreted.   The correlation between spinal reflexes and cortical responses evoked by 

experimental pinprick in individual infants (Hartley et al., 2015) confirm that the spinal cord and cortex are 

sharing a nociceptive input but failure to appreciate the excitability of neonatal somatosensory circuits, 

whereby nociceptive behaviours can be triggered by light handling (Cornelissen et al., 2013), could lead to 

reflex behaviour being misinterpreted as pain in a clinical setting.   Much has been learned from comparing 

infant behaviour with the NIRS or EEG activity recorded from the brain following a clinically required lance.  

Importantly, some infants show no behavioural reaction to heel lance, but their cortex is strongly activated 

(Slater et al., 2008), a fact that would be lost in an observational study.  Observational behavioural scoring of 

needle prick pain associated with inoculation proves to be a blunt tool compared to EEG recording which 

reflects age related and individual differences in cortical pain activity (Verriotis et al., 2015).  

The future of this field therefore lies in a better understanding of developing cortical pain circuitry which 

supports the perception of pain.  Currently we have only a rudimentary understanding of infant brain activity 
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following a noxious stimulus.  We are at the beginning of big discoveries in this field and it is privilege to be 

part of the exploration of the very first processing of pain in the newborn human brain.   We are entering the 

world of distributed networks and dynamic pain connectomes (Kucyi & Davis, 2015) but too much theoretical 

modelling can be avoided if we turn to animal research to help us to interpret the how, when and why of 

nociceptive cortical activity in the newborn.  To this end, our laboratory is beginning to record nociceptive 

activity in the rat pup cortex with the aim of contributing to a brain based understanding and treatment of 

pain in infants in the future (Chang et al., 2015) – this is indeed a hot topic.   
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