The Characterization of Varicella Zoster Virus Specific T Cells In Skin and Blood During Ageing

Milica Vukmanovic-Stejic¹, Daisy Sandhu^{1,2}, Judith A. Seidel¹, Neil Patel^{1,2}, Toni O. Sobande¹, Elaine Agius^{1,2}, Sarah E. Jackson¹, Judilyn Fuentes-Duculan³, Mayte Suarez-Farinas³, Neil A. Mabbott⁴, Katie E. Lacy⁵, Graham Ogg⁶, Frank O Nestle⁵, James G. Krueger³, Malcolm H.A. Rustin², Arne N. Akbar¹

¹Division of Infection and Immunity, University College London, London, W1T 4JF, England, United Kingdom.

² Department of Dermatology, Royal Free Hospital, London, NW3 2QG, England, United Kingdom.

³Laboratory for Investigative Dermatology, Rockefeller University, New York, NY 10021, USA

⁴The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK

⁵ St. Johns Institute of Dermatology, Guys and St. Thomas' Hospital, London.

⁶ MRC Human Immunology Unit, University of Oxford, NIHR Biomedical Research Centre, Oxford, UK

Corresponding author:

Professor Arne N. Akbar, or Dr M Vukmanovic-Stejic, tel: +44-20-31082172/ 02031082173

E-mail: <u>a.akbar@ucl.ac.uk</u> or m.vukmanovic-stejic@ucl.ac.uk

This work was funded by grants from the Medical Research Council, the Biotechnology and Biological Sciences Research Council, The British Skin Foundation and Dermatrust.

Key words: T cell, memory, skin resident, antigen-specific, ageing

Abbreviations: VZV (varicella zoster virus), Treg (regulatory T cells), CMV (cytomegalovirus), HSV (herpes simplex virus),

Running title: Effects of age on VZV specific T cells in blood and skin

ABSTRACT

The varicella-zoster virus (VZV) re-activation increases during ageing. Although the effects of VZV re-activation are observed in the skin (shingles) the number or functional capacity of cutaneous VZV specific T cells have not been investigated. The numbers of circulating IFN- γ secreting VZV specific CD4⁺ T cells are significantly decreased in old subjects however other measures of VZV-specific CD4⁺ T cells, including proliferative capacity to VZV antigen stimulation and identification of VZV-specific CD4⁺ T cells with a MHC class II tetramer (epitope of IE-63 protein), were similar in both age groups. The majority of T cells in the skin of both age groups expressed CD69, a characteristic of skin resident T cells. VZV-specific CD4⁺ T cells were significantly increased in the skin compared to the blood in young and old subjects and their function was similar in both age groups. In contrast the number of Foxp3⁺ regulatory T cells (Tregs) and expression of the inhibitory receptor PD-1 on CD4⁺ T cells were significantly increased in the skin of older humans. Therefore VZV-specific CD4⁺ T cells in the skin of older individuals are functionally competent. However their activity may be restricted by multiple inhibitory influences *in situ*.

INTRODUCTION

Varicella zoster virus (VZV), an alpha-herpes virus, is the causative agent of chickenpox. After resolution of the initial infection VZV enters a latent phase within dorsal root ganglia. However, later in life VZV re-activation can occur, causing herpes zoster (also known as shingles) that results from virus shedding into the skin (Arvin, 1996; Arvin, 2001; Goldblatt, 1998). Although the skin is the major site that is involved in VZV reactivation during shingles, it is not clear if this is related to changes in skin resident VZV specific T cells in this tissue. The role of a subset of memory cells in the skin, termed tissue resident memory T cells (Trm), that are poised to provide efficient and rapid immunity in this organ has been described recently (Gebhardt et al., 2009; Gebhardt et al., 2011; Jiang et al., 2012). These Trm cells have been shown to be part of the first line of defence against herpes simplex virus (HSV) or human papiloma virus (HPV) infections (Cuburu et al., 2012; Gebhardt et al., 2009; Mackay et al., 2012; Masopust et al., 2010; Tang and Rosenthal, 2010). The activation of these cells also enables the recruitment of circulating antigen-specific T cells that amplifies the response (Schenkel et al., 2013). Although most studies of Trm have focused on CD8⁺ populations (especially in mice), CD4⁺ Trm cells also reside in the skin (Clark *et al.*, 2006; Clark et al., 2012; Mueller et al., 2013). In addition to the tissue resident Trm cells, skin also contains recirculating memory T cells which actively recirculate between blood, skin and lymphoid organs (Bromley et al., 2013; Clark et al., 2012; Jiang et al., 2012). It has been proposed that non-migrating tissue resident T cells express CD69 which was found to be necessary for S1P1 down-regulation and T cell retention (Carbone et al., 2013; Skon et al., 2013).

We have investigated quantitative and qualitative changes in VZV specific $CD4^+$ T cells in the blood and skin in young and old subjects and showed that although the numbers of these cells were increased in the skin compared to the blood, the capacity of these cells to secrete cytokines was not altered by ageing. The vast majority of T cells in the skin of both young and old individuals expressed CD69, a marker for tissue resident memory T cell populations (Clark *et al.*, 2012; Gebhardt *et al.*, 2009; Jiang *et al.*, 2012) suggesting that VZV-specific CD4⁺ T cells in healthy skin may be Trm cells. Although cutaneous VZV specific T cells in old individuals are functionally competent, previous studies have shown that these subjects have decreased ability to mount a recall antigen responses to cutaneous VZV antigen challenge (Agius *et al.*, 2009; Levin *et al.*, 2003). Our results suggest that this decrease in cutaneous VZV-specific immunity in <u>the</u> tissue is not directly due to a defect in CD4⁺ Trm cells. Instead, external influences such as the increased numbers of suppressive Tregs (Agius *et al.*, 2009; Seneschal *et al.*, 2012) and/or increased signalling through the inhibitory receptor PD-1 (Wherry, 2011; Zajac *et al.*, 1998), that is highly expressed on skin resident CD4⁺ T cells, may create an inhibitory microenvironment that restricts effective immune responses to VZV in the skin of older humans.

RESULTS

VZV specific CD4⁺T cells in the blood during ageing

We investigated the effect of increasing age on VZV specific CD4⁺ T cell frequency by measuring IFN- γ and IL-2 responses following overnight stimulation of PBMC with VZV lysate. 133 donors were analysed (aged 20-91 years) and only donors serologically positive for VZV were included in the analysis. Figure 1A (left panel) shows representative dot plots of IFN- γ production for unstimulated and VZV stimulated PBMC gated on CD3⁺CD4⁺ T cells. We found a significant decrease of IFN- γ secreting cells during ageing (Figure 1A right panel, p<0.0001) confirming previous reports (Asanuma *et al.*, 2000; Levin *et al.*, 2003). We also examined the IL-2 responses to VZV of the donors analysed (Supplementary Figure 1) but found that host age did not significantly influence the frequency of IL-2 secreting cells.

We next investigated VZV specific T cell activity by assessing the ability of PBMC from young and old donors to proliferate after VZV antigen stimulation *in vitro* (Figure 1B, 1C). After 6 days of stimulation with a range of concentrations of VZV lysate (n=29 old and 26 young) the extent of proliferation measured by ³H-thymidine uptake was similar in young and old subjects except at the lowest <u>dose of VZV</u> antigen used (Figure 1B). Furthermore there were no differences in proportions of cells expressing Ki67 three days after VZV lysate stimulation (4 μ l/ml) *in vitro* (Figure 1C). This indicates that the decrease in VZV specific cells, identified by IFN- γ secretion in the peripheral blood compartment, does not represent a global defect in the functional responses of these cells.

We also investigated the frequency of VZV specific cells in young and old subjects (Figure 1D) using a class II tetramer HLA-DRB1*1501 restricted IE63 tetramer (Jones *et al.*, 2007; Vukmanovic-Stejic *et al.*, 2013). No difference was observed in the number of tetramer

positive VZV specific CD4⁺ T cells between the young and old individuals tested (Figure 1D). We confirmed that the tetramer staining was specific by showing an absence of staining when a control tetramer (CLIP) was used, and also when HLA DRB1*1501-negative individuals were tested (data not shown and (Vukmanovic-Stejic *et al.*, 2013)).

Effect of age on leukocyte populations and global gene expression signatures in the skin

We investigated if there were numerical or functional differences in the T cells found in young and old skin. We collected 5 mm punch biopsies from individuals of both age groups and analysed them by immunohistochemistry and immunofluorescence using antibodies specific for CD3, CD4, CD11c, CD163 and Foxp3 (Figure 2A). No difference was observed in the number of CD3⁺, CD4⁺ or CD8⁺ T cells with age (Figure 2B, Table 1). The numbers of dermal dendritic cells (CD11c) or macrophages (CD163) (Haniffa et al., 2009; Zaba et al., 2007; Zaba et al., 2008) were also unaffected by increasing age (Figure 2B, Table 1). However there were significantly increased numbers of CD4⁺Foxp3⁺ T cells in the skin of old compared to young individuals in agreement with previous studies (Agius et al., 2009; Gregg et al., 2005; Lages et al., 2008). This difference was also observed by flow cytometric analysis of skin derived populations (Supplementary Figure 2A) The increased proportion of Foxp3⁺ cells in the old skin is significantly correlated with a decrease of memory CD4⁺ T cell infiltration and with the decrease in the clinical response after intradermal challenge with VZV antigen (Figure 2C, Supplementary Figure 2) confirming previous observations (Agius et al., 2009; Vukmanovic-Stejic et al., 2013). This is indirect evidence that these cells in older subjects have suppressive activity.

We next investigated global gene expression profiles in the skin of young and old subjects. Transcriptional analysis was performed on the skin biopsies of normal skin collected from 7 young and 7 healthy old individuals. Overall, unsupervised clustering coupled with bootstrapping did not identify stable clusters separating skin samples from young and old individuals (Figure 2D and Supplementary Figure 3A). Only 2 genes were considered differentially expressed *LPPR4* (higher in young) and *ADAMTSL1* (higher in old) using a typical FDR<0.05 and FCH>2. In terms of pathways, Gene Set Variation Analysis (GSVA) suggested differences in human skin pigmentation genes and cell cycle related genes (Wang *et al.*, 2013) but not in terms of immune genes, positive or negative regulators or in any of the skin specific cytokine pathways that we have curated (Suarez-Farinas *et al.*, 2011) (Supplementary Figure 2C).

Next, the global gene expression profiles in the young and aged skin samples were compared with that of a large collection of microarray data sets from distinct human primary cell populations (745 individual data sets) (Mabbott *et al.*, 2013). Data were analysed using Biolayout Express^{3D} with a Pearson correlation r=0.90 and Markov cluster (MCL) of 2.2,, and generated 140 clusters of ≥ 6 probe sets (genes). The network graph's structure is derived from the clustering of genes that are expressed in a cell- or function-specific manner (<u>Supplementary Figure 3D</u>; Supplementary Table 1) and their contents reflect the nature of the cell populations represented in human skin. Congruent with the differential transcriptional analyses presented above (Supplementary Figure 3B, C), no significant difference was observed in the expression levels of the genes within these cell-specific (eg: keratinocytes, endothelium) and cellular activity-related clusters (eg: extracellular matrix, MHC genes) between the two age groups (Supplementary Figure 3E).

Effect of age on the extent of differentiation of CD4 T cells in blood and skin.

We investigated whether the T cells in skin were true skin resident T cells as defined by CD69 expression that is a marker for tissue retention(Clark *et al.*, 2012; Gebhardt *et al.*, 2009; Jiang *et al.*, 2012; Skon *et al.*, 2013), In contrast to circulating T cells 80-90% of skin derived CD4 (Figure 3A, 3B) and CD8 populations (data not shown) express CD69. In addition, only around 10% of skin derived cells express CCR7 confirming that the vast majority of cutaneous T cells are skin resident and not transient T cell populations (Clark *et al.*, 2012; Gebhardt *et al.*, 2009; Jiang *et al.*, 2012). Furthermore CD69⁺ T cells did not express surface CD25 suggesting they were not an activated population and this was also confirmed by their small size, defined by forward and side scatter properties by flow cytometry. There was no significant change in the proportion of CD69⁺ cells with age (Figure 3B).

To determine whether excessive differentiation towards an end stage could reflect altered T cell function in the skin compared to T cells in peripheral blood we collected paired blood and skin samples from young and old individuals (n=23 old and n=31 young for CD4, n=10 old and 14 young for CD8). Based on their expression of surface CD45RA, CD27, CD4 (Figure <u>3C, D</u>) and CD8 (Supplementary Figure 4A, B) T cells from both blood and skin can be subdivided into 4 subsets. The CD45RA⁺CD27⁺ population is the least differentiated and has the longest telomeres, CD45RA⁺CD27⁺ cells have intermediated telomere lengths while both CD45RA⁻CD27⁻ and CD45RA⁺CD27⁻ cells have relatively short telomeres and express multiple other characteristics of senescence (Di Mitri *et al.*, 2011; Henson *et al.*, 2014; Libri *et al.*, 2011). In both young and old subjects, cutaneous T cells in both CD4⁺ (Figure 3C, D) and CD8⁺ populations (Supplementary Figure 4A, B) showed a significant decrease in the undifferentiated CD45RA⁺CD27⁺ cells. In older subjects, the proportion of CD45RA⁻CD27⁻ cells was

significantly higher within skin CD4 and CD8 compartments compared to young subjects (Figure 3).

We next investigated the functional capacity of skin resident T cells isolated from punch biopsies. Following a 6 hour stimulation with PMA and ionomycin cells were stained for IL-2, IFN- γ , TNF- α and IL-22. There were no significant differences in the capacity of CD4⁺ (Figure 3 E, F) or CD8⁺ T cells from the skin of young and old individuals to secrete these inflammatory cytokines after stimulation *in vitro* (Supplementary Figure4, D).

VZV-specific skin resident T cells in young and old subjects.

We next investigated the phenotypic and functional characteristics of VZV specific T cells in both the skin and blood of young and old subjects. Skin T cells isolated from punch biopsies, and paired blood samples, were tested for their ability to synthesize IFN- γ , TNF- α and/or IL-2 after overnight re-stimulation with VZV lysate as previously described (Vukmanovic-Stejic *et al.*, 2013). Minimal IFN- γ or IL-2 was produced by blood or skin CD4⁺ T cells in the control cultures without added VZV antigens (not shown). We could identify cytokine producing CD4⁺ cells in skin of > 60% of young and old individuals tested (positive staining for one or more cytokines, Figure 4A). In those individuals where VZV specific cells were found in both compartments, there were significantly higher proportions of these cells in the skin (Figure 4A, 4B, p=0.001, Wilcoxon paired test, n=9 old and 15 young). The observed difference was not accounted for by the difference in the differentiation state of skin versus blood CD4 T cells as there was a significantly increased proportion of VZV-specific cells in skin compared to the circulating memory compartment. When the proportion of cytokine secreting VZV-specific CD4⁺ cells was compared between the skin of young and old individuals, no significant difference was observed (Figure 4C). Therefore there is no obvious age-associated reduction in the number of cytokine secreting VZV specific $CD4^+$ T cells in the skin.

We also investigated the characteristics of VZV specific $CD4^+$ T cells in the skin that were identified by class II tetramer binding. Paired samples of cells isolated from skin biopsies and PBMC were stained with an HLA-DRB1*1501 restricted IE63 tetramer (Jones *et al.*, 2007). The representative tetramer staining is shown in Figure 4D (left panels). Increased proportions of VZV-specific CD4⁺ T cells were detected in the skin when compared to the blood in both old and young individuals (Figure 4D, Wilcoxon paired test, p=0.06 in young n=6; and p=0.008 in the old; n=5). The specificity of tetramer staining was confirmed as described above (Vukmanovic-Stejic *et al.*, 2013). Therefore, using either intracellular cytokine staining or tetramer binding we found higher proportions of VZV specific CD4⁺ T cells in the skin than in blood of both young and old individuals, however there were no differences between the age groups in either compartment.

We next compared the differentiation state of skin resident VZV specific CD4⁺ T cells between young and old individuals. Overall, VZV specific cells identified in the skin are predominantly of the CD45RA⁻CD27⁺ and CD45RA⁻CD27⁻ phenotype (Figure 4E) similar to that seen in blood (Supplementary Fig 5) in both age groups. Furthermore there was a significant increase in CD45RA⁺CD27⁻ T cells, that have characteristics of end-stage differentiation or senescence (Di Mitri *et al.*, 2011; Henson *et al.*, 2014; Libri *et al.*, 2011) within the VZV-specific population in the old compared to young skin. The phenotype of tetramer positive cells in skin was similar to that observed when cytokine secreting VZV specific cells were analysed (Supplementary Fig 5C). In conclusion, VZV specific CD4⁺ T cells in blood and in skin are functional and are not restricted by excessive differentiation.

Expression of PD-1 in skin during ageing:

Since the numbers of skin resident VZV specific CD4⁺ T cells are not decreased during ageing and they are able to secrete cytokines in response to VZV antigen challenge in vitro, other factors may contribute to the impaired skin recall response to VZV antigen challenge in older subjects and to their increased susceptibility to shingles (Agius et al., 2009; Levin et al., 2003; Tang et al., 2012; Weinberg et al., 2010). The progressive loss of cytokine production and proliferative activity by CD4⁺ T cells as a result of chronic immune stimulation during persistent viral infections and cancer is associated with the expression of PD-1 and other inhibitory receptors (Wherry, 2011; Zajac et al., 1998). Blockade of these receptors can reverse these functional defects in these cells (Kamphorst and Ahmed, 2013). We therefore investigated whether there was increased expression of the T cell surface inhibitory receptor PD-1 in blood compared to skin cells during ageing. Paired blood and normal skin samples stained for the expression of PD-1 on CD4 (n= 17; 6 young, 6 middle aged, 5 old) and CD8+ T cells (n=-12; 4 young, 3 middle aged, 5 old). (Figure 5A, B). There was a highly significant increase in PD-1 expression on skin resident compared to circulating T cells (p < 0.001, Wilcoxon paired test). PD-1 expression was increased in both blood and skin during ageing (Figure 5C) with as many as 40% of CD4+ T cells being positive in the skin. This data suggests that T cells in the skin of old humans may be more susceptible to inhibition through PD-1 signalling.

DISCUSSION

Recent studies have shown that skin resident memory T (Trm) cells play an important role in providing protection against re-exposure to, or re-activation of, local persisting pathogens (Clark et al., 2012; Cuburu et al., 2012; Gebhardt et al., 2009; Mackay et al., 2012; Masopust et al., 2010; Mueller et al., 2013; Tang and Rosenthal, 2010). Furthermore, these Trm cell populations may be regulated independently of the circulating memory T cell pools of cells (Carbone et al., 2013; Clark et al., 2012; Gebhardt et al., 2011; Mueller et al., 2013; Schenkel et al., 2013). Considering the skin manifestation of both primary and secondary varicella disease, it is unusual that VZV specific T cells have only previously been studied in the peripheral blood (Asanuma et al., 2000; Hayward and Herberger, 1987; Patterson-Bartlett et al., 2007; van Besouw et al., 2012; Weinberg and Levin, 2010). We first investigated whether there was a general decrease in the number or functional capacity of skin resident T cells in older subjects. Based on the expression of CD69, that was expressed by almost all skin derived CD4 and CD8 T cells, together with the lack of CCR7 expression and the fact that skin biopsies were collected from normal, unchallenged skin we concluded that our skin derived cells represent a skin resident population (Clark et al., 2012; Gebhardt et al., 2009; Jiang et al., 2012; Skon et al., 2013). However contribution of recirculating T cells transiently patrolling the skin cannot be completely discounted (Zhu et al., 2013). A key observation was that there were significantly more VZV specific CD4⁺ T cells in the skin compared to the blood in both young and old individuals. Since the skin contains more T cells than the blood (Clark, 2010; Clark et al., 2006), the decrease in VZV-specific T cells in the circulation during ageing may not represent a global decrease of these cells in vivo as they may simply have re-located to the skin. This observation coupled to the fact that other methods of evaluating VZV-specific T cells do not indicate a reduction of these cells in the blood suggests that there may not be a general defect of VZV-specific T cell numbers or function during ageing.

