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Summary. Multilevel modelling is a popular approach for longitudinal data analysis. Statistical
models conventionally target a parameter at the centre of a distribution. However, when the
distribution of the data is asymmetric, modelling other location parameters, e.g. percentiles,
may be more informative. We present a new approach, M -quantile random-effects regression,
for modelling multilevel data. The proposed method is used for modelling location parameters
of the distribution of the strengths and difficulties questionnaire scores of children in England
who participate in the Millennium Cohort Study. Quantile mixed models are also considered.
The analyses offer insights to child psychologists about the differential effects of risk factors on
children’s outcomes.
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1. Introduction

Early exposure to family poverty, stressful life events and neighbourhood disadvantage con-
stitute risks for children’s emotional and behavioural adjustment (Bradley and Corwyn, 2002;
Flouri et al., 2010; Goodnight et al., 2012). The cumulative risk literature indicates that, as
risk factors accumulate, children’s emotional (internalizing) and behavioural (externalizing)
problems increase (Trentacosta et al., 2008). Internalizing behaviours are typified by inward
symptoms such as being withdrawn, fearful or anxious. Externalizing behaviours are outward
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and may be described as aggressive, non-compliant, impulsive or fidgety. One widely used mea-
sure of children’s emotional and behavioural problems in psychological research is the strengths
and difficulties questionnaire (SDQ) (Goodman, 1997). The SDQ score is the sum of the main
caregiver’s responses to a series of items that describe children’s internalizing and externalizing
problems. The 25-item SDQ comprises five domains measured with five items each, namely
emotional symptoms (e.g. ‘many fears; easily scared’), peer problems (e.g. ‘gets on better with
adults than with other children’), conduct problems (e.g. ‘often lies or cheats’), hyperactivity
(e.g. ‘restless; overactive; cannot stay still for long’) and prosocial behaviour (e.g. ‘shares readily
with other children’). For each item, 0 is given if the response is not true, 1 if somewhat true and
2 if certainly true. The internalizing SDQ score is the sum of responses to the five emotional
symptoms items and the five peer problems items. Therefore, the range of internalizing scores
is 0–20. The externalizing score is the sum of responses to the five conduct problems items and
the five hyperactivity items (also ranging from 0 to 20). The SDQ is a valid and reliable measure
of children’s emotional, social and behavioural difficulties. More information can be found at
www.sdqinfo.com. Recent literature (Flouri et al., 2014a; Midouhas et al., 2014) has sys-
tematically examined the effects of neighbourhood and family risk factors on the Millennium
Cohort Study (MCS) children’s trajectories of SDQ scores. Owing to the longitudinal structure
of the cohort data, these studies make extensive use of multilevel models, which are also referred
to as random-effects or mixed models (Steele, 2008).

Conventionally, random-effects models target the expected value of the conditional distribu-
tion of the outcome given a set of covariates. When the distribution of the outcome is asym-
metric, modelling other location parameters, e.g. percentiles of the conditional distribution,
may offer a more complete picture compared with a model that describes only the centre of a
distribution. The distribution of SDQ outcomes is typically asymmetric. This is illustrated in
Fig. 1. To the best of our knowledge, the above-mentioned studies that analyse the SDQ scores
fail to recognize the asymmetric shape of the SDQ distributions. Modelling the conditional
mean may therefore not offer the best summary. An alternative measure of the centre of a dis-
tribution, such as the median, may be more appropriate in this case. To illustrate, it is possible
that the effect of certain risk factors on the SDQ scores is not the same across the distribution of
SDQ scores. For example, maternal depression consistently has a strong association with mean
child adjustment (Kiernan and Huerta, 2008) but may have a more pronounced effect at the
top end where children display a high, perhaps abnormal, level of adjustment problems than at
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Fig. 1. Histogram for (a) SDQ internalizing and (b) externalizing problems scores



Analysis of Strengths and Difficulties Questionnaire Scores 429

the bottom end of the distribution. Quantifying the effects of risks factors in this way can offer
useful insights to child psychologists.

The idea of modelling location parameters has a long history in statistics. The seminal paper
by Koenker and Bassett (1978) is usually regarded as the first detailed development of quan-
tile regression, which is a generalization of median regression. Extensions of quantile regres-
sion for modelling multilevel-type data have been considered by several researchers including
Koenker (2004) and Geraci and Bottai (2007, 2014). Koenker (2004) proposed the use of penal-
ized quantile regression for longitudinal data, where the penalization is aimed at the shrinkage
of individual effects. Geraci and Bottai (2007, 2014) proposed a linear quantile mixed model
(LQMM) estimated by using maximum likelihood and the link between quantile regression and
the asymmetric Laplace distribution. The distribution of the random effects is assumed to be
either Gaussian or Laplace, with the latter offering robustness properties. The use of the asym-
metric Laplace distribution by Geraci and Bottai (2007, 2014) is mainly for convenience as it
provides a parametric link between maximum likelihood estimation and minimizing the sum of
absolute deviations. Inference for the model parameters is performed by using a bootstrap based
on resampling the sample data. Estimation and inference are facilitated by the lqmm function
in R (R Development Core Team, 2010).

There are, however, alternatives to quantile regression, such as M-quantile (MQ) regression
(Breckling and Chambers, 1988; Chambers and Tzavidis, 2006), which is a quantile-like gen-
eralization of regression based on influence functions (M-regression), and expectile regression
(Newey and Powell, 1987), which is a quantile-like generalization of mean regression. Currently,
the available MQ regression models assume independent observations and hence do not allow
for the analysis of multilevel-type data. Although approaches to M-estimation in random-effects
models have been proposed by a series of researchers (Huggins, 1993; Richardson and Welsh,
1995), the focus of their work is on modelling a location parameter at the centre of the con-
ditional distribution rather than the entire conditional distribution. This paper proposes an
extension of MQ regression to M-quantile random-effects (MQRE) regression.

In particular, from a methodological point of view the present paper proposes a novel ap-
proach for modelling location parameters by using MQRE regression. The methodology pro-
posed can be viewed as an alternative to the LQMM that was proposed by Geraci and Bot-
tai (2014), although the two models target different population parameters. Furthermore, the
LQMM allows for the specification of both random intercepts and random coefficients. In
contrast, the MQRE approach that we propose in this paper can currently accommodate only
random intercepts. From an applied point of view, the present paper extends recent studies on
the effect of risk factors on the SDQ scores of children in England by using MCS data. The paper
further presents a range of existing and newly proposed modelling tools which are available to
the prospective data analyst for modelling a general set of location parameters of a distribution
via quantile and MQRE regression.

Why consider MQs when one key advantage of quantile regression is the more intuitive inter-
pretations? Although not the same, both quantile and MQ models target essentially the same
part of the distribution of interest. As we shall see in this paper, one of the main advantages
of M-estimation is that it easily allows for robust estimation of both fixed and random ef-
fects. Furthermore, because MQs are based on the use of influence functions, we can trade
robustness for efficiency in inference by selecting the tuning constant of the influence func-
tion. Finally, the use of a range of continuous influence function, instead of only an absolute
value of 1 as in quantile regression, can potentially offer computational stability.

The structure of the paper is as follows. In Section 2 we describe the data. Section 3 reviews
random-effects regression and focuses specifically on robust estimation of model parameters.
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In Section 4 we review MQ regression, present the proposed MQRE regression and discuss
estimation and inference. In Section 5 we present the results from the application of MQRE and
quantile random-effects regression (Geraci and Bottai, 2014) to the SDQ scores of the MCS
children in England. In Section 6 we empirically evaluate the properties of MQRE regression by
using Monte Carlo simulation studies under a range of data-generating mechanisms. Finally,
in Section 7 we conclude the paper with some final remarks.

