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ABSTRACT  
 
Acquired thrombotic thrombocytopenic purpura (TTP) is an autoimmune 

disease in which anti-ADAMTS13 autoantibodies cause severe enzyme 

deficiency. ADAMTS13 deficiency causes the loss of regulation of von 

Willebrand factor multimeric size and platelet-tethering function, which 

results in the formation of disseminated microvascular platelet microthrombi.  

The aims of my thesis were to develop novel assays to determine the domain 

specificity of anti-ADAMTS13 antibodies and use these to characterise the 

repertoire of antibodies in patients with acquired TTP. Functional analyses 

were also performed to explore the pathogenic mechanisms of these 

antibodies.  

92 acquired TTP episodes were analysed at presentation, and through 

treatment and remission/relapse. Epitope mapping revealed 97% of episodes 

had autoantibodies that recognised the ADAMTS13 N-terminal domains. 

41% episodes had antibodies recognising the N-terminal domains alone; 

59% had antibodies against the C-terminal domains. Changes in 

autoantibody specificity were detected in 9/16 patients at relapse, suggesting 

a continued development of the disease. 

Functional analyses on IgG from 43 patients revealed inhibitory IgG were 

limited to anti-spacer domain antibodies. However, 15/43 patients had 

autoantibodies with no detectable inhibitory action, and as many as 32/43 

patients had antibodies with inhibitory function  insufficient to account for the 

severe deficiency state, suggesting that in many patients there is an 

alternative pathogenic mechanism. There were markedly reduced 

ADAMTS13 antigen levels in all presentation samples, median 6% normal 

(range 0-47%). ADAMTS13 antigen in the lowest quartile at first presentation 

was associated with increased mortality (odds ratio 5·7).  

This work has shown that anti-spacer domain autoantibodies are the major 

inhibitory antibodies in acquired TTP. However, depletion of ADAMTS13 

antigen (rather than enzyme inhibition) is a dominant pathogenic mechanism. 

ADAMTS13 antigen levels at presentation have prognostic significance. 

Taken together, these results provide new insights into the pathophysiology 

of acquired TTP.  
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1 INTRODUCTION 

1.1 Primary haemostasis 
 

Haemostasis is a highly regulated homeostatic mechanism that ensures the 

maintenance of blood flow under physiological conditions but also allows 

rapid, localised coagulation in the event of tissue damage. The process 

comprises four basic mechanisms: vasoconstriction, primary haemostasis 

(platelet plug formation), secondary haemostasis (coagulation) and 

fibrinolysis.  

 

Injury causes temporary local vasoconstriction due to contraction of vascular 

smooth muscle which slows blood flow and reduces blood loss. Vessel 

damage results in disruption of the endothelial cell monolayer and exposure 

of the collagen-rich extra-cellular matrix. The collagen is recognised by 

globular von Willebrand factor (VWF), a large adhesive glycoprotein which 

acts as a vascular damage sensor (1) and is necessary for initial platelet 

tethering and subsequent platelet adhesion (2). VWF binds collagen through 

its A3 domain and the tethered molecule is unfolded by local shear forces 

exerted by the flowing blood and elongates to expose previously hidden 

platelet binding sites (3). 

 

Circulating platelets bind loosely to VWF through the receptor complex GPIb-

V-IX causing the platelets to roll along VWF multimers (4), allowing them to 

come into contact with exposed collagen and bind it through their GPVI 

receptor. Collagen binding transduces intracellular signalling which increases 

the affinity of cell surface integrins for their ligands, causing platelet 

adherence, aggregation and activation (5), and leading to the formation of a 

primary platelet plug which temporarily blocks blood loss at the site of vessel 

damage. In turn, platelet activation exposes membrane phospholipids 

providing a surface for secondary haemostasis (coagulation), leading to the 

formation of a stable fibrin clot. 
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1.2 Von Willebrand Factor 

1.2.1 Structure of  VWF 
 

VWF is synthesised as a multimer which is central to its role in haemostasis. 

It is synthesised only in endothelial cells (6) and megakaryocytes (7). The 

~310kDa monomer pre-proVWF has a signal peptide, propeptide and 

multiple domains with different ligand binding sites. The domain organisation 

has been recently redefined by Springer’s group (8) and is shown in Figure 

1.1. 

 

 

 

Figure 1.1  VWF domain organisation and binding sites 

S-S indicates sites of intermolecular disulphide bond formation. Cleavage sites for furin and 
ADAMTS13 are indicated. VWF is a multi-adhesive protein and ligand binding sites (FVIII, 
GPIbα, collagen and αIIbβIIIa) are shown below. Figure adapted from Zhou et al, 2012 (8) 

 

The signal peptide is proteolytically cleaved in the endoplasmic reticulum 

(ER) (9) and VWF monomers are dimerised in the ER by intermolecular 

disulphide bonds between the Cys residues in the cysteine knot domain (10). 

The VWF dimers are transported to the Golgi apparatus where 

multimerisation occurs catalysed by the propeptide which forms disulphide 

bonds between the N-terminal D3 domains of the dimers (11). VWF is 

extensively glycosylated which is both essential for secretion (12) and 

influences its proteolysis (13, 14). Furin removes the propeptide after 

glycosylation (15), and the multimeric VWF and propeptide are trafficked to 

storage granules (Weibel-Palade bodies in endothelial cells or α-granules in 

platelets) (16). Release of VWF from endothelial cells occurs via basal 

secretion and in response to a variety of agonists, whereas VWF secretion 

from platelets is entirely stimulus-driven (17). 
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1.2.2 Function of VWF 
 

VWF has two major functions – the recruitment of platelets to a site of vessel 

injury, and as a carrier protein for factor VIII (FVIII), thereby extending its 

half-life in plasma. The haemostatic properties of VWF are dependent on its 

molecular size. Larger multimers are more haemostatically reactive as they 

possess more ligand binding sites, but are also more conformationally 

sensitive to shear stress (2). The multimeric size of VWF and, therefore, its 

haemostatic properties are regulated by cleavage of a peptide bond in the 

VWF A2 domain (Tyr1605-Met1606) by the metalloprotease ADAMTS13 (A 

Disintegrin And Metalloprotease with ThromboSpondin 1 repeats). 

 

A proportion of VWF released from endothelial cells remains tethered to the 

cell surface (18). ADAMTS13 rapidly cleaves newly secreted ultralarge VWF 

multimers on the endothelial surface (18), as depicted in Figure 1.2. 

 

 

 

Figure 1.2  Sites of VWF processing by ADAMTS13  

Figure from Crawley et al, 2011 (19) 
1. ADAMTS13 rapidly cleaves newly secreted ULVWF multimers on the endothelial surface. 
2. Unravelling of globular ULVWF in the circulation allows processing of VWF to smaller less 
reactive multimers. ADAMTS13 deficiency results in the loss of such plasma processing. 
3. VWF-platelet strings may be proteolysed by ADADTS13 downstream of the site of injury, 
regulating platelet plug formation. 
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Once secreted or proteolytically released from the endothelium, VWF adopts 

a globular conformation in circulation, which is functionally quiescent with the 

platelet glycoprotein Ibα (GPIbα) binding site in VWF A1 domain largely 

hidden (3). This enables VWF to circulate without binding unnecessarily to 

platelets (19). Globular VWF is essentially resistant to proteolysis by 

ADAMTS13, with both the scissile bond and important recognition sites 

buried in the folded VWF A2 domain. 

 

Globular VWF binds exposed collagen which is only revealed to the blood by 

vessel damage. This recognition occurs through its collagen-binding site in 

the A3 domain. VWF then undergoes a unique structural change where it is 

unfolded by shear forces acting on the tethered molecule and adopts an 

elongated ‘active’ conformation (3). This exposes previously hidden platelet 

binding sites and recruits platelets to the site of vessel injury. 

 

VWF unfolding is thought to involve not only uncoupling of the VWF A1-A2-

A3 domain cluster, but also substantial conformational changes in individual 

domains, particularly the A2 domain (20, 21). This unravelling exposes both 

the VWF A1 domain platelet binding site and the ADAMTS13 cleavage site 

and binding sites of the VWF A2 domain (20, 22). Thus, VWF proteolysis by 

ADAMTS13 is primarily dictated by substrate conformation, rather than 

specific enzyme activation like all the other haemostatic enzymes. 

 

VWF may also be unravelled by higher mechanical shear forces in the 

microcirculation which act to stretch it and alter its conformation (Figure 1.2).  

Larger VWF multimers are more susceptible to mechanical shear forces and 

unravel more readily (22). Proteolysis of these larger species reduces VWF 

multimer size and hence controls haemostatic function of the plasma pool in 

an elegant on-demand regulatory mechanism. A defect in VWF proteolysis 

by ADAMTS13 is responsible for the rare life-threatening disease thrombotic 

thrombocytopenic purpura (TTP) that arises due to accumulation of platelet 

and VWF-rich microthrombi in the microcirculation (section 1.4.1) (23). 
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1.3 ADAMTS13 (A Disintegrin And Metalloprotease with 
ThromboSpondin 1 repeats) 

1.3.1 Structure of ADAMTS13 
 

ADAMTS13 is a 188 kDa protein and member of the ADAMTS family of Zn2+-

dependent multidomain metalloproteases. ADAMTS13 comprises 1427 

amino acid residues and consists of a propeptide region, a metalloprotease 

(MP) domain, a disintegrin-like (Dis) domain, a thrombospondin type 1 motif 

(TSP1), a cysteine-rich (Cys) domain, a spacer domain, seven additional 

TSP1 repeats (TSP2-8) and two CUB domains, which are unique to 

ADAMTS13 amongst ADAMTS family members (23, 24).i The domain 

organisation of ADAMTS13 is shown in Figure 1.3. 

 

 

 

 

Figure 1.3  Domain organisation of ADAMTS13 

The N-terminal metalloprotease (MP) domain is followed by a disintegrin-like (Dis) domain, a 
thrombospondin type 1 motif (labelled 1), a cysteine-rich (Cys) domain, a spacer domain, 
seven additional TSP1 repeats (2-8) and two CUB domains. ADAMTS13 has a classical 
signal peptide which is removed on entry to the ER and a propeptide which, unlike in other 
metalloproteases, is not required for correct folding or to maintain enzyme latency (25). 
 

 

 

The crystal structure of the fragment Dis-TSP1-Cys-Spacer (DTCS) was 

elucidated in 2009 by Akiyama and colleagues (26). The crystal structure of 

the other domains has not yet been determined.  A model of the N-terminal 

domains of ADAMTS13 given by homology modelling of MP-Dis (based on 

crystal structures of homologous domains in ADAMTS1, 4 and 5) onto the 

crystal structure of ADAMTS13 DTCS is shown in Figure 1.4. 

 

                                                 
i
 CUB is an acronym for the first three proteins described which contain this domain: 
Complement components C1r/C1s, sea urchin Uegf protein, Bone morphogenetic protein-1 
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Figure 1.4  Structure of ADAMTS13 N-terminal domains based on the crystal structure 
of DTCS and homology modelling of metalloprotease domain  

ADAMTS13 N-terminal domain structure based on the crystal structure of DTCS (26) and 
homology modelling of the metalloprotease domain (19). The active site, disintegrin-like, 
cysteine-rich and spacer domain exosites are shown in red, with their corresponding VWF 
exosites. 

 

 

ADAMTS13 is synthesised predominantly in hepatic stellate cells (27). 

ADAMTS13 expression has also been detected in vascular endothelial cells 

(28), platelets (29) and renal podocytes (30), but the physiological relevance 

of its expression in other locations is unclear. ADAMTS13 is secreted into the 

blood as a constitutively active enzyme with a plasma concentration of 

approximately 1μg/ml (5nM) (31, 32). The mechanism of ADAMTS13 

clearance is not known, but may be via a hepatic asialoglycoprotein receptor 

(33). 
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1.3.2 Function of ADAMTS13 
 

ADAMTS13 functions as a VWF cleaving protease, cleaving a single peptide 

bond (Tyr1605 - Met1606) located within the central VWF A2 domain (34, 35). 

Proteolysis is critical to control VWF multimer size and temper its 

haemostatic function. More recently, further functional consequences of 

ADAMTS13 action as a VWF cleaving protease have been described. 

ADAMTS13 may exert a thrombolytic effect in the microcirculation and by so 

doing may assist in resolving occlusive thrombi induced by FeCl3 injury in 

venules in mice (36). ADAMTS13 has also been shown to reduce vascular 

inflammation, and slow the development of early atherosclerosis in mice, and 

to have a protective anti-inflammatory effect on ischaemia/reperfusion injury 

in myocardial infarction (MI) and stroke models (37-39). 

 

 

1.3.3 ADAMTS13-VWF interaction 
 

VWF-ADAMTS13 binding involves a complex and highly-specific set of 

exosite interactions that are dependent on the conformation of the substrate 

(VWF). ADAMTS13 is an unusual enzyme in that it is secreted in its active 

form (i.e. it has no zymogen state), and thus is always ‘on’. Unlike all other 

proteases involved in haemostasis, ADAMTS13 has no known specific 

inhibitor and is controlled by changes in its substrate induced when VWF 

subject to shear stress (19). Recognition of VWF by ADAMTS13 involves 

interactions between distinct domains of both proteins. A schematic overview 

of the current understanding of ADAMTS13-VWF interaction is shown in 

Figure 1.5.  
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Figure 1.5  ADAMTS13-VWF interaction 

Figure adapted from Crawley et al, 2011 (19) to include findings of de Groot et al, 2015 (40). 
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1.3.3.1 Role of ADAMTS13 C-terminal domains 
 

The C-terminal domains of ADAMTS13 are important for ADAMTS13 

recognition of globular VWF. Two studies have demonstrated that full-length 

ADAMTS13 recognises globular VWF, but is unable to cleave it in the 

absence of shear-induced unfolding.  Zanardelli et al demonstrated that full-

length ADAMTS13 could bind VWF in its globular form with a KD of 

approximately 86nM, mediated by the TSP5-8 and/or CUB domains of 

ADAMTS13 interacting with the VWF D4-CK domains (41). Feys et al used 

immunoprecipitation of VWF-ADAMTS13 complexes in solution to derive a 

similar estimate of binding affinity and found that the interaction was 

dependent on TSP2-8 repeats (42).  

 

Feys et al also demonstrated that a proportion of globular VWF and 

ADAMTS13 circulate as complexes with ~1 ADAMTS13 molecule per ~250 

VWF molecules (42). This suggests that the larger more haemostatically 

active VWF multimers are the most likely globular VWF forms to be 

complexed with ADAMTS13 in circulation (43). Although only about 3% of 

plasma ADAMTS13 circulates bound to VWF, this pool may significantly 

contribute to thrombus regulation by co-localising ADAMTS13 and VWF to 

the site of vessel damage (43).   

 

The functional significance of VWF-ADAMTS13 complexes was suggested 

by work by Banno et al who studied mice with an Adamts13 gene that 

expressed a truncated form of the enzyme (ADAMTS13S) that lacked the 

TSP7/8 and CUB domains (44). Although these mice had a normal plasma 

VWF multimeric pattern, the Adamts13S/S mice were more thrombogenic in 

high shear conditions, suggesting that loss of the C-terminal domains 

impaired the ability of ADAMTS13 to regulate development of the platelet 

plug (44). 
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1.3.3.2 VWF A2 domain unfolding 
 

ADAMTS13 cannot cleave globular VWF because cryptic binding sites and 

the scissile bond are buried in the folded VWF A2 domain (45). The A2 

domain has a rare vicinal disulphide bond between Cys1669 and Cys1670 at the 

C-terminus of the last α helix, which is thought to stabilise the domain folding 

(45). This acts as a ‘molecular plug’, which is pulled out when VWF 

encounters increased shear forces (Figure 1.6). Luken et al showed that 

when this disulphide bond is mutated, the A2 domain unfolds more readily 

and is, in turn, more susceptible to proteolysis by ADAMTS13 (46).  

 

 

Figure 1.6  Molecular models of the unfolding of VWF A1-A2-A3 domains  

A) Schematic representation of the VWF A1, A2 and A3 domains. The vicinal disulphide 
bond that forms the molecular plug in the A2 domain is shown. YM=Tyr1605-Met1606 
scissile bond   B) Structure of the VWF A2 domain highlighting the vicinal disulphide bond 
(blue) and ADAMTS13 cleavage site (red) hidden in the centre of the folded domain 
C) Unfolding of the A1-A2-A3 domains. In globular VWF, the collagen binding site on the 
VWF A3 domain is exposed. Increased shear forces on VWF cause uncoupling of the A 
domains, extraction of the Cys1669-Cys1670 vicinal plug and unravelling of the A2 domain. 
This exposes the GPIbα binding site in the A1 domain, cryptic ADAMTS13 exosites and the 
scissile bond in the A2 domain (red). From Crawley et al, 2011 (19). 
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1.3.3.3 Spacer domain  
 

Unfolding of the VWF A2 domain reveals cryptic exosites not exposed in the 

folded A2 domain or globular VWF (41, 46). Targeted mutagenesis and 

swaps with ADAMTS13 family members identified VWF A2 domain residues 

Glu1660-Arg1668 as important for spacer domain function (47-49). The spacer 

domain exosite which binds the VWF A2 domain site was further 

characterised by work using TTP patient autoantibodies (50), discussed later 

in the thesis. 

1.3.3.4 Cys-rich, disintegrin-like and metalloprotease domains 
 

De Groot et al used engineered glycans, sequence swaps and single point 

mutations to identify a hydrophobic pocket in the cysteine-rich domain 

involving residues Gly471-Val474 as being of critical importance for both VWF 

binding  and proteolysis, and determined the complementary exosite on VWF 

(40). The same authors had previously used both deletion and substitution 

mutagenesis to define a functional exosite on the disintegrin-like domain 

involving Arg349 (51). This binds a complementary exosite on VWF involving 

Asp1614 in a critical but low affinity interaction which helps orientate the 

scissile bond towards the active site (51). Xiang et al identified the P3 

residue VWF Leu1603 and complementary S3 subsite in the ADAMTS13 

metalloprotease domain which act as docking sites on the N-terminal side of 

the Tyr1605-Met1606 scissile bond bringing it over  the active site (52). This 

allows the P1 and P1’ residues on VWF to engage with the S1 and S1’ 

subsite pockets of ADAMTS13 allowing proteolysis of VWF to occur (19). 
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1.3.4 Conformational activation of ADAMTS13 
 

 

Recent work by two groups has shown that ADAMTS13 is conformationally 

activated by VWF (53, 54). South et al used kinetic analysis to show that WT 

ADAMTS13 had approximately 2.5-fold reduced activity compared to 

MDTCS or ADAMTS13 lacking the CUB1-2 domains, suggesting that the 

CUB domains naturally limit ADAMTS13 function (53). WT ADAMTS13 

activity was enhanced ~2.5-fold by preincubation with an anti-CUB 

monoclonal antibody (20E9) or by VWF domain fragment D4CK. The 

isolated CUB1-2 domains bound MDTCS and inhibited activity by up to 2.5-

fold (53). A gain-of-function (GoF) variant with mutated spacer domain 

(R568K/F592Y/R660K/Y661F/Y665F) was more active than WT ADAMTS13, 

but could not be further activated by the anti-CUB mAb or VWF D4CK and 

did not bind/was not inhibited by the CUB domains.  Electron microscopy 

demonstrated a ‘closed’ conformation for WT ADAMTS13 but a more ‘open’ 

conformation for GoF ADAMTS13 – Figure 1.7 (53).  

 

The group concluded that a CUB-spacer domain interaction blocks exposure 

of the ADAMTS13 spacer exosite and thus limits its activity. Interaction with 

the C-terminal domains of VWF disrupts the CUB-spacer interaction and 

leads to conformational activation of ADAMTS13 (53)  

 

In parallel, Muia et al used small angle X-ray scattering data to indicate that 

the distal TSP-CUB domains interact with proximal MDTCS domains. They 

also used kinetic analysis to conclude that the distal TSP8-CUB domains 

markedly inhibit substrate cleavage, and binding of VWF (or mAb) to distal 

ADAMTS13 domains relieves this autoinhibition (54).  
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Figure 1.7  Conformational activation of ADAMTS13 by VWF 

 A) Schematic representation of ADAMTS13 in ‘closed’ conformation showing CUB-spacer 
domain interaction. B) Binding of VWF D4CK disrupts the CUB-spacer interaction and leads 
to conformational activation of ADAMTS13. C) Transmission electron microscopy of WT 
ADAMTS13 demonstrating the globular ‘closed’ conformation D) Transmission electron 
microscopy of GoF ADAMTS13 demonstrating the more linear ‘open’ conformation, resulting 
from disruption of the CUB-spacer interaction  
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1.4 Thrombotic Thrombocytopenic Purpura 
 

Thrombotic thrombocytopenic purpura (TTP) is an acute life-threatening 

disorder first described by Moschcowitz in 1924 in a 16 year old girl who died 

after developing fever, haemolysis, paralysis and coma (55). 

1.4.1 Pathophysiology 
 

TTP results from a deficiency of the enzyme ADAMTS13 (23, 56). Inherited 

or acquired deficiency of this enzyme results in insufficient processing of 

ULVWF (Figure 1.8). These highly haemostatically active multimers appear 

to unravel under high shear during passage through the microcirculation 

leading to platelet aggregation and multi-organ microvascular thrombosis. 

This accounts for the clinical sequelae including neurological, cardiac, 

gastro-intestinal and renal disease. The occlusion of small vessels also 

causes a microangiopathic haemolytic anaemia and platelet consumption 

resulting in thrombocytopenia. 

 

 

Figure 1.8   VWF multimer gel showing presence of ULVWF multimers in TTP plasma 

SDS-agarose gel of VWF multimers. 
A) TTP patient plasma during acute episode (platelet count 22 x10

9
/l). N=normal plasma.  

There is a loss of normal high molecular weight multimers in the patient sample. 
B) TTP patient plasma during remission (platelet count 359 x10

9
/l). Ultra-large VWF 

multimers are present in the patient sample. 



32 

 

1.4.2 Epidemiology and subtypes 
 

The majority of TTP cases are acquired idiopathic, antibody-mediated TTP 

with autoantibodies against ADAMTS13: such cases comprised 70% of all 

South East England Registry episodes (57). Secondary TTP which develops 

in response to a specific precipitating cause makes up about 15% cases. 

Identified precipitants include infections such as HIV, pregnancy, pancreatitis 

and certain drugs. Congenital TTP with recessive biallelic mutations in the 

ADAMTS13 gene comprises less than 5% cases. Mutations characterised to 

date are of many different types (missense, deletion, nonsense, frameshift) 

and are not limited to any particular part of the gene (58), and predominantly 

cause intracellular retention of the protein. 

 

The annual incidence of TTP is estimated to be 6 per million in the UK (57). 

Demographic studies have shown a female preponderance (two- to three-

fold risk compared to males) and increased incidence in Afro-Caribbeans 

(nine-fold increase compared with Caucasians) (59). Acquired TTP may 

present at any age but is more common in the 3rd and 4th decades. 

Congenital TTP classically presents in childhood but less severe congenital 

deficiency may not be unmasked until late adulthood. 

 

1.4.3 Clinical and laboratory features 
 

TTP is a clinical diagnosis and must be considered in any patient with 

microangiopathic haemolytic anaemia and low platelets in the absence of 

another cause (60). Clinical features are variable and the classical pentad of 

microangiopathic haemolytic anemia, thrombocytopenia, fever, neurological 

involvement and renal failure is rarely seen. The differential diagnosis of TTP 

is wide and includes atypical haemolytic uraemic syndrome (aHUS); 

disseminated intravascular coagulation (DIC); autoimmune disease e.g. 

systemic lupus erythematosus (SLE); severe hypertension; infections such 

as endocarditis; catastrophic antiphospholipid syndrome (CAPS) and 

thrombotic microangiopathies associated with malignancy or bone marrow 
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transplantation, but these conditions have a different pathophysiological 

basis and require a different therapeutic approach. 

 

TTP is a life-threatening condition: in a recent study 15 out of 40 patients 

required ITU admission and 15% cases were intubated and ventilated (61). 

Neurological impairment is present in up to 80% of cases and may be 

fluctuating.  Neurological features include headache, behavioural changes, 

transient ischaemic attacks, seizures or coma (62).  Renal involvement is 

variable, ranging from proteinuria and microhaematuria to reversible 

impairment of renal function, but acute renal failure is rarely seen and 

suggests an alternative diagnosis. Cardiac features may include infarction, 

arrhythmias, heart failure, hypotension and sudden cardiac arrest. 

Gastrointestinal features such as abdominal pain, nausea, vomiting and 

diarrhoea occur in about a third of cases (57) and patients may present with 

symptoms of thrombocytopenia.  

 

Autopsy studies confirm multiorgan involvement, with platelet and VWF-rich 

microthrombi (63) (in contrast to the fibrin deposits seen in haemolytic-

uraemic syndrome, or an inflammatory component in disseminated 

intravascular coagulopathy or autoimmune disease).  

 

The blood film shows red cell fragmentation, polychromasia, anaemia and 

low platelets (below 150x109/l but usually <50x109/l). The reticulocyte count 

is increased and bilirubin raised due to haemolysis.  The clotting screen is 

typically normal. Lactate dehydrogenase (LDH) is disproportionately 

increased relative to the degree of haemolysis, due to associated tissue 

ischaemia. It is well recognised that presentation is often more severe in de 

novo cases compared to relapses with more serious neurological 

presentation, lower haemoglobin (Hb) and higher LDH (57, 64), probably 

because relapses tend to present earlier as patients are monitored and have 

a lower threshold for seeking medical attention. 
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1.4.4 ADAMTS13 assays 

1.4.4.1 ADAMTS13 activity assays 
 

A large number of assays to measure ADAMTS13 activity either in the 

research or clinical setting have been described. The assays are based on 

the cleavage of full-length VWF multimers or VWF peptides that span the 

cleavage site and important binding sites, and the direct or indirect detection 

of the cleavage products. 

 

1.4.4.1.1 Activity assays using full length VWF 
 

In the original gel electrophoresis assay developed by Furlan et al, purified 

VWF with denaturants  is incubated with citrated plasma for approximately 

24 hours and low percentage agarose gel electrophoresis and Western 

blotting are used to determine the proteolysis of purified VWF multimers (34). 

Disappearance of high molecular weight multimers and appearance of 

cleavage products can be seen if proteolysis has occurred. Tsai et al 

developed an assay allowing direct visualisation of the 170 and 140kDa 

cleavage products of the 250kDa VWF subunits on denatured SDS-PAGE 

and Western blotting (35), eliminating the possibility of non-specific 

degradation of the multimers. 

 

The collagen binding assay, first described by Gerritsen et al, is based on the 

preferential binding of high molecular weight VWF multimers to type III 

collagen (65). ADAMTS13 activity (proteolysis of VWF) is inversely 

proportional to the amount of collagen-bound VWF. This assay was used in 

clinical laboratories as it is relatively straightforward to perform, can 

accommodate many samples simultaneously and is quite robust in the 

detection of severe ADAMTS13 deficiency (66). However, it is time 

consuming requiring a 16-24 hour incubation in the presence of denaturants. 
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1.4.4.1.2 Cleavage of short substrates 
 

Rapid activity assays have been developed more recently which use short 

VWF substrates that span the scissile bond and important ADAMTS13 

binding sites. As these are domain fragments, they do not adopt a folded or 

closed conformation and are efficiently proteolysed without chaotropic agents 

as the scissile bond is always available The VWF A2 domain fragments 

commonly used are VWF73 (D1596-R1668) and VWF115 (E1554-R1668). 

 

The VWF73 fluorescence resonance energy transfer (FRETS) assay 

involves a substrate with a fluorophore and quencher molecule on either side 

of the scissile bond (67). If the bond between Y1605 and M1606 is cleaved 

by ADAMTS13, the energy transfer quenching the fluorescence does not 

occur and fluorescence is emitted which is proportional to the ADAMTS13 

activity.  

 

ELISA-based methods have also been developed to measure ADAMTS13 

activity using epitope-tagged VWF fragments as substrates (68-70). The 

substrate is immobilised on a microtitre plate via an antibody to one tag. After 

incubation with plasma samples, an antibody directed at another tag or the 

cleavage site detects residual substrate, meaning ADAMTS13 activity is 

inversely proportional to the residual substrate.   

 

Both FRETS and ELISA-based assays are used in clinical laboratories and 

show good concordance with the traditional methods using multimeric VWF. 

An international multicentre study showed that assays based on multimeric 

VWF displayed good performance characteristics, whereas those based on 

VWF peptides were excellent (71). In the research setting, VWF73 or 

VWF115 cleavage products have also been separated and quantified by high 

performance liquid chromatography (HPLC) (72) or mass spectrometry (73), 

allowing the study of ADAMTS13 enzyme kinetics. 
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1.4.4.1.3 Flow-based assays 
 

Assays have been developed to measure ADAMTS13 activity under flow 

conditions. In the simplest, flow is generated by vortexing the reaction mix 

(~3000rpm) which unfolds the VWF multimers allowing cleavage (74) but the 

cleavage products are detected by traditional gel electrophoresis or CBA. 

Test systems have been developed capable of assessing plasma 

ADAMTS13 activity in vitro under flow (18, 75). Shenkman et al used a cone 

and plate(let) analyser to evaluate the ability of TTP plasma to increase 

platelet deposition on a polystyrene surface (75) but this assay has not been 

widely used. In the assay developed by Dong et al, the formation of VWF 

strings is studied under flow after stimulation of endothelial cells with 

histamine. The strings are visualised indirectly by viewing platelet binding to 

these strings using phase-contrast video microscopy. In the presence of 

active ADAMTS13, VWF is cleaved and the strings disappear (18). This 

assay was evaluated in the multicentre comparative study which showed that 

although more physiological both in terms of substrate and flow, it was only 

reliable in discriminating ADAMTS13 levels higher or lower than 20% without 

measuring a precise value (71). The assay is difficult to standardise and not 

suitable for routine clinical practice. 

 

The characteristics of the different classes of ADAMTS13 activity assay are 

summarised in Table 1.1. 
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Assay Examples Advantages Disadvantages 

Static assays 
Full length 
VWF 

Collagen 
binding assay 
Multimer 
analysis 

Multimeric VWF 
Sensitive  
(3-6% A13 activity) 
Reproducible 

Denaturants artificially 
expose scissile bond & 
?affect A13 
Time consuming 

Static assays 
VWF peptides 

FRETS VWF73 
VWF115 assay 

More sensitive  
(1-3% A13 activity) 
Reproducible 
Rapid 
Kinetic analysis 

Non-physiological 
substrates 

Vortex assay Multimer 
analysis 

 

Multimeric VWF 
Physical unfolding 
Simple 

Undefined shear 
mechanism 
VWF not anchored 

Flow assay  Stimulated 
HUVECS, 
cleavage of 
platelet-VWF 
strings 

Multimeric VWF 
Laminar shear flow 
Most representative 
of  in vivo conditions 

Technically demanding 
Time consuming 
Cannot give precise 
value 

 

Table 1.1  Characteristics of different classes of ADAMTS13 activity assays 
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1.4.4.2 Anti-ADAMTS13 antibody assays 

1.4.4.2.1 Functional assays 
 

All of the functional assays for ADAMTS13 activity are capable of detecting 

inhibitory autoantibodies with a range of sensitivities (66). Neutralising anti-

ADAMTS13 antibodies can be titrated in vitro using classic mixing studies of 

heat-inactivated patient and normal plasmas as 1:1 dilution or several 

dilutions in a Bethesda-type assay. However, although potentially useful, 

Bethesda assays are far from optimised and generally lack sensitivity (76). 

The sensitivity of functional assays for identification of anti-ADAMTS13 

antibodies ranges from 44 to 90%, even in patients with ADAMTS13 activity 

<5% (77-79) and results from different functional assays may not be 

concordant (80). This is because no one assay reflects the in vivo situation 

and the different activity assays have differing non-physiological aspects e.g. 

non-physiological substrate; requirement for a denaturant. 

1.4.4.2.2 Immunological assays 
 

Immunological assays detect both inhibitory and non-inhibitory anti-

ADAMTS13 antibodies. The initial ELISA described for detection of anti-

ADAMTS13 antibodies bound purified recombinant ADAMTS13 to a 

microtitre plate via anti-His antibodies (81), but subsequent assays have 

used direct coating of ADAMTS13  to the plate (82). Commercial 

immunoassays are also available. ELISA appears more sensitive than 

functional assays for the identification of anti-ADAMTS13 IgG (83, 84). 

However, the specificity may be lower as in one study 4% of healthy 

individuals and 13% patients with systemic lupus erythematosus (SLE) had 

evidence of anti-ADAMTS13 IgG despite normal ADAMTS13 activity (81). 

ELISA methods vary in the dilution of plasma used, the nature of the 

ADAMTS13 antigen coated on the plates and the method of detection and 

these variables could affect the sensitivity and cut-off value for positive 

results (76).  

 

Western blotting as a method of detecting anti-ADAMTS13 antibodies was 

described by Peyvandi et al (85). Western blotting may be more sensitive 
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than ELISA but is not a quantitative assay (76). It is more laborious, time-

consuming and difficult to use for large numbers of clinical samples. 

1.4.4.3 ADAMTS-13 antigen assays 
 

Immunoassays using different monoclonal and polyclonal antibodies have 

been developed to quantify plasma ADAMTS13 antigen levels (31, 32, 86). 

A summary of studies of ADAMTS13 antigen levels in acquired TTP patients 

at presentation published to date are reported is shown in Table 1.2. 

  

 

Study Number of  

acquired 

TTP patients 

Mean / 

median A13  

antigen levels 

Range % patients 

with low A13 

antigen  

(<5% antigen) 

Feys et al 

2006 (32) 

11 24%   SD 30%  82% 

Rieger et al 

2006 (31) 

33 13% <6-68% 100% 

Shelat et al 

2006 (87) 

21 51% SD 9% - 

Starke et al 

2007 (88) 

6 6% 0.7-295% 83% (66%) 

Yagi et al 

2007 (89) 

30 1.1% SD 1.6% 100% 

Liu et al  

2006 (90) 

11 10% SD 8% 100% 

Yang et al 

2011 (91) 

40 10% <2-72% 90% (23%) 

Ferrari et al 

2014 (92) 

68 - <1.5-34% 100%  
(24% 
undetectable) 

 

Table 1.2   Studies of ADAMTS13 antigen levels at presentation of acquired TTP 

LLN=lower limit of normal range,  SD=standard deviation,  - =cannot determine from 
published data 
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All of the reports published to date have shown mean / median ADAMTS13 

antigen levels to be reduced at presentation in idiopathic TTP. However, 

there have been marked discrepancies in the degree of reduction found. 

Shelat et al determined ADAMTS13 antigen levels in 21 patients and found 

mean antigen levels to be about half of normal using a commercial 

immunoassay (87), whereas Yagi et al found mean levels of only 1% normal 

in a highly sensitive novel ELISA (89). Similarly, studies differed over 

whether patients may have normal ADAMTS13 antigen levels at TTP 

presentation or not, with some studies finding a proportion of patients with 

normal levels (and one patient described with supra-physiological levels at 

presentation (88)). This wide range in antigen results at TTP presentation 

has led some researchers to conclude that antigen assays are not clinically 

helpful in diagnosing TTP in the absence of ADAMTS13 activity assays (76). 

 

These differences are likely due in part to definition of disease. Shelat et al 

defined idiopathic TTP patients as MAHA with thrombocytopenia with no 

apparent cause, and the cohort had a wide range of ADAMTS13 activity 

levels [62% patients had severe deficiency (<10% activity), 29% patients 

moderate deficiency (10-50% activity) and 9% had normal activity] and 

included 19% patients with no anti-ADAMTS13 IgG or inhibitor (87). They 

found that antigen levels were lower in idiopathic TTP patients with inhibitory 

autoantibodies than those with non-inhibitory IgG or no IgG/inhibitor, but this 

finding is significantly limited by the inclusion of patients with moderately 

reduced / normal ADAMTS13 activity or no autoantibody in their cohort (87).  

 

The nature of the antigen assay used is also likely play a role in the wide 

range of ADAMTS13 antigen levels found by different groups i.e. whether it 

detects ADAMTS13 antigen complexed with autoantibodies, or only free 

antigen. 
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1.4.4.4 Clinical role of ADAMTS13 activity assays 
 

The reported frequency of severe ADAMTS13 deficiency in TTP varies from 

18-100% (77-79, 93-96). Why is there such discrepancy? The main issues 

remain case definition and patient selection. There is no consensus definition 

of TTP and without a standardised definition of disease, cohorts of patients 

will differ meaning results cannot be easily compared between studies (97).  

 

Some authors equate idiopathic TTP with severe ADAMTS13 deficiency 

(98), whilst others argue that such an approach might lead to cases being 

missed who would benefit from plasma exchange (PEX) (99). Cases have 

been described where patients have normal ADAMTS13 activity by static 

assays, but evidence of ADAMTS13 deficiency in flow assays, which may 

more closely represent the in vivo situation (100). In some subtypes of 

secondary TTP e.g. pancreatitis, ADAMTS13 activity in static assays is 

usually normal but patients benefit from plasma exchange (101). It may be 

that in the future, classifications of TTP include defined subtypes with 

different clinical features and different levels of ADAMTS13 activity (97). 

 

Severe ADAMTS13 deficiency defines a group of patients that tend to have 

idiopathic disease, require more PEX to remission, tend to relapse and need 

additional immunosuppression but have lower mortality (59, 79) Another 

study found that severe ADAMTS13 deficiency defines a subset of patients 

that are characterised by various autoimmune manifestations, lower platelet 

count and mild renal involvement (96). However, the diagnosis of TTP 

remains a clinical one. Although the presence of severe ADAMTS13 

deficiency is characteristic of TTP, it is neither sensitive nor specific enough 

to determine the decision to commence or withhold PEX (102). ADAMTS13 

assays help confirm the diagnosis, monitor the course of the disease and 

need for possible extra therapy (62). 
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1.4.5 Management of TTP 

1.4.5.1 Plasma exchange (PEX) 
 

Prompt diagnosis and treatment is the key to survival in TTP; without therapy 

mortality is approximately 90%; with PEX mortality is reduced to 10-20% 

(103). Plasma is a source of the missing / dysfunctional enzyme ADAMTS13, 

and PEX using cell separators allows large volumes of plasma to be given 

and assists in the removal of autoantibodies against ADAMTS13 in the case 

of acquired TTP. PEX has been shown to be superior to plasma infusion at 

the end of the first treatment cycle and at six months (response rate 47% and 

78% vs. 25% and 49%) (103). Plasma therapy does not address the 

underlying autoimmune nature of acquired idiopathic TTP, but patients are 

responsive to therapy and able to wean from plasma exchange because the 

autoimmune response to ADAMTS13 may not be intense and often 

spontaneously wanes after a few weeks (104). In fatal cases, patients may 

have high levels of inhibitors that are not amenable to PEX (98). 

1.4.5.2 Steroids 
 

As most idiopathic TTP is antibody-mediated, immunosuppression is used to 

help attain remission and/or prevent relapse. Steroids, such as pulsed 

intravenous methylprednisolone or high dose oral therapy are widely used in 

the treatment of TTP (62). Higher dose pulsed steroids have been shown to 

reduce the percentage of TTP patients that fail to achieve complete 

remission (105), but there has been no randomised controlled trial comparing 

the addition of steroids to PEX alone. 

1.4.5.3 Rituximab 
 

Rituximab is a chimeric IgG1 monoclonal anti-CD20 antibody which results in 

the depletion of antibody-producing B cells. CD20 is expressed on B 

lymphocytes from the pre-B cell to the pre-plasma cell stage. The precise 

nature of action is unknown, but B cell depletion is believed to occur through 

antibody-dependent cell-mediated cytotoxicity (ADCC) (106) followed by 

complement-mediated lysis and apoptosis of the targeted cells (107-109). In 

TTP, a reduction in the anti-ADAMTS13 antibody titre can usually be 
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detected following therapy, which occurs within days of rituximab 

administration (82). 

 

Initial evidence for the effectiveness and safety of rituximab in immune-

mediated TTP came from studies of its use in refractory/relapsed patients 

(82, 110). More recently, a phase II UK study has shown benefit in using 

rituximab as part of first line therapy at presentation of TTP, where it appears 

to reduce the risk of relapse (61), and there is emerging data that early 

administration during acute episodes may reduce time to remission (111). A 

French study of refractory patients also found patients treated with rituximab 

had shorter overall treatment duration and reduced one year relapse rate 

than historical controls (112). Rituximab may also be used prophylactically to 

prevent relapse in patients with a fall in ADAMTS13 activity (111). 

 

Rituximab has been used at a dose of 375mg/m2 weekly for 4-6 weeks in 

acute TTP. Ideally PEX should be withheld for at least four hours after a 

rituximab infusion, as there is evidence that it is removed by plasma 

exchange (82, 113). Giving rituximab more frequently, e.g. every 3-4 days, 

may overcome removal by PEX (113), and lower doses (as used in other 

non-malignant autoimmune conditions) may be sufficient in the non-acute 

situation. 

 

Relapses may occur in some patients after rituximab therapy following 

reconstitution of the B cell compartment (61). Peripheral B cell return usually 

starts 6-9 months after treatment, although this is variable (114). However, 

unlike some autoimmune diseases such as rheumatoid arthritis (RA), relapse 

in TTP does not coincide with B cell return (82). Germinal centre B cells have 

been shown to be resistant to the effects of rituximab in murine models, due 

to poor tissue penetration or local protective effects (109). In addition, 

plasmablasts and plasma cells are able to escape rituximab by 

downregulation of CD20 expression (115).  A study of the effect of anti-CD20 

treatment on B cell development in the bone marrow of patients with RA 

showed that naïve and unswitched memory cells were efficiently depleted 

after rituximab, but the number of plasma cells remained unchanged (116).  
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1.4.5.4 Other therapies 
 

Other immunosuppressants such as mycophenylate mofetil, ciclosporin A, 

tacrolimus may be considered as second line therapy (62). Splenectomy may 

rarely be considered in the non-acute period of idiopathic TTP, but has only 

limited proven benefit (62). In a retrospective case series of 33 patients 

splenectomised for relapsed/refractory disease, the ten year relapse-free 

survival was 70% (117).  

 

Newer treatment modalities include agents which block VWF-glycoprotein Ib 

binding. Inhibition of VWF-glycoprotein Ib with a monoclonal antibody 

prevented and reversed symptoms of TTP in baboons (118). The anti-VWF 

nanobody caplacizumab has completed a phase II clinical trial in acquired 

TTP (TITAN trial) (119). Treated patients had a shorter time to platelet 

normalisation and reduced exacerbations during treatment (119). 

Importantly, there was an acceptable safety profile with regards increased 

tendency to mild/moderate bleeding. However, it must be remembered that 

whilst such agents may reduce microthrombus formation and hence organ 

damage, they do not affect the underlying immune pathology of acquired 

TTP. 

 

In vitro spiking studies with recombinant ADAMTS13 have shown that it has 

the potential to override anti-ADAMTS13 antibodies leading to an 

improvement in ADAMTS13 activity (120), and rADAMTS13 was able to 

correct TTP features in a mouse model of TTP (121). Case reports have 

suggested that N-acetylcysteine may have a role in therapy, acting to 

decrease the size of VWF by reducing the disulphide bonds of VWF 

multimers (122) or by reducing the VWF A1  domain residue 1278-1458 

disulphide bond which is crucial for binding to platelet GPIbα (123) (124).  

 

Case reports also exist in the literature suggesting a benefit of the 

proteasome inhibitor, bortezomib, for refractory TTP (125, 126). Bortezomib 

inhibits the 20S ribosomal subunit, increasing availability of NFĸB-inhibitory 

protein, IĸB (127). Via this mechanism, it eliminates autoreactive B-
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lymphocytes, plasma cells, and may inhibit autoantigen-presenting dendritic 

cells (128, 129). 

 

1.4.6 Prognostic features in TTP 
 

TTP remains a life-threatening disease with a 10-20% mortality rate, which 

has not improved significantly since the introduction of PEX therapy. 

Exacerbation within 30 days of remission occurs up to 45% of patients and 

recurrences (after 30 days) have been reported in up to 50% cases (78, 130-

133). We currently have only limited ability to identify those individuals with a 

more severe disease phenotype who are most at risk of death, or to 

determine which patients are more likely to relapse. 

1.4.6.1 Predicting mortality 
 

A number of clinical factors are associated with a poorer prognosis.  Severe 

neurological or cardiac involvement at presentation is associated with a 

worse outcome (57). A predictive model for death in idiopathic TTP with 

severe ADAMTS13 deficiency has been developed by the French TMA 

reference centre based on cerebral involvement, age and LDH level (134).  

Another group suggested that age>40, Hb<9 and fever at presentation are 

predictive of mortality at 6 months (135). 

 

Several studies have examined the potential utility of ADAMTS13 assays to 

predict disease severity. Patients with severe ADAMTS13 deficiency (<10%) 

have lower mortality than those with activity>10% (78, 79). This is likely to 

reflect the higher mortality of TMA secondary to underlying conditions such 

as malignancy or bone marrow transplantation, which is often unresponsive 

to plasma exchange and where ADAMTS13 activity is not severely reduced.  

 

Severe depletion of ADAMTS13 antigen during acute disease has been 

associated with increased mortality in a small study, and antigen level at 

initial clinical recovery was higher in patients who achieved a sustained 

remission (91). 
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There is conflicting evidence on the relevance of anti-ADAMTS13 antibodies 

to clinical outcome. Patents with anti-ADAMTS13 antibodies at presentation 

appeared to respond less well to PEX (78, 95, 136). Some studies have 

reported poorer responses to PEX in patients with higher inhibitor titres (78, 

136-138), but others have not (57, 79, 83). The discrepancy in these results 

is likely to be due in part to the small study sizes, but may also reflect the 

assays used to detect the antibodies and/or different therapeutic strategies. 

The relationship between total anti-ADAMTS13 IgG titre and prognosis is not 

clear and there is no absolute level that dictates a worse prognosis. 

However, one study found that higher anti-ADAMTS13 IgG (>67%) in 

conjunction with a raised troponin T was associated with a significantly worse 

prognosis (139). 

1.4.6.2 Predicting relapse 
 

In a prospective cohort study, Ferrari et al found that high levels of inhibitory 

IgG at presentation was associated with the persistence of undetectable 

ADAMTS13 activity in remission, which was in turn predictive of relapses 

within 18 months (83). In a larger but retrospective study of 109 patients, 

those with ADAMTS13 activity <10% or an inhibitor or anti-ADAMTS13 IgG 

had a three-fold increase in relapse during the first year of follow-up, whilst if 

activity<10% and IgG antibody were present, the risk increased 3.6 fold (85).  

Severely reduced ADAMTS13 activity during remission has also been 

confirmed as predictive of relapse (83, 85, 140), and there is an increased 

risk of relapse in patients with inhibitors detectable during clinical remission 

(78, 79, 83). 

  



47 

 

1.5 The immune system - tolerance and autoimmunity 

1.5.1 Development of tolerance 
 

A crucial requirement of the normal immune system is the ability to react to 

foreign antigens expressed by pathogens whilst ignoring self-antigens – 

immunological tolerance. Immunological tolerance to autoantigens may be 

induced when developing lymphocytes encounter these antigens in the 

central lymphoid organs (central tolerance), or when mature lymphocytes 

encounter self-antigens in the peripheral tissues (peripheral tolerance). 

 

The principal mechanisms of central tolerance in T cells are cell death, and 

for CD4+ cells, the generation of regulatory T cells. T cells undergo negative 

selection in the thymus where immature lymphocytes that interact strongly 

with self-peptides that are expressed ectopically in the medullary region of 

the thymus receive a ‘death’ signal that triggers apoptosis (141). Some 

immature CD4+ T cells that recognise self-antigens in the thymus do not die 

but develop into regulatory T cells and enter peripheral tissues. What 

determines whether a thymic T cell that recognises a self-antigen will die or 

become a regulatory T cell is not known (142).  

  

Central tolerance is the major mechanism to determine the overall T cell 

number in the body. However, thymic deletion of destructive T cell 

populations is incomplete (143) and peripheral tolerance is important for 

preventing T cell responses to self-antigens that are present mainly in 

peripheral tissues and not in the thymus. Extrinsic mechanisms of peripheral 

tolerance involve T reg cells and suppressive cytokines such as IL-10, TGF-β 

and antigen presenting cells (APC). Intrinsic mechanisms include T cell 

anergy, phenotypic alteration of T cells and apoptosis (143). 

 

Self-antigens may fail to elicit autoantibody responses because of lack of T 

cell help, due to tolerance in helper T cells. There are, however, specific 

mechanisms of B cell tolerance. A key determinant of B cell central tolerance 

is the strength of B cell receptor (BCR) signalling (144). A strong BCR signal 

due to binding with high affinity to an autoantigen in the bone marrow may 
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cause an immature B cell to reactivate its Ig gene recombination machinery 

and begin to express a new light chain. This process of changing receptor 

specificity is called receptor editing (145). It is estimated that 25-50% of 

mature B cells in a normal individual may have undergone receptor editing 

during their maturation (142).  If editing fails, self-reacting B cells undergo 

clonal deletion (146). Intermediate binding affinity to autoantigen will permit B 

cells to survive and progress to the periphery (147). 

 

Peripheral B cell tolerance comes from functional inactivation, whereby 

mature B lymphocytes that encounter high concentrations of self-antigens in 

peripheral lymphoid tissue become anergic and cannot respond again to that 

antigen (148). In the last decade, a new subset of B cells has been identified 

in murine models as regulatory B cells (B reg cells) due to their suppressive 

capacity which is thought to be due to secretion of IL-10 (149, 150). However 

there is still limited data about their function and they remain relatively poorly 

characterised in humans. Figure 1.9 shows the role of B cells in autoimmune 

disease. 
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Figure 1.9  Role of B lymphocytes in autoimmune disease  

A) Autoreactive B cells that escape central tolerance mechanisms in the bone marrow are 
not sufficient to cause overt autoimmune disease and other mechanisms are necessary.    
B) B cells are efficient antigen presenting cells that activate T cells. T cells in turn activate B 
cells enabling them to start germinal centre (GC) reactions. C) In the germinal centre, B cells 
undergo somatic hypermutation (SHM) and class switch recombination amplifying the 
autoimmune response and shaping the pathogenic autoimmune memory (D).  
E) B cells may also control autoimmune disease via regulatory B cells.  
From Salinas et al 2013 (144).     
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1.5.2 Autoimmunity and autoimmune diseases 
 

Autoimmunity, defined as the presence of autoreactive B or T lymphocytes in 

the periphery, is a common and probably even physiological condition (144). 

It is caused by the fact that central tolerance mechanisms are not perfect, 

and allow a limited number of autoreactive cells to survive. There is evidence 

that low-affinity reactivity to self-antigens is required for survival of T and 

probably B lymphocytes in the peripheral immune system (151). 

 

However, autoimmunity does not lead automatically to autoimmune disease 

(144). Autoantibodies may be found in healthy individuals and their 

prevalence may increase with age e.g. anti-nuclear antibodies (ANA) and 

rheumatoid factor (RF), or be a transient phenomenon possibly related to 

infections e.g. antiphospholipid antibodies. However, clinical autoimmune 

disease can also be preceded by the presence of autoantibodies, as shown 

by two studies in rheumatoid arthritis where approximately half of the 

patients were positive for RF or anti-citrullinated protein antibodies up to ten 

years before the onset of symptoms (152, 153).  The progression from 

autoimmunity to autoimmune disease is not only determined by the degree of 

central tolerance leakage, but also by failure of peripheral tolerance 

checkpoints (144, 147).  

 

It is estimated that autoimmune disorders collectively affect 3-10% of the 

general population (154). Multiple factors are thought to contribute to the 

development of autoimmune diseases, including the inheritance of 

susceptibility genes and environmental triggers such as infection and tissue 

injury. 
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1.6 The autoimmune response in acquired TTP 

1.6.1 Acquired TTP as an autoimmune disease 
 

Acquired TTP demonstrates some classic features of an autoimmune 

disease, such as the female preponderance and the tendency to cluster with 

other autoimmune conditions in a given individual or family. Depending on 

the patient cohort, 10-33% of patients presenting with acute acquired TTP 

with severe ADAMTS13 deficiency have another overt autoimmune disorder 

(138, 155). These may be systemic autoimmune disorders such as SLE, 

seen in 6.5% of a recent German cohort, or organ-specific diseases (a 

remarkable 23% of the cohort had Hashimoto’s thyroiditis) (156).  

1.6.2 Factors contributing to the development of TTP 

1.6.2.1 Genetic factors 
 

Evidence for genetic susceptibility in some individuals comes from studies of 

HLA associations in TTP. Three studies have shown an over-representation 

of the HLA-DRB1*11 allele in patients with acquired TTP and severe 

ADAMTS13 deficiency, with an incidence of 44-62% compared to a reported 

prevalence of 12-25% in healthy controls (157-159). HLA-DRB1*04 was 

underrepresented and HLA-DRB1*04/ DR*53 seemed to protect from a 

recurrent disease course. A pilot genome-wide association study (GWAS) of 

acquired antibody-mediated TTP in 44 Caucasian TTP patients found 

multiple SNPs in the HLA-II region which were significantly associated with