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Abstract

Defects are inevitably present in nanofluidic systems, yet the role they play in

nanofluidic transport remains poorly understood. Here, we report ab initio molecular

dynamics (AIMD) simulations of the friction of liquid water on defective graphene

and boron nitride sheets. We show that water dissociates at certain defects and that

these “reactive” defects lead to much larger friction than the “non-reactive” defects at

which water molecules remain intact. Furthermore, we find that friction is extremely

sensitive to the chemical structure of reactive defects and to the number of hydrogen

bonds they can partake in with the liquid. Finally, we discuss how the insight obtained

from AIMD can be used to quantify the influence of defects on friction in nanofluidic

devices for water treatment and sustainable energy harvesting. Overall, we provide new

insight into the role of interfacial chemistry on nanofluidic transport in real, defective

systems.
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Nanofluidic transport plays a key role in numerous present-day applications, includ-

ing water treatment and sustainable energies, where new two-dimensional materials offer

promise of radical performance improvement.1–4 For instance, carbon nanotube membranes

and nanoporous graphene can filter water with an excellent permeability to selectivity ra-

tio.5–7 It has also been shown recently that nanofluidic systems based on boron nitride (BN)

nanotubes can harvest the so-called blue energy (i.e., the osmotic energy of salt water) with

unprecedented efficiency.8 However, transport efficiency in state-of-the-art artificial nanoflu-

idic devices is still far from optimal, and well below the performance of biological systems.9,10

In order to improve the efficiency of nanofluidic systems, it is crucial to understand the spe-

cific details of nanoscale transport. In particular, surfaces and interfaces play an increasingly

prominent role when the system size is reduced, so that at the nanoscale transport is essen-

tially controlled by surface effects.11 For instance, nanoscale flows are limited by interfacial

hydrodynamics, and can be enhanced by liquid-solid slip12,13 arising from low liquid-solid

friction.14 Electrokinetic effects, which couple different types of transport (hydrodynamic,

ionic, thermal. . . ) at surfaces, key to nanofluidic energy conversion systems,11,15,16 are also

strongly affected by liquid-solid slip.17–24

Interfacial hydrodynamics and friction are sensitive to the molecular detail of the inter-

face,12 e.g., to the presence of defects on solid surfaces – typically created during growth

or synthesis.25–28 Defects can even be desirable for nanofluidic energy conversion, since the

efficiency of the conversion is directly related to the surface charge,11,20,29 usually found in

the form of charged defects. Defects can be reactive,30–33 and although previous work has

investigated how reactive defects modify the structure of the water-solid interface,34–37 the

consequences of this reactivity on nanofluidic transport remains an open question. Indeed, up

to now only the direct, mechanical effect of defects on liquid-solid friction has been explored

using simulation approaches based on force field molecular dynamics.38,39 At the same time,

recent work shows that it is now possible to explore hydrodynamics of confined liquids with

ab initio molecular dynamics (AIMD), i.e. molecular dynamics simulations where forces are
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obtained from electronic structure calculations.14,40 In particular, we have recently shown

that liquid-solid friction coefficients can be computed directly from ab initio simulations,

from which specific electronic structure effects on friction were revealed.14

Here we use AIMD to investigate how defects and defect reactivity affect nanofluidic

transport. We focus on carbon and BN surfaces, as they show great promise for nanoflu-

idic applications, related in particular to their ultralow liquid/solid friction, which could

be threatened by defects. We show that defect reactivity to water is key to the friction

increase, with non-reactive defects having a negligible influence, and reactive defects being

highly detrimental. We also find that friction depends on the number of hydrogen bonds the

defects make with water, so that it can be quite different for reactive defects with a similar

size but different structure. We then discuss the consequences of our results for water perme-

ability in experimental (defective) nanostructures, and for applications in nanofluidic energy

conversion. Overall we show here that there is very strong coupling between nanofluidic

transport and interfacial chemistry in carbon and BN systems, which depends dramatically

on the chemical nature of the defects and their ability to partake in hydrogen bonding with

the liquid.