We found no differences in numbers of dendritic cells and macrophages between both age groups, and transcriptional profiling of young and old normal skin did not show any significant differences in the genes involved in mononuclear phagocyte function or immune responses. Therefore the general skin microenvironment at a steady state appears very similar in young and old individuals suggesting that the reduced recall response to antigen in the skin during ageing (Agius *et al.*, 2009) probably occurs downstream of antigen challenge.

We investigated whether Trm cells in the skin of older humans were inhibited *in situ*, as this could explain why there is a reduced recall response to VZV skin test antigen challenge and also the predisposition to VZV reactivation *in vivo*. We showed previously that $Foxp3^+$ Tregs that are identified in the skin are suppressive and there is a significant inverse correlation between the number of these cells present and the size of the delayed type hypersensitivity response after VZV challenge ((Vukmanovic-Stejic *et al.*, 2013) and Figure 2C, Supplementary Figure 2). The increase in Tregs during ageing has also been observed in the blood of normal subjects (Gregg *et al.*, 2005; Vukmanovic-Stejic *et al.*, 2006) and has also been reported in the tissues of old mice (Lages *et al.*, 2008; Raynor *et al.*, 2012). This supports the possibility that the increase in Treg cell numbers and their suppressive activity may contribute to decreased VZV specific responses in older subjects.

Signalling through PD-1 and other inhibitory receptors can inhibit T cell responses both *in vitro* and *in vivo* (Wherry, 2011; Zajac *et al.*, 1998). The blockade of these receptors can reverse these functional defects in these cells and this has led to the use of PD-1 blocking

strategies in the treatment of melanoma and other skin cancers (Flemming, 2012; Kamphorst and Ahmed, 2013; Lu *et al.*, 2014). In addition, it has been shown recently that interplay between Tregs and PD-1 signalling regulates immune responsiveness and the control of viral infection *in vivo* (Penaloza-MacMaster *et al.*, 2014). We observed very high PD-1 expression on skin compared to blood T cells that increased with age. This suggests that inhibitory signalling by different mechanisms may actively regulate immune responsiveness in the skin, especially during ageing. The reason for the increase in Treg numbers or PD-1 expression in the skin during ageing is unclear. It has been shown previously that infection with persistent viruses such as CMV in humans can induce PD-1 expression and it is possible that more of the old subjects we have studied are CMV⁺ than the young cohort (Henson *et al.*, 2014). Alternatively, these changes may be linked to the increased inflammation (inflammageing) that is observed in elderly subjects (Franceschi *et al.*, 2000).

Our studies highlight the importance of studying human immunity in additional compartments to peripheral blood. The availability of a vaccine (Zostavax) to prevent herpes zoster in older subjects has reduced the incidence of shingles in the elderly (Gershon, 2007; Levin *et al.*, 2008; Weinberg *et al.*, 2009) although efficacy of the vaccine is only 38% in the very old (>80yrs). This indicates that it is essential to study the mechanisms that are responsible for the declining immunity during ageing to rationalize ways by which immunity in general and vaccine responses in particular could be improved in the elderly.

MATERIALS AND METHODS

Subjects: Healthy individuals who had a history of previous chickenpox infection (n=94, median age = 32.5 years, age range 20-92 years, 38 male, 56 female) were recruited for the study. Subjects were grouped as young <40, middle aged 40-65 and old >60 years old. This work was approved by the Ethics Committee of the Royal Free Hospital, London. All volunteers provided written informed consent and study procedures were performed in accordance with the principles of the declaration of Helsinki. Individuals with history of neoplasia, immunosuppressive disorders or inflammatory skin disorders and individuals on immunosuppressive medication were excluded. In some cases skin from healthy individuals was obtained from donors undergoing routine plastic surgery at Guy's and St. Thomas' hospitals (approved by the Institutional Review Board of Guy's Hospital). To examine the clinical response to VZV, healthy individuals were injected intradermally with Varicella Zoster Virus (VZV) skin test antigen from The Research Foundation for Microbial Diseases of Osaka University (BIKEN) as described previously(Agius *et al.*, 2009; Vukmanovic-Stejic *et al.*, 2011).

Skin biopsies: Punch biopsies (5 mm diameter) from the upper volar region of the forearm were obtained from 30 young and 25 old volunteers. Biopsies were frozen in optimal cutting temperature compound (OCT, Bright Instrument Company Ltd, Huntingdon, Uk). 6 μm sections were cut and then fixed in ethanol and acetone and stored at -80°C. For functional analysis of skin cells 5 mm punch biopsies were digested overnight with 0.8mg/ml of collagenase IV (Sigma Aldrich, Gillingham, UK) as described (Vukmanovic-Stejic *et al.*, 2013). For the analysis of the DTH response to VZV challenge skin biopsies were collected at different times post injection, frozen and used for histological analysis (Agius *et al.*, 2009).

PBMC preparation: Heparinized blood samples were collected from healthy volunteers and patients with acute disease. PBMCs were prepared by density centrifugation on Ficoll-Paque (Amersham Biosciences, Little Chalfont, UK) and re-suspended in complete medium.

Flow Cytometric Analysis: Multi-parameter analysis of skin and blood T cell phenotype was performed on LSR II or BD Fortessa using FACS Diva software (both BD Biosciences, Oxford, UK) and further analyzed using FlowJo software (TreeStar, Inc) as previously described (Agius et al., 2009; Vukmanovic-Stejic et al., 2013). PBMCs or skin cells were stained with different combinations of antibodies including CD3, CD4, CD8, CD45RA, CD28, CD27 (BD Biosciences) Ki67, CLA, CCR7 and PD-1 (clone EH12.2H7; Biolegend, London, UK). All surface staining was performed for 30 minutes on ice. Isotype control staining and FMO controls were used to set the quadrants. Ki67 staining (clone B56, BD Bioscience) was performed by intracellular staining using the Foxp3 Staining Buffer Set (Miltenyi Biotec, Bisley, UK). For intracellular cytokine staining cells were stimulated with VZV lysate (Virusys corporation, Taneytown, MD) or SEB as positive control and incubated for 15 hours at 37°C, 5% CO2 in the presence of 5 µg/ml Brefeldin A (Sigma-Aldrich, Gillingham, UK). Unstimulated controls were always included. Following stimulations cells were stained for surface markers for 30 minutes at 4°C, washed, fixed and permeabilised (Fix & Perm Cell Permeabilisation Kit, Invitrogen, Paisley, UK) before staining for IL-2, IFN-γ and TNF- α (all from BD Biosciences, Oxford, UK).

Tetramer staining Tetramer staining was performed as previously described using DRB1*1501 iTAg MHCII tetramer complexed to VZV IE63 peptide 24 (QRAIERYAGAETAEY) (Beckman Coulter, High Wycombe, UK); CLIP peptide (PVSKMRMATPLLMQA) was used as a control (Jones *et al.*, 2007; Vukmanovic-Stejic *et al.*, 2013). Briefly, cells were first incubated with 2 μ g/ml HLA Class II tetramers for 1-2

hours at 37°C in the dark, washed in PBS and then stained for different surface markers as needed. We analysed the tetramer expression within the CD4⁺ T cell subset by gating on the lymphocytes and excluding B cells, monocytes and dead cells (Via-Probe positive population).

Immunofluorescence: 6 μ m skin sections collected from normal or VZV injected skin were blocked with Dako non-serum protein block for 20 minutes, followed by incubation with primary antibodies (biotin anti-human Foxp3 and mouse anti- human CD4) overnight at 4°C, followed by incubation with strepCy3 and anti-mouse IgG1 Alexa Fluor 488 for 1hr at room temperature as described (Vukmanovic-Stejic *et al.*, 2008). Cell numbers were expressed as the mean absolute cell number per perivascular infiltrate where 5 largest perivascular infiltrates present in the upper and mid dermis of each section were counted (Vukmanovic-Stejic *et al.*, 2008).

Immunohistochemistry: Skin sections from normal skin (n=6 young, n=6 old) were stained with purified mouse anti-human CD3 antibody, purified mouse anti-human CD8 antibody (both Dakocytomation, Ely, UK), purified mouse anti-human CD4 and CD11c antibodies (BD Biosciences, Oxford, UK) or purified mouse anti-human CD163 antibody (Acris, Herford, Germany). Sections were counterstained using rabbit anti-mouse horseradish-peroxidase conjugated antibody (Dakocytomation, Ely, UK) and immunostaining revealed using chromagen 3'-diaminobenzidine tetrahydrochloride. The number of positive cells/mm² was counted manually using computer-assisted image analysis (NIH Image 6.1; http://rsb.info.nih.gov/nih-image).

Transcriptional analysis: 3 mm punch biopsies were collected from young and old individuals and immediately frozen in RNAlater and stored at -20° C until use. Tissues were homogenized and total RNA extracted using RNeasy Mini Kit (Qiagen, Manchester, UK). Target

amplification and labelling was performed according to standard protocols using Nugen Ovation WB Kit. RNA was hybridized to Affymetrix Human Genome U133 2.0 plus arrays. Affymetrix gene chips were scanned for spatial artefacts using the Hirshlight package (Suarez-Farinas *et al.*, 2005). Gene expression measures were obtained using the GCRMA algorithm (Wu and Irizarry, 2004). Group comparisons were made using the moderated t-test and P-values were adjusted for multiple hypotheses using the Benjamini-Hochberg procedure.

Network analysis of the genes expressed within skin samples and in various human cell populations was performed as described previously (Mabbott *et al.*, 2013). Briefly, human skin-punch microarray data were combined with a large collection of other primary cell gene-expression data sets (745 individual microarray data sets), available from the GEO database on the Affymetrix Human Genome U133 Plus 2.0 expression array platform (GSE49910) and analysed using Biolayout Express^{3D} software (Freeman *et al.*, 2007). The graph of these data was then explored to understand the significance of the gene clusters, identify those expressed by the young and old skin samples and their functional relationships to the other cell populations represented.

Statistics: Statistical analysis was performed using GraphPad Prism version 6.00 for Windows (GraphPad Software, San Diego, California, USA). Non-parametric tests were predominantly utilised as data sets were not normally distributed. The Wilcoxon matched pairs test or a paired t-test was used when comparing two groups of matched data and a 2-tailed Mann-Whitney test was used when comparing two unpaired groups.

Conflict-of-interest disclosure: The authors declare no competing financial interests.

References

Agius E, Lacy KE, Vukmanovic-Stejic M, *et al.* (2009) Decreased TNF-{alpha} synthesis by macrophages restricts cutaneous immunosurveillance by memory CD4+ T cells during aging. *The Journal of Experimental Medicine* 206:1929-40.

Arvin AM (1996) Varicella-zoster virus. ClinMicrobiolRev 9:361-81.

Arvin AM (2001) Varicella-zoster virus: molecular virology and virus-host interactions. *Current opinion in microbiology* 4:442-9.

Asanuma H, Sharp M, Maecker HT, *et al.* (2000) Frequencies of memory T cells specific for varicellazoster virus, herpes simplex virus, and cytomegalovirus by intracellular detection of cytokine expression. *JInfectDis* 181:859-66.

Bromley SK, Yan S, Tomura M, *et al.* (2013) Recirculating memory T cells are a unique subset of CD4+ T cells with a distinct phenotype and migratory pattern. *J Immunol* 190:970-6.

Carbone FR, Mackay LK, Heath WR, et al. (2013) Distinct resident and recirculating memory T cell subsets in non-lymphoid tissues. *Curr Opin Immunol* 25:329-33.

Clark RA (2010) Skin-resident T cells: the ups and downs of on site immunity. *J Invest Dermatol* 130:362-70.

Clark RA, Chong B, Mirchandani N, *et al.* (2006) The vast majority of CLA+ T cells are resident in normal skin. *J Immunol* 176:4431-9.

Clark RA, Watanabe R, Teague JE, *et al.* (2012) Skin effector memory T cells do not recirculate and provide immune protection in alemtuzumab-treated CTCL patients. *SciTranslMed* 4:117ra7.

Cuburu N, Graham BS, Buck CB, *et al.* (2012) Intravaginal immunization with HPV vectors induces tissue-resident CD8+ T cell responses. *The Journal of clinical investigation* 122:4606-20.

Di Mitri D, Azevedo RI, Henson SM, et al. (2011) Reversible senescence in human CD4+CD45RA+. *JImmunol* 187:2093-100.

Flemming A (2012) Cancer: PD1 makes waves in anticancer immunotherapy. *Nature reviews Drug discovery* 11:601.

Franceschi C, Bonafe M, Valensin S, et al. (2000) Inflamm-aging. An evolutionary perspective on immunosenescence. Annals of the New York Academy of Sciences 908:244-54.

Freeman TC, Goldovsky L, Brosch M, et al. (2007) Construction, visualisation, and clustering of transcription networks from microarray expression data. *PLoS computational biology* 3:2032-42.

Gebhardt T, Wakim LM, Eidsmo L, et al. (2009) Memory T cells in nonlymphoid tissue that provide enhanced local immunity during infection with herpes simplex virus. *NatImmunol* 10:524-30.

Gebhardt T, Whitney PG, Zaid A, et al. (2011) Different patterns of peripheral migration by memory CD4+ and CD8+ T cells. *Nature* 477:216-9.

Gershon AA (2007) Varicella-zoster vaccine.

Goldblatt D (1998) The immunology of chickenpox. A review prepared for the UK Advisory Group on Chickenpox on behalf of the British Society for the Study of Infection. *The Journal of infection* 36 Suppl 1:11-6.

Gregg R, Smith CM, Clark FJ, *et al.* (2005) The number of human peripheral blood CD4+ CD25high regulatory T cells increases with age. *ClinExpImmunol* 140:540-6.

Haniffa M, Ginhoux F, Wang X-N, *et al.* (2009) Differential rates of replacement of human dermal dendritic cells and macrophages during hematopoietic stem cell transplantation. *The Journal of Experimental Medicine* 206:371-85.

Hayward AR, Herberger M (1987) Lymphocyte responses to varicella zoster virus in the elderly. *Journal of clinical immunology* 7:174-8.

Henson SM, Lanna A, Riddell NE, et al. (2014) p38 signaling inhibits mTORC1-independent autophagy in senescent human CD8+ T cells. *The Journal of clinical investigation* 124:4004-16.

Jiang X, Clark RA, Liu L, *et al.* (2012) Skin infection generates non-migratory memory CD8+ TRM cells providing global skin immunity. *Nature* 483:227-31.

Jones L, Black AP, Malavige GN, *et al.* (2007) Phenotypic analysis of human CD4+ T cells specific for immediate-early 63 protein of varicella-zoster virus. *EurJ Immunol* 37:3393-403.

Kamphorst AO, Ahmed R (2013) Manipulating the PD-1 pathway to improve immunity. *Curr Opin Immunol* 25:381-8.

Lages CS, Suffia I, Velilla PA, et al. (2008) Functional regulatory T cells accumulate in aged hosts and promote chronic infectious disease reactivation. J Immunol 181:1835-48.

Levin MJ, Oxman MN, Zhang JH, et al. (2008) Varicella-zoster virus-specific immune responses in elderly recipients of a herpes zoster vaccine. *The Journal of infectious diseases* 197:825-35.

Levin MJ, Smith JG, Kaufhold RM, *et al.* (2003) Decline in varicella-zoster virus (VZV)-specific cellmediated immunity with increasing age and boosting with a high-dose VZV vaccine. *JInfectDis* 188:1336-44.

Libri V, Azevedo RI, Jackson SE, *et al.* (2011) Cytomegalovirus infection induces the accumulation of short-lived, multifunctional CD4+CD45RA+CD27+ T cells: the potential involvement of interleukin-7 in this process. *Immunology* 132:326-39.

Lu J, Lee-Gabel L, Nadeau MC, *et al.* (2014) Clinical evaluation of compounds targeting PD-1/PD-L1 pathway for cancer immunotherapy. *Journal of oncology pharmacy practice : official publication of the International Society of Oncology Pharmacy Practitioners*.

Mabbott NA, Baillie JK, Brown H, et al. (2013) An expression atlas of human primary cells: inference of gene function from coexpression networks. *BMC genomics* 14:632.

Mackay LK, Stock AT, Ma JZ, *et al.* (2012) Long-lived epithelial immunity by tissue-resident memory T (TRM) cells in the absence of persisting local antigen presentation. *Proceedings of the National Academy of Sciences* 109:7037-42.

Masopust D, Choo D, Vezys V, et al. (2010) Dynamic T cell migration program provides resident memory within intestinal epithelium. J Exp Med 207:553-64.

Mueller SN, Gebhardt T, Carbone FR, *et al.* (2013) Memory T cell subsets, migration patterns, and tissue residence. *Annu Rev Immunol* 31:137-61.

Patterson-Bartlett J, Levin MJ, Lang N, *et al.* (2007) Phenotypic and functional characterization of ex vivo T cell responses to the live attenuated herpes zoster vaccine. *Vaccine* 25:7087-93.

Penaloza-MacMaster P, Kamphorst AO, Wieland A, *et al.* (2014) Interplay between regulatory T cells and PD-1 in modulating T cell exhaustion and viral control during chronic LCMV infection. *J Exp Med* 211:1905-18.

Raynor J, Lages CS, Shehata H, et al. (2012) Homeostasis and function of regulatory T cells in aging. *Current Opinion in Immunology* 24:482-7.

Schenkel JM, Fraser KA, Vezys V, et al. (2013) Sensing and alarm function of resident memory CD8(+) T cells. *Nat Immunol* 14:509-13.

Seneschal J, Clark RA, Gehad A, et al. (2012) Human epidermal Langerhans cells maintain immune homeostasis in skin by activating skin resident regulatory T cells. *Immunity* 36:873-84.

Skon CN, Lee JY, Anderson KG, *et al.* (2013) Transcriptional downregulation of S1pr1 is required for the establishment of resident memory CD8+ T cells. *Nat Immunol* 14:1285-93.

Suarez-Farinas M, Haider A, Wittkowski KM (2005) "Harshlighting" small blemishes on microarrays. *BMC bioinformatics* 6:65.

Suarez-Farinas M, Tintle SJ, Shemer A, et al. (2011) Nonlesional atopic dermatitis skin is characterized by broad terminal differentiation defects and variable immune abnormalities. *JAllergy ClinImmunol* 127:954-64.

Tang H, Moriishi E, Okamoto S, et al. (2012) A community-based survey of varicella-zoster virusspecific immune responses in the elderly. *Journal of Clinical Virology* 55:46-50.

Tang VA, Rosenthal KL (2010) Intravaginal infection with herpes simplex virus type-2 (HSV-2) generates a functional effector memory T cell population that persists in the murine genital tract. *Journal of reproductive immunology* 87:39-44.

van Besouw NM, Verjans GM, Zuijderwijk JM, *et al.* (2012) Systemic varicella zoster virus reactive effector memory T-cells impaired in the elderly and in kidney transplant recipients. *Journal of medical virology* 84:2018-25.

Vukmanovic-Stejic M, Agius E, Booth N, *et al.* (2008) The kinetics of CD4Foxp3 T cell accumulation during a human cutaneous antigen-specific memory response in vivo. *J ClinInvest* 118:3639-50.

Vukmanovic-Stejic M, Rustin MH, Nikolich-Zugich J, et al. (2011) Immune responses in the skin in old age. *CurrOpinImmunol* 23:525-31.

Vukmanovic-Stejic M, Sandhu D, Sobande TO, et al. (2013) Varicella Zoster-Specific CD4+Foxp3+ T Cells Accumulate after Cutaneous Antigen Challenge in Humans. J Immunol 190:977-86.

Vukmanovic-Stejic M, Zhang Y, Cook JE, *et al.* (2006) Human CD4+ CD25hi Foxp3+ regulatory T cells are derived by rapid turnover of memory populations in vivo. *JClinInvest* 116:2423-33.

Wang CQF, Akalu YT, Suarez-Farinas M, *et al.* (2013) IL-17 and TNF Synergistically Modulate Cytokine Expression while Suppressing Melanogenesis: Potential Relevance to Psoriasis. *The Journal of investigative dermatology* 133:2741-52.

