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The joint analysis of brain atrophy measured with magnetic resonance imaging (MRI) and 
hypometabolism measured with positron emission tomography with fluorodeoxyglucose (FDG-PET) 
is of primary importance in developing models of pathological changes in Alzheimer’s disease (AD). 
Most of the current multimodal analyses in AD assume a local (spatially overlapping) relationship 
between MR and FDG-PET intensities. However, it is well known that atrophy and hypometabolism are 
prominent in different anatomical areas. The aim of this work is to describe the relationship between 
atrophy and hypometabolism by means of a data-driven statistical model of non-overlapping intensity 
correlations. For this purpose, FDG-PET and MRI signals are jointly analyzed through a computationally 
tractable formulation of partial least squares regression (PLSR). The PLSR model is estimated and 
validated on a large clinical cohort of 1049 individuals from the ADNI dataset. Results show that the 
proposed non-local analysis outperforms classical local approaches in terms of predictive accuracy while 
providing a plausible description of disease dynamics: early AD is characterised by non-overlapping 
temporal atrophy and temporo-parietal hypometabolism, while the later disease stages show 
overlapping brain atrophy and hypometabolism spread in temporal, parietal and cortical areas.

The multimodal analysis of anatomical and physiological images is of primary importance in developing compre-
hensive models of biological processes and pathologies, and increasing the statistical power of current imaging 
biomarkers. Already, both brain atrophy, measured in magnetic resonance images (MRIs), and hypometabolism, 
quantified by positron emission tomography with fluorodeoxyglucose radiotracers (FDG-PET), are among the 
primary diagnostic biomarkers of Alzheimer’s disease (AD). The information provided by these two imaging 
modalities is correlated, since hypometabolism and neuronal loss are interdependent biological phenomena. 
However, at the present moment, a joint model of the hypometabolism-atrophy relationship in AD has not been 
developed, and current hypotheses on their interaction are mostly based on the quantification of grey matter 
volume and FDG uptake at the regional level.

In recent years, voxel-wise approaches to multimodal analysis in AD have been proposed1. In particular, image 
synthesis techniques based on machine learning have been used to synthesise FDG-PET images from MRIs of 
AD patients for diagnostic purposes2,3. The majority of these approaches are based on the local modelling of 
the relationship between MR and FDG-PET signals, either by considering the voxels independently, or through 
neighborhoods (patches) defined around voxels. However, it is well known that the link between morphology and 
function in the brain is not purely local4. For this reason, local methods may provide only a limited description of 
the link between structure and function in AD.

Several techniques have been proposed for modelling non-overlapping signal correlations in the field of 
functional MRI analysis. For instance, both independent component analysis (ICA) or partial least square (PLS) 
approaches have been successfully applied to the joint analysis of functional activation in the brain and covariates 
drawn from genetic, clinical, or imaging data5–7. In the context of correlation modelling in multimodal imag-
ing analysis, multivariate techniques such as PLS have the appealing characteristic that they do not rely on any 
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hypothesis about the spatial overlap between voxels’ signals. They are thus able to model relationships between 
non-adjacent voxels. Unlike purely local correlation model approaches (for example, those based on voxel-wise 
correspondencies or on patch-based search windows), these methods optimise the latent components describing 
the global correlation of the images treated as multidimensional arrays. This enables them to model the potentially 
significant interactions between voxels located in completely different areas of a single image, or between voxels 
in images of different modalities.

Several multivariate approaches have previously been applied to the multimodal analysis of imaging data 
in neurodegenerative diseases8. Notable approaches include parallel ICA, which has been used to analyze the 
relationships between brain amyloid deposition and either atrophy or hypometabolism9,10, and canonical corre-
lation analysis, which has been used to study the correlation between structural connectivity and brain atrophy11. 
Though PLS itself has been previously applied in the joint analysis of brain metabolism and atrophy12,13, past anal-
yses have been limited to relatively small clinical samples and have focused on solely the first latent component. 
The use of higher-order components may aid in the discovery of more complex correlation structures, though it 
brings with it greater challenges related to stability and replicability.

The aim of this work is to investigate the spatial relationship between brain atrophy and hypometabolism in 
a large clinical cohort of the ADNI dataset, by means of a data-driven PLS statistical model of non-overlapping 
intensity correlations. This is achieved by applying a computationally tractable formulation of PLS regression 
(PLSR) to the joint analysis of non-local intensity correlations in FDG-PET and T1 weighted MR images. Unlike 
previous studies, in this work we extend PLSR to the analysis of the high-order latent components, and we intro-
duce a thorough cross-validation scheme in order to identify the reproducible and biologically relevant latent 
components of joint correlation.

The performance of the PLSR model is compared to a common non-parametric approach for multimodal 
image analysis based on local intensity similarities. The experimental validation shows that the proposed PLSR 
approach outperforms the local reference analysis in terms of predictive accuracy while providing an interpreta-
ble, reproducible and biologically plausible description of the spatial relationship between atrophy and hypome-
tabolism in AD.

Local vs Non-local Correlation Models of Imaging Data
In this section, we introduce the computational models used to compare non-local and local assumptions of 
multimodal intensity correlation. The respective models are a computationally tractable application of PLSR to 
non-local intensity correlation in image data14 and a non-parametric model based on local patch similarities15,16.

Computationally Tractable PLSR in Imaging Data. In the following, let = =XX ( )k k
N

1
s  and = =YY ( )k k

N
1

s  
be the matrices of predictor and predicted image modalities respectively, where X Y{ , }k k  is the multimodal image 
pair sampled at the same voxel grid, of subject k. We assume that X and Y correspond to T1-MR and FDG-PET 
respectively. The size of X and Y is ×N Ns , where N s is the number of individuals, N is the number of image 
voxels, and the images are represented by row vectors.

The partial least squares (PLS) approach is based on the decomposition of the observations through a projec-
tion onto m-dimensional latent spaces defined by the basis vectors = =T t( )l l

m
1 and = =U u( )l l

m
1 such that 

= +X TP ET , and = +Y UQ FT , where P and Q are the associated coefficients, and E and F are matrices of 
residuals. In particular, PLS aims to maximise the covariance of the projections in the latent space: 
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,
2, where w and c are unitary basis vectors of the latent space. Several formula-

tions of PLS have been proposed in different research contexts17–21, and it can be shown that the solution of PLS 
can be obtained from the principal vectors of the singular value decomposition (SVD) of the covariance matrix 
X YT 18. PLS can be iteratively computed as follows:
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3. Deflation step. Decorrelate the data from the principal directions: = −+X X t pi i

i i
T( 1) ( ) , and 

= −+Y Y u ci i
i i

T( 1) ( ) .

We note that the matrix Ri is usually very large (voxels ×  voxels), and its SVD decomposition is generally 
computationally infeasible. However, the SVD step can still be efficiently computed from the eigen-value problem 
associated with the matrix XX YYT T, which is usually of much smaller dimension ×N N( )s s . This approach has 
been proposed previously in14, which focused on the analysis of within-modality non-local intensity correlations 
in neuroimages. In particular, this efficient optimization scheme was used to model either group-wise patterns of 
cortical thickness from MRI, or functional connectivity networks measured in fMRI. In this work, we apply this 
computational approach in the context of multimodal analysis of brain images.

PLSR builds upon the above formulation of PLS by assuming a linear relationship between the vectors t and u, 
i.e. = +U TB H, where B is a latent linear mapping and H is the residual matrix. The PLS model can thus be 
rewritten as = + ∗Y TC FT , where =C BQT T, and ∗ = +F HQ FT  is the residual error. It can be shown that the 
solution of the PLSR is =Y XDPLS where the regression coefficient = +D P BQ( )PLS

T T, and =+ −P P P P( ) ( )T T 1 is 
the right Moore-Penrose pseudoinverse of PT20.
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PLSR model of the non-overlapping spatial correlations in multimodal images. PLSR has a 
number of appealing features that can be exploited in the context of high-dimensional modelling of multimodal 
images. First, the basis of spatial eigen-components, w c{ , }i i , provides a parsimonious and low-dimensional rep-
resentation of the multimodal correlation pattern, and can be used for exploratory analysis and modelling pur-
poses. Second, the loadings 

=X w( )
T

i i
m

1
 are a low-dimensional representation of the individual anatomy that can be 

used to address quantitative analysis problems, such as group-wise comparisons or classification. Finally, PLSR 
defines a transfer function linking the two modalities and, given an individual image X, provides a prediction of 
the associated target modality Y according to the model of non-local signal correlation estimated in the data 
X Y( , ).

Relationship between PLSR and principal component regression. Another intuitive approach to 
multimodal correlation modelling in image data is principal component regression (PCR). This consists of an 
initial PCA step applied separately to the predicted and predictor variables, and a subsequent regression step 
to model the correlations between the resulting low dimensional representations. Both PCR and PLSR yield a 
predictive model using low dimensional latent space, but they differ in how this is driven; while PLSR aims to 
find a subspace that directly maximises the covariance between the predicted and predictor variables, PCR selects 
a latent space that maximises the variability within each variable set separately. For this reason, it may include 
components that are not useful in characterising the relationship between variable sets which may degrade pre-
dictive performance. We therefore prefer PLSR. The interested reader can find an experimental illustration of the 
differences between PLSR and PCR when applied to the problem analysed in this study in Appendix A.

Local Models of Intensity Correlations Based on Patch Similarities. Patch-based methods are 
becoming a popular approach for the estimation of non-linear signal correspondences between different modali-
ties. They have found several successful applications in medical image analysis, such as multi-modal image regis-
tration15, or in FDG-PET synthesis2. This approach is based on the assumption that, given an individual image X,  
the intensities of the target modality Y  can be inferred from the local intensity correspondences observed in a 
database of atlas pairs =X Y{ , }j

A
j
A

j
N

1
A 22. The between-modality voxel-to-voxel mapping → X s Y s( ) ( ) is usually not 

explicitly modelled in a parametric way, but is indirectly inferred from the local intensities of the images Y s( )j
A  

corresponding to the atlases Xj
A most correlated with X. The local correlation model presented here is the same as 

the one proposed in state-of-art approaches in the context of FDG-PET image synthesis16. All subjects images are 
aligned to the target using non-linear registration, and the intensity at a given location is estimated using the most 
similar patch in the database as determined using the local intensity information (the L2 metric). The chosen 
patch size was of 5 voxels.

Analysis of Brain Hypometabolism and Atrophy in Alzheimer’s Disease
Study Participants. Data used in the preparation of this article were obtained from the Alzheimer’s Disease 
Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu, Date of Access: 04/2013). The ADNI was launched 
in 2003 as a public-private partnership, led by Principal Investigator Michael W. Weiner, MD. The primary goal 
of ADNI has been to test whether serial magnetic resonance imaging, positron emission tomography, other bio-
logical markers, and clinical and neuropsychological assessment can be combined to measure the progression of 
mild cognitive impairment and early Alzheimer’s disease.

Patients were selected when both MR and FDG-PET images were available at the baseline timepoint. The 
resulting study cohort consisted of 1049 subjects: 274 healthy controls, 168 patients affected by AD, and 607 
patients with mild cognitive impairment (MCI). Of the latter, 154 subsequently converted to AD during the time 
of the study. Clinical and socio-demographical information are reported in Table 1.

Image Processing. FDG-PET images were obtained at the standardised resolution of 8 mm FWHM, and 
normalised using the mean intensity in the cerebellar grey matter. T1-weighted MR images at both 1.5 and 3.0 
Tesla were included to increase the size of the available sample. A sample specific group-wise space was defined for 
our analysis using iterative non-rigid registration and averaging the grey matter segmented from the MR images. 
Registration was performed using the freely available nifty-reg package23, and grey matter and FDG-PET images 
were resampled to the group-wise space. The resampled grey matter images were modulated by the correspond-
ing Jacobian determinant of the template-to-subject transformation, and subsequently spatially filtered at the 
point spread function of the PET images and downsampled. Thanks to the modulation and to the downsampling 

healthy MCI stable MCI conv AD

N 274 453 154 168

age (years) 74.1 (5.98) 72.16 (7.55) 73.21 (7.37) 75.66 (7.66)

sex (% females) 48 42 41 42

education (years) 16.22 (2.77) 16.01 (2.73) 16.03 (2.67) 15.1 (3.08)

MMSE 28.98 (1.21) 28.11 (1.66) 27.02 (1.75) 23.05 (2.1)

Table 1.  Baseline socio-demographical and clinical information of the cohort of this study. The entries 
for age, education and MMSE indicate group-wise mean and standard deviation in parenthesis. MMSE: mini 
mental state exam.
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operation, the resulting anatomical areas of apparent ventricular and CSF expansion are associated to smaller 
voxel-wise intensity values due to the scaling by the Jacobian determinant values.

Statistical Analysis. Model Estimation and Comparison. The goodness of fit of PLSR and local approaches 
was assessed by cross-validation. The training data was composed of 80 healthy controls, 80 MCI, and 80 AD 
patients, randomly chosen from the study cohort. The data were respectively used to 1) estimate the PLSR latent 
components and regression coefficients, and 2) as an atlas database for the local patch-based method (PM). The 
PLSR model was computed by estimating 30 latent components. The model could be ideally computed by estimat-
ing the 239 latent basis-components corresponding to −N 1 training data samples. The number of estimated 
PLSR components was limited to 30 for practical reasons because, as shown in the next experimental section, the 
stability and reproducibility of the high-order components is generally very low, and they usually provide very 
little contribution to the model performance. The resulting multimodal correlation models were validated on the 
remaining subjects. The experiment was repeated 10 times with different training sets to ensure the generalisation 
of the results. Due to the non-parametric nature of PM, we also compared the PM trained with a leave-one-out 
scheme (1048 training samples per test) in order to use of the largest amount of training data. The predictive 
accuracy was measured by the absolute difference between predicted and observed FDG-PET in temporal, pos-
terior and parietal cortices, and by comparing the average predicted FDG-PET regional values to the SUVR val-
ues independently reported in the ADNI dataset. Figure 1 illustrates the flowchart of the cross-validation scheme 
of a single repeat adopted in the proposed experimental setting.

Reproducibility and Biological Plausibility of PLSR model. We investigated the biological plausibility of the 
non-local correlation pattern of the PLSR model. For this purpose, a linear discriminant analysis (LDA) was 
performed on the coefficients of the latent space associated with the testing subjects, in order to identify the 
mostly discriminative PLS components through leave-one-out. The discriminative accuracy of the PLSR model 
was quantified by computing the area under the receiver operating characteristic (ROC) curve associated to the 
LDA classification result.

The interpretation of the PLSR modes of correlation is usually challenging, since some of the obtained com-
ponents (especially at the high order) tend to be noisy and not necessarily related to meaningful anatomical 
interpretation (an illustrative example of the set of the first 10 components estimated by PLSR in a single repeat 
is shown in Appendix B). For this purpose, in order to address this important issue of robustness, we measured 
the reproducibility of the most discriminative components across the 10 repeats. We were interested primarily 
in the rate of reproduction of the individual components, rather than in their relative ordering. To this end, the 
discriminative power of each component was quantified by the absolute value of the associated LDA weight, and 
the resulting 5 mostly discriminative components of each experiment were matched to those of the other repeats. 
Components were matched when the absolute value of the correlation between them exceeded 0.5. When multi-
ple matches were possible, the strongest was chosen. The resulting labelling establishes the reproducibility of the 
discriminative components across repeats, and does not necessarily reflect the order of the eigen-components 
estimated in each PLS run.

Results
Model comparison. Figure 2 shows the average pattern of absolute differences of the predictions in AD and 
healthy controls with both methods. We notice that PLSR generally provides a better fit, while the local patch 
based method leads to larger estimation errors in parietal and temporal areas. We note that increasing the train-
ing sample size slightly improves the PM, especially in the temporal regions. The average regional absolute error 
between predicted images and real ones was systematically higher for PM as compared to PLSR, and significantly 
different for 8 out of 10 repeats (p <  0.01, paired t-test). The PLSR prediction also provided significantly better 
agreement with the ADNI measurements than PM (Table 2A). This is reflected by the significantly higher effect 

Figure 1. Flowchart of the cross-validation scheme of a single repeat in the proposed experimental setting. 
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size associated with the average measures for the PLSR approach, indicating a better separation between clinical 
groups (Table 2B).

Biological Plausibility of the PLSR model. Figure 3, left, shows the reproducibility results for the PLSR 
components across repeats. The components are ordered according to the order of output in the PLSR results 
obtained in the first cross-validation repeat. The reproducibility results are instead quantified by the green and red 
bars, which indicates the number of times that a component was among the most discriminative across repeats. 

Figure 2. Mean absolute prediction error of PLSR and PM (240 training samples, and leave-one-out -Loo-). 
PLSR provides higher predictive accuracy than the local patch based (PM) approach. Results are similar when 
considering the MCI group (not shown).

A. Correlation wrt ADNI SUVR B. Effect size

PLSR PM PLSR PM

Whole cohort* 0.31 (0.25,0.38 ) 0.21 (0.14, 0.27) AD vs HC * 1.07 0.79

AD and HC* 0.33 (0.22, 0.43) 0.23 (0.12, 0.34) MCIc vs MCIs 0.53 0.37

MCIc and MCIs* 0.30 (0.22, 0.38) 0.20 (0.12, 0.28) MCIc vs HC* 0.67 0.46

Table 2. A. Correlation (mean, 95% confidence interval) between predicted average regional FDG-PET and 
the corresponding SUVR values reported in ADNI. B. Effect size between the measures obtained with PLSR and 
with PM. HC: healthy controls, MCIc: MCI converted to AD, MCIs: MCI stable. (* for significant differences, 
p <  0.05, paired t-test).

Figure 3. Left: reproducibility of the discriminative components. When comparing AD and controls, 
component 1 was the only one 100% reproducible and discriminative across repeats. The same consideration 
applies to component 3 when comparing stable and converting MCI. Right: component 1 describes the 
relationship between atrophy and FDG-PET uptake spread in temporal, parietal and posterior regions. We 
also note the partial volume effect in the ventricles for the FDG component. Component 3 shows the non-
overlapping spatial inverse relationship between increased expansion of the CSF (ventricles and brain sulci), and 
joint increased temporal atrophy and cortical hypometabolism.
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We note that only few of the mostly discriminative PLSR components are highly reproducible across repeats. In 
particular, the first eigen-component estimated in each PLSR repeat is the most discriminative when comparing 
AD vs healthy controls, while the third one is most discriminative when comparing both MCI stable and con-
verters, and healthy controls and MCI converters. Both components were 100% reproducible across repeats. We 
note that since the figure is relative to the first cross validation repeat, the components estimated during the other 
repeats that did not find any match in the reproducibility analysis are omitted in the figure. However, apart from 
the reported components 1 and 3, no other reproducible component associated to the other repeats was observed 
in the analysis.

These components are shown on the right hand side of Fig. 3, and the associated correlation network is shown 
in Fig. 4. A 3D rendering of the correlation networks is shown at the following url: https://www.dropbox.com/s/
orsf3nt6hq2kp38/supplementary_animations1.mov?dl= 0 (12/10/2015). The networks were obtained by thresh-
olding components 1 and 3, and by subsequently applying a morphological opening operation in order to identify 
a consistent set of clusters of maximal PLSR weights.

On one hand, we note that component 1 describes the relationship between atrophy and FDG-PET uptake 
spread in temporal, parietal and posterior regions. In particular, it shows the partial volume effect due to ventricu-
lar expansion in AD, that is already observable in the raw data, and that leads to the very large variation of the 
FDG-PET signal in the ventricles in subjects with pronounced global brain atrophy. On the other hand, compo-
nent 3 shows the non-overlapping inverse correlation pattern between increased expansion of the CSF, and joint 
increased temporal atrophy and cortical hypometabolism.

Finally, the average area under the ROC curve for the classification tasks across the different folds was 0.87 
(0.83, 0.91–95% c.i.) for the comparison of AD vs healthy controls, and 0.75 (0.73, 0.76–95% c.i.) for the compari-
son between stable and converting MCI. This result primarily confirms the ability of the proposed PLSR to model 
biologically relevant features, and is in line with the classification performance based on T1-MR information 
previously reported in the literature on the ADNI dataset24–26.

Conclusions
We have investigated the problem of multimodal analysis of biomedical images in AD, by comparing two differ-
ent modelling hypothesis based on state-of-art techniques, PLSR and patch-based local correlation, to promote 
non-local correlation analysis approaches with respect to localized ones in describing multimodal correlation 

Figure 4. PLSR networks of joint relationship between atrophy and hypometabolism derived from 
Component 1 and Component 3. Red hubs indicate regions of joint within- and between-modality correlation. 
Blue hubs indicate anticorrelated regions (CSF expansion measured in T1-MR). BA =  Broadmann anatomical 
areas.

https://www.dropbox.com/s/orsf3nt6hq2kp38/supplementary_animations1.mov?dl=0
https://www.dropbox.com/s/orsf3nt6hq2kp38/supplementary_animations1.mov?dl=0
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patterns in AD. Our study introduces and validates the use of PLSR in the context of multimodal modelling in AD 
by showing that PLSR bases and coefficients can be estimated in very large datasets of volumetric images through 
a computationally tractable approach to the eigen-decomposition.

Non-local vs local multimodal modelling in AD. Our results show that the proposed non-local 
approach outperforms classical PM-based multimodal local correlation models in terms of modelling accuracy 
and predictive power. The ensemble of the reported results proves the ability of the proposed PLSR in capturing 
biologically relevant features, and in generalising to unseen structural imaging data of T1-MR scans.

Even though the presented study does not provide a theoretical proof of the superiority of non-local methods, 
our results show that T1-MR and FDG-PET present reproducible and consistent patterns of correlations between 
non-overlapping anatomical areas. This study thus shows that realistic multimodal models of neurodegeneration 
necessarily need to account for the non-local relations intimately related to the neurobiological aspects of the 
disease.

Plausibility of the PLSR model. PLSR provides a parsimonious description of the global biological vari-
ability, represented by the low-dimensional latent subspace parameterisation. For this reason, the interpretation 
and statistical analysis of PLSR is more straightforward than that of the usually complex models provided by 
non-parametric local approaches2.

Our analysis revealed that in the sequential stages of the pathology (cognitively normal − > MCIc − > AD) we 
can consistently identify two reproducible components of correlation between atrophy and hypometabolism. Our 
results are therefore supportive of the existence of different patterns of atrophy and hypometabolism which differ-
entially characterise the different stages of the disease, and thus are informative of the dynamics of the pathology.

The correlation networks highlighted in this study are supported by known biological dynamics between atro-
phy and hypometabolism in dementia4: although hypometabolism and atrophy are typically locally correlated, 
i.e. areas with neuronal loss (atrophy) show by definition reduced or absent metabolism, hypometabolism may 
be seen in areas not obviously or typically affected by atrophy, as exemplified by focal dementia syndromes, such 
as posterior cortical atrophy.

This work shows that T1 weighted MRI and FDG-PET in AD are highly correlated and share important 
patterns of common non-overlapping spatial relationship. The proposed method could be used in the future to 
identify and decorrelate the common inter-modality variation from biomedical images for the identification of 
more specific image based biomarkers.
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