2. The data

The MCS (www.cls.ioe.ac.uk/mcs) is a longitudinal survey drawing its sample from all
births in the UK over a year, from September 1st, 2000. The MCS was designed to overrepre-
sent areas with high proportions of ethnic minorities in England, areas of high child poverty
and the three smaller UK countries. Sweep 1 took place when the children were around 9
months old. Sweeps 2, 3 and 4 took place around ages 3, 5 and 7 years. The MCS provides a
unique source of longitudinal measurements of SDQ at sweeps 2, 3 and 4. Longitudinal data
on the SDQ are now available, providing a unique opportunity for studying the change in SDQ
scores over time and how this is affected by risk factors and other family and child characteris-
tics.

The data that we use in this paper are collected from children who participated in the first four
sweeps of the MCS in England. Our study sample consists of 5000 MCS children in England,
leading to a total sample size for the longitudinal data set equal to n=11972 observations. The
two outcomes of interest, emotional problems (measured by the SDQ internalizing score) and
behavioural problems (measured by the SDQ externalizing score), were collected at ages 3, 5
and 7 years. The data consist of 3837 measurements at the first time point, 4314 at the second
and 3821 at the third. Missing measurements are due to unit or item SDQ non-response in a
given time point, and previous MCS research demonstrates that less favourable family socio-
economic characteristics (e.g. lower parental qualifications) and ethnic minority backgrounds
predict such non-response (Flouri et al., 2014a, b). This is an additional reason for controlling
for the effect of these covariates in the models that we present in Section 5 of the paper.

The key time varying explanatory variables are as follows. Adverse life events, ALE 11, were
measured as the number (out of 11 events) of potentially stressful life events experienced by the
family between two consecutive sweeps. The events, which were derived from available MCS
data and based on the adverse life events scale of Tiet et al. (1998), were family member died,
negative change in financial situation, new step-parent, sibling left home, child got seriously
sick or injured, divorce or separation, family moved, parent lost job, new natural sibling, new
stepsibling and mother diagnosed with or treated for depression. Family poverty, measured
by socio-economic disadvantage, SED 4, combines information on overcrowding (more than
1.5 people per room excluding the bathroom and kitchen), not owning a home, receipt of means-
tested income support and income poverty (below the poverty line defined as 60% of the UK
national median household income). Maternal depression, kessm, is measured by the Kessler
score. An additional time varying variable is neighbourhood deprivation measured by the in-
dex of multiple-deprivation score, imdscore. Furthermore, child’s age (in years, centred near the
mean age—age year scal) and the quadratic effect of child’s age (age2 year scal) were included in
the model. The time constant variables that we considered include maternal education (no qual-
ification (baseline), university degree or General Certificate of Secondary Education, GCSE),
ethnicity (non-white (baseline) or white) and gender (female (baseline) or male). Finally, a de-
sign variable which allows for the stratification of the MCS sampling design was included in the
model. The stratification variable of the MCS consists of three categories, namely the advan-
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Table 1. Summary statistics for the MCS data

Variable Minimum 1st quartile Median Mean 3rd quartile Maximum

SDQ internalizing 0.00 1.00 2.00 2.690 4.00 18.00
SDQ externalizing 0.00 3.00 5.00 5.365 8.00 20.00
ALE 11 0.00 1.00 1.00 1.447 2.00 7.00
kessm 0.00 0.00 2.00 2.767 4.00 24.00
imdscore 1.00 3.00 5.00 5.222 8.00 10.00
SED 4 0.00 0.00 0.00 0.694 1.00 4.00

taged stratum (baseline category), the ethnic stratum, Eng eth stratum, and the disadvantaged
stratum, Eng dis stratum.

Table 1 presents summary statistics for the two outcomes, SDQ internalizing and externalizing
scores, and for some key continuous covariates. The asymmetry in the SDQ outcomes is noted
by examining the mean–median relationship. The average of adverse life events, ALE 11, is 1.447
and the maximum is 7. The mean Kessler score, kessm, is 2.767 but there are cases with much
higher scores of maternal depression with the maximum value equal to 24. 38% of children
have mothers who hold a degree, 49% have mothers with General Certificate of Secondary
Education or other qualification and 13% have mothers with no educational qualification. 51%
of the children are males and 83% are of white background.

The descriptive measures offer information about the unconditional distribution of the two
SDQ outcomes. It is more appropriate, however, to study the conditional distribution of SDQ
scores given a set of covariates. To do so we use a two-level (level 1, measurement occasion; level
2, MCS child) random-intercepts model for the two SDQ outcomes with random effects speci-
fied at the level of the MCS child. The model further adjusts for the effect of adverse life events,
maternal depression, maternal education, socio-economic disadvantage, neighbourhood depri-
vation, gender and ethnicity and accounts for the longitudinal structure of the data. Figs 2 and
3 present normal probability plots of level 1 and level 2 residuals. These indicate severe depar-
tures from the Gaussian assumptions of the random-intercepts model for both SDQ outcomes.
Hence, estimating a robust measure of central tendency and the quantiles of the conditional
distribution of SDQ scores, given the covariates, is worth pursuing.

3. Multilevel models and robust estimation

Suppose that we have data on an outcome variable y and a set of covariates x for n individuals
clustered within d groups. This can be either a longitudinal or a multilevel data set. A popular
approach for modelling hierarchically structured data is to use a random-effects model. In the
simplest case we can define a random-intercepts model

yij =xT
ijβ+ zT

ijγ + εij, i=1, : : : , nj, j =1, : : : , d, .1/

where xij is a p-vector of X, β is a p×1 vector of regression coefficients and zij is a d ×1 vector
of group indicators used for defining the random part of the model. In addition, γ denotes a
d ×1 vector of group-specific random effects, εij is the individual random effect and we assume
that γ ∼N.0,σ2

γId/ and εij ∼N.0,σ2
ε /. Here and throughout the paper Ik is an identity matrix of

size k. One way of obtaining estimates of the fixed effects and the variance components of model
(1) is to employ maximum likelihood estimation. Assuming normality for the error components
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(a)

(b)

Fig. 2. Normal probability plots of (a) level 1 and (b) level 2 residuals derived by fitting a two-level linear
mixed model for SDQ internalizing problems scores
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(a)

(b)

Fig. 3. Normal probability plots of (a) level 1 and (b) level 2 residuals derived by fitting a two-level linear
mixed model for SDQ externalizing problems scores
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and ε⊥γ, the log-likelihood function is

l.β,σ2
γ ,σ2

ε /=− 1
2 log|V|− 1

2 .y −Xβ/TV−1.y −Xβ/, .2/

where y is the n×1 response vector, V =Σε+ZΣγZT, Σε=σ2
ε In, Σγ =σ2

γId and Z is an n×d

matrix of known positive constants. Estimates of β, γ, σ2
γ and σ2

ε are obtained by differentiat-
ing the above log-likelihood with respect to these parameters and then solving the estimating
equations that are defined by setting these derivatives equal to 0. Predicted random effects are
then obtained by using the maximum likelihood estimates of the fixed effects and the variance
components. It is easy to see that in equation (2) we assume a squared loss function. In practice,
however, data may contain outliers that invalidate the Gaussian assumptions. In such a case the
estimated model parameters under equation (2) will be biased and inefficient (Richardson and
Welsh, 1995). One approach to robust estimation of the random-effects model that protects us
against departures from normality is to use an alternative loss function in the log-likelihood
that grows along with the regression residuals at a slower rate than the squared loss function.
This is the approach that was followed by Huggins (1993) and Richardson and Welsh (1995). In
particular, robust maximum likelihood estimation for the random-effects model is performed
by maximizing the modified log-likelihood function

l.β,σ2
γ ,σ2

ε /=−K1

2
log|V|−ρ.r/, .3/

where r = V−1=2.y − Xβ/, ρ is a loss function, ψ is its derivative and K1 = E[εψ.ε/T] with
ε∼N.0, In/. Robust estimates of β, σ2

γ and σ2
ε are obtained by solving the estimating equations

defined by setting the derivatives of the modified log-likelihood with respect to the parameters
equal to 0. This is the robust maximum likelihood proposal I by Richardson and Welsh (1995).
To ensure robustness, ψ.r/ and rTψ.r/ must be bounded. A bounded ρ-function leading to a
redescending ψ fulfils these conditions. An alternative to the use of a redescending ψ-function
is to solve the following estimating equations for σ2

γ and σ2
ε :

1
2
ψ.r/TV−1=2ZZTV−1=2ψ.r/− K2

2
tr.V−1ZZT/ .4/

where K2 = E[ψ.ε/ψ.ε/T] with ε ∼ N.0, In/. Richardson and Welsh (1995) called this robust
maximum likelihood proposal II. It can be viewed as a generalization of Huber’s proposal II
(Huber, 1981). However, there is no likelihood function that has expression (4) as its derivative
with respect to the variance components. For details see Richardson and Welsh (1995).