Weinberg A, Lazar AA, Zerbe GO, *et al.* (2010) Influence of age and nature of primary infection on varicella-zoster virus-specific cell-mediated immune responses. *The Journal of infectious diseases* 201:1024-30.

Weinberg A, Levin MJ (2010) VZV T cell-mediated immunity. CurrTopMicrobiolImmunol 342:341-57.

Weinberg A, Zhang JH, Oxman MN, *et al.* (2009) Varicella-zoster virus-specific immune responses to herpes zoster in elderly participants in a trial of a clinically effective zoster vaccine. *The Journal of infectious diseases* 200:1068-77.

Wherry EJ (2011) T cell exhaustion. Nat Immunol 12:492-9.

Wu Z, Irizarry RA (2004) Preprocessing of oligonucleotide array data. *Nature biotechnology* 22:656-8; author reply 8.

Zaba LC, Fuentes-Duculan J, Steinman RM, *et al.* (2007) Normal human dermis contains distinct populations of CD11c+BDCA-1+ dendritic cells and CD163+FXIIIA+ macrophages. *J ClinInvest* 117:2517-25.

Zaba LC, Krueger JG, Lowes MA (2008) Resident and "Inflammatory" Dendritic Cells in Human Skin. J Invest Dermatol 129:79-88.

Zajac AJ, Blattman JN, Murali-Krishna K, *et al.* (1998) Viral Immune Evasion Due to Persistence of Activated T Cells Without Effector Function. *The Journal of Experimental Medicine* 188:2205-13.

Zhu J, Peng T, Johnston C, et al. (2013) Immune surveillance by CD8alphaalpha+ skin-resident T cells in human herpes virus infection. *Nature* 497:494-7.

Cell type	Marker used	Range and mean	Range and mean	different
		(young)	(old)	
T cells	CD3	44-201, 131.8	91-291, 160.6	no
CD4+ T cells	CD4	66-145, 93.4	45-159, 103	no
CD8+ T cells	CD8	11-74, 41.6	24-110, 52,2	no
Tregs	Foxp3	1-17, 11.6	17-50, 32.8	0.0095
Dendritic cells	CD11c	46-105, 73.5	33-83, 52.75	no
Macrophages	CD163	95-326, 192.8	199-390, 278.2	no
PDC	BDCA3	18-33, 27.4	13-41, 25.75	no

 Table 1. Numbers of different cell populations is normal skin

Figure Legends

Figure 1. Effect of age on circulating VZV specific CD4⁺ T cells. (A) FACS analysis of intracellular IFN-y staining following overnight stimulation with VZV viral lysate in the presence of brefeldin A. Representative dot plots of the CD4^{\pm} IFN- γ response from young and old donors are shown and unstimulated control. Cumulative data for all donors are plotted as increasing age (years) on the x axis against the percentage of antigen specific IFN- γ^+ CD4⁺ T cells. Line of best fit was generated by linear regression and the correlation assessed by Spearman rank correlation. (B) PBMC were stimulated with a range of doses of VZV lysate and cell proliferation measured on day 7. (C) PBMCs from young and old individuals were stimulated with VZV lysate for 72 hours and then stained for the expression of Ki67, CD4 and CD8 and analysed by FACS. Data are expressed as % of CD4⁺ or CD8⁺ T cells expressing Ki67 above background (unstimulated PBMC) (n=20 young and old, horizontal line represents the mean). (D) The number of antigen specific CD4⁺ cells was also II tetramer determined by staining. PBMC were class stained with HLA-DRB1*1501 restricted IE63 tetramer and with CLIP control (Jones et al., 2007; Vukmanovic-Stejic *et al.*, 2013). Each data point represents one individual (n=5 young and old individuals, mean and SEM are indicated).

Figure 2. Effect of age on the skin resident populations and gene expression profiles. Punch biopsies (5 mm) were collected from normal skin of healthy young (<40 years old) and old (>70 years old) volunteers. (A) Sections were stained to detect CD4, CD8, CD3, CD163, CD11c and Foxp3 (scale bar= 100μm). Cell numbers were expressed as the mean absolute number of cells counted within the section. The frequency of Foxp3⁺CD4⁺ cells was confirmed by 3 colour IF staining (Dapi- blue, CD4- green, Foxp3- red, scale bar=10μm). (B) Graph shows numbers of different cell populations in young and old skin (n=5-7 young and old). Biopsies were collected following intradermal challenge with VZV antigen and stained for CD4 and Foxp3. Numbers of cells were counted in perivascular infiltrates (average of 5 largest perivascular infiltrates (PV) counted). Graph shows an inverse correlation between the proportion of Foxp3⁺ cells within CD4 population and a size of the cellular infiltrate (C) (filled circles-young, open circles- old). (D) Unsupervised clustering of the skin samples from young (labels in red) and old (labels in blue) individuals based on the expression profiles using Affymetrix HG U133 Plus 2.0 arrays.

Figure 3. Effect of age on the phenotype and function of skin resident T cells. 5 mm punch biopsies and peripheral blood samples were collected from n=31 young and n=23 old donors. (A) Representative FACS histograms showing *ex vivo* CD69 expression in $CD4^+$ T cells in skin compared to the blood. Comparison of percentages of PD-1 expressing cells $CD4^+$ or $CD8^+$ T cells between skin and blood of the same donors (p<0.001 Wilcoxon paired test). (B) Cumulative data showing percentages of CD69 expressing cells amongst blood and skin derived CD4⁺ T cells, stratified by donor age. Spearman correlation was used to calculate significance and deviation from zero. (C) Skin cells and PBMC were stained with CD4, CD45RA and CD27 to identify 4 differentiation subsets. Representative FACS staining of PBMC (top panels) and skin derived cells (bottom panels) from young and old donors, is shown gated on the CD3⁺CD4⁺ cells. (D) Bar chart shows cumulative data for in young and old individuals. Statistical analysis of blood and skin populations was performed using a paired t-test and p-values are indicated where relevant. (E) Skin derived leukocytes were stimulated for 5 hours with PMA and ionomycin in the presence of brefeldin A and stained for CD4, IFN- γ , IL-2, TNF- α and IL-22. Representative dot plots are shown, gated on CD4⁺ cells (NS, non stimulated; PMA+Iono, PMA and ionomycin). (F) Graphs show % of CD4⁺ cells staining positive for a particular cytokine (n=5-7 young and old for each cytokine).

Figure 4. Frequency of VZV specific CD4⁺ T cells is higher in the skin compared to blood and is not affected by age. 5 mm punch biopsies and peripheral blood samples were collected from healthy young and old volunteers. Skin cells and PBMC were stimulated with VZV lysate overnight and stained for intracellular cytokines- IL-2, IFN-γ and TNF-α. (A) Representative dot plots of the CD4⁺ IFN-γ and TNF-α response from young and old donors are shown. (B) Graph shows comparison of the frequency of cytokine secreting cells between PBMC and skin samples (n=9 old and 15 young, p=0.001 Wilcoxon paired test) each symbol represents a different individual. (C) Graph shows frequency of IFN-γ, IL-2 and TNF-α secreting VZV specific cells in young and old individuals (n≥8 young and old depending on cytokine). (D) In HLA-DR15⁺ donors PBMC and skin derived cells were stained with HLA-DRB1*1501 restricted IE63 tetramer. Representative FACS staining is shown on the left. Bar graph represents cumulative data (n=6 young and 5 old individuals, mean and SE and p values are indicated, Wilcoxon paired test). (E) The phenotype of skin resident VZV specific IFN-γ⁺ CD4 T cells was compared between young (n=12) and old individuals (n=7).

Figure 5. *Ex vivo* PD-1 expression in skin and blood derived CD4⁺ and CD8⁺ T cells.

PD-1 expression was measured by FACS in PBMCs or collagenase digested skin cells derived from healthy individuals (n=34, age range 19-89). (A) Representative FACS histograms showing *ex vivo* PD-1 expression in CD4⁺ and CD8⁺ T cells in skin compared to the blood. (B) Comparison of percentages of PD-1 expressing cells amongst total CD4⁺ or CD8⁺ T cells between skin and blood of the same donors (p<0.001 Wilcoxon paired test). (C) Cumulative data showing percentages of PD-1 expressing cells amongst blood and skin derived CD4⁺ T cells, stratified by donor age. Spearman correlation was used to calculate significance and deviation from zero (* p>0.05).

а

d

а

С

CD45RA

Blood

young

0.44

2.03

b

CD27

f

💼 young

p=0.008

skin

🗆 old

p=0.06

PBMC

2.5

2.0-

1.5

1.0-

0.5

0.0

% of Tetramer⁺ CD4⁺

е

Supplementary Figure 1.The effect of age on IL-2⁺VZV specific cells. PBMC were stimulated with VZV lysate overnight in the presence of brefeldin A, stained for IFN- γ , IL-2 and CD4 and analysed by flow cytometry. (A) Representative dot plots for IL-2 secretion in young and old. (B) Correlation with age. (C) A representative dot plot shows the distribution of IL-2 and IFN- γ secretion of gated CD4⁺T cells in response to VZV stimulation. (D) A bar chart summarising the percentage of CD4⁺ T cells which secreted IL-2 alone (IL-2⁺), IL-2 and IFN- γ (IL-2⁺IFN- γ ⁺) or IFN- γ alone (IFN- γ ⁺) in response to VZV stimulation in 67 donors. There was no significant difference in the proportion of IL-2 or IFN- γ secreting cells using Kruskal-Wallis analysis of variance test.

а

Supplementary Figure 2.The effect of age on CD4+Foxp3+ regulatory T cells in the skin. (A) PBMC and skin derived cellos were stained with CD4, Foxp3, CD127 and CD25 to enumerate the proportion of regulatory T cells in different age groups. Bars represent Mean and SEM for each age group, individual subjects are represented as separate data points. p=0.015, unpaired t-test (B) 5mm punch biopsies were collected following intradermal challenge with VZV antigen and stained for CD4 and Foxp3. Numbers of cells were counted in perivascular infiltrates (plotted as average of 5 largest perivascular infiltrates (PV) counted). Graph shows an inverse correlation between the proportion of Foxp3⁺ cells within CD4 population and the clinical score (filled circles-young, open circles- old)

Cluster dendrogram with AU/BP values (%)

Example cluster profiles

е

Supplementary Figure 3. Transcriptomic analysis of young and old normal skin. (A) Dendogram showing the unsupervised clustering of the skin samples using the expression profiles. Simulations were run are to determine how robust the clusters to variations in the data. Clusters with high probabilities indicates stables cluster and replications from the same patient clustered together in 100% of the bootstrapping samples (eg AK5 and RO5, AK4 and RO4, UK45 and RO45). Overall no structure was identified where stable clusters were found with a pattern differentiating between young and old (indicated by blue and red color of sample ID). Similar dendograms were obtained when different agglomeration procedures where used. (B) Heatmap shows the relative expression of differentially expressed genes between young and old skin at FCH>2 and FDR>0.2. (C) Heatmap shows the relative expression of immune genes (manually curated by our lab and extensively used (38) showing no discernible pattern of expression differentiating skin from young and old healthy individuals. For each gene, only the probeset with the largest average expression is shown. (D) Network analysis of the human skin-punch biopsies and 745 primary cell gene-expression data sets using the tool BioLayout Express3D. This analysis enabled the visualization of genes within a cluster across the entire data collection. Genes with similar expression profiles are clustered together within the same region of the network graph. Nodes represent transcripts (probe sets) and the edges represent correlations between individual expression profiles above r = 0.90. The nodes are coloured according to the cluster to which they have been assigned. The positions of representative clusters are annotated. (E) Young and old skin samples shared similar gene cluster expression profiles. Five representative clusters derived from the network graph are shown and their mean probe set expression profiles across all data sets. The boxed area surrounded by a red line indicates the location of the young and old skin data sets. Cluster 003 contained genes that are highly expressed by keratinocytes, and cluster 116 contained endotheliumrelated genes. Cluster 035 contained genes encoding MHC class I, whereas cluster 047 contained genes encoding MHC class II. Cluster 057 was enriched in extracellular matrix-related genes. The genes in these clusters were expressed at similar levels across all of the young and old skin samples. ES cells, embryonic stem cells; iPS cells, induced pluoripotent stem cells; BM, bone marrow; MSC, mesenchymal stem cells; MDM, monocyte-derived macrophage; MDDC, monocyte-derived dendritic cells; NK, natural killer cells.

Supplementary Figure 4. Effect of age on the phenotype and function of skin resident CD8+ T cells. 5 mm punch biopsies and peripheral blood samples were collected from n=31 young and n=23 old donors. Following overnight digestion of biopsies, skin cells and PBMC were stained with CD8, CD45RA and CD27 to identify 4 differentiation subsets. Representative FACS staining of PBMC (top panels) and skin derived cells (bottom panels) from young and old donors, is shown gated on the CD3+CD8+ cells. (B) Bar chart shows cumulative data for in young and old individuals. Statistical analysis of blood and skin populations was performed using a paired t-test and p-values are indicated where relevant. (C) Skin derived leukocytes were stimulated for 5 hours with PMA and ionomycin in the presence of brefeldin A and stained for CD8, IFN- γ , IL-2, TNF- α and IL-22. Representative dot plots are shown, gated on CD8⁺ cells (NS, non stimulated; PMA+Iono, PMA and ionomycin). (D) Graphs show % of CD8⁺ cells staining positive for a particular cytokine (n=5-7 young and old for each cytokine).

Supplementary figure 5. VZV specific cells have a central memory phenotype and there is no significant difference between young and old. PBMCs were stained with CD4, CD27, CD45RA and intracellular IFN- γ antibodies following overnight stimulation with VZV lysate in the presence of brefeldin A. Representative dot plots showing the CD27 and CD45RA phenotype of VZV specific CD4⁺T cells secreting IFN- γ (A) compared to the total CD4⁺ T cell population are shown for young and old individuals. (B) Graph shows the phenotype of circulating VZV specific (IFN- γ^+) cells in young and old donors (n= 45 young, 24 old). (C) Phenotype of VZVspecific skin resident T cells. In HLA-DR15⁺ donors skin derived cells were stained with HLA-DRB1*1501 restricted IE63 tetramer and the phenotype was compared based on CD45RA and CD27 expression. **Supplementary Table 1**. List of probesets and genes within the clusters of interest derived from the network graph. Gene expression profiles in the young and aged skin samples were compared with that of a large collection of microarray data sets from distinct human primary cell populations (745 individual data sets,) using the bioinformatics tool Biolayout Express3D. 11,914 probe sets (genes) were clustered together using a Pearson correlation threshold of r=0.90 and Markov clustering algorithm of 2.2 into 140 clusters containing \geq 5ptrobe sets. The contents of selected clusters of interest derived from the network graph are presented.

Name	Symbol	Description	FC (Old v. Young)
A2ML1;1553505_at	A2ML1	alpha-2-macroglobulin-like 1	1.31
A2ML1;1564307_a_at	A2ML1	alpha-2-macroglobulin-like 1	1.51
AADACL2;240420_at	AADACL2	arylacetamide deacetylase-like 2	1.07
ABCA12;215465_at	ABCA12	ATP-binding cassette, sub-family A (ABC1), n	1.70
ACER1;1553929_at	ACER1	alkaline ceramidase 1	1.30
AKR1B10;206561_s_at	AKR1B10	aldo-keto reductase family 1, member B10 (0.98
ALDH3B2;204941_s_at	ALDH3B2	aldehyde dehydrogenase 3 family, member	0.94
ALOX12B;207381_at	ALOX12B	arachidonate 12-lipoxygenase, 12R type	1.51
ALOXE3;207708_at	ALOXE3	arachidonate lipoxygenase 3	1.46
ALOXE3;222383_s_at	ALOXE3	arachidonate lipoxygenase 3	1.48
ALS2CL;222333_at	ALS2CL	ALS2 C-terminal like	1.09
ANKRD13C;1556361_s_at	ANKRD13C	ankyrin repeat domain 13C	0.96
ANXA9;210085 s at	ANXA9	annexin A9	1.39
ANXA9;211712 s at	ANXA9	annexin A9	1.34
ARSF;214490 at	ARSF	arylsulfatase F	1.47
ASPRV1;235514 at	ASPRV1	, aspartic peptidase, retroviral-like 1	1.44
ATP10B;214070 s at	ATP10B	ATPase, class V, type 10B	1.21
ATP6V1C2;1552532 a at	ATP6V1C2	ATPase, H+ transporting, lysosomal 42kDa, V	1.05
ATP6V1C2;1553989 a at	ATP6V1C2	ATPase, H+ transporting, lysosomal 42kDa, V	1.03
BLMH;202179 at	BLMH	bleomycin hydrolase	1.41
BNIPL;1553072 at	BNIPL	BCL2/adenovirus E1B 19kD interacting prote	0.90
BPIL2;1555773 at	BPIL2	bactericidal/permeability-increasing protein	1.20
C10orf99;227736 at	C10orf99	chromosome 10 open reading frame 99	1.75
C12orf29;228378 at	C12orf29	chromosome 12 open reading frame 29	1.15
C1orf116;228865 at	C1orf116	chromosome 1 open reading frame 116	1.30
C1orf46;216935 at	C1orf46	chromosome 1 open reading frame 46	1.49
C1orf68;217087 at	C1orf68	chromosome 1 open reading frame 68	1.18
C9orf169;1569144 a at	C9orf169	chromosome 9 open reading frame 169	1.43
CALML3;210020 x at	CALML3	calmodulin-like 3	0.87
CALML5;220414 at	CALML5	calmodulin-like 5	1.32
CARD18;231733 at	CARD18	caspase recruitment domain family, membe	1.36
CASP14;231722 at	CASP14	caspase 14, apoptosis-related cysteine pept	i 1.37
CDS1;205709 s at	CDS1	CDP-diacylglycerol synthase (phosphatidate	1.04
CDS1;226187 at	CDS1	CDP-diacylglycerol synthase (phosphatidate	1.11
CDSN;206192 at	CDSN	corneodesmosin	1.39
CDSN;206193 s at	CDSN	corneodesmosin	1.68
CENPT;218148 at	CENPT	centromere protein T	0.98
CHMP4C;226803 at	CHMP4C	chromatin modifying protein 4C	1.17
CLCA2;206164 at	CLCA2	chloride channel accessory 2	1.00
CLCA2;206165 s at	CLCA2	chloride channel accessory 2	1.02
CLCA2;206166 s at	CLCA2	chloride channel accessory 2	1.11
CLCA2;217528 at	CLCA2	chloride channel accessory 2	1.00
CLDN1;222549 at	CLDN1	claudin 1	0.99
CLTB;205172 x at	CLTB	clathrin, light chain (Lcb)	1.10
CLTB;206284 x at	CLTB	clathrin, light chain (Lcb)	1.11
CLTB;211043 s at	CLTB	clathrin, light chain (Lcb)	1.04
CNFN;224329 s at	CNFN	cornifelin	1.67
CPA4;205832 at	CPA4	carboxypeptidase A4	0.97
	CRCT1	cysteine-rich C-terminal 1	1.42

CST6;206595_at	CST6	cystatin E/M	0.93
CWH43;220723_s_at	CWH43	cell wall biogenesis 43 C-terminal homolog (1.03
CWH43;220724_at	CWH43	cell wall biogenesis 43 C-terminal homolog (1.08
CXCL14;218002_s_at	CXCL14	chemokine (C-X-C motif) ligand 14	1.10
CXCL14;222484_s_at	CXCL14	chemokine (C-X-C motif) ligand 14	1.00
CYP4F22;244692_at	CYP4F22	cytochrome P450, family 4, subfamily F, poly	1.20
D4S234E;209569_x_at	D4S234E	DNA segment on chromosome 4 (unique) 23	1.05
D4S234E;213533_at	D4S234E	DNA segment on chromosome 4 (unique) 23	1.04
DAPL1;229290_at	DAPL1	death associated protein-like 1	1.04
DEFB1;210397_at	DEFB1	defensin, beta 1	1.09
DEGS2;236496_at	DEGS2	degenerative spermatocyte homolog 2, lipid	1.12
DENND2C;233294_at	DENND2C	DENN/MADD domain containing 2C	0.93
DHRS1;213279_at	DHRS1	dehydrogenase/reductase (SDR family) merr	0.97
DIO2;203699_s_at	DIO2	deiodinase, iodothyronine, type II	0.99
DMKN;226926_at	DMKN	dermokine	1.10
DNASE1L2;207192_at	DNASE1L2	deoxyribonuclease I-like 2	0.87
DSC1;207324_s_at	DSC1	desmocollin 1	1.03
DSG1;206642_at	DSG1	desmoglein 1	1.02
DSG3;205595_at	DSG3	desmoglein 3 (pemphigus vulgaris antigen)	0.97
DSG3;235075_at	DSG3	desmoglein 3 (pemphigus vulgaris antigen)	0.95
DUOX1;215800_at	DUOX1	dual oxidase 1	1.06
DUOXA1;1554648_a_at	DUOXA1	dual oxidase maturation factor 1	0.99
ELF5;220624_s_at	ELF5	E74-like factor 5 (ets domain transcription fa	1.00
ELF5;220625_s_at	ELF5	E74-like factor 5 (ets domain transcription fa	1.25
ELMOD1;231930_at	ELMOD1	ELMO/CED-12 domain containing 1	1.79
ELOVL4;219532_at	ELOVL4	elongation of very long chain fatty acids (FEI	1.00
EPHX3;220013_at	EPHX3	epoxide hydrolase 3	1.24
EPN3;220318_at	EPN3	epsin 3	1.17
EPN3;223895_s_at	EPN3	epsin 3	1.08
EPPK1;208156_x_at	EPPK1	epiplakin 1	1.26
EPPK1;232164_s_at	EPPK1	epiplakin 1	1.08
EPPK1;232165_at	EPPK1	epiplakin 1	1.08
EPPK1;234552_at	EPPK1	epiplakin 1	1.57
EPS8L1;218779_x_at	EPS8L1	EPS8-like 1	1.23
EPS8L1;221655_x_at	EPS8L1	EPS8-like 1	1.23
EPS8L1;221665_s_at	EPS8L1	EPS8-like 1	1.26
EPS8L1;91826_at	EPS8L1	EPS8-like 1	1.21
ESRP2;219395_at	ESRP2	epithelial splicing regulatory protein 2	1.04
ESYT3;1554912_at	ESYT3	extended synaptotagmin-like protein 3	1.20
ESYT3;239770_at	ESYT3	extended synaptotagmin-like protein 3	1.24
EVPL;204503_at	EVPL	envoplakin	1.09
EXPH5;213929_at	EXPH5	exophilin 5	0.86
EXPH5;214734_at	EXPH5	exophilin 5	0.71
FAM59A;219377_at	FAM59A	family with sequence similarity 59, member	1.07
FBXO45;225100_at	FBXO45	F-box protein 45	1.40
FCHSD1;226698_at	FCHSD1	FCH and double SH3 domains 1	1.07
FLG;215704_at	FLG	filaggrin	1.13
FLG2;1569410_at	FLG2	filaggrin family member 2	1.09
FLJ41603;227717_at	FLJ41603	FLJ41603 protein	1.10
FRMPD1;206774_at	FRMPD1	FERM and PDZ domain containing 1	1.09

GDA;224209_s_at	GDA	guanine deaminase	2.26
GDPD2;220291_at	GDPD2	glycerophosphodiester phosphodiesterase d	0.95
GDPD3;219722_s_at	GDPD3	glycerophosphodiester phosphodiesterase d	1.13
GJB2;223278_at	GJB2	gap junction protein, beta 2, 26kDa	1.04
GJB6;231771_at	GJB6	gap junction protein, beta 6, 30kDa	1.05
GLTP;219267_at	GLTP	glycolipid transfer protein	1.13
GLTP;226177_at	GLTP	glycolipid transfer protein	1.07
GPR115;1553031_at	GPR115	G protein-coupled receptor 115	1.21
GPR87;219936_s_at	GPR87	G protein-coupled receptor 87	1.17
GRHL1;1552685_a_at	GRHL1	grainyhead-like 1 (Drosophila)	1.11
GRHL1;222830_at	GRHL1	grainyhead-like 1 (Drosophila)	1.07
GRHL3;232116 at	GRHL3	grainyhead-like 3 (Drosophila)	1.40
GSDMC;234305_s_at	GSDMC	gasdermin C	0.96
GSTA4;202967 at	GSTA4	glutathione S-transferase alpha 4	1.03
HAL;206643 at	HAL	histidine ammonia-lyase	1.24
HOPX;1566140 at	НОРХ	, HOP homeobox	1.07
HOPX;211597 s at	НОРХ	HOP homeobox	1.16
HPGD;203913 s at	HPGD	hydroxyprostaglandin dehydrogenase 15-(N	1.12
HPGD;203914 x at	HPGD	hydroxyprostaglandin dehydrogenase 15-(N	1.17
HPGD:211548 s at	HPGD	hydroxyprostaglandin dehydrogenase 15-(N	1.23
HPGD:211549 s at	HPGD	hydroxyprostaglandin dehydrogenase 15-(N	1.05
HS3ST6:239547 at	HS3ST6	heparan sulfate (glucosamine) 3-O-sulfotran	0.88
HSPC159:219998 at	HSPC159	galectin-related protein	1.29
HSPC159:226188 at	HSPC159	galectin-related protein	1.09
HYAL4:220249 at	HYAL4	hvaluronoglucosaminidase 4	1.44
IDE:203328 x at	IDE	insulin-degrading enzyme	1.56
IDE:217496 s at	IDE	insulin-degrading enzyme	1.57
IFFO2:225615 at	IFFO2	intermediate filament family orphan 2	0.99
IGFL2;231148 at	IGFL2	IGF-like family member 2	0.76
IL18;206295 at	IL18	, interleukin 18 (interferon-gamma-inducing f	1.06
L1F10;224262 at	IL1F10	interleukin 1 family, member 10 (theta)	2.20
IL1F5;222223 s at	IL1F5	interleukin 1 family, member 5 (delta)	1.51
IL1F8;231755 at	IL1F8	interleukin 1 family, member 8 (eta)	2.61
L1F9:220322 at	IL1F9	interleukin 1 family, member 9	1.52
IL20RA:219115 s at	IL20RA	interleukin 20 receptor, alpha	0.90
IRX4:220225 at	IRX4	iroquois homeobox 4	0.85
IVL:214599 at	IVL	involucrin	1.65
JUP:201015 s at	JUP	iunction plakoglobin	1.04
KCTD1:226245 at	KCTD1	potassium channel tetramerisation domain (0.95
KCTD1:226246 at	KCTD1	potassium channel tetramerisation domain (0.96
KCTD4:239787 at	KCTD4	potassium channel tetramerisation domain (1.18
KCTD4:240512 x at	KCTD4	potassium channel tetramerisation domain (1.00
KLC3:1570402 at	KLC3	kinesin light chain 3	1.02
KLC3:239853 at	KLC3	kinesin light chain 3	1.02
KLK10:209792 s at	KLK10	kallikrein-related peptidase 10	1.00
KLK10:215808 at	KLK10	kallikrein-related peptidase 10	1.10
KLK11:205470 s at	KLK11	kallikrein-related peptidase 11	0.97
KLK5;222242 s at	KLK5	kallikrein-related peptidase 5	1.44
KLK7;205778 at	KLK7	kallikrein-related peptidase 7	1.27
KLK7:239381 at	KLK7	kallikrein-related peptidase 7	1.06
,		1 1	

KLK8;1552319_a_at	KLK8	kallikrein-related peptidase 8	1.17
KLK8;206125_s_at	KLK8	kallikrein-related peptidase 8	1.19
KRT1;205900_at	KRT1	keratin 1	1.05
KRT10;207023_x_at	KRT10	keratin 10	0.98
KRT10;210633_x_at	KRT10	keratin 10	0.96
KRT10;213287_s_at	KRT10	keratin 10	0.95
KRT14;209351_at	KRT14	keratin 14	0.97
KRT16;209800_at	KRT16	keratin 16	0.89
	KRT17	keratin 17	0.58
KRT17;212236_x_at	KRT17	keratin 17	0.70
KRT2;207908_at	KRT2	keratin 2	1.03
KRT23;218963 s at	KRT23	keratin 23 (histone deacetylase inducible)	1.41
KRT6A;209125 at	KRT6A	keratin 6A	0.54
KRT6B;209126 x at	KRT6B	keratin 6B	0.82
KRT6B;213680 at	KRT6B	keratin 6B	0.80
KRT78;1553212 at	KRT78	keratin 78	1.33
KRT78;1553213 a at	KRT78	keratin 78	1.44
KRT80;231849 at	KRT80	keratin 80	1.27
KRT9;208188 at	KRT9	keratin 9	0.73
KRTDAP:230835 at	KRTDAP	keratinocyte differentiation-associated prote	1.09
LAD1;203287 at	LAD1	ladinin 1	1.11
LAD1;216641 s at	LAD1	ladinin 1	1.24
LASS3;1554252 a at	LASS3	LAG1 homolog, ceramide synthase 3	1.19
LASS3:1554253 a at	LASS3	LAG1 homolog, ceramide synthase 3	1.18
LCE1B;1560531 at	LCE1B	late cornified envelope 1B	1.24
LCE1E;1559224 at	LCE1E	late cornified envelope 1E	1.01
LCE1E;1559226 x at	LCE1E	late cornified envelope 1E	1.01
LCE2B;207710 at	LCE2B	late cornified envelope 2B	1.19
LCE3D;224328 s at	LCE3D	late cornified envelope 3D	2.52
LOC100130476;243871 a	a LOC100130476	similar to hCG2036711	1.14
LOC284023;238096 at	LOC284023	hypothetical protein LOC284023	1.12
LOR;207720 at	LOR	loricrin	1.33
LY6D;206276 at	LY6D	lymphocyte antigen 6 complex, locus D	1.12
LY6G6C;207114 at	LY6G6C	lymphocyte antigen 6 complex, locus G6C	1.27
LYNX1;1554179 s at	LYNX1	Lv6/neurotoxin 1	1.74
LYPD3;204952 at	LYPD3	LY6/PLAUR domain containing 3	1.14
MAP2;210015 s at	MAP2	microtubule-associated protein 2	1.30
MBD1;241813 at	MBD1	methyl-CpG binding domain protein 1	1.08
MUC15;227238 at	MUC15	mucin 15, cell surface associated	0.97
MUC15;227241 at	MUC15	mucin 15, cell surface associated	0.95
MUCL1;1553602 at	MUCL1	mucin-like 1	0.83
MYO5B;225301 s at	MYO5B	myosin VB	1.22
NA;1556161 a at	NA	NA	1.99
NA;1556194 a at	NA	NA	0.88
NA;1558687 a at	NA	NA	1.05
NA;1570192 at	NA	NA	1.00
NA;206400 at	NA	NA	1.03
NA;208539 x at	NA	NA	2.84
NA;214580 x at	NA	NA	0.80
NA;217521_at	NA	NA	1.34
_			

NA;219095_at	NA	NA	1.11
NA;227735_s_at	NA	NA	1.80
NA;228587_at	NA	NA	1.01
NA;231033_at	NA	NA	0.87
NA;236069_at	NA	NA	1.40
NA;238710_at	NA	NA	1.32
NA;239736_at	NA	NA	1.15
NA;239841_at	NA	NA	1.14
NA;242951_at	NA	NA	1.20
NA;60528 at	NA	NA	1.12
NIPAL4;230188 at	NIPAL4	NIPA-like domain containing 4	1.25
NKPD1;1560430 at	NKPD1	NTPase, KAP family P-loop domain containin	1.04
NLRP10;1553534 at	NLRP10	NLR family, pyrin domain containing 10	1.65
NLRX1:1553695 a at	NLRX1	NLR family member X1	1.11
NLRX1:219680 at	NLRX1	NLR family member X1	1.18
OTUB2:219369 s at	OTUB2	OTU domain, ubiquitin aldehyde binding 2	1.18
OVOL1:206604 at	OVOL1	ovo-like 1(Drosophila)	1.48
OVOL1:229396 at	OVOL1	ovo-like 1(Drosophila)	1.46
PGLYRP4:220944 at	PGI YRP4	pentidoglycan recognition protein 4	1.15
PKP1·205724 at	PKP1	nlakonhilin 1 (ectodermal dysplasia/skin frag	1 17
PKP1:221854 at	PKP1	nlakophilin 1 (ectodermal dysplasia/skin frag	0.99
PKP3:209872 s at	PKP3	nlakophilin 3	1.04
PKP3·209873 s at	РКРЗ	nlakonhilin 3	1 02
PNI IPRP3:1558846 at	PNI IPRP3	pancreatic linase-related protein 3	0.80
POF1B:1555383 a at	POF1B	premature ovarian failure, 1B	1.52
POF1B:219756 s at	POF1B	premature ovarian failure, 1B	1.24
PPI ·203407 at	PPI	nerinlakin	1.08
PPP2R2C·223573 s at	PPP2R2C	protein phosphatase 2 (formerly 2Δ) regula	1 30
PPP2R2C:223575_5_at	PPP2R2C	protein phosphatase 2 (formerly 2A), regulation $(2A)$	1 19
PRSS8:202525 at	PRSS8	protease serine 8	1.19
PSΔPI 1·156/333 a at	Ρςδρί 1	procanosin-like 1	1.05
PSORS1C2.220635_at	PSORS1C2	nsoriasis suscentibility 1 candidate 2	1 74
PTGER3.210833 at	PTGFR3	prostaglandin E recentor 3 (subtyne EP3)	1.74
PTGER3:210035_ut	PTGER3	prostaglandin E receptor 3 (subtype EP3)	1 22
PTGER3:210034_3_at	PTGER3	prostaglandin E receptor 3 (subtype EP3)	1.22
RAB25.218186 at	RAB25	RAB25 member RAS oncogene family	1.25
RAB28.210100_at	RAB38	RAB28, member RAS oncogene family	1.00
RDH12.24208 at		retinol dehydrogenase 12 (all-trans/0-cis/11	1 10
PDH12:2242550_at		retinol dehydrogenase 12 (all-trans/0-cis)	1 12
PHPDI 2:1552502 c at		rhomhoid veinlet-like 2 (Drosonhila)	1.15
PHCG:210557 at	RHCG	Ph family C glycoprotein	1 22
		ras homolog gono family, momber D	1.55
NHOD,209003_dl		ribonuclosco PNosco A family, 7	1.15
RINASE7,235400_dl		ribonuclease, RNase A family, 7	1.17
NNASE7,234039_at		ribonuclease, RNase A family, 7	1.10
NNAJE7,234700_5_dl		ring finger protein 20	1.21
UNL22'ST22CC C+		PAR related orphon recentor A	1.30
NURA,200200_dl		ran-related orphan receptor A	1.U/ 1.CF
NF110,1003404_dl		cuprobacin	1 105
JD3N;2352/2_dl	2021	supravasili	1.19
SCEL;232056_at	SCEL	scienin	1.02

SDCBP2;233565_s_at	SDCBP2	syndecan binding protein (syntenin) 2	1.01
SDR16C5;238017_at	SDR16C5	short chain dehydrogenase/reductase family	1.08
SDR9C7;1553077_at	SDR9C7	short chain dehydrogenase/reductase family	1.71
SERPINB12;1553057_at	SERPINB12	serpin peptidase inhibitor, clade B (ovalbum	1.41
SERPINB13;211361_s_at	SERPINB13	serpin peptidase inhibitor, clade B (ovalbum	1.45
SERPINB13;211362_s_at	SERPINB13	serpin peptidase inhibitor, clade B (ovalbum	1.47
SERPINB13;217272_s_at	SERPINB13	serpin peptidase inhibitor, clade B (ovalbum	1.41
SERPINB5;204855_at	SERPINB5	serpin peptidase inhibitor, clade B (ovalbum	1.02
SERPINB7;206421_s_at	SERPINB7	serpin peptidase inhibitor, clade B (ovalbum	1.54
SFN;209260_at	SFN	stratifin	1.02
SFN;33322_i_at	SFN	stratifin	0.98
SFN;33323_r_at	SFN	stratifin	0.94
SLC39A2;220413_at	SLC39A2	solute carrier family 39 (zinc transporter), m	1.93
SLC5A1;206628 at	SLC5A1	solute carrier family 5 (sodium/glucose cotra	1.59
SLC5A1;242773 at	SLC5A1	solute carrier family 5 (sodium/glucose cotra	1.74
SLURP1;214536 at	SLURP1	secreted LY6/PLAUR domain containing 1	1.51
SMPD3;219695 at	SMPD3	sphingomyelin phosphodiesterase 3, neutral	1.13
SPINK5;205185 at	SPINK5	serine peptidase inhibitor, Kazal type 5	1.13
SPINK7;223720 at	SPINK7	serine peptidase inhibitor, Kazal type 7 (puta	1.37
SPRR1A;213796 at	SPRR1A	small proline-rich protein 1A	1.22
SPRR1A;214549 x at	SPRR1A	small proline-rich protein 1A	1.21
SPRR1B;205064 at	SPRR1B	small proline-rich protein 1B (cornifin)	1.14
SPRR2G;236119 s at	SPRR2G	small proline-rich protein 2G	2.12
SPRR3;232082 x at	SPRR3	small proline-rich protein 3	1.51
SPRR4;1552620 at	SPRR4	small proline-rich protein 4	0.63
SPTLC3;227752 at	SPTLC3	serine palmitoyltransferase, long chain base	1.43
SULT2B1;205759 s at	SULT2B1	sulfotransferase family, cytosolic, 2B, memb	1.22
TGM1;206008 at	TGM1	transglutaminase 1 (K polypeptide epiderma	1.45
TGM3;206004_at	TGM3	transglutaminase 3 (E polypeptide, protein-	1.22
	TGM5	transglutaminase 5	0.92
TM7SF2;210130 s at	TM7SF2	transmembrane 7 superfamily member 2	1.02
TMEM40;219503_s_at	TMEM40	transmembrane protein 40	1.07
TMEM40;222892_s_at	TMEM40	transmembrane protein 40	1.06
TMEM45A;219410_at	TMEM45A	transmembrane protein 45A	1.17
TMEM54;225536_at	TMEM54	transmembrane protein 54	1.02
TMEM79;223544_at	TMEM79	transmembrane protein 79	1.06
TMEM86A;227570_at	TMEM86A	transmembrane protein 86A	1.44
TMEM86A;242103_at	TMEM86A	transmembrane protein 86A	1.27
TMPRSS11E;220431_at	TMPRSS11E	transmembrane protease, serine 11E	0.46
TMPRSS13;223659_at	TMPRSS13	transmembrane protease, serine 13	1.39
TPRG1;229764_at	TPRG1	tumor protein p63 regulated 1	1.40
TREX2;211788_s_at	TREX2	three prime repair exonuclease 2	1.09
TRIM29;202504_at	TRIM29	tripartite motif-containing 29	0.94
	TRIM29	tripartite motif-containing 29	1.01
TRY6;215395_x_at	TRY6	trypsinogen C	1.04
 TUFT1;205807_s_at	TUFT1	tuftelin 1	0.98
 UPK1A;214624_at	UPK1A	uroplakin 1A	0.41
	VSIG10L	V-set and immunoglobulin domain containir	1.28
	WFDC12	WAP four-disulfide core domain 12	1.73
	WFDC5	WAP four-disulfide core domain 5	1.13

XKRX;230349_at	XKRX	XK, Kell blood group complex subunit-relate	1.37
ZNF750;219995_s_at	ZNF750	zinc finger protein 750	0.94
AHNAK2;212992_at	AHNAK2	AHNAK nucleoprotein 2	0.98
ARHGAP32;210791_s_at	ARHGAP32	Rho GTPase activating protein 32	1.12
ARHGAP32;242196_at	ARHGAP32	Rho GTPase activating protein 32	0.95
ARHGEF4;205109_s_at	ARHGEF4	Rho guanine nucleotide exchange factor (GE	0.97
ARHGEF5;204765_at	ARHGEF5	Rho guanine nucleotide exchange factor (GE	1.11
ATP13A4;1557136_at	ATP13A4	ATPase type 13A4	1.25
AZGP1;209309_at	AZGP1	alpha-2-glycoprotein 1, zinc-binding	1.03
AZGP1;217014_s_at	AZGP1	alpha-2-glycoprotein 1, zinc-binding	1.06
BAIAP2;209502_s_at	BAIAP2	BAI1-associated protein 2	0.99
BNIPL;236534_at	BNIPL	BCL2/adenovirus E1B 19kD interacting prote	1.07
	BSPRY	B-box and SPRY domain containing	1.27
C3orf57;238702 at	C3orf57	chromosome 3 open reading frame 57	1.10
C5orf46;1554195 a at	C5orf46	chromosome 5 open reading frame 46	1.34
CCDC64B;235095 at	CCDC64B	coiled-coil domain containing 64B	1.00
CCDC85C;222809 x at	CCDC85C	coiled-coil domain containing 85C	1.03
CELSR2;36499 at	CELSR2	cadherin, EGF LAG seven-pass G-type recept	1.03
CES8:228903 at	CES8	carboxylesterase 8 (putative)	1.09
CXCL14:237038 at	CXCL14	chemokine (C-X-C motif) ligand 14	0.95
D4S234E:209570 s at	D4S234E	DNA segment on chromosome 4 (unique) 23	1.06
DENND2C:230769 at	DENND2C	DENN/MADD domain containing 2C	1.11
DNAJB2:202500 at	DNAJB2	DnaJ (Hsp40) homolog, subfamily B, membe	1.13
DSC3:206032 at	DSC3	desmocollin 3	0.92
DUOX1:219597 s at	DUOX1	dual oxidase 1	1.06
DUOXA1:1555404 a at	DUOXA1	dual oxidase maturation factor 1	1.07
EFNA3:210132 at	EFNA3	ephrin-A3	1.05
EMILIN3:228307 at	EMILIN3	elastin microfibril interfacer 3	0.92
ENDOU;206605 at	ENDOU	endonuclease, polyU-specific	0.87
EPN2;203464 s at	EPN2	epsin 2	1.00
FAM160A1:242687 at	FAM160A1	family with sequence similarity 160. membe	1.16
FAM83H:226129 at	FAM83H	family with sequence similarity 83, member	0.95
FAM84A:234331 s at	FAM84A	family with sequence similarity 84. member	0.75
FGF11:227271 at	FGF11	fibroblast growth factor 11	1.05
GAN:220124 at	GAN	gigaxonin	1.40
GGT6:236225 at	GGT6	gamma-glutamyltransferase 6	0.96
GJB5:206156 at	GJB5	gap junction protein, beta 5, 31,1kDa	1.23
GPR115:237690 at	GPR115	G protein-coupled receptor 115	1.09
GRAMD1C:219313 at	GRAMD1C	GRAM domain containing 1C	0.95
HNRNPC:235500 at	HNRNPC	heterogeneous nuclear ribonucleoprotein C	1.02
IDE:203327 at	IDE	insulin-degrading enzyme	1.38
IL1F7:221470 s at	IL1F7	interleukin 1 family, member 7 (zeta)	1.64
IL1F7:224555 x at	IL1F7	interleukin 1 family, member 7 (zeta)	1.63
IL20RB:228575 at	IL20RB	interleukin 20 receptor beta	1.00
IL22RA1:220056 at	IL22RA1	interleukin 22 receptor, alpha 1	1.46
IRX2:228462 at	IRX2	iroquois homeobox 2	0.85
KCNK7:220412 x at	KCNK7	potassium channel, subfamily K, member 7	1.00
KCNK7:224008 s at	KCNK7	potassium channel, subfamily K, member 7	0.94
KCNK7:224055 x at	KCNK7	potassium channel, subfamily K, member 7	0.96
KIAA1543:1568617 a at	KIAA1543	KIAA1543	0.84
uu_			2.01

KLF5;209211_at	KLF5	Kruppel-like factor 5 (intestinal)	0.93
KLF8;219930_at	KLF8	Kruppel-like factor 8	0.88
LNX1;223611_s_at	LNX1	ligand of numb-protein X 1	1.09
LOC100288860;239127_a	LOC100288860	hypothetical protein LOC100288860	1.04
MPZL3;227747_at	MPZL3	myelin protein zero-like 3	1.34
MYO6;203215_s_at	MYO6	myosin VI	1.09
NA;1562921_at	NA	NA	0.83
NA;1568932_at	NA	NA	0.95
NA;202712_s_at	NA	NA	0.85
NA;230778_at	NA	NA	1.09
NA;231311_at	NA	NA	1.01
NA;232202_at	NA	NA	0.98
NA;232699_at	NA	NA	1.17
NA;235651_at	NA	NA	1.03
NA;240361_at	NA	NA	1.19
NA;241300_at	NA	NA	1.40
NA;241356_at	NA	NA	1.05
NA;241890_at	NA	NA	1.27
NA;244107_at	NA	NA	0.93
NDFIP2;224801_at	NDFIP2	Nedd4 family interacting protein 2	0.88
NEBL;203962_s_at	NEBL	nebulette	0.97
NIPAL2;227001_at	NIPAL2	NIPA-like domain containing 2	1.02
OSBPL6;223805_at	OSBPL6	oxysterol binding protein-like 6	1.12
PDZD2;209493_at	PDZD2	PDZ domain containing 2	0.93
PERP;236009_at	PERP	PERP, TP53 apoptosis effector	1.10
PIGN;232101_s_at	PIGN	phosphatidylinositol glycan anchor biosynth	1.00
PITPNM3;230076_at	PITPNM3	PITPNM family member 3	0.93
PLA2G3;220780_at	PLA2G3	phospholipase A2, group III	1.42
PLAC2;229385_s_at	PLAC2	placenta-specific 2 (non-protein coding)	1.06
PPP1R13L;218849_s_at	PPP1R13L	protein phosphatase 1, regulatory (inhibitor	0.99
PPP1R14C;226907_at	PPP1R14C	protein phosphatase 1, regulatory (inhibitor	1.11
PPP2R2C;228010_at	PPP2R2C	protein phosphatase 2 (formerly 2A), regula	0.94
PTGER3;210375_at	PTGER3	prostaglandin E receptor 3 (subtype EP3)	1.11
PTK6;1553114_a_at	PTK6	PTK6 protein tyrosine kinase 6	1.19
RAB40C;227698_s_at	RAB40C	RAB40C, member RAS oncogene family	0.93
RAET1E;1552777_a_at	RAET1E	retinoic acid early transcript 1E	1.30
RAPGEFL1;218657_at	RAPGEFL1	Rap guanine nucleotide exchange factor (GE	0.99
RASSF9;210335_at	RASSF9	Ras association (RalGDS/AF-6) domain family	0.87
RDH13;1559190_s_at	RDH13	retinol dehydrogenase 13 (all-trans/9-cis)	1.03
RHOV;241990_at	RHOV	ras homolog gene family, member V	1.28
SCEL;206884_s_at	SCEL	sciellin	1.05
SDR42E1;229522_at	SDR42E1	short chain dehydrogenase/reductase family	1.13
SERPINA12;1552544_at	SERPINA12	serpin peptidase inhibitor, clade A (alpha-1 a	1.33
STARD5;213820_s_at	STARD5	StAR-related lipid transfer (START) domain c	1.16
SYT8;232802_at	SYT8	synaptotagmin VIII	0.96
TOB2;222243_s_at	TOB2	transducer of ERBB2, 2	1.01
TP63;209863_s_at	TP63	tumor protein p63	0.89
UNQ1887;224639_at	UNQ1887	signal peptide peptidase 3	1.04
WWC1;213085_s_at	WWC1	WW and C2 domain containing 1	1.04
XG;1554062_at	XG	Xg blood group	1.25

ZBTB7C;227782_at	ZBTB7C	zinc finger and BTB domain containing 7C	1.09
ZNF57;1554628_at	ZNF57	zinc finger protein 57	0.99
ZNF770;220608_s_at	ZNF770	zinc finger protein 770	0.86
ADH7;210505_at	ADH7	alcohol dehydrogenase 7 (class IV), mu or si	1.00
AGR2;209173_at	AGR2	anterior gradient homolog 2 (Xenopus laevis	0.47
AGR2;228969 at	AGR2	anterior gradient homolog 2 (Xenopus laevis	0.60
ALDH3A1;205623 at	ALDH3A1	aldehyde dehydrogenase 3 family, member/	0.93
ATP12A;207367 at	ATP12A	ATPase, H+/K+ transporting, nongastric, alpł	0.57
C10orf81;1554190 s at	C10orf81	chromosome 10 open reading frame 81	1.32
C10orf81;219857 at	C10orf81	chromosome 10 open reading frame 81	1.50
C11orf88;1568606 at	C11orf88	chromosome 11 open reading frame 88	1.10
C13orf30:1556711 at	C13orf30	chromosome 13 open reading frame 30	1.06
C1orf192:231077 at	C1orf192	chromosome 1 open reading frame 192	1.27
C1orf88:228100 at	C1orf88	chromosome 1 open reading frame 88	0.92
C20orf114:226067 at	C20orf114	chromosome 20 open reading frame 114	1.14
C20orf85:229542 at	C20orf85	chromosome 20 open reading frame 85	1.15
C7orf57:1557636 a at	C7orf57	chromosome 7 open reading frame 57	1.05
C9orf24:229012 at	C9orf24	chromosome 9 open reading frame 24	1.15
CAPSI 236085 at	CAPSI	calcynhosine-like	1 03
CCDC17.236320 at		coiled-coil domain containing 17	0.87
CHST9.223737 x at	CHST9	carbohydrate (N-acetylgalactosamine 4-0) si	1 00
CHST9:224400 s at	CHST9	carbohydrate (N-acetylgalactosamine 4-0) si	0.96
CXCI 17:226960 at		chemokine (C-X-C motif) ligand 17	1 16
CYP2B7P1·210272 at	CYP2R7P1	cytochrome P450 family 2 subfamily B poly	0.75
CYP2F1·207913 at	CYP2F1	cytochrome P450, family 2, subfamily E, pol	1.09
CYP4X1·227702 at	CYP4X1	cytochrome P450 family 4 subfamily X poly	1.05
DNAI1.220125 at		dynein axonemal intermediate chain 1	1.05
DYDC2:239733 at		DPY30 domain containing 2	1.21
FFCAB1:220156 at	FFCAR1	EF-hand calcium binding domain 1	1.04
ELE3.201510 at	FLF3	F74-like factor 3 (ets domain transcription fa	1.12
ELF3,201310_dt ELF3,210827 s at	FLF3	E74-like factor 3 (ets domain transcription fa	1.45
ELF3,210027_3_dt	FLF3	F74-like factor 3 (ets domain transcription fa	1.15
EGER3:20/380 s at	EGER3	fibroblast growth factor recentor 3	0.87
FOXA1:20/1667 at	FOXA1	forkhead hoy A1	1.07
FOX11:205906 at	FOXI1	forkhead box A1	1.07
FUT2:210608 c at		fucosyltransferase 2 (secretor status include	1.11
FUT6:210308 v at	FUT6	fucosyltransferase 6 (alpha (1.3) fucosyltran	1.22
FUT6:210398_x_at	FUT6	fucosyltransferase 6 (alpha (1,3) fucosyltran	1.05
FUT6:211/65 x at		fucosyltransferase 6 (alpha (1,3) fucosyltran	1.24
FUT0,211405_X_dl	FUTG	fucosyltransferase 6 (alpha (1,3) fucosyltrans	1.13
CDP110:225082 at	CDP110	C protein-coupled recentor 110	1.13
GPR110,233960_dt	GPN110	G protein-coupled receptor 110	1.07
UPR110,230009_dl		a protein-coupled receptor 110	1.19
		leucine rich repeat containing 10B	0.60
LRRC25,200070_at		leucine rich repeat containing 25	1.00
		membrane channing 4 demains, subfamily 4	1.00
IVI34A0D,224335_S_dl		membrane-spanning 4-domains, Sublaminy F	1.04
WUC1,20/84/_S_at		mucin 1, cell surface associated	0.30
NUIC1,212602+			0.52
IVIUC1;213093_S_at			0.41
www.20;226622_at	IVIUC20	mucin 20, cell surface associated	0.63

MUC4;217110_s_at	MUC4	mucin 4, cell surface associated	1.08
NA;1561368_at	NA	NA	1.05
NA;206754_s_at	NA	NA	0.78
NA;222271_at	NA	NA	1.10
NA;235892_at	NA	NA	1.13
NA;236489_at	NA	NA	1.11
OMG;238720_at	OMG	oligodendrocyte myelin glycoprotein	1.02
PIGR;204213_at	PIGR	polymeric immunoglobulin receptor	1.14
PIGR;226147_s_at	PIGR	polymeric immunoglobulin receptor	1.39
PLUNC;220542_s_at	PLUNC	palate, lung and nasal epithelium associated	1.05
POU2AF1;1569675_at	POU2AF1	POU class 2 associating factor 1	0.94
PRR15L;219127 at	PRR15L	proline rich 15-like	1.54
PSCA;205319_at	PSCA	prostate stem cell antigen	1.17
RSPH1;230093 at	RSPH1	radial spoke head 1 homolog (Chlamydomor	1.09
SCGB3A1;230378 at	SCGB3A1	secretoglobin, family 3A, member 1	1.72
SERPINB11;1552463 at	SERPINB11	serpin peptidase inhibitor, clade B (ovalbum	0.91
SLC34A2;204124 at	SLC34A2	solute carrier family 34 (sodium phosphate),	1.17
SLC44A4;1555203 s at	SLC44A4	solute carrier family 44, member 4	1.12
SLC44A4;205597 at	SLC44A4	solute carrier family 44, member 4	0.89
SNTN:239150 at	SNTN	sentan, cilia apical structure protein	1.07
SPAG6;210033 s at	SPAG6	sperm associated antigen 6	1.21
SPEF1;216119 s at	SPEF1	sperm flagellar 1	1.23
ST6GALNAC1;227725 at	ST6GALNAC1	ST6 (alpha-N-acetyl-neuraminyl-2,3-beta-gal	0.98
STATH:206835 at	STATH	statherin	0.97
TMC4;226403 at	TMC4	transmembrane channel-like 4	1.11
TMEM190;1552594 at	TMEM190	transmembrane protein 190	1.19
TMPRSS4;218960 at	TMPRSS4	transmembrane protease, serine 4	1.21
TSPAN1;209114 at	TSPAN1	tetraspanin 1	1.18
VSIG2;228232 s at	VSIG2	V-set and immunoglobulin domain containir	1.24
VSTM2L;226973 at	VSTM2L	V-set and transmembrane domain containin	1.01
WDR16:239916 at	WDR16	WD repeat domain 16	1.05
WFDC2;203892 at	WFDC2	WAP four-disulfide core domain 2	1.25
ZMYND10;205714 s at	ZMYND10	zinc finger, MYND-type containing 10	1.01
ZMYND10:216663 s at	ZMYND10	zinc finger. MYND-type containing 10	1.17
HLA-A:213932 x at	HLA-A	major histocompatibility complex, class I. A	0.99
HLA-A;215313 x at	HLA-A	major histocompatibility complex, class I, A	1.04
HLA-B:208729 x at	HLA-B	major histocompatibility complex, class I, B	1.07
HLA-B:209140 x at	HLA-B	major histocompatibility complex, class I, B	1.05
HLA-B:211911 x at	HLA-B	major histocompatibility complex, class I, B	1.10
HLA-C;208812 x at	HLA-C	major histocompatibility complex, class I, C	0.95
HLA-C:211799 x at	HLA-C	major histocompatibility complex, class I, C	1.02
HLA-C:214459 x at	HLA-C	major histocompatibility complex, class I. C	0.99
HLA-C:216526 x at	HLA-C	major histocompatibility complex, class I. C	1.01
HLA-E:200905 x at	HLA-E	major histocompatibility complex, class I. E	0.94
HLA-E:217456 x at	HLA-E	major histocompatibility complex, class I. E	0.95
HLA-F:204806 x at	HLA-F	major histocompatibility complex, class I, F	0.94
HLA-F:221875 x at	HLA-F	major histocompatibility complex, class I. F	0.91
HLA-G:210514 x at	HLA-G	major histocompatibility complex, class I. G	1.02
HLA-G:211528 x at	HLA-G	major histocompatibility complex, class L.G.	0.98
HLA-G:211529 x at	HLA-G	major histocompatibility complex, class I. G	1.01
······································			

HLA-G;211530_x_at	HLA-G	major histocompatibility complex, class I, G	1.05
HLA-J;217436_x_at	HLA-J	major histocompatibility complex, class I, J (1.12
ACADL;206068_s_at	ACADL	acyl-Coenzyme A dehydrogenase, long chain	1.09
ACADL;206069_s_at	ACADL	acyl-Coenzyme A dehydrogenase, long chain	0.96
ANO1;218804_at	ANO1	anoctamin 1, calcium activated chloride cha	0.85
C11orf52;238805_at	C11orf52	chromosome 11 open reading frame 52	0.98
CNGA1;206417_at	CNGA1	cyclic nucleotide gated channel alpha 1	1.34
CYP39A1;1553977_a_at	CYP39A1	cytochrome P450, family 39, subfamily A, pc	1.14
CYP39A1;220432_s_at	CYP39A1	cytochrome P450, family 39, subfamily A, pc	0.97
EPHX2;209368_at	EPHX2	epoxide hydrolase 2, cytoplasmic	0.97
HYAL1;210619_s_at	HYAL1	hyaluronoglucosaminidase 1	1.40
NA;1556122_at	NA	NA	1.08
NA;214415_at	NA	NA	0.80
NA;231704_at	NA	NA	0.83
NA;235937_at	NA	NA	1.16
SEC16B;1552880_at	SEC16B	SEC16 homolog B (S. cerevisiae)	0.78
TRPM8;243483_at	TRPM8	transient receptor potential cation channel,	0.93
UNC5CL;231008_at	UNC5CL	unc-5 homolog C (C. elegans)-like	0.93
BEGAIN;220795_s_at	BEGAIN	brain-enriched guanylate kinase-associated	1.11
CHRM3;214596 at	CHRM3	cholinergic receptor, muscarinic 3	1.17
EML5;1568777_at	EML5	echinoderm microtubule associated protein	0.87
NA;231214_at	NA	NA	0.96
NA;235079 at	NA	NA	0.79
NA;239708 at	NA	NA	1.78
NA;241873_at	NA	NA	1.09
NA;243339_at	NA	NA	1.09
	NA	NA	0.76
NA;244359 s at	NA	NA	0.74
NA;244532_x_at	NA	NA	0.78
NBLA00301;236141_at	NBLA00301	Nbla00301	1.82
PCLO;210650_s_at	PCLO	piccolo (presynaptic cytomatrix protein)	0.88
RIMBP2;214811_at	RIMBP2	RIMS binding protein 2	0.75
TFAP2B;1553394_a_at	TFAP2B	transcription factor AP-2 beta (activating en	0.79
TFAP2B;214451_at	TFAP2B	transcription factor AP-2 beta (activating en	0.88
CD74;209619_at	CD74	CD74 molecule, major histocompatibility co	0.95
HLA-DMB;203932_at	HLA-DMB	major histocompatibility complex, class II, D	0.94
HLA-DPA1;211990_at	HLA-DPA1	major histocompatibility complex, class II, D	0.98
HLA-DPA1;211991_s_at	HLA-DPA1	major histocompatibility complex, class II, D	0.93
HLA-DPA1;213537_at	HLA-DPA1	major histocompatibility complex, class II, D	1.06
HLA-DPB1;201137_s_at	HLA-DPB1	major histocompatibility complex, class II, D	0.72
HLA-DRA;208894_at	HLA-DRA	major histocompatibility complex, class II, D	0.92
HLA-DRA;210982_s_at	HLA-DRA	major histocompatibility complex, class II, D	0.98
HLA-DRB4;208306 x at	HLA-DRB4	major histocompatibility complex, class II, D	0.96
HLA-DRB6;217362_x_at	HLA-DRB6	major histocompatibility complex, class II, D	0.93
NA;204670_x_at	NA	NA	1.24
NA;209312 x at	NA	NA	1.03
 NA;212671_s_at	NA	NA	0.95
 NA;215193_x_at	NA	NA	0.95
NA;217478_s_at	NA	NA	1.00
ITGB4;204989_s_at	ITGB4	integrin, beta 4	0.98