We performed AIMD simulations of a thin liquid water film on graphene and on a single

layer of hexagonal BN, carrying different types of defects. The computational setup, de-

tailed in the supporting information (SI), is based on the one used in Ref. 14, where the

friction of water on pristine graphene and BN was investigated. In particular, we performed

Born-Oppenheimer molecular dynamics with the CP2K code;41 the forces were computed

at the density functional theory (DFT) level, using the optB88-vdW exchange-correlation

functional.42 This functional was shown to describe with a good accuracy both liquid water43

and soft layered materials such as graphite and BN.44 As compared to reference quantum

Monte Carlo data,45–47 it slightly overbinds water to graphene and BN, but the relative en-

ergy differences between different sites (relevant to friction) are well described (see the SI of

Ref.14). There are, of course, many types of defects that we could examine. However, AIMD
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is very demanding and we had to select a small set of common, representative defects.25–28

We introduced three different defects in the graphene sheets (Fig. 1). Firstly, as an example

+
b

o
u

n
d

 w
a
te

r

Non−reactive Reactive

b
a
re

 d
e
fe

c
ts

BN−2C

GRA−SW BN−2HGRA−2HGRA−V1

Figure 1: Top views of the defects introduced in graphene and boron nitride (BN). Left)
Non-reactive defects: “GRA-SW” – graphene with a Stone-Wales defect, a simple topological
defect that induces a corrugation of the sheet;48 atoms are colored according to their height,
from red (lower) to blue (higher); “BN-2C” – BN with 2 adjacent B and N atoms substituted
by 2 C atoms. Right) Reactive defects, before contact with water (top) and with a bound
dissociated water molecule (bottom): “GRA-V1” – a carbon monovacancy in graphene;
“GRA-2H” – two H adatoms on graphene; “BN-2H” – one of two H adatoms well separated
on a BN sheet (full system is represented in the supporting information). Except for the
GRA-SW defect, carbon, boron, nitrogen, oxygen and hydrogen atoms are colored in cyan,
magenta, blue, red and white, respectively.

of a topological defect, we simulated a Stone-Wales (SW) defect in a ca. 2.5×2.5 nm2 sheet.

SW defects can be formed during the production of carbon nanostructures, and have been

imaged in transmission electron microscopy.49 We also considered two other common point

defects (using a smaller, ca. 1.3 × 1.3 nm2 sheet): a monovacancy – denoted V1, and a

simple example of an adatom defect consisting of two adsorbed hydrogen atoms – denoted

2H. The latter defect can typically appear during the production of carbon nanostructures

using hydrogenated gases.50 Finally, we considered defective BN, using a ca. 1.3 × 1.3 nm2

cell (see Fig. 1 and Fig. S1 in the SI). Firstly, in order to investigate the effect of doping BN

nanostructures with carbon, we substituted two adjacent boron and nitrogen atoms by two

carbon atoms (2C defect). We introduced two 2C defects in the simulated sheet. Secondly,
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similar to the graphene sheet, we introduced two hydrogen atoms bonded to well separated

nitrogen atoms (2H defect).

We started by investigating the defect reactivity to water, by exploring the tendency of

water molecules to dissociate at the defects, in the absence of a water film. To that aim, we

relaxed various possible configurations with a water molecule dissociated at the defects and

computed the binding energy, defined as the energy difference between the relaxed structure

and a water molecule fully separated from the defective sheet. On the GRA-SW and the

BN-2C defects, we could not find any energetically favorable dissociated state. We will

therefore describe these two defects as “non-reactive” to water. On the other hand, we

found that water dissociation was energetically favorable on the GRA-V1 and the GRA-2H

defects, with binding energies of ca. 4.0 eV and ca. 0.8 eV, respectively. Fig. 1 shows the

most stable structures identified. In the vacancy case, water fully dissociates,31,32 i.e. the

oxygen and the two hydrogens bind to the three carbon atoms surrounding the vacancy. In

the case of the 2H defect, the water molecule dissociates to form an OH and an H group.

Previous work has shown that water dissociates at the BN-2H defect in vacuum.8 Here we

took a step further and performed an AIMD simulation of a water film on a BN-2H sheet,

and we observed a spontaneous dissociation event; as with the GRA-2H system, an OH and

an H group were formed (see Fig. S1 in the SI). In the following we refer to the GRA-V1,

GRA-2H and BN-2H defects as “reactive”.

After the defect reactivity had been characterized, we studied with AIMD how this selec-

tion of defects affected the friction of liquid water. In order to build the initial configurations

for the AIMD simulations, we placed ca. 2 nm water films on top of the optimized structures

of the defective sheets (i.e., including the dissociated water molecule for reactive defects),

and pre-equilibrated the systems using force field molecular dynamics. We imposed periodic

boundary conditions in all directions (with a vacuum gap of ca. 15Å between the periodic

images along the normal to the interface), so that both the liquid film and the graphene/BN

sheet were free to diffuse along the interface. No further chemical reaction between the

6



water film and the sheets was observed during the subsequent AIMD simulations. We then

computed the liquid-solid friction coefficient λ, relating the interfacial friction force F at a

slipping interface to the slip velocity vslip, i.e., the tangential velocity jump at the interface:

F = λAvslip, with A the area of contact.12,51,52 In the framework of linear response theory, λ

can be obtained from the equilibrium fluctuations of the friction force, using a Green-Kubo

relation:53,54

λ =
1

AkBT

∫ ∞
0

〈F (t)F (0)〉 dt, (1)

where kB is the Boltzmann constant and T the temperature. In previous work,14 we per-

formed a number of AIMD and force field MD simulations to ensure that the friction coeffi-

cients extracted from AIMD were not affected by the length of the AIMD trajectory and by

the size of the system. Here, a discussion on the validity of our results for the friction coeffi-

cient in the particular case of defective sheets is reported in sections 3.2 to 3.4 of the SI. In

order to confirm the results of the friction calculations with Eq. (1), and following a similar

approach applied to the measure of thermal conductance,55 we also estimated the friction

coefficient using an alternative Green-Kubo formula involving the initial slope of the auto-

correlation function of the slip velocity fluctuations at equilibrium, Cvv = 〈vslip(t)vslip(0)〉:

λ = − m2
eff

AkBT

dCvv
dt

∣∣∣∣
t=0+

, (2)

where meff is the effective mass of the liquid-solid system, given by meff = mliqmsol/(mliq +

msol), mliq and msol being the liquid and solid mass, respectively. As detailed in the SI, Eq.

(2) can be derived from a Langevin equation describing the relative Brownian motion of the

liquid film with regard to the solid surface. We will therefore refer to this new approach as

the “Langevin” method in the following.

Figure 2 presents the computed friction coefficients for the 5 defects considered, using

the standard and alternative Green-Kubo formulae. Both methods provide consistent values

and comparable statistical uncertainties. Figure 2 reveals a strong contrast between reactive
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Figure 2: Green-Kubo and Langevin estimates of the friction coefficient for the various
systems considered. The pristine graphene (prist. GRA) and boron nitride (prist. BN)
values are taken from Ref. 14. Error bars have been obtained by block averaging the data.
It can be seen that for defects at which water dissociates the friction coefficient is considerably
increased compared to the ideal defect-free surfaces.
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and non-reactive defects. On the one hand, non-reactive defects (GRA-SW and BN-2x2C)

have a negligible influence on friction. In particular, we surprisingly could not detect a

significant effect of the large scale corrugation of the graphene sheet induced by the Stone-

Wales defect.48 Similarly the error bars between pristine BN and BN-2x2C overlap, so that

the apparent decrease in friction induced by 2C defects is not significant i. On the other hand,

reactive defects (GRA-V1, GRA-2H and BN-2H) cause a significant increase in friction, up

to a factor of 8 for the GRA-2H defect ii. Among the reactive defects, there is an unexpected

contrast between the vacancy and the 2H defects, despite the similar size of the protrusion

induced by the dissociated water molecule.