Robust predicted random effects can be obtained by solving for γ in the estimating equation
(Fellner, 1986)

ZTΣ−1=2
ε ψ{Σ−1=2

ε .y −Xβ−Zγ/}−Σ−1=2
γ ψ.Σ−1=2

γ γ/=0:

An alternative robust estimation approach that can potentially lead to more efficient estimates of
the variance components when there is a small number of groups or when groups contain a small
number of observations is the robust restricted maximum likelihood approach (Richardson and
Welsh, 1995; Staudenmayer et al., 2009).

4. M -quantile regression and extensions to M -quantile random-effects regression

In this paper we are interested in describing the relationship between y and x not only at the
centre of the conditional distribution of y given x but also at other parts of this distribution.
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In this section we start by reviewing M-quantile regression and subsequently extend this to
M-quantile random-effects regression.

4.1. M-quantile regression
The classic regression model summarizes the behaviour of the mean of a random variable y at
each point in a set of covariates x. This provides a rather incomplete picture, in much the same
way as the mean may offer an incomplete picture of a distribution. Instead, quantile regression
summarizes the behaviour at different parts (e.g. quantiles) of the distribution of y at each point
in the set of the xs.

In the linear case, quantile regression leads to a family of hyperplanes indexed by a real
number q∈ .0, 1/. For a given value of q, the corresponding model shows how the qth quantile
of the conditional distribution of y varies with x. For example, if q=0:5 the quantile regression
hyperplane shows how the median of the conditional distribution changes with x. Similarly, for
q=0:1 the quantile regression hyperplane separates the lower 10% of the conditional distribution
from the remaining 90%.

As we mentioned in Section 1, quantile regression can be viewed as a generalization of median
regression. In the same way, expectile regression (Newey and Powell, 1987) is a ‘quantile-like’
generalization of mean regression. MQ regression (Breckling and Chambers, 1988) integrates
these concepts within a framework defined by a quantile-like generalization of regression based
on influence functions (M-regression). The MQ of order q of the conditional density of y given
the set of covariates x, f.y|x/, is defined as the solution MQy.q|x;ψ/ of an estimating equa-
tion

∫
ψq{y −MQy.q|x;ψ/}f.y|x/dy =0, where ψq denotes an asymmetric influence function,

which is the derivative of an asymmetric loss function ρq. In particular, suppose that .xT
i , yi/,

i= 1, : : : , n, indexes the units of a random sample consisting of n observations from the target
population, xT

i are row p-vectors of a known design matrix X and yi is a scalar response vari-
able corresponding to a realization of a continuous random variable with unknown continuous
cumulative distribution function F ; a linear MQ regression model for yi given xi is one where
we assume that

MQyi
.q|xi;ψ/=xT

i βψq, .5/

i.e. we allow a different set of p regression parameters for each value of q∈ .0, 1/. Estimates of
βψq are obtained by minimizing

n∑
i=1
ρq.yi −xT

i βψq/: .6/

Different regression models can be defined as special cases of expression (6). In particular, by
varying the specifications of the asymmetric loss function ρq we obtain the expectile, MQ and
quantile regression models as special cases. When ρq is the squared loss function we obtain the
linear expectile regression model if q �= 0:5 (Newey and Powell, 1987) and the standard linear
regression model if q = 0:5. When ρq is the loss function that was described by Koenker and
Bassett (1978) we obtain linear quantile regression. Throughout this paper we shall take the
linear MQ regression model to be defined by equation (5) when ρq is the Huber loss function
(Breckling and Chambers, 1988):

ρq.u/=
{

.2c|u|− c2/{qI.u> 0/+ .1−q/I.u�0/} |u|>c,
u2{qI.u> 0/+ .1−q/I.u�0/} |u|� c,

where c is the tuning constant, which is bounded away from zero. Setting the first derivative of
expression (6) equal to 0 leads to the estimating equations
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n∑

i=1
ψq.riq/xi =0, .7/

where riq =yi −xT
i βψq,ψq.riq/=2ψ.s−1riq/{qI.riq >0/+ .1−q/I.riq �0/} andψ.u/=uI.−c�

u � c/ + c sgn.u/I.|u| > c/ and s > 0 is a suitable estimate of scale. For example, in the case of
robust regression, s=median|riq|=0:6745. Provided that the tuning constant c is strictly greater
than 0, estimates of βψq are obtained by using iterative weighted least squares. The estimation
algorithm is implemented in R by a simple modification of the iterative weighted least squares
algorithm used for fitting standard M-regression by using the function rlm (Venables and Rip-
ley (2002), section 8.3). Note that this guarantees a unique solution (Kokic et al., 1997) when a
continuous monotone influence function (e.g. Huber proposal 2 with c> 0) is used. The tuning
constant c can be used to trade robustness for efficiency in the MQ regression fit, with increasing
robustness and decreasing efficiency as we move towards quantile regression (c chosen to be
positive and close to 0) and decreasing robustness and increasing efficiency as we move towards
expectile regression (c chosen to be large and positive). Since we cannot set c to 0, it is not pos-
sible to use iterative weighted least squares for quantile regression. However, by setting c to be
very large and positive we define an expectile regression model. The flexibility of MQ regression
is of particular importance for the present paper as this will also allow us to define an expectile
random-effects regression model.

4.2. M-quantile random-effects regression
In this section we assume that the data have group structure (multilevel or longitudinal) as
in Section 3, which is of substantive interest. We extend the linear specification (5) to allow
for the inclusion of random effects when modelling the MQs of the target distribution. This
extension can be useful when analysing multilevel-type data in which case the random effects
aim at capturing unobserved heterogeneity. In the simplest case one can include a group-specific
random intercept in the linear specification for the MQs (5) as follows:

MQyij
.q|xij, γ, j;ψ/=xT

ijβψq + zT
ijγ, .8/

where γ is a d ×1 vector of group random effects.
For fitting equation (8) we propose the use of estimating equations based on asymmetric

loss functions. This novel approach for modelling location parameters is what we call MQRE
regression. Unlike Geraci and Bottai (2007, 2014) who utilized the link between maximum
likelihood estimation under the asymmetric Laplace distribution and quantile regression, we
remain within the M-estimation framework. Since the estimating equations that are obtained
from the modified log-likelihood function (3) are susceptible to multiple solutions, we start from
the robust maximum likelihood proposal II and following Sinha and Rao (2009) we note that
one can extend the idea of asymmetric weighting of residuals by defining the following modified
estimating equations for estimating the regression coefficients and the variance parameters:

XTV−1
q U1=2

q ψq.rq/=0, .9/

1
2
ψq.rq/TU1=2

q V−1
q ZZTV−1

q U1=2
q ψq.rq/− K2q

2
tr.V−1

q ZZT/=0,

1
2
ψq.rq/TU1=2

q V−1
q V−1

q U1=2
q ψq.rq/− K2q

2
tr.V−1

q /=0, .10/

where rq =U−1=2
q .y−Xβψq/ is a vector of scaled residuals with components rijq, Uq is a diagonal

matrix with diagonal elements uijq equal to the diagonal elements of the covariance matrix Vq
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and βψq is the p×1 vector of MQ regression coefficients. Here Vq =Σεq +ZΣγq ZT, Σγq =σ2
γq

Id ,
Σεq =σ2

εq
In and σ2

εq
and σ2

γq
are the MQ-specific variance parameters. Finally, the component

K2q =E[ψq.ε/ψq.ε/T] with ε∼N.0, In/.
For solving equations (9) and (10) we adopt a Newton–Raphson algorithm and the fixed

point iterative method (Anderson, 1973). In particular, the fixed effects are estimated by using
a Newton–Raphson algorithm whereas the variance parameters are estimated by using a fixed
point algorithm. Using the Newton–Raphson optimization method for estimating the variance
parameters can cause convergence problems. It is therefore preferable to use a technique that is
derivative free such as the fixed point iterative method. The steps of the estimation algorithm
are described in Appendix A.

Although prediction of the random-effects vector γ in equation (8) is not the primary focus
in this paper, we outline a possible solution. In particular, the simplest solution is to predict
the random effects by using a modified Fellner equation (Fellner, 1986) at each value of q.
The issue of predicting the random effects is also discussed in Geraci and Bottai (2014) and
our proposed solution is similar to the solution that they proposed. However, the approach
that we use for fitting equation (8) separately at each q makes γ depend on q since these are
functions of MQ-specific parameters (see equation (12) in Appendix A). This raises the ques-
tion of how one then combines these different q-specific estimates of γ since they will clearly
be correlated over q. An alternative approach that avoids this issue would be to modify the
q-specific fitting process that was described above to allow for a common γ across q as in equation
(8) or by imposing a suitable group-specific ordering over these q-specific predicted values. Both
approaches can be potentially achieved by adding suitable constraints to this fitting procedure.
Exploring alternative approaches to the prediction of the random-effects vector γ in equation
(8) remains an open problem that we are currently investigating.

The estimating equations under expression (2) can be obtained as a special case of equations
(9) and (10) for specific choices of ρq and q. In particular, when q = 0:5 and ρq is the squared
loss function we obtain the estimating equations under expression (2). When q = 0:5 and we
use a loss function other than the squared loss, e.g. the Huber loss function, we obtain the
estimating equations of the robust maximum likelihood proposal II. For q-values other than 0.5
and for different choices of ρ, solving equations (9) and (10) will provide estimates of fixed effects
βψq and variance parameters, σ2

εq
and σ2

γq
, respectively. More specifically, using a squared loss

function in equations (9) and (10) at q �= 0:5 results in the expectile random-effects regression
whereas using the Huber loss function in equations (9) and (10) results in MQRE regression.

Inference for the parameters of the linear random-effects model when the Gaussian as-
sumptions hold has been studied by Hartley and Rao (1967) and Miller (1977). Huber (1967)
showed the consistency and asymptotic normality of ‘maximum-likelihood-type’ estimators
(M-estimators). The work of Huber (1967) is specifically linked to robust estimation problems
and his arguments were used by Welsh and Richardson (1997) to propose robust inference for
the parameters of the linear random-effects model. Inference for the parameters of the MQ
and expectile random-effects regression is based on a Taylor series approximation. Details are
given in Appendix B. An alternative approach for inference is by using the bootstrap. A re-
cent example of the use of the parametric bootstrap in the case of robust estimation of the
parameters of a random-effects model has been given by Sinha and Rao (2009). A significant
drawback to using the bootstrap in the case of MQRE regression is the computation time
that is required for performing a large number of bootstrap replications. We have performed
some limited empirical assessment of the parametric bootstrap procedure and the results are
consistent with those obtained from the analytic approximation based on the Taylor series
expansion.
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5. Analysis of the Millennium Cohort Study data

In this section we present longitudinal modelling of the SDQ internalizing and externalizing
scores for our sample of MCS children. In light of the substantive literature that was described
in Section 1, we are mainly interested in the effect of family and neighbourhood risk factors on
young children’s emotional and behavioural problems. We modelled the effects of the following
time varying and time constant variables on SDQ scores at ages 3, 5 and 7 years: adverse
life events, socio-economic disadvantage, maternal depression, maternal education, ethnicity,
gender, neighbourhood deprivation, child’s age and the quadratic effect of child’s age. Details
about these variables are provided in Section 2. We further control for the effects of stratification
by including the stratification variable in the models.

For longitudinal modelling of location parameters of the distributions of the internalizing
and externalizing scores we used the following models:

(a) the proposed MQRE model (Section 4) with random intercepts specified at the level of
the MCS member,

(b) the LQMM (Geraci and Bottai, 2014) with random intercepts specified at the level of the
MCS member,

(c) the LQMM (Geraci and Bottai, 2014) with random intercepts specified at the level of the
MCS member and random slopes (coefficients) specified for age and

(d) the linear random effects (LRE) model (1) for the mean (produced by using the lme
function in R).

In addition to the MQRE model proposed, the reason for using the LQMM (Geraci and Bottai,
2014) in the application is to inform the prospective data analyst about the range of modelling
tools that are available.

The lqmm function in R, that estimates the LQMM (Geraci and Bottai, 2014), allows for the
specification of both random intercepts and random coefficients. In contrast, MQRE regression
allows only for random intercepts. Random intercepts imply a uniform (exchangeable) correla-
tion structure whereas random slopes allow the correlation structure to depend on age, which
may offer a more realistic structure for repeated measures data. Although possible, allowing
for random slopes in quantile random-effects models is complex and can potentially result in
convergence problems when fitting the model. In contrast, quantile models with a random-
intercepts specification have a correlation structure that is simpler to estimate while allowing for
modelling the entire conditional distribution of the outcome. The MQRE and LQMM results
are not directly comparable as these models are targeting different location parameters. How-
ever, both models attempt to model location parameters that are associated with the same part
of the conditional distribution of SDQ scores.

5.1. Results for externalizing scores
Table 2 presents the results of the MQRE random-intercepts model. The parameters of the
MQRE model are estimated by using the algorithm in Appendix A (see also Section 2). The
intercepts are estimates of location parameters (MQs in the case of MQRE regression) of the
SDQ externalizing score of a child at age 5 years (age is centred) when setting the categorical
covariates to the corresponding baseline values and the continuous variables to 0. The estim-
ated regression coefficients are consistent with what theory predicts. Males appear to have
higher SDQ scores compared with females. Increasing adverse life events, socio-economic dis-
advantage, maternal depression, neighbourhood deprivation and lower maternal education are
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Table 2. Results—MQRE random-intercepts model for externalizing scores†

Variable Results for the following values of q:

0.1 0.25 0.5 0.75 0.9

Intercept 1.972 (0.197) 2.959 (0.208) 4.265 (0.231) 5.774 (0.276) 7.174 (0.341)
age year scal −0.349 (0.013) −0.401 (0.013) −0.456 (0.015) −0.476 (0.018) −0.455 (0.023)
age2 year scal 0.136 (0.009) 0.171 (0.009) 0.219 (0.009) 0.258 (0.011) 0.274 (0.016)
ALE 11 0.074 (0.025) 0.098 (0.025) 0.131 (0.027) 0.172 (0.033) 0.208 (0.043)
SED 4 0.089 (0.037) 0.120 (0.038) 0.180 (0.041) 0.250 (0.048) 0.301 (0.057)
kessm 0.150 (0.011) 0.180 (0.011) 0.211 (0.012) 0.236 (0.015) 0.265 (0.019)
degree −1.063 (0.133) −1.430 (0.143) −1.875 (0.160) −2.180 (0.185) −2.298 (0.217)
GCSE −0.421 (0.130) −0.632 (0.140) −0.917 (0.154) −1.078 (0.174) −1.110 (0.198)
white 0.024 (0.113) 0.061 (0.119) 0.126 (0.135) 0.185 (0.161) 0.179 (0.201)
male 0.658 (0.065) 0.804 (0.071) 0.968 (0.081) 1.094 (0.099) 1.191 (0.121)
imdscore −0.022 (0.014) −0.026 (0.015) −0.035 (0.017) −0.050 (0.021) −0.049 (0.026)
Eng eth stratum 0.110 (0.140) 0.212 (0.149) 0.300 (0.168) 0.242 (0.197) 0.139 (0.243)
Eng dis stratum 0.160 (0.083) 0.267 (0.092) 0.401 (0.105) 0.486 (0.131) 0.579 (0.160)
σ2
γq

0.708 — 2.564 — 5.718 — 4.754 — 2.127 —

σ2
εq 0.975 — 2.633 — 4.762 — 4.073 — 2.388 —

†Point estimates with standard errors in parentheses.

associated with higher SDQ scores. In addition, after controlling for neighbourhood and family
characteristics, we do not find an ethnicity effect.

The grey area in Fig. 4 displays 95% confidence intervals of the MQRE parameters for vari-
ous MQs for some selected risk factors (maternal depression, socio-economic disadvantage and
higher versus no maternal educational qualifications). The MQRE standard errors are computed
by using the methodology in Section 4.2 and in Appendix B. The bold dotted curve presents
the corresponding parameter estimates that were obtained under the LRE model. This model is
targeting the conditional expectation of the externalizing score given the explanatory variables.
The two dotted curves around the bold dotted curve present the upper and lower bounds of
95% confidence intervals. The most interesting aspect of this analysis is that it allows for the
estimation of the effect of covariates at different parts of the distribution of SDQ scores. As
expected, increasing values for the risk factors such as SED 4, maternal depression and lower
maternal education are associated with increased SDQ scores. The effect of these covariates
appears to be more pronounced when looking at the upper tail compared with the lower tail of
the distribution. For example, the disparity in the externalizing scores of children with mothers
who have higher educational qualifications, compared with children with mothers who have
no educational qualifications, is smaller at the lower part of the distribution compared with
the upper part of the distribution. This may suggest that the protective role of higher maternal
education is more pronounced for children with more externalizing problems. Maternal depres-
sion also appears to have a stronger effect at the top end, compared with the lower end, of the
distribution. We revisit these results in the next section and we draw some comparisons between
the externalizing scores results and the results for the internalizing scores by using relevant
substantive literature.

The results for the LQMM are shown in Table 3 for the random-intercepts model and in Table 4
for the random-slopes model. Standard errors in this case are computed by using the bootstrap
estimator that was proposed by Geraci and Bottai (2014). To start we note the differences
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Fig. 4. Confidence intervals for (a) the intercept, (b) SED 4, (c) kessm and (d) degree

between the parameter estimates of the median and mean models. The estimated level 2 variance
component from the median model is smaller than the corresponding estimate from the mean
model (see σ2

γq
in Table 3). The MQRE level 2 variance component lies between the LQMM

and the LRE components (see σ2
γq

in Table 2). These results are as expected and the differences
may be explained by the diagnostics that we presented in Section 2. As expected, in most cases
the standard errors of the robust estimates are also somewhat higher than the corresponding
standard error estimates from the LRE model.

The estimated intercepts from the LQMM random-intercepts model (Table 3) present esti-
mates of the corresponding quantiles of the SDQ externalizing scores distribution for a baseline
MCS child. The asymmetry in this distribution is reflected by the mean–median relationship,
which is consistent with the findings in Section 2. The results of the LQMM random-intercepts
model are comparable with the results obtained with MQRE regression. As we discussed ear-
lier, the LQMM and MQRE regression target different population location parameters. The
LQMM results are easier to interpret. The MQRE model, in contrast, targets the same part of
the conditional distribution as the LQMM but the interpretation of the results is less intuitive.
From the perspective of the data analyst, however, both models can be used to look at the entire
distribution of the outcome accounting for the longitudinal structure of the data. Currently,
one methodological advantage of the LQMM approach is that it allows for the specification of
more complex correlation structures (e.g. random slopes). Table 4 presents the results from the
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Table 3. Results—LQMM random-intercepts model for externalizing scores†

Variable Results for the following values of q:

0.1 0.25 0.5 LRE—mean 0.75 0.9

Intercept 1.905 3.174 4.065 4.434 5.033 6.073
(0.298) (0.269) (0.274) (0.218) (0.282) (0.328)

age year scal −0.336 −0.374 −0.433 −0.442 −0.467 −0.478
(0.026) (0.019) (0.020) (0.019) (0.019) (0.033)

age2 year scal 0.141 0.162 0.212 0.222 0.255 0.287
(0.017) (0.010) (0.011) (0.010) (0.015) (0.018)

ALE 11 0.121 0.128 0.127 0.134 0.187 0.124
(0.051) (0.028) (0.043) (0.025) (0.042) (0.046)

SED 4 0.085 0.132 0.252 0.184 0.260 0.294
(0.060) (0.059) (0.049) (0.034) (0.096) (0.069)

kessm 0.169 0.208 0.215 0.206 0.252 0.233
(0.026) (0.019) (0.016) (0.010) (0.017) (0.023)

degree −1.212 −1.384 −1.660 −1.893 −1.546 −1.828
(0.176) (0.209) (0.180) (0.141) (0.161) (0.191)

GCSE −0.351 −0.862 −0.829 −0.905 −0.570 −0.743
(0.178) (0.166) (0.161) (0.129) (0.167) (0.180)

white 0.119 0.057 0.283 0.142 0.311 0.629
(0.146) (0.138) (0.164) (0.134) (0.135) (0.163)

male 0.653 0.756 0.958 0.980 1.189 1.122
(0.139) (0.097) (0.077) (0.082) (0.119) (0.124)

imdscore −0.006 −0.029 −0.037 −0.036 −0.048 −0.035
(0.030) (0.026) (0.018) (0.017) (0.031) (0.043)

Eng eth stratum −0.069 −0.047 0.296 0.271 0.543 0.625
(0.159) (0.209) (0.168) (0.167) (0.166) (0.164)

Eng dis stratum −0.017 0.282 0.282 0.422 0.827 0.903
(0.111) (0.106) (0.103) (0.106) (0.114) (0.111)

σ2
γq

3.369 4.392 5.199 6.164 6.163 6.717
— — — — — —

†Point estimates with standard errors in parentheses.

LQMM that, in addition to a random intercept, includes a random slope on age. However, when
fitting the random-slopes model we experienced slow convergence for quantiles at the tails of the
distribution whereas for the median fit the estimated variance component of the random slope is
very close to 0. These results suggest that a random-intercepts specification may present a more
feasible approach that allows at the same time for modelling different parts of the distribution
of externalizing scores.

5.2. Results for internalizing scores
Table 5 presents the results of the random-intercepts MQRE. As with the externalizing problems,
the estimated regression coefficients for internalizing scores are consistent with child develop-
ment theory. The grey area in Fig. 5 displays 95% confidence intervals of the MQRE parameters
for various quantiles and for selected key risk factors.

After controlling for family and area characteristics, socio-economic disadvantage is signifi-
cantly associated with internalizing scores only at q=0:5 and q=0:75. This is in contrast with the
more pronounced effect of socio-economic disadvantage, across the distribution, that we found
for externalizing scores. This is in line with findings from a large number of studies showing that,
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Table 4. Results—LQMM random-slopes model for externalizing scores†

Variable Results for the following values of q:

0.1 0.25 0.5 LRE—mean 0.75 0.9

Intercept 1.937 3.200 4.057 4.454 5.035 5.906
(0.309) (0.264) (0.298) (0.217) (0.280) (0.310)

age year scal −0.353 −0.396 −0.432 −0.442 −0.467 −0.471
(0.030) (0.018) (0.019) (0.014) (0.023) (0.032)

age2 year scal 0.184 0.194 0.211 0.225 0.255 0.215
(0.027) (0.013) (0.011) (0.009) (0.022) (0.035)

ALE 11 0.122 0.115 0.132 0.130 0.187 0.134
(0.055) (0.030) (0.041) (0.025) (0.042) (0.050)

SED 4 0.064 0.116 0.258 0.173 0.260 0.308
(0.064) (0.060) (0.059) (0.034) (0.101) (0.093)

kessm 0.202 0.195 0.214 0.201 0.252 0.241
(0.025) (0.018) (0.014) (0.010) (0.020) (0.028)

degree −1.244 −1.446 −1.665 −1.902 −1.546 −1.805
(0.181) (0.206) (0.187) (0.141) (0.168) (0.190)

GCSE −0.352 −0.774 −0.857 −0.919 −0.570 −0.741
(0.182) (0.167) (0.176) (0.129) (0.164) (0.194)

white 0.200 0.130 0.299 0.149 0.309 0.459
(0.150) (0.143) (0.186) (0.134) (0.142) (0.155)

male 0.670 0.764 0.964 0.993 1.189 1.169
(0.140) (0.096) (0.086) (0.082) (0.136) (0.123)

imdscore −0.005 −0.028 −0.040 −0.036 −0.048 0.001
(0.028) (0.025) (0.018) (0.017) (0.029) (0.045)

Eng eth stratum −0.071 0.062 0.305 0.274 0.541 0.683
(0.162) (0.215) (0.174) (0.167) (0.161) (0.185)

Eng dis stratum 0.111 0.233 0.289 0.422 0.826 0.830
(0.115) (0.100) (0.110) (0.106) (0.121) (0.113)

σ2
γq

3.996 4.631 5.139 6.478 6.163 6.960
— — — — — —

σ2
γq

age 0.158 0.179 0.000 0.263 0.000 0.000
— — — — — —

†Point estimates with standard errors in parentheses.

in general, poverty and material deprivation are less consistently and less strongly associated
with children’s internalizing problems compared with externalizing problems (Costello et al.,
2010; Dearing et al., 2006). This differential effect of poverty is not surprising considering that,
in general, genetic influences are modest and environmental influences are large for antisocial
behaviour relative to other childhood disorders (Plomin et al., 1997). Externalizing problems
may therefore be more malleable than internalizing problems in response to environmental
changes.

In contrast, maternal depression is significantly associated with increased internalizing scores.
This effect is also clearly more pronounced (compared with the results for externalizing scores)
at the top end of the distribution. Although maternal depression is related to both externalizing
and internalizing problems, depression as a construct is more associated with internalizing
problems such as emotional symptoms. The top end of the distribution may represent children
with abnormal problems (or disorders) whose scores are likely to be affected by several factors
contributing to maternal depression effects including genetic transmission or poor parenting
(Goodman and Gotlib, 1999). Importantly, there is recent evidence that the mechanisms of risk
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Table 5. Results—MQRE random-intercepts model for internalizing scores†

Variable Results for the following values of q:

0.1 0.25 0.5 0.75 0.9

Intercept 1.088 (0.097) 1.813 (0.116) 2.904 (0.157) 4.249 (0.214) 5.656 (0.293)
age year scal −0.042 (0.007) −0.049 (0.008) −0.043 (0.010) 0.005 (0.014) 0.089 (0.022)
age2 year scal 0.034 (0.005) 0.050 (0.005) 0.075 (0.007) 0.099 (0.009) 0.113 (0.015)
ALE 11 0.020 (0.012) 0.037 (0.014) 0.075 (0.019) 0.128 (0.026) 0.169 (0.037)
SED 4 0.026 (0.018) 0.035 (0.021) 0.061 (0.027) 0.106 (0.037) 0.093 (0.051)
kessm 0.086 (0.007) 0.116 (0.008) 0.164 (0.009) 0.221 (0.013) 0.274 (0.017)
degree −0.573 (0.068) −0.794 (0.081) −1.100 (0.104) −1.330 (0.136) −1.456 (0.180)
GCSE −0.372 (0.065) −0.531 (0.078) −0.736 (0.101) −0.834 (0.131) −0.813 (0.169)
white −0.232 (0.058) −0.327 (0.070) −0.484 (0.096) −0.664 (0.132) −0.805 (0.176)
male 0.062 (0.031) 0.085 (0.038) 0.136 (0.051) 0.190 (0.071) 0.271 (0.100)
imdscore −0.019 (0.007) −0.027 (0.008) −0.047 (0.011) −0.076 (0.015) −0.106 (0.023)
Eng eth stratum 0.134 (0.072) 0.204 (0.087) 0.303 (0.115) 0.271 (0.160) 0.159 (0.216)
Eng dis stratum 0.096 (0.039) 0.124 (0.048) 0.149 (0.065) 0.121 (0.094) 0.111 (0.134)
σ2
γq

0.147 — 0.631 — 1.958 — 2.108 — 1.074 —

σ2
εq 0.285 — 0.989 — 2.480 — 2.723 — 1.895 —

†Point estimates with standard errors in parentheses.

from parental depression to externalizing problems are different from those for internalizing
problems. For example, Silberg et al. (2010) showed that, whereas internalizing problems were
accounted for solely by environmental factors, both environmental and genetic factors were
significant in the association between parental depression and childhood externalizing problems.
As with externalizing problems, the protective effect of higher maternal education is present also
for internalizing problems.

Turning now to the results from the LQMM random-intercepts model in Table 6, again we
note that these are in line with the MQRE results. However, with the LQMM we experienced
more problems with the convergence of the algorithm, which demonstrates that estimating more
extreme quantiles can be sometimes challenging. In contrast, estimation with MQRE regression
was smoother but this comes at the cost of modelling location parameters that are more difficult
to interpret. Table 7 presents the results from the LQMM that includes a random slope on age.
For this model we experienced slower convergence when estimating the lower quantiles. Finally,
the comments on the relationship between the mean and median fits in Section 5.1 also apply
to the results for the internalizing scores.

6. Simulation study

In this section we present results from a Monte Carlo simulation study that was used for assessing
the performance of MQRE regression at q=0:5, 0:75, 0:9. The objective of this simulation study
is twofold. First, we assess the ability of MQRE regression to account for the dependence
structure in hierarchical data and hence provide better efficiency compared with models that
ignore this dependence structure. Second, we empirically evaluate the analytic approximations
for estimating the standard errors of the model parameters. For both aims, data are generated
under the two-level location–shift model

yij =100+2x1ij +γj + "ij, i=1, : : : , nj, j =1, : : : , 100,
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Fig. 5. Confidence intervals for (a) the intercept, (b) ALE 11, (c) kessm and (d) degree

where the group-specific sample sizes nj vary between 5 and 20, leading to a total sample size
of n = 1259. The values of x1 ∼ U[0, 20] as well as the sample sizes nj are kept constant over
the Monte Carlo replications. The level 1 and level 2 error terms γj and "ij are independently
generated according to four scenarios:

(a) [N, N], normal distributions—γ∼N.0, 3/ and "∼N.0, 5/;
(b) [T , T ], t-distributions—γ∼ t.3/ and "∼ t.3/;
(c) [N, Lap], normal and Laplace distributions—γ∼N.0, 3/ and "∼Laplace.0, scale=1:58/,

leading to a level 1 variance of 5;
(d) [γ, "], outliers in both hierarchical levels generated via a contamination mechanism—

γ∼ N.0, 3/ for j = 1, : : : , 90, and γ∼ N.0, 20/ for j = 91, : : : , 100, and " ∼ 0:9N.0, 5/ +
0:1N.0, 150/.

Each scenario is independently replicated R=500 times. Under scenario [N, N] the assumptions
of the random-effects model (1) are valid. Scenarios [T , T ] and [N, Lap] define situations with
clear departures from normality whereas [γ, "] represents a scenario under outlier contamination
in both hierarchical levels. Hence, the assumptions of model (1) are also violated in this case.
The tuning constant c is set to 1:345 for MQRE regression.

Starting with the first aim, we compare the MQRE and the linear MQ regression model



Analysis of Strengths and Difficulties Questionnaire Scores 445

Table 6. Results—LQMM random-intercepts model for internalizing scores†

Variable Results for the following values of q:

0.1 0.25 0.5 LRE—mean 0.75 0.9

Intercept 1.746 1.680 2.934 3.215 3.870 4.355
(0.130) (0.261) (0.161) (0.157) (0.220) (0.184)

age year scal −0.000 −0.000 −0.037 −0.008 −0.041 −0.063
(0.000) (0.009) (0.012) (0.010) (0.016) (0.023)

age2 year scal 0.000 0.000 0.052 0.083 0.096 0.125
(0.000) (0.008) (0.011) (0.008) (0.010) (0.015)

ALE 11 0.000 0.000 0.048 0.093 0.104 0.138
(0.000) (0.010) (0.021) (0.020) (0.035) (0.034)

SED 4 −0.000 0.000 0.099 0.061 0.071 0.105
(0.000) (0.016) (0.039) (0.026) (0.052) (0.051)

kessm 0.000 0.000 0.157 0.177 0.211 0.234
(0.000) (0.034) (0.012) (0.008) (0.016) (0.021)

degree −1.012 −0.687 −0.897 −1.162 −1.142 −0.978
(0.061) (0.114) (0.134) (0.101) (0.142) (0.121)

GCSE −1.012 −0.687 −0.702 −0.718 −0.702 −0.348
(0.061) (0.127) (0.116) (0.092) (0.162) (0.124)

white −0.735 0.008 −0.452 −0.559 −0.499 −0.220
(0.134) (0.204) (0.108) (0.095) (0.142) (0.124)

male 0.000 0.000 0.101 0.173 0.153 0.307
(0.000) (0.009) (0.059) (0.058) (0.079) (0.099)

imdscore 0.000 0.000 −0.030 −0.059 −0.032 −0.095
(0.000) (0.007) (0.014) (0.012) (0.019) (0.017)

Eng eth stratum −0.276 0.008 0.217 0.273 0.592 0.786
(0.115) (0.074) (0.110) (0.119) (0.148) (0.115)

Eng dis stratum 0.000 0.000 0.058 0.148 0.163 0.363
(0.000) (0.016) (0.065) (0.075) (0.097) (0.119)

σ2
γq

0.000 0.750 2.280 2.722 3.562 4.240
— — — — — —

†Point estimates with standard errors in parentheses.

(see Section 4) for which we also use the Huber proposal 2 influence function with c = 1:345.
Although both MQRE regression and MQ regression are based on outlier robust estimation
methods, we expect that the MQRE regression will perform better than MQ regression when
clustering is present. At q = 0:5, MQRE regression is compared with the LRE model (1). We
expect that MQRE regression will perform better than LRE when the normality assumptions are
violated. For location parameters other than q=0:5 we compare the MQRE with MQ models.
In this case we expect that MQRE regression will be superior when outliers and clustering are
present. To compare the various methods we mainly focus on the fixed effects parameters. The
results for the variance parameters are available from the authors on request. For each regression
parameter, performance is assessed with the following measures:

(a) average relative bias ARB, defined as

ARB.θ̂/=R−1
R∑

r=1

θ̂
.r/ −θ

θ
×100,

where θ̂
.r/

is the estimated parameter at quantile q for the rth replication and θ is the
corresponding ‘true’ value of this parameter.
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Table 7. Results—LQMM random-slopes model for internalizing scores†

Variable Results for the following values of q:

0.1 0.25 0.5 LRE—mean 0.75 0.9

Intercept 1.749 1.671 2.942 3.271 4.036 4.311
(0.129) (0.175) (0.152) (0.156) (0.232) (0.256)

age year scal −0.000 −0.000 −0.036 −0.006 −0.018 −0.020
(0.000) (0.010) (0.012) (0.011) (0.018) (0.025)

age2 year scal −0.000 0.000 0.052 0.085 0.095 0.073
(0.000) (0.008) (0.011) (0.007) (0.011) (0.022)

ALE 11 −0.000 0.000 0.047 0.085 0.086 0.112
(0.000) (0.009) (0.023) (0.019) (0.035) (0.043)

SED 4 −0.000 0.000 0.100 0.055 0.067 0.141
(0.000) (0.017) (0.037) (0.026) (0.048) (0.048)

kessm 0.000 0.000 0.157 0.172 0.206 0.212
(0.000) (0.037) (0.012) (0.008) (0.016) (0.024)

degree −1.012 −0.680 −0.896 −1.169 −1.191 −0.837
(0.061) (0.110) (0.142) (0.100) (0.157) (0.144)

GCSE −1.012 −0.680 −0.708 −0.721 −0.789 −0.558
(0.061) (0.116) (0.120) (0.091) (0.169) (0.159)

white −0.737 0.009 −0.450 −0.580 −0.564 −0.388
(0.133) (0.153) (0.114) (0.094) (0.138) (0.149)

male −0.000 0.000 0.098 0.184 0.145 0.116
(0.000) (0.010) (0.062) (0.057) (0.075) (0.107)

imdscore −0.000 0.000 −0.030 −0.060 −0.028 −0.042
(0.000) (0.008) (0.014) (0.012) (0.019) (0.022)

Eng eth stratum −0.274 0.009 0.216 0.280 0.539 0.805
(0.116) (0.056) (0.115) (0.118) (0.151) (0.133)

Eng dis stratum −0.000 0.000 0.054 0.130 0.151 0.247
(0.000) (0.014) (0.062) (0.075) (0.094) (0.145)

σ2
γq

0.000 0.750 2.286 2.922 3.404 4.034
— — — — — —

σ2
γq

age 0.000 0.000 0.000 0.151 0.234 0.274
— — — — — —

†Point estimates with standard errors in parentheses.

(b) relative efficiencies EFF, defined as

EFF.θ̂/= S2
model.θ̂/

S2
MQ.θ̂/

where S2.θ̂/=R−1 ΣR
r=1 .θ̂

.r/ − θ̄/2 and θ̄=R−1 ΣR
r=1 θ̂

.r/
: We use MQ regression with c=

1:345 as a reference because we are mainly interested in assessing the ability of the MQRE
to account for the dependence structure of hierarchical data.

Table 8 reports the simulation results for estimators of the fixed effects under the various
approaches for q = 0:5, 0:75,0:9. Under the scenario [N, N] for q = 0:5, we observe that the
estimators of the fixed effects from LRE regression are more efficient than the corresponding
estimators from MQ regression. This is expected because LRE regression correctly models the
two-level structure of the data. The estimators of the fixed effects of the LRE are also more
efficient than the corresponding estimators from the MQRE model. Under this scenario there
is no reason to employ outlier robust estimation, and doing so results in higher variability for
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Table 9. Empirical standard errors and estimated standard errors
of β̂ψq for q D .0.5, 0.75, 0.9/ using MQRE regression with tuning
constant cD1.345†

Scenario β̂0 β̂1

Empirical Estimated Empirical Estimated
standard standard standard standard

error error error error

q=0.5
1—[N, N] 0.2219 0.2189 0.0118 0.0116
2—[T , T ] 0.1616 0.1567 0.0072 0.0072
3—[N, Lap] 0.2060 0.2127 0.0108 0.0105
4—[γ, "] 0.2635 0.2611 0.0143 0.0143

q=0.75
1—[N, N] 0.2340 0.2288 0.0128 0.0126
2—[T , T ] 0.1850 0.1806 0.0089 0.0084
3—[N, Lap] 0.2212 0.2263 0.0127 0.0121
4—[γ, "] 0.2922 0.2962 0.0169 0.0172

q=0.9
1—[N, N] 0.2624 0.2559 0.0153 0.0152
2—[T , T ] 0.2687 0.2649 0.0133 0.0129
3—[N, Lap] 0.2725 0.2715 0.0180 0.0171
4—[γ, "] 0.4814 0.4693 0.0326 0.0325

†The results are based on R=500 Monte Carlo replications for each
scenario.

the MQRE regression estimators. At q=0:75 and q=0:9, the estimators of the fixed effects of
the MQRE model are more efficient than the corresponding estimators of MQ regression. This
demonstrates the ability of MQRE regression to account for the group structure of the data,
which is something that is not possible when using MQ regression.

The superior performance of MQRE regression is demonstrated in scenarios [T , T ] where the
data are generated under a t-distribution and [",γ] where outliers exist at both hierarchical levels.
In particular, in most cases the estimators of the fixed effects from MQRE regression are more
efficient than the corresponding estimators from MQ or from LRE regression. These results
provide evidence that using MQRE regression protects against outlying values and accounts for
the dependence structure. Finally, it appears that having departures from normality by using
a Laplace distribution (scenario [N, Lap]) does not have a severe effect on the efficiency of
the estimators of the fixed effects in terms of robustness. Nevertheless, we also observe in this
scenario a clear advantage of MQRE compared with MQ regression.

Taking a closer look at ARB for the fixed effects, we observe that all estimation methods have
almost no bias. The bias is computed by assuming that the target population parameters are
the quantiles of the conditional distribution. Hence, the MQRE fits are penalized. Despite this,
Table 8 reveals that for q=0:5 ARB for the slope and intercept is always smaller than 0:1% for
all estimators. The same holds also for the slope at quantile q=0:75 and q=0:9. In the case of
the intercept, ARB is in some cases around 0:3% for q=0:75 and around 0:6% for q=0:9.

Having assessed the performance of MQRE regression, the second aim of this empirical study
is to evaluate the analytic approximations of the standard errors of the fixed effects. Therefore,
we compare the empirical and estimated standard errors under the four scenarios. For each
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scenario and for each estimator θ̂, at q=0:5, 0:75, 0:9, Table 9 reports averages over simulations
of the Monte Carlo standard error S.θ̂/=√{R−1 ΣR

r=1 .θ̂
.r/ − θ̄/2} and the estimated standard

errors of the fixed effects βq. It can be observed that for all scenarios the estimated standard
error of the estimators at q=0:5, 0:75, 0:9 offers a good approximation to the empirical standard
error. Furthermore, for all scenarios the asymptotic standard error of the MQRE regression is,
as expected, larger for location parameters that are closer to the tail of the distribution than for
location parameters that are closer to the centre of the distribution.

7. Discussion

The paper offers to the prospective data analyst tools for modelling a general set of location
parameters in the presence of clustering in the data. In particular, we propose an extension of
MQ regression to MQRE regression.

As illustrated in the real data example, the proposed approach to modelling conditional MQs
can offer a considerably deeper insight to child psychologists into the effect of risk factors on
children’s behavioural problems. This in turn can assist in proposing new substantive theory.
The use of the methodology is facilitated by the availability of a computationally efficient al-
gorithm using C++ in R. The current methodology allows only for random-intercepts and
two-level structures. Future work will extend the proposed methodology to allow for additional
hierarchical levels and more complex correlation structures that include random coefficients.
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Appendix A

The steps of the estimation algorithm are as follows:

Step 1: start by assuming that .σ2
γq

,σ2
εq

/ are known.
Step 2: given these variance parameters, form the covariance matrix Vq, and estimate βψq by solving
the iterative equation

βt+1
ψq =βt

ψq +{XTU−1=2
q Dq.β

t
ψq/U

1=2
q V−1

q X}−1XTV−1
q U1=2

q ψq.rq/,

where Dq.β
t
ψq/ is a diagonal matrix with jth diagonal element Dijq =ψ′

q.rijq/= @ψq.rijq/=@rijq:
Step 3: use the estimates of βψq to obtain estimates of the variance parameters. The estimates of the
variance parameters are obtained by using a fixed point iterative method. This requires us to change
the estimating equations (9) to

ψq.rq/
TU1=2

q V−1
q ZZ

T
V−1

q U1=2
q ψq.rq/−K2q tr

{
V−1

q ZZ
T
V−1

q .ZZ
T

In/

(
σ2
γq

σ2
εq

)}
=0,

ψq.rq/
TU1=2

q V−1
q InV−1

q U1=2
q ψq.rq/−K2q tr

{
V−1

q InV−1
q .ZZ

T
In/

(
σ2
γq

σ2
εq

)}
=0,

by replacing Vq by Vq =σ2
εq

In +σ2
γq

ZZ
T

and using V−1
q Vq =In. The fixed point algorithm of the estimating

equations for the tth iteration can be presented as follows:
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σ2.t+1/
γq

σ2.t+1/
εq

)
=
{

A
(
σ2.t/
γq

σ2.t/
εq

)}−1

a

(
σ2.t/
γq

σ2.t/
εq

)
, .11/

where

A
(
σ2
γq

σ2
εq

)
=
(

K2q tr.V−1
q ZZ

T
V−1

q ZZ
T
/ K2q tr.V−1

q ZZ
T
V−1

q In/

K2q tr.V−1
q InV−1

q ZZ
T
/ K2q tr.V−1

q InV−1
q In/

)

and

a

(
σ2
γq

σ2
εq

)
=
(

1
2ψq.rq/

TU1=2
q V−1

q ZZ
T
V−1

q U1=2
q ψq.rq/

1
2ψq.rq/

TU1=2
q V−1

q InV−1
q U1=2

q ψq.rq/

)
:

Iterative equation (11) is more stable than the Newton–Raphson method. Like any other iterative
algorithm, the fixed point algorithm requires initial values for the parameters. As a result, using well-
defined starting values for the variance parameters is advisable.
Step 4: iterate steps 2 and 3 until convergence.
Step 5: at convergence, predicted random effects at the qth MQ fit are obtained by solving the following
estimating equation with respect to γq:

ZTΣ−1=2
εq

ψq{Σ−1=2
εq

.y −Xβψq −Zγq/}−Σ−1=2
γq

ψq.Σ−1=2
γq

γq/=0: .12/

As can be seen from the steps of the estimation algorithm, predicted random effects are obtained at
convergence, i.e. we start by first estimating the fixed effects and the variance parameters and then, given
estimates of the fixed effects and of the variance parameters, we predict the random effects. The reason
for this, as also pointed out by Sinha and Rao (2009), is that estimates of the variance parameters that
depend on the predicted random effects may be unstable.

Appendix B

The estimators θ̂q = .β̂
T
q , σ̂2

γq
, σ̂2

εq
/T satisfy a set of estimating equations of the form

d∑
j=1

Φqj.θq/=0, .13/

where Φqj.θq/= .ΦT
qjβψq

, Φqjσ2
γq

, Φqjσ2
εq

/T, for particular choices of Φqj.θq/. Under a general response dis-
tribution D, the estimator θ̂q satisfying equations (12) is estimating a root θq of

d∑
j=1

ED[Φqj.θq/]=0: .14/

Under the assumption that the function Φqj.θq/ is a bounded and non-decreasing function and has
bounded first-order derivatives and provided that

−n−1
d∑

j=1
ED[@Φqj.θq/=@θq]→G, .15/

where the .p+2/× .p+2/ matrix G is positive definite, and

n−1
d∑

j=1
ED[Φqj.θq/

T Φqj.θq/]→F, .16/

a Taylor series approximation which holds uniformly in a neighbourhood of θq is

θ̂q ≈θq +G−1n−1
d∑

j=1
Φqj.θq/+op.n−1=2/, as n→∞: .17/
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Following Welsh and Richardson (1997), the covariance matrix of the estimators can be written as
G−1F.G−1/T. The components of the matrix G and the matrix F are available from the authors on request.
The covariance matrix of the estimators can be consistently estimated by Ĝ

−1
F̂.Ĝ

−1
/T where the matrices

Ĝ and F̂ are evaluated at θ̂q.
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