ITGB#211905_s_at ITGB4 integrin, beta 4 0.91 LAMA3:203726_s_at LAMA3 laminin, beta 3 1.07 LAMC2:202267_at LAMC2 laminin, gamma 2 0.91 LAMC2:202267_at LAMC2 laminin, gamma 2 0.92 NA:1556773_at NA NA 0.84 PADI3:220779_at PADI3 peptidyl arginine deiminase, type III 0.65 PTHLH:20355_at PTHLH parathyroid hormone-like hormone 0.66 PTHLH:210355_at PTHLH parathyroid hormone-like hormone 0.66 PTHLH:211756_at PTHLH parathyroid hormone-like hormone 0.66 PTHLH:211756_at PTHLH parathyroid hormone-like hormone 0.62 PTHLH:211756_at PTHLH parathyroid hormone-like hormone 0.62 PTHLH:211756_at PTHLH parathyroid hormone-like hormone 0.62 PTHLH:21032 timor protein p63 1.13 0.87 PTS2:212014_at FGFBP1 fibroblast growth factor binding protein 1 1.58 FXTD:20120_1_at FGFBP1 fibroblast growth factor binding protein 1 1.58 FXTD:202014_at	ITGB4;204990_s_at	ITGB4	integrin, beta 4	1.07
LAMA3_203726_s_at LAMA3 Iaminin, alpha 3 0.97 LAMB3_203726_st LAMC2 Iaminin, gamma 2 0.91 LAMC2_20256_st LAMC2 Iaminin, gamma 2 0.91 LAMC2_207517_at LAMC2 Iaminin, gamma 2 0.92 NA;1556773_at NA NA 0.84 PADI3_20779_at PADI3 petidyl arginine delminase, type III 0.65 PTHLH;206300_s_at PTHLH parathyroid hormone-like hormone 0.66 PTH3_211194_s_at PTHLH parathyroid hormone-like hormone 0.62 PT63_21134_s_at TF63 tumor protein p63 1.13 WDR66(1555007_s_at WDR66 WD repeat domain 66 0.89 C190r33_223631_s_at C190r433 chromosome 19 open reading frame 33 1.33 FCFRP1_105104_at FCFRP1_105104_st growth factor binding protein 1 1.58 FXYD3_202489_s_at FXYD3 FXYD domain containing ion transport regult: 1.07 RR512_125489_s_at RHBD12 rhomboid, veinlet-like 2 (Drosophila) 1.05 FK2D60482_at FKBD 2 Stotelin tyrosine ki	ITGB4;211905_s_at	ITGB4	integrin, beta 4	0.91
LAMB3_209270_at LAMB2 Iaminin, gamma 2 0.91 LAMC2;202167_at LAMC2 Iaminin, gamma 2 0.92 NA;1556773_at NA NA 0.84 PADI3;200779_at PADI3 peptidyl arginine deiminase, type III 0.65 PTHLH;20305_at PTHLH parathyroid hormone-like hormone 0.95 PTHLH;20355_at PTHLH parathyroid hormone-like hormone 0.66 PTHG3;211194_s_at PTB3 tumor protein p63 0.87 TP63;211194_s_at TP63 tumor protein p63 0.89 C19orf33;223631_s_at C19orf33 chromosome 19 open reading frame 33 1.23 FXFD3;205014_at FGFBP1 fibroblast growth factor binding protein 1 1.58 FXTD3;20260_at KRT5 keratin 5 0.99 PERP,122539_at FERP PERP, TP53 apoptosis effector 0.96 PERP,212744_s_at PERP PERP, TP53 apoptosis effector 1.03 PTK6;206482_at PTK6 PTK6 protein tyrosine kinase 6 1.02 PL66;206482_at S100 calcium binding protein A1	LAMA3;203726_s_at	LAMA3	laminin, alpha 3	0.97
LAMC2: 202267_at LAMC2 Iaminin, gamma 2 0.91 LAMC2: 207517_at LAMC2 Iaminin, gamma 2 0.92 NA NA 0.84 PADI3:220779_at PADI3 peptidyl arginine deiminase, type III 0.65 PTHLH:/206300_s_at PTHLH parathyroid hormone-like hormone 0.66 PTHLH:/206300_s_at PTHLH parathyroid hormone-like hormone 0.62 PT63:211344_s_at TP63 tumor protein p63 0.87 PT63:211344_s_at TP63 tumor protein p63 0.89 C190rf33:223631_s_at C190rf33 chromosome 19 open reading frame 33 1.23 FXPD3:202489_s_at FXYD3 FXYD domain containing ion transport regul: 1.07 KRT5:201820_at KRT5 keratin 5 0.99 PERP:21744_s_at PER PERP, TP53 apoptosis effector 0.96 PERP:222392_x_at PERP PERP, TP53 apoptosis effector 1.03 PTK5:206482_at PTK6 PTK5 apoptosis effector 1.03 PTK5:206482_at S100A1 S100 calcium binding protein A14	LAMB3;209270_at	LAMB3	laminin, beta 3	1.07
LAMC2:207517_at LAMC2 laminin, gamma 2 0.92 NA:1556773_at NA NA NA 0.84 NA:1556773_at PADI3 peptidyl arginine deiminase, type III 0.65 PTHLH;206300_s_at PTHLH parathyroid hormone-like hormone 0.65 PTHLH;210355_at PTHLH parathyroid hormone-like hormone 0.62 TP63;211194_s_at TP63 tumor protein p63 0.87 TP63;211194_s_at TP63 tumor protein p63 0.87 C190rf33;223631_s_at C190rf33 chromosome 19 open reading frame 33 1.23 FGFBP1;205014_at FGFBP1 fibroblast growth factor binding protein 1 1.58 FXV30;202489at FKYD 3 FXV30 apotosis effector 0.99 PERP;21230;2_x at PERP PERP, TP53 apoptosis effector 1.03 PTK6;206482_at PTK6 PTK6 protein tyrosine kinase 6 1.02 FNBD02;1554895a,at RHBD12 rhomboid, veinlet-like 2 (Drosophila) 1.21 S100A14 S100 calcium binding protein A14 0.94 S100A24;204268_at	LAMC2;202267_at	LAMC2	laminin, gamma 2	0.91
NA;1556773_at NA NA 0.84 PADI3;220779_at PADI3 peptidyl arginine deiminase, type III 0.65 PTHLH;200305_st PTHLH parathyroid hormone-like hormone 0.66 PTHLH;210355_at PTHLH parathyroid hormone-like hormone 0.66 PTHLH;210355_at PTHLH parathyroid hormone-like hormone 0.66 PTHLH;211756_at PTHL parathyroid hormone-like hormone 0.66 PTH4;211756_at PTHL parathyroid hormone-like hormone 0.66 PTH4;211756_at PTHL parathyroid hormone-like hormone 0.67 0590713223631_5_at C190rf33 chromosome 19 open reading frame 33 1.23 FGFBP1:205014_at FGFBP1 fibroblast growth factor binding protein 1 1.58 FXYD3:202489_s_at FXPD FXPD Approtein tyrosine kinase 6 1.02 PERP;217744_s_at PERP PERP, TP53 apoptosis effector 1.03 PTK6;206482_at PTK6 PTK6 protein tyrosine kinase 6 1.02 S100A1/218677_at S100A14 S100 calcium binding protein A14 0.94	LAMC2;207517_at	LAMC2	laminin, gamma 2	0.92
PADI3;220779_at PADI3 peptidyl arginine deiminase, type III 0.65 PTHLH;206300_s_at PTHLH parathyroid hormone-like hormone 0.66 PTHLH;206300_s_at PTHLH parathyroid hormone-like hormone 0.66 PTHLH;211756_at PTHLH parathyroid hormone-like hormone 0.62 PT63;211344_s_at TP63 tumor protein p63 0.87 VDR66;1555007_s_at WDR66 WD repeat domain 66 0.89 C190r33;223631_s_at C190r33 chromosome 19 open reading frame 33 1.23 FGFB1;205014_at FGFBP1 fibroblast growth factor binding protein 1 1.58 FXVD3;202489_s_at FXYD3 FXYD domain containing ion transport reguli: 1.07 KRT5;201820_at KRT5 keratin 5 0.99 PERP;22329_x_at PERP PERP, TP53 apoptosis effector 1.03 PTK6;206482_at PTK6 PTK6 protein tyrosine kinase 6 1.02 RHBDL2;1554895_a_at RHBDL2 rhomboid, veinlet-like 2 (Drosophila) 1.21 S100A2;204268_at S100 calcium binding protein A2 0.92 0.92	NA;1556773_at	NA	NA	0.84
PTHLH;206300_s_at PTHLH parathyroid hormone-like hormone 0.95 PTHLH;210355_at PTHLH parathyroid hormone-like hormone 0.66 PTHLH;210356_at PTHLH parathyroid hormone-like hormone 0.62 PT63;211194_s_at TP63 tumor protein p63 0.87 PT63;211334_s_at TP63 tumor protein p63 0.89 Oporf33;223631_s_at C190rf33 chromosome 19 open reading frame 33 1.23 FGFBP1;205014_at FGFBP1 fibroblast growth factor binding protein 1 1.58 FXT5;201820_at KRT5 keratin 5 0.99 PERP;217744_s_at PERP PERP, TP53 apoptosis effector 0.96 PERP;217744_s_at PERP PERP, TP53 apoptosis effector 1.03 RHBDL2;1554895_s_at RHBDL2 rhomboid, veinlet-like 2 (Drosophila) 1.21 S100A14;21867_at S100A14 0.94 S100A2;204268 at S100A2 S100 2.92 SDC1;201287_s_at SDC1 syndecan 1 0.96 0.92 0.92 SDC1;201287_s_at SDC1 collag	PADI3;220779_at	PADI3	peptidyl arginine deiminase, type III	0.65
PTHLH;210355_at PTHLH parathyroid hormone-like hormone 0.66 PTHLH;211756_at PTHLH parathyroid hormone-like hormone 0.62 PTB4;211784_s_at TP63 tumor protein p63 0.87 TP63;211844_s_at TP63 tumor protein p63 1.13 WDR66;1555007_s_at WDR66 WD repeat domain 66 0.89 C19orf33;223631_s_at C19orf33 chromosome 19 open reading frame 33 1.23 FGFBP1;20230L4_at FGFBP1 fibroblast growth factor binding protein 1 1.58 FXYD3;202489_s_at FXYD 3 FXYD domain containing ion transport reguli 1.07 KRT5;201820_at KRT5 keratin 5 0.99 PERP;217244_s_at PERP PERP, TP53 apoptosis effector 1.03 PTK5;206482_at PTK6 PTK6 protein tyrosine kinase 6 1.02 RHBDL2;1554897_s_at RHBDL2 rhomboid, veinlet-like 2 (Drosophila) 1.21 S100A14;218677_at S100A14 S100 calcium binding protein A14 0.94 S1002;20280_at COL1A1 collagen, type XI, alpha 1 0.95	PTHLH;206300_s_at	PTHLH	parathyroid hormone-like hormone	0.95
PTHLH;211756_at PTHLH parathyroid hormone-like hormone 0.62 TP63;211194_s_at TP63 tumor protein p63 0.87 TP63;211343_s_at TP63 tumor protein p63 1.13 WDR66;1555007_s_at WDR66 WD repeat domain 66 0.89 C19orf33;223631_s_at C19orf33 chromosome 19 open reading frame 33 1.23 FGFB1;205014_at FGFB91 fibroblast growth factor binding protein 1 1.58 FXVD3;202489_s_at FXVD3 FXVD3 domain containing ion transport regul: 1.07 KRT5;201820_at KRT5 keratin 5 0.99 PERP;212332_x_at PERP PERP, TP53 apoptosis effector 0.60 PERP;2154895_s_at RHBDL2 rhomboid, veinlet-like 2 (Drosophila) 1.01 S100A14;218677_at S100A14 S100 calcium binding protein A14 0.94 S100A2;204268_at S100A2 S100 calcium binding protein A14 0.94 S100A2;204268_at TRIM7 tripartite motif-containing 7 1.15 C01241;255649_s_at C011A1 collagen, type I, alpha 1 0.95 C	PTHLH;210355_at	PTHLH	parathyroid hormone-like hormone	0.66
TP63;211194_s_at TP63 tumor protein p63 0.87 TP63;211834_s_at TP63 tumor protein p63 1.13 WDR66;1555007_s_at WDR66 WD repeat domain 66 0.89 C19orf33;22631_s_at C19orf33 chromosome 19 open reading frame 33 1.23 FGFBP1;205014_at FGFBP1 fibroblast growth factor binding protein 1 1.58 FXTD3;20282_at FXYD3 FXYD domain containing ion transport regul: 1.07 KTS;201820_at KRT5 keratin 5 0.99 PERP;217744_s_at PERP PERP, TP53 apoptosis effector 0.96 PERP;21554895_a_at RHBDL2 rhomboid, veinlet-like 2 (Drosophila) 1.05 S100A2;204268_at S100A2 S100 calcium binding protein A14 0.94 S100A2;204268_at S100A2 S100 calcium binding protein A2 0.92 SDC1;201287_s_at S100A2 S100 calcium binding protein A4 0.96 TMEM184A;1558281_a_a TRIM7 tripartite motif-containing 7 1.15 C01241;225664_at C011A1 collagen, type I, alpha 1 0.90 C011A2;202404_s_at C011A1 collagen, type I, alpha 1 <td< td=""><td>PTHLH;211756_at</td><td>PTHLH</td><td>parathyroid hormone-like hormone</td><td>0.62</td></td<>	PTHLH;211756_at	PTHLH	parathyroid hormone-like hormone	0.62
TP63;211834_s_at TP63 tumor protein p63 1.13 WDR66;1555007_s_at WDR66 WD repeat domain 66 0.89 C19orf33;223631_s_at C19orf33 chromosome 19 open reading frame 33 1.23 FGFBP1;205014_at FGFBP1 fibroblast growth factor binding protein 1 1.58 FXYD3;202489_s_at FXYD3 FXYD domain containing ion transport regul: 1.07 KRT5;201820_at KRT5 keratin 5 0.99 PERP;212744_s_at PERP PERP, TP53 apoptosis effector 1.03 PTK6;206482_at PTK6 PTK6 protein tyrosine kinase 6 1.02 RHBDL2;1554897_s_at RHBDL2 rhomboid, veinlet-like 2 (Drosophila) 1.21 S100A14;218677_at S100A14 S100 calcium binding protein A1 0.94 S100A12;204268_at S100A2 S100 calcium binding protein A2 0.92 SDC1;201287_s_at SDC1 syndecan 1 0.96 TRIMT72;23694_at TRIM7 triparite motif-containing 7 1.15 C011241;252664_at C012A1 collagen, type I, alpha 1 0.90 C01142;202404_s_at C011A1 collagen, type II, alpha 1 0.83 </td <td>TP63;211194 s at</td> <td>TP63</td> <td>tumor protein p63</td> <td>0.87</td>	TP63;211194 s at	TP63	tumor protein p63	0.87
WDR66;155500s_at WDR66 WD repeat domain 66 0.89 C19orf33;22361_s_at C19orf33 chromosome 19 open reading frame 33 1.23 FGFBP1;205014_at FGFBP1 fibroblast growth factor binding protein 1 1.58 FYD93;02489_s_at FXYD3 FXYD4 domain containing ion transport regul: 1.07 KRT5;201820_at KRT5 keratin 5 0.99 PERP;217744_s_at PERP PERP PFS3 apoptosis effector 0.96 PERP;22392_x_at PERP PERP, TP53 apoptosis effector 1.03 PTK6;206482_at PTK6 PTK6 protein tyrosine kinase 6 1.02 RHBDL2;1554895_a_at RHBDL2 rhomboid, veinlet-like 2 (Drosophila) 1.21 S100A1;204268_at S100 calcium binding protein A14 0.94 S100A2;204268_at S100 Calcium binding protein A2 0.92 SDC1;201287_s_at COL1A collagen, type I, alpha 1 0.96 COL1241;225649_s_at COL1A1 collagen, type I, alpha 1 0.95 COL12A1;202404_s_at COL1A2 collagen, type I, alpha 1 0.83 COL1A	TP63;211834_s_at	TP63	tumor protein p63	1.13
C19orf33;223631_s_at C19orf33 chromosome 19 open reading frame 33 1.23 FGFBP1;205014_at FGFBP1 fibroblast growth factor binding protein 1 1.58 FXYD3;202489_s_at FXYD3 FXYD domain containing ion transport reguli 1.07 KT5;201820_at KRT5 keratin 5 0.99 PERP;217744_s_at PERP PERP, TP53 apoptosis effector 1.03 PTK6;206482_at PTK6 PTK6 protein tyrosis effector 1.03 PTK6;206482_at PTK6 PTK6 protein tyrosine kinase 6 1.02 RHBDL2;1554895_a, at RHBDL2 rhomboid, veinlet-like 2 (Drosophila) 1.21 S100A2;204268_at S100A2 S100 calcium binding protein A14 0.94 S100A2;204268_at S100A2 S100 calcium binding protein A2 0.92 DC1;201287_s_at SDC1 SDC4accan 1 0.96 TMEM184A;1558281_a_a TMEM184A transmembrane protein 184A 1.07 TRIM7;223694_at TRIM7 tripartite motif-containing 7 1.15 C011A1;2556499_s_at C011A1 collagen, type I, alpha 1 0.90 C011A2;202403_s_at C011A1 collagen, type I, alpha 2<	WDR66;1555007 s at	WDR66	WD repeat domain 66	0.89
FGFBP1;205014_at FGFBP1 fibroblast growth factor binding protein 1 1.58 FXYD3;202489_s_at FXVD3 FXVD domain containing ion transport regul: 1.07 KRT5;201820_at KRT5 keratin 5 0.99 PERP;212744_s_at PERP PERP, TP53 apoptosis effector 1.03 PTK6;206482_at PTK6 PTK6 protein tyrosine kinase 6 1.02 RHBDL2;1554895_a_at RHBDL2 rhomboid, veinlet-like 2 (Drosophila) 1.21 S100A14;218677_at S100A14 S100 calcium binding protein A14 0.94 \$100A12;204268_at S100A2 S100 calcium binding protein A14 0.94 \$100A2;204268_at S100A2 S100 calcium binding protein A14 0.94 \$100A12;201287_s_at SDC1 syndecan 1 0.96 TIMM72;23694_at COL1A1 collagen, type I, alpha 1 0.95 COL1A1;20210_s_at COL1A1 collagen, type I, alpha 1 0.96 COL1A1;202404_s_at COL1A1 collagen, type I, alpha 1 0.94 COL1A2;202404_s_at COL1A1 collagen, type I, alpha 1 0.83 COL3A1;202404_s_at COL3A1 collagen, type III, alpha 1	C19orf33;223631 s at	C19orf33	chromosome 19 open reading frame 33	1.23
FXYD3;202489_s_at FXYD3 FXYD domain containing ion transport regul: 1.07 KRT5;201820_at KRT5 keratin 5 0.99 PERP;212744_s_at PERP PERP, TP53 apoptosis effector 0.03 PTK6;206482_at PTK6 PTK6 protein tyrosine kinase 6 1.02 RHBDL2;1554895_a_at RHBDL2 rhomboid, veinlet-like 2 (Drosophila) 1.05 S100A1;21857_at S100A14 S100 calcium binding protein A14 0.94 S100A2;204268_at S100A1 S100 calcium binding protein A2 0.92 SDC1;201287_s_at SDC1 syndecan 1 0.96 TMEM184A;1558281_a= aTMEM184A transmembrane protein 184A 1.07 TRIM7;223694_at TRIM7 tripartite motif-containing 7 1.15 C0L12A1;225664_at C0L1A1 collagen, type I, alpha 1 0.90 C0L1A1;202404_s_at C0L1A1 collagen, type I, alpha 2 0.94 C0L1A2;202404_s_at C0L1A2 collagen, type I, alpha 1 0.83 C0L3A1;202404_s_at C0L1A2 collagen, type I, alpha 1 0.83 C0L3A1;202404_s_at	FGFBP1;205014 at	FGFBP1	fibroblast growth factor binding protein 1	1.58
KRT5;201820_at KRT5 keratin 5 0.99 PERP;217744_s_at PERP PERP, TP53 apoptosis effector 0.96 PERP;217744_s_at PERP PERP, TP53 apoptosis effector 1.03 PTK6;206482_at PTK6 PTK6 PTK6 protein tyrosine kinase 6 1.02 RHBDL2;1554895_a_at RHBDL2 rhomboid, veinlet-like 2 (Drosophila) 1.21 S100A14;218677_at S100A14 S100 calcium binding protein A14 0.94 S100A14;218677_at S100A14 S100 calcium binding protein A2 0.92 SDC1;201287_s_at SDC1 syndecan 1 0.96 TMEM184A;1558281_a_a TMEM184A transmembrane protein 184A 1.07 TRIM7;223694_at TRIM7 tripartite motif-containing 7 1.15 COL1A1;202310_s_at COL1A1 collagen, type I, alpha 1 0.90 COL1A2;202403_s_at COL1A1 collagen, type I, alpha 1 0.83 COL31;201852_x_at COL3A1 collagen, type II, alpha 1 0.83 COL4A;202404_s_at COLA1 collagen, type II, alpha 1 0.83 COL31;215076_s	FXYD3;202489 s at	FXYD3	FXYD domain containing ion transport regula	1.07
PERP;217744_s_at PERP PERP, TP53 apoptosis effector 0.96 PERP;22392_x_at PERP PERP, TP53 apoptosis effector 1.03 PTK6;206482_at PTK6 PTK6 protein tyrosine kinase 6 1.02 RHBDL2;1554895_a_at RHBDL2 rhomboid, veinlet-like 2 (Drosophila) 1.05 S100A14;218677_at S100A14 S100 calcium binding protein A14 0.94 \$100A2;204268_at S100A2 S100 calcium binding protein A2 0.92 SDC1;201287_s_at SDC1 syndecan 1 0.96 TMEM184A;1558281_a_a TMEM184A transmembrane protein 184A 1.07 TRIM7;223694_at COL12A1 collagen, type I, alpha 1 0.95 COL1A1;1256499_s_at COL1A1 collagen, type I, alpha 1 0.90 COL1A1;202310_s_at COL1A2 collagen, type I, alpha 2 0.94 COL3A1;201852_x_at COL3A1 collagen, type II, alpha 1 0.83 COL3A1;21161_s_at COL3A1 collagen, type III, alpha 1 0.83 COL3A1;21164_s_at COL3A1 collagen, type III, alpha 1 0.83 <	KRT5;201820 at	KRT5	keratin 5	0.99
PERP;222392_x_atPERPPERP, TP53 apoptosis effector1.03PTK6;206482_atPTK6PTK6 protein tyrosine kinase 61.02RHBDL2;1554895_a_atRHBDL2rhomboid, veinlet-like 2 (Drosophila)1.05RHBDL2;1554897_s_atRHBDL2rhomboid, veinlet-like 2 (Drosophila)1.21S100A1;218677_atS100A14S100 calcium binding protein A140.94S100A2;204268_atS100 calcium binding protein A20.92SDC1;201287_s_atSDC1syndecan 10.96TMEM184A;1558281_a_a TMEM184Atransmembrane protein 184A1.07TRIM7;223694_atTRIM7tripartite motif-containing 71.15COL1A1;125664_atCOL12A1collagen, type XII, alpha 10.90COL1A2;202403_s_atCOL1A2collagen, type I, alpha 10.90COL1A2;202403_s_atCOL1A2collagen, type I, alpha 20.94COL1A2;202404_s_atCOL1A2collagen, type I, alpha 20.83COL3A1;211161_s_atCOL3A1collagen, type III, alpha 10.87COL3A1;215076_s_atCOL6A1collagen, type VI, alpha 30.90COL6A2;209156_s_atCOL6A2collagen, type VI, alpha 30.90COL6A3;201456_s_atCOL6A2collagen, type VI, alpha 10.83COL6A1;213428_s_atCOL6A1collagen, type VI, alpha 30.90MXRA8;213422_s_atCOL6A2collagen, type VI, alpha 30.90MXRA8;213422_s_atACVR1Cactivin A receptor, type IC0.42ADIPOQ;207175_atADIPOQadiponectin, C1Q and col	PERP;217744 s at	PERP	PERP, TP53 apoptosis effector	0.96
PTK6;206482_atPTK6PTK6 protein tyrosine kinase 61.02RHBDL2;1554895_a_atRHBDL2rhomboid, veinlet-like 2 (Drosophila)1.05RHBD12;1554897_s_atS100A14S100 calcium binding protein A140.94S100A14;218677_atS100A14S100 calcium binding protein A140.94S100A2;204268_atS100A2S100 calcium binding protein A140.96TMEM184A;1558281_a_aTMEM184Atransmembrane protein 184A1.07TRIM7;223694_atTRIM7tripartite motif-containing 71.15C0L12A1;225664_atC0L1A1collagen, type XII, alpha 10.96C0L1A1;1556499_s_atC0L1A1collagen, type I, alpha 10.90C0L1A2;202403_s_atC0L1A2collagen, type I, alpha 10.94C0L1A2;202404_s_atC0L3A1collagen, type I, alpha 10.83C0L3A1;21161_s_atC0L3A1collagen, type I, alpha 10.83C0L3A1;215765_s_atC0L6A2collagen, type VI, alpha 10.83C0L6A3;201438_atC0L6A2collagen, type VI, alpha 10.83C0L6A3;201438_atC0L6A3collagen, type VI, alpha 21.16C0L6A3;201438_atC0L6A3collagen, type VI, alpha 30.90MXRA8;213422_s_atMXRA8matrix-remodelling associated 81.12ACVR1C;15552519_atACVR1Cactivin A receptor, type IC0.42ADIPOQadiponettin, C1Q and collagen domain cont;0.68AOC3;204894_s_atAOC3amine oxidase, copper containing 3 (vascula0.84AOP7aquaporin	PERP;222392 x at	PERP	PERP, TP53 apoptosis effector	1.03
RHBDL2;1554895_a_atRHBDL2rhomboid, veinlet-like 2 (Drosophila)1.05RHBDL2;1554897_s_atRHBDL2rhomboid, veinlet-like 2 (Drosophila)1.21S100A14;218677_atS100A14S100 calcium binding protein A140.94S100A2;204268_atS100A2S100 calcium binding protein A20.92SDC1;201287_s_atSDC1syndecan 10.96TMEM184A;1558281_a_aTMEM184Atransmembrane protein 184A1.07TRIM7;223694_atTRIM7tripartite motif-containing 71.15COL12A1;225664_atCOL1A1collagen, type I, alpha 10.96COL1A1;1556499_s_atCOL1A1collagen, type I, alpha 10.90COL1A2;202404_s_atCOL1A2collagen, type I, alpha 10.90COL1A2;202404_s_atCOL1A2collagen, type I, alpha 20.94COL3A1;201852_x_atCOL3A1collagen, type I, alpha 10.83COL3A1;215076_s_atCOL3A1collagen, type III, alpha 10.87COL3A1;215076_s_atCOL3A1collagen, type VI, alpha 10.83COL6A2;201438_atCOL6A2collagen, type VI, alpha 30.90MXRA8;213422_s_atMXRA8matrix-remodelling associated 81.12ACVR1C;1552519_atACVR1Cactive A receptor, type I.16COL6A3;20434_s_atAOC3amine oxidase, copper containing 3 (vascula0.84AQP7;206955_atAQP7aquaporin 7.71C14or180;1558421_a_atC140Ccell death-inducing DFFA-like effector c0.80KCNIP2;223727_atKCNIP2K	PTK6;206482 at	РТК6	PTK6 protein tyrosine kinase 6	1.02
RHBDL2;1554897_s_atRHBDL2rhomboid, veinlet-like 2 (Drosophila)1.21\$100A14;218677_at\$100A14\$100 calcium binding protein A140.94\$100A2;204268_at\$100A2\$100 calcium binding protein A20.92\$DC1;201287_s_at\$DC1syndecan 10.96TMEM184A;1558281_a a TMEM184Atransmembrane protein 184A1.07TRIM7;223694_atTRIM7tripartite motif-containing 71.15COL12A1;225664_atCOL12A1collagen, type XII, alpha 10.95COL1A1;1556499_s_atCOL1A1collagen, type I, alpha 10.90COL1A2;202404_s_atCOL1A2collagen, type I, alpha 10.90COL1A2;202404_s_atCOL1A2collagen, type I, alpha 20.94COL3A1;201852_x_atCOL3A1collagen, type III, alpha 10.83COL3A1;21161_s_atCOL3A1collagen, type III, alpha 10.87COL3A1;213422_s_atCOL6A1collagen, type VI, alpha 10.02COL6A2;209156_s_atCOL6A2collagen, type VI, alpha 10.02COL6A3;201438_atCOL6A3collagen, type VI, alpha 30.90MXRA8;213422_s_atMXRA8matrix-remodelling associated 81.12ACVR1C,1552519_atACVR1Cactivin A receptor, type IC0.42ADIPOQ;207175_atADIPOQadiponectin, C1Q and collagen domain conti:0.68AQC3;204894_s_atCIDECcell death-inducing DFFA-like effector c0.80KCNIP2;22372_atKCNIP2Kv channel interacting protein 20.86LIPE;213855_s_at <td< td=""><td></td><td>RHBDL2</td><td>rhomboid, veinlet-like 2 (Drosophila)</td><td>1.05</td></td<>		RHBDL2	rhomboid, veinlet-like 2 (Drosophila)	1.05
S100A14;218677_atS100A14S100 calcium binding protein A140.94S100A2;204268_atS100A2S100 calcium binding protein A20.92SDC1;201287_s_atSDC1syndecan 10.96TMEM184A;1558281_a_aTRIM7tripartite motif-containing 71.15COL12A1;225664_atCOL12A1collagen, type XII, alpha 10.95COL1A1;1556499_s_atCOL1A1collagen, type I, alpha 10.90COL1A2;202403_s_atCOL1A1collagen, type I, alpha 10.90COL1A2;202404_s_atCOL1A2collagen, type I, alpha 10.90COL1A2;202404_s_atCOL1A2collagen, type I, alpha 10.90COL1A2;202404_s_atCOL1A2collagen, type I, alpha 10.90COL1A2;202404_s_atCOL3A1collagen, type I, alpha 20.83COL3A1;201852_x_atCOL3A1collagen, type III, alpha 10.83COL3A1;211161_s_atCOL6A1collagen, type III, alpha 10.87COL6A1;213428_s_atCOL6A1collagen, type VI, alpha 10.02COL6A2;209156_s_atCOL6A2collagen, type VI, alpha 30.90COL6A3;201438_atCOL6A3collagen, type VI, alpha 30.90MXRA8;213422_s_atACVR1Cactivin A receptor, type IC0.42ADIPOQ;207175_atADIPOQadiponectin, C1Q and collagen domain contx0.68ACC3;204894_atAQP7aquaporin 70.71C14orf180;1558421_a_atCIDECcel death-inducing DFFA-like effector c0.80KCNIP;223727_atKCNIP2Kv channel in	RHBDL2;1554897 s at	RHBDL2	rhomboid, veinlet-like 2 (Drosophila)	1.21
S100A2;204268_atS100A2S100 calcium binding protein A20.92SDC1;201287_s_atSDC1syndecan 10.96TMEM184A;1558281_a_a TMEM184Atransmembrane protein 184A1.07TRIM7;223694_atTRIM7tripartite motif-containing 71.15COL12A1;225664_atCOL12A1collagen, type I, alpha 10.95COL1A1;1556499_s_atCOL1A1collagen, type I, alpha 10.90COL1A2;202403_s_atCOL1A2collagen, type I, alpha 10.90COL1A2;202404_s_atCOL1A2collagen, type I, alpha 20.94COL3A2;202404_s_atCOL1A2collagen, type I, alpha 20.83COL3A1;21161_s_atCOL3A1collagen, type III, alpha 10.87COL3A1;215076_s_atCOL6A1collagen, type III, alpha 10.83COL6A1;213428_s_atCOL6A1collagen, type VI, alpha 10.20COL6A2;209156_s_atCOL6A2collagen, type VI, alpha 10.90COL6A3;201438_atCOL6A3collagen, type VI, alpha 10.83COL6A3;201438_atCOL6A3collagen, type VI, alpha 10.83COL6A3;201438_atCOL6A3collagen, type VI, alpha 30.90MXRA8;213422_s_atMXRA8matrix-remodelling associated 81.12ACVR1C155519_atACVR1Cactivin A receptor, type IC0.42ADIPOQ;207175_atADIPOQadiponectin, C1Q and collagen domain contr0.68ACQ3;204894_s_atAQP7aquaporin 70.71C14orf180;1558421_a_atCIDECcell death-inducing DFFA-like effector c	S100A14;218677 at	S100A14	S100 calcium binding protein A14	0.94
SDC1;201287_s_atSDC1syndecan 10.96TMEM184A;1558281_a_aTMEM184Atransmembrane protein 184A1.07TRIM7;223694_atTRIM7tripartite motif-containing 71.15COL12A1;225664_atCOL12A1collagen, type XII, alpha 10.95COL1A1;1556499_s_atCOL1A1collagen, type I, alpha 10.86COL1A1;202310_s_atCOL1A2collagen, type I, alpha 10.90COL1A2;202403_s_atCOL1A2collagen, type I, alpha 20.94COL1A2;202404_s_atCOL1A2collagen, type II, alpha 20.83COL3A1;201852_x_atCOL3A1collagen, type III, alpha 10.83COL3A1;201852_x_atCOL3A1collagen, type III, alpha 10.83COL3A1;201852_x_atCOL3A1collagen, type III, alpha 10.83COL3A1;201852_x_atCOL6A1collagen, type VI, alpha 10.83COL3A1;215076_s_atCOL6A1collagen, type VI, alpha 10.83COL6A3;201438_atCOL6A2collagen, type VI, alpha 30.90MXRA8;213422_s_atMXRA8matrix-remodelling associated 81.12ACVR1C;1552519_atACVR1Cactivin A receptor, type IC0.42ADIPOQ;207175_atADIPOQadiponectin, C1Q and collagen domain conta0.68AQ2;208494_s_atAQC3amine oxidase, copper containing 3 (vascula0.84AQP7;206955_atAQP7aquaporin 70.71C14orf180;1558421_a_atC1DECcell death-inducing DFFA-like effector c0.80KCNIP2;223727_atKCNIP2Kv channel	S100A2;204268 at	S100A2	S100 calcium binding protein A2	0.92
TMEM184A;1558281_a_a TMEM184Atransmembrane protein 184A1.07TRIM7;223694_atTRIM7tripartite motif-containing 71.15COL12A1;225664_atCOL12A1collagen, type XII, alpha 10.95COL1A1;1556499_s_atCOL1A1collagen, type I, alpha 10.86COL1A1;202310_s_atCOL1A1collagen, type I, alpha 10.90COL1A2;202403_s_atCOL1A2collagen, type I, alpha 20.94COL1A2;202404_s_atCOL1A2collagen, type II, alpha 20.83COL3A1;201852_x_atCOL3A1collagen, type III, alpha 10.87COL3A1;201852_x_atCOL3A1collagen, type III, alpha 10.87COL3A1;201852_s_atCOL6A1collagen, type VI, alpha 10.83COL6A1;213428_s_atCOL6A1collagen, type VI, alpha 10.83COL6A2;209156_s_atCOL6A2collagen, type VI, alpha 10.02COL6A3;201438_atCOL6A3collagen, type VI, alpha 30.90MXRA8;213422_s_atMXRA8matrix-remodelling associated 81.12ACVR1C;1552519_atACVR1Cactivin A receptor, type IC0.42ADIPOQ;207175_atADIPOQadiponectin, C1Q and collagen domain conti0.68AQ2;204955_stAQP7aquaporin 70.71C14orf180;1558421_a_atC1DECcell death-inducing DFFA-like effector c0.80KCNIP2;223727_atKCNIP2Kv channel interacting protein 20.86LIPE;213855_s_atLIPElipase, hormone-sensitive0.79MRAP;1554044_a_atMRAPmelano	SDC1;201287 s at	SDC1	syndecan 1	0.96
TRIM7;223694_atTRIM7tripartite motif-containing 71.15COL12A1;225664_atCOL12A1collagen, type XII, alpha 10.95COL1A1;1556499_s_atCOL1A1collagen, type I, alpha 10.86COL1A1;202310_s_atCOL1A1collagen, type I, alpha 10.90COL1A2;202403_s_atCOL1A2collagen, type I, alpha 20.94COL1A2;202404_s_atCOL3A1collagen, type I, alpha 20.83COL3A1;21161_s_atCOL3A1collagen, type III, alpha 10.87COL3A1;215076_s_atCOL6A1collagen, type III, alpha 10.83COL6A1;213428_s_atCOL6A1collagen, type VI, alpha 10.83COL6A2;209156_s_atCOL6A2collagen, type VI, alpha 10.83COL6A3;201438_atCOL6A3collagen, type VI, alpha 30.90MXRA8;213422_s_atMXRA8matrix-remodelling associated 81.12ACVR1C;1552519_atACVR1Cactivin A receptor, type IC0.42ADIPOQadiponectin, C1Q and collagen domain contr0.680.68AQC3;204894_s_atAOC3amine oxidase, copper containing 3 (vascula0.84AQP7;206955_atCIDECcell death-inducing DFFA-like effector c0.80CIDEC;213938_atCIDECcell death-inducing DFFA-like effector c0.80KCNIP2;223727_atKICNIP2Kv channel interacting protein 20.86MRAP;1555740_a_atMRAPmelanocortin 2 receptor accessory protein0.68	TMEM184A;1558281 a a	TMEM184A	transmembrane protein 184A	1.07
COL12A1;22564_atCOL12A1collagen, type XII, alpha 10.95COL1A1;1556499_s_atCOL1A1collagen, type I, alpha 10.86COL1A1;202310_s_atCOL1A1collagen, type I, alpha 10.90COL1A2;202403_s_atCOL1A2collagen, type I, alpha 10.90COL1A2;202404_s_atCOL1A2collagen, type I, alpha 20.94COL1A2;202404_s_atCOL3A1collagen, type I, alpha 20.83COL3A1;201852_x_atCOL3A1collagen, type III, alpha 10.87COL3A1;215076_s_atCOL3A1collagen, type III, alpha 10.83COL6A1;213428_s_atCOL6A1collagen, type VI, alpha 10.83COL6A2;209156_s_atCOL6A2collagen, type VI, alpha 10.83COL6A2;209156_s_atCOL6A2collagen, type VI, alpha 10.02COL6A2;209156_s_atCOL6A3collagen, type VI, alpha 21.16COL6A3;201438_atCOL6A3collagen, type VI, alpha 30.90MXRA8;213422_s_atMXRA8matrix-remodelling associated 81.12ACVR1C;1552519_atACVR1Cactivin A receptor, type IC0.42ADIPOQ;207175_atADIPOQadiponectin, C1Q and collagen domain cont:0.68AQP7;206955_atAQP7aquaporin 70.71C14orf180;1558421_a_atCIDECcell death-inducing DFFA-like effector c0.80KCNIP2;223727_atKCNIP2Kv channel interacting protein 20.86KCNIP2;233727_atKCNIP2Kv channel interacting protein 20.86MRAP;1554044_a_atMRAP <td>TRIM7;223694 at</td> <td>TRIM7</td> <td>tripartite motif-containing 7</td> <td>1.15</td>	TRIM7;223694 at	TRIM7	tripartite motif-containing 7	1.15
COL1A1;1556499_s_atCOL1A1collagen, type I, alpha 10.86COL1A1;202310_s_atCOL1A1collagen, type I, alpha 10.90COL1A2;202403_s_atCOL1A2collagen, type I, alpha 20.94COL1A2;202404_s_atCOL1A2collagen, type I, alpha 20.83COL3A1;201852_x_atCOL3A1collagen, type III, alpha 10.83COL3A1;215076_s_atCOL3A1collagen, type III, alpha 10.87COL3A1;215076_s_atCOL6A1collagen, type III, alpha 10.83COL6A1;213428_s_atCOL6A1collagen, type VI, alpha 10.83COL6A2;209156_s_atCOL6A2collagen, type VI, alpha 10.83COL6A3;201438_atCOL6A2collagen, type VI, alpha 30.90MXRA8;213422_s_atMXRA8matrix-remodelling associated 81.12ACVR1C;1552519_atACVR1Cactivin A receptor, type IC0.42ADIPOQ;207175_atADIPOQadiponectin, C1Q and collagen domain cont;0.68AQC3;204894_s_atCOECcell death-inducing DFFA-like effector c0.80KCNIP2;223727_atKCNIP2Kv channel interacting protein 20.86LIPE;213855_s_atLIPElipase, hormone-sensitive0.79MRAP;1554044_a_atMRAPmelanocortin 2 receptor accessory protein0.86MRAP;1555740atMRAPmelanocortin 2 receptor accessory protein0.68	COL12A1;225664 at	COL12A1	collagen, type XII, alpha 1	0.95
COL1A1;202310_s_atCOL1A1collagen, type I, alpha 10.90COL1A2;202403_s_atCOL1A2collagen, type I, alpha 20.94COL1A2;202404_s_atCOL1A2collagen, type I, alpha 20.83COL3A1;201852_x_atCOL3A1collagen, type III, alpha 10.83COL3A1;21161_s_atCOL3A1collagen, type III, alpha 10.87COL3A1;215076_s_atCOL3A1collagen, type III, alpha 10.83COL6A2;209156_s_atCOL6A1collagen, type VI, alpha 11.02COL6A2;209156_s_atCOL6A2collagen, type VI, alpha 11.02COL6A3;201438_atCOL6A3collagen, type VI, alpha 30.90MXRA8;213422_s_atMXRA8matrix-remodelling associated 81.12ACVR1C;1552519_atACVR1Cactivin A receptor, type IC0.42ADIPOQ;207175_atADIPOQadiponectin, C1Q and collagen domain conti0.68AQC3;204894_s_atCOECcell death-inducing DFFA-like effector c0.80KCNIP2;223727_atKCNIP2Kv channel interacting protein 20.86LIPE;213855_s_atLIPElipase, hormone-sensitive0.79MRAP;1554044_a_atMRAPmelanocortin 2 receptor accessory protein0.86MRAP:1555740a.tMRAPmelanocortin 2 receptor accessory protein0.86	COL1A1;1556499 s at	COL1A1	collagen, type I, alpha 1	0.86
COL1A2;202403_s_atCOL1A2collagen, type I, alpha 20.94COL1A2;202404_s_atCOL1A2collagen, type I, alpha 20.83COL3A1;201852_x_atCOL3A1collagen, type III, alpha 10.83COL3A1;211161_s_atCOL3A1collagen, type III, alpha 10.87COL3A1;215076_s_atCOL3A1collagen, type VI, alpha 10.83COL6A1;213428_s_atCOL6A1collagen, type VI, alpha 11.02COL6A2;209156_s_atCOL6A2collagen, type VI, alpha 21.16COL6A3;201438_atCOL6A3collagen, type VI, alpha 30.90MXRA8;213422_s_atMXRA8matrix-remodelling associated 81.12ACVR1C;1552519_atACVR1Cactivin A receptor, type IC0.42ADIPOQ;207175_atADIPOQadiponectin, C1Q and collagen domain conta0.68AQ27;206955_atCIDECcell death-inducing DFFA-like effector c0.80KCNIP2;223727_atKCNIP2Kv channel interacting protein 20.86LIPE;213855_s_atLIPElipase, hormone-sensitive0.79MRAP;1554044_a_atMRAPmelanocortin 2 receptor accessory protein0.68	COL1A1;202310 s at	COL1A1	collagen, type I, alpha 1	0.90
COL1A2;202404_s_atCOL1A2collagen, type I, alpha 20.83COL3A1;201852_x_atCOL3A1collagen, type III, alpha 10.83COL3A1;211161_s_atCOL3A1collagen, type III, alpha 10.87COL3A1;215076_s_atCOL3A1collagen, type III, alpha 10.83COL6A1;213428_s_atCOL6A1collagen, type VI, alpha 10.83COL6A2;209156_s_atCOL6A2collagen, type VI, alpha 11.02COL6A2;209156_s_atCOL6A3collagen, type VI, alpha 21.16COL6A3;201438_atCOL6A3collagen, type VI, alpha 30.90MXRA8;213422_s_atMXRA8matrix-remodelling associated 81.12ACVR1C;1552519_atACVR1Cactivin A receptor, type IC0.42ADIPOQ;207175_atADIPOQadiponectin, C1Q and collagen domain cont:0.68AQ27;206955_atAQP7aquaporin 70.71C14orf180;1558421_a_atC1DECcell death-inducing DFFA-like effector c0.80KCNIP2;223727_atKCNIP2Kv channel interacting protein 20.86LIPE;213855_s_atLIPElipase, hormone-sensitive0.79MRAP;1554044_a_atMRAPmelanocortin 2 receptor accessory protein0.86MRAP:1555740_a_atMRAPmelanocortin 2 receptor accessory protein0.68	COL1A2;202403 s at	COL1A2	collagen, type I, alpha 2	0.94
COL3A1;201852_x_atCOL3A1collagen, type III, alpha 10.83COL3A1;211161_s_atCOL3A1collagen, type III, alpha 10.87COL3A1;215076_s_atCOL3A1collagen, type III, alpha 10.83COL6A1;213428_s_atCOL6A1collagen, type VI, alpha 11.02COL6A2;209156_s_atCOL6A2collagen, type VI, alpha 21.16COL6A3;201438_atCOL6A3collagen, type VI, alpha 30.90MXRA8;213422_s_atMXRA8matrix-remodelling associated 81.12ACVR1C;1552519_atACVR1Cactivin A receptor, type IC0.42ADIPOQ;207175_atADIPOQadiponectin, C1Q and collagen domain conta0.68AQ27;206955_atAQP7aquaporin 70.71C14orf180;1558421_a_atCIDECcell death-inducing DFFA-like effector c0.80KCNIP2;223727_atKCNIP2Kv channel interacting protein 20.86LIPE;213855_s_atLIPElipase, hormone-sensitive0.79MRAP;1554044_a_atMRAPmelanocortin 2 receptor accessory protein0.86	COL1A2;202404 s at	COL1A2	collagen, type I, alpha 2	0.83
COL3A1;211161_s_atCOL3A1collagen, type III, alpha 10.87COL3A1;215076_s_atCOL3A1collagen, type III, alpha 10.83COL6A1;213428_s_atCOL6A1collagen, type VI, alpha 11.02COL6A2;209156_s_atCOL6A2collagen, type VI, alpha 21.16COL6A3;201438_atCOL6A3collagen, type VI, alpha 30.90MXRA8;213422_s_atMXRA8matrix-remodelling associated 81.12ACVR1C;1552519_atACVR1Cactivin A receptor, type IC0.42ADIPOQ;207175_atADIPOQadiponectin, C1Q and collagen domain conta0.68AQP7;206955_atAQP7aquaporin 70.71C14orf180;1558421_a_atC1DECcell death-inducing DFFA-like effector c0.80KCNIP2;223727_atKCNIP2Kv channel interacting protein 20.86LIPE;213855_s_atLIPElipase, hormone-sensitive0.79MRAP;1557404_a_atMRAPmelanocortin 2 receptor accessory protein0.86	COL3A1;201852 x at	COL3A1	collagen, type III, alpha 1	0.83
COL3A1;215076_s_atCOL3A1collagen, type III, alpha 10.83COL6A1;213428_s_atCOL6A1collagen, type VI, alpha 11.02COL6A2;209156_s_atCOL6A2collagen, type VI, alpha 21.16COL6A3;201438_atCOL6A3collagen, type VI, alpha 30.90MXRA8;213422_s_atMXRA8matrix-remodelling associated 81.12ACVR1C;1552519_atACVR1Cactivin A receptor, type IC0.42ADIPOQ;207175_atADIPOQadiponectin, C1Q and collagen domain cont:0.68AOC3;204894_s_atAOC3amine oxidase, copper containing 3 (vascula0.84AQP7;206955_atAQP7aquaporin 70.71C14orf180;1558421_a_atC1DECcell death-inducing DFFA-like effector c0.80KCNIP2;223727_atKCNIP2Kv channel interacting protein 20.86LIPE;213855_s_atLIPElipase, hormone-sensitive0.79MRAP;1555740_a_atMRAPmelanocortin 2 receptor accessory protein0.86	COL3A1;211161 s at	COL3A1	collagen, type III, alpha 1	0.87
COL6A1;213428_s_atCOL6A1collagen, type VI, alpha 11.02COL6A2;209156_s_atCOL6A2collagen, type VI, alpha 21.16COL6A3;201438_atCOL6A3collagen, type VI, alpha 30.90MXRA8;213422_s_atMXRA8matrix-remodelling associated 81.12ACVR1C;1552519_atACVR1Cactivin A receptor, type IC0.42ADIPOQ;207175_atADIPOQadiponectin, C1Q and collagen domain cont:0.68AOC3;204894_s_atAOC3amine oxidase, copper containing 3 (vascula0.84AQP7;206955_atAQP7aquaporin 70.71C14orf180;1558421_a_atC10ECcell death-inducing DFFA-like effector c0.80KCNIP2;223727_atKCNIP2Kv channel interacting protein 20.86LIPE;213855_s_atLIPElipase, hormone-sensitive0.79MRAP;1554044_a_atMRAPmelanocortin 2 receptor accessory protein0.86	COL3A1;215076 s at	COL3A1	collagen, type III, alpha 1	0.83
COL6A2;209156_s_atCOL6A2collagen, type VI, alpha 21.16COL6A3;201438_atCOL6A3collagen, type VI, alpha 30.90MXRA8;213422_s_atMXRA8matrix-remodelling associated 81.12ACVR1C;1552519_atACVR1Cactivin A receptor, type IC0.42ADIPOQ;207175_atADIPOQadiponectin, C1Q and collagen domain cont:0.68AOC3;204894_s_atAOC3amine oxidase, copper containing 3 (vascula0.84AQP7;206955_atAQP7aquaporin 70.71C14orf180;1558421_a_atC1DECcell death-inducing DFFA-like effector c0.80KCNIP2;223727_atKCNIP2Kv channel interacting protein 20.86LIPE;213855_s_atLIPElipase, hormone-sensitive0.79MRAP;1554044_a_atMRAPmelanocortin 2 receptor accessory protein0.86	COL6A1;213428 s at	COL6A1	collagen, type VI, alpha 1	1.02
COL6A3;201438_atCOL6A3collagen, type VI, alpha 30.90MXRA8;213422_s_atMXRA8matrix-remodelling associated 81.12ACVR1C;1552519_atACVR1Cactivin A receptor, type IC0.42ADIPOQ;207175_atADIPOQadiponectin, C1Q and collagen domain cont;0.68AOC3;204894_s_atAOC3amine oxidase, copper containing 3 (vascula0.84AQP7;206955_atAQP7aquaporin 70.71C14orf180;1558421_a_atC14orf180chromosome 14 open reading frame 1801.19CIDEC;219398_atCIDECcell death-inducing DFFA-like effector c0.86KCNIP2;223727_atKCNIP2Kv channel interacting protein 20.86LIPE;213855_s_atLIPElipase, hormone-sensitive0.79MRAP;1554044_a_atMRAPmelanocortin 2 receptor accessory protein0.86	COL6A2;209156 s at	COL6A2	collagen, type VI, alpha 2	1.16
MXRA8;213422_s_atMXRA8matrix-remodelling associated 81.12ACVR1C;1552519_atACVR1Cactivin A receptor, type IC0.42ADIPOQ;207175_atADIPOQadiponectin, C1Q and collagen domain conta0.68AOC3;204894_s_atAOC3amine oxidase, copper containing 3 (vascula0.84AQP7;206955_atAQP7aquaporin 70.71C14orf180;1558421_a_atC14orf180chromosome 14 open reading frame 1801.19CIDEC;219398_atCIDECcell death-inducing DFFA-like effector c0.80KCNIP2;223727_atKCNIP2Kv channel interacting protein 20.86LIPE;213855_s_atLIPElipase, hormone-sensitive0.79MRAP;1555740_a_atMRAPmelanocortin 2 receptor accessory protein0.68	COL6A3;201438 at	COL6A3	collagen, type VI, alpha 3	0.90
ACVR1C;1552519_atACVR1Cactivin A receptor, type IC0.42ADIPOQ;207175_atADIPOQadiponectin, C1Q and collagen domain cont:0.68AOC3;204894_s_atAOC3amine oxidase, copper containing 3 (vascula0.84AQP7;206955_atAQP7aquaporin 70.71C14orf180;1558421_a_atC14orf180chromosome 14 open reading frame 1801.19CIDEC;219398_atCIDECcell death-inducing DFFA-like effector c0.80KCNIP2;223727_atKCNIP2Kv channel interacting protein 20.86LIPE;213855_s_atLIPElipase, hormone-sensitive0.79MRAP;1554044_a_atMRAPmelanocortin 2 receptor accessory protein0.86	MXRA8;213422 s at	MXRA8	matrix-remodelling associated 8	1.12
ADIPOQ;207175_atADIPOQadiponectin, C1Q and collagen domain cont;0.68AOC3;204894_s_atAOC3amine oxidase, copper containing 3 (vascula0.84AQP7;206955_atAQP7aquaporin 70.71C14orf180;1558421_a_atC14orf180chromosome 14 open reading frame 1801.19CIDEC;219398_atCIDECcell death-inducing DFFA-like effector c0.80KCNIP2;223727_atKCNIP2Kv channel interacting protein 20.86LIPE;213855_s_atLIPElipase, hormone-sensitive0.79MRAP;1554044_a_atMRAPmelanocortin 2 receptor accessory protein0.86	ACVR1C;1552519 at	ACVR1C	activin A receptor, type IC	0.42
AOC3;204894_s_atAOC3amine oxidase, copper containing 3 (vascula0.84AQP7;206955_atAQP7aquaporin 70.71C14orf180;1558421_a_atC14orf180chromosome 14 open reading frame 1801.19CIDEC;219398_atCIDECcell death-inducing DFFA-like effector c0.80KCNIP2;223727_atKCNIP2Kv channel interacting protein 20.86LIPE;213855_s_atLIPElipase, hormone-sensitive0.79MRAP;1554044_a_atMRAPmelanocortin 2 receptor accessory protein0.86	ADIPOQ;207175 at	ADIPOQ	adiponectin, C1Q and collagen domain conta	0.68
AQP7;206955_atAQP7aquaporin 70.71C14orf180;1558421_a_atC14orf180chromosome 14 open reading frame 1801.19CIDEC;219398_atCIDECcell death-inducing DFFA-like effector c0.80KCNIP2;223727_atKCNIP2Kv channel interacting protein 20.86LIPE;213855_s_atLIPElipase, hormone-sensitive0.79MRAP;1554044_a_atMRAPmelanocortin 2 receptor accessory protein0.86MRAP:1555740_a_atMRAPmelanocortin 2 receptor accessory protein0.68	AOC3;204894 s at	AOC3	amine oxidase, copper containing 3 (vascula	0.84
C14orf180;1558421_a_at C14orf180chromosome 14 open reading frame 1801.19CIDEC;219398_atCIDECcell death-inducing DFFA-like effector c0.80KCNIP2;223727_atKCNIP2Kv channel interacting protein 20.86LIPE;213855_s_atLIPElipase, hormone-sensitive0.79MRAP;1554044_a_atMRAPmelanocortin 2 receptor accessory protein0.86MRAP:1555740_a_atMRAPmelanocortin 2 receptor accessory protein0.68	AQP7;206955 at	AQP7	aquaporin 7	0.71
CIDEC;219398_atCIDECcell death-inducing DFFA-like effector c0.80KCNIP2;223727_atKCNIP2Kv channel interacting protein 20.86LIPE;213855_s_atLIPElipase, hormone-sensitive0.79MRAP;1554044_a_atMRAPmelanocortin 2 receptor accessory protein0.86MRAP:1555740_a_atMRAPmelanocortin 2 receptor accessory protein0.68	C14orf180;1558421 a at	C14orf180	chromosome 14 open reading frame 180	1.19
KCNIP2;223727_atKCNIP2Kv channel interacting protein 20.86LIPE;213855_s_atLIPElipase, hormone-sensitive0.79MRAP;1554044_a_atMRAPmelanocortin 2 receptor accessory protein0.86MRAP:1555740_a_atMRAPmelanocortin 2 receptor accessory protein0.68	CIDEC;219398 at	CIDEC	cell death-inducing DFFA-like effector c	0.80
LIPE;213855_s_atLIPElipase, hormone-sensitive0.79MRAP;1554044_a_atMRAPmelanocortin 2 receptor accessory protein0.86MRAP:1555740_a_atMRAPmelanocortin 2 receptor accessory protein0.68	KCNIP2;223727 at	KCNIP2	Kv channel interacting protein 2	0.86
MRAP;1554044_a_at MRAP melanocortin 2 receptor accessory protein 0.86 MRAP:1555740 a at MRAP melanocortin 2 receptor accessory protein 0.68	LIPE;213855_s at	LIPE	lipase, hormone-sensitive	0.79
MRAP:1555740 a at MRAP melanocortin 2 receptor accessory protein 0.68	MRAP;1554044 a at	MRAP	melanocortin 2 receptor accessory protein	0.86
	 MRAP;1555740_a_at	MRAP	melanocortin 2 receptor accessory protein	0.68

PLIN1;205913_at	PLIN1	perilipin 1	0.82
PLIN4;228409_at	PLIN4	perilipin 4	0.96
ACVRL1;226950_at	ACVRL1	activin A receptor type II-like 1	1.31
ECSCR;227779_at	ECSCR	endothelial cell-specific chemotaxis regulatc	0.96
ECSCR;228339_at	ECSCR	endothelial cell-specific chemotaxis regulatc	0.95
ESAM;225369_at	ESAM	endothelial cell adhesion molecule	0.93
MMRN2;219091_s_at	MMRN2	multimerin 2	0.93
MMRN2;236262_at	MMRN2	multimerin 2	0.88

Human_cell-cluster	MCL_2.2_6
Kerantincytes	Cluster0003

Kerantincytes Kerantincytes Kerantincytes Epithelium Epithelium

Epithelium MHC_class1 MHC_class1 MHC_class1 MHC_class1 MHC class1 MHC_class1 MHC class1

MHC_class1 MHC_class1 Hepatocytes Neurones MHC_class2 MHC_class2 MHC_class2 MHC_class2 MHC class2 MHC_class2 MHC_class2 MHC_class2 MHC_class2 MHC_class2 MHC class2 MHC_class2 MHC_class2 MHC_class2 MHC_class2 Epithelium:keratinocytes Cluster0035 Cluster0035 Cluster0042 Cluster0044 Cluster0047 Cluster0048 Epithelium:keratinocytes Extracellular matrix Adipocytes Adipocytes Adipocytes Adipocytes Adipocytes Adipocytes Adipocytes Adipocytes Adipocytes Adipocytes

Cluster0048 Cluster0050 Cluster0057 Cluster0060 Cluster0060 Cluster0060 Cluster0060 Cluster0060 Cluster0060 Cluster0060 Cluster0060 Cluster0060 Cluster0060

Adipocytes	Cluster0060
Adipocytes	Cluster0060
Endothelial cells	Cluster0116