In order to understand these results, we investigated how the different defect types modi-

fied the structure of the interface. On non-reactive defects, we did not detect any significant

change in the interfacial water structure. In contrast, reactive defects profoundly modified

the interactions between the water film and the surface, because of the dissociated water

molecule. In particular, we analyzed the dynamics of hydrogen bonds between reactive de-

fects and liquid water molecules, using a standard geometric criterion56 (Fig. 3). We focused

on the strong hydrogen bonds involving the oxygen of the dissociated water molecule as a

donor or acceptor, and didn’t account for the weak and infrequent bonds involving carbon,

boron or nitrogen. On the GRA-V1 defect, the oxygen atom of the fully dissociated water

molecule can only act as a hydrogen bond acceptor, limiting the average bond number be-

tween the defect and the liquid film to ca. 1.1. On the GRA-2H and the BN-2H defects, the

OH group of the dissociated water molecule can act both as a donor and an acceptor, leading

to stronger interactions with the liquid film.57–59 For instance the GRA-2H defect accepts

ca. 1.1 bonds and donates ca. 0.9 on average, making about twice as many hydrogen bonds

iNote that the introduction of graphene patches in a BN sheet could indeed reduce friction by smoothing
the energy landscape locally. Yet a naive linear combination between the friction coefficients of graphene
and BN predicts a decrease in friction of ca. 4 %, well below the statistical uncertainties.

iiIn particular, the friction on the defective GRA-V1 sheet is comparable to that on the pristine BN sheet.
It is striking that the difference in electronic structure between BN and graphene has an effect on friction
almost as large as a molecule protruding on top of the graphene sheet, showing how important it is to account
for the quantum nature of the liquid/solid interface in order to predict accurately nanofluidic transport.
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Figure 3: Top) Close-up on the interface between liquid water and two defective sheets,
for the GRA-V1 (left) and GRA-2H (right) defects. After dissociating a water molecule,
reactive defects form a protrusion and can hydrogen bond with the liquid; both effects lead
to an increase of liquid-solid friction. Bottom) Hydrogen bonding statistics for the GRA-V1
(left) and GRA-2H (right) defects. The structure of the dissociated water molecule strongly
impacts its ability to form hydrogen bonds: the oxygen atom of the fully dissociated water
on the GRA-V1 defect acts only as an acceptor of hydrogen bonds, whereas the hydroxyl at
the GRA-2H defect can both accept and donate hydrogen bonds with the liquid.
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with the water film than the GRA-V1 defect. This points to the critical role of hydrogen

bonding: indeed, the increase in friction for the GRA-2H defect is roughly twice that for

the GRA-V1, which is related to the twofold increase of hydrogen bonding ability of the OH

group present at 2H defects as compared to the oxygen adatom of the fully dissociated water

on the vacancy.

Before discussing the consequences of these results to nanofluidic transport, we synthesize

the key information gleaned from the AIMD simulations in a manner that can be extended

to any defect concentration. As detailed in the SI, by identifying the effect of one defect on

friction with that of a perfectly slipping hemisphere on top of the surface,23,60 one can define

an effective hydrodynamic radius Reff of the defects. The friction coefficient then depends

linearly on the defect surface coverage c iii:

λ = λ0 + 2πηReffc, (3)

where λ0 is the friction coefficient of the defect-free surface and η the liquid viscosity. The

effective radius, which controls the ratio of friction increase to defect coverage, can be deduced

from the simulation results, realized at a given defect coverage c = 1/A, where A is the

area of the simulated interface. Using the experimental bulk water viscosity, we obtain

Reff = (λ−λ0)/(2πηc) = 84 pm for the GRA-V1 defect, 170 pm for the GRA-2H defect, and

104 pm for the BN-2H defect.

Now that we have derived a model for the dependence of friction on defect concentration,

we can come back to two of the experimental questions motivating this work. Firstly, can

we expect defects appearing inevitably during the fabrication to affect interfacial friction

significantly? From Eq. (3) one can estimate a critical defect coverage above which friction

will increase by e.g. a factor of two: c2λ0 = λ0/(2πηReff). This criterion can be used to

iiiNote that Eq. (3) only holds if the individual defects contributions to the friction force can be summed
independently, i.e. in the dilute limit. However, a previous work has shown that the dilute-limit expression
remains valid up to coverages cmax ∼ 0.2R−2

eff .60 At defect coverages higher than cmax the spatial arrangement
of the defects may alter the dependence of the friction coefficient.61 However, the dilute-limit approximation
should hold for the simulated systems, where c < 0.01R−2

eff .
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estimate if the level of defects produced by a given process is acceptable or not. For the

reactive defects considered in this work, c2λ0 ranges between 0.09 (for GRA-2H defects) and

0.48 nm−2 (for BN-2H defects), corresponding roughly to 1 defect per 400 to 80 atoms. In

the SI we go further and plot λ versus defect coverage for each of the reactive defects over a

broad range of coverage (Fig. S5).

Secondly, when defects are desirable, e.g. charged groups for nanofluidic energy conver-

sion, can we predict the energy conversion performance of a given type of defect? At the

core of nanofluidic energy conversion lie the so-called electrokinetic (EK) effects, coupling

different types of transport (hydrodynamic, ionic, thermal. . . ) at interfaces.11,15,16 EK effects

are driven by surface charge, usually found in the form of charged defects at the surface.

The amplitude of EK effects is therefore expected to increase with the coverage of charged

defects. However EK effects are also strongly affected by interfacial hydrodynamics, and can

be amplified by liquid-solid slip.17–24 Since the extent of slip is inversely related to interfacial

friction (as detailed in the SI), increasing the defect coverage will reduce slip, and hence the

amplitude of EK effects. Consequently, defects are both a driving force and a hindrance for

EK effects, and energy conversion performance will depend crucially on how defects modify

interfacial hydrodynamics (as an example, the conversion between mechanical and electrical

energy is discussed in the SI). By evaluating the effective hydrodynamic radius of different

defect types, AIMD simulations can therefore be instrumental in identifying good candidates

for future nanofluidic devices.

In conclusion, we have computed water friction on defective surfaces using ab initio

molecular dynamics. Some defects do not react chemically with water, and have a negli-

gible influence on the liquid-solid friction. Other defects dissociate water molecules. The

dissociated water molecules interact strongly with the liquid water film and the liquid-solid

friction increases significantly. For the range of concentrations investigated, reactive defects

can increase friction up to eight times the value for pristine surfaces. Surprisingly, the in-

crease in friction is not simply controlled by the size of the dissociated water molecule –
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similar for all reactive defects. Instead it is correlated with the hydrogen bonding ability

of the reactive defects, which is mainly controlled by the structure of the dissociated water

molecule. Specifically we found that OH groups with which water can both accept and do-

nate hydrogen bonds have a greater impact on friction than oxygen adatoms, with which

liquid water molecules can only donate hydrogen bonds. Such detailed insight pertaining to

defect chemistry, hydrogen bonding and friction would not have emerged from traditional

non-dissociable force field approaches. Thus although AIMD is computationally demanding,

it is a very powerful tool to investigate water-solid friction. Finally, we have shown how

the information provided by AIMD can be used to estimate the performance of nanofluidic

devices in the presence of defects with arbitrary surface coverage. We hope that our work

will help understanding transport through real nanofluidic devices – which often suffer from

reproducibility problems, and will stimulate the design of interfaces with optimal defect

characteristics and concentration for applications in water treatment and sustainable energy

harvesting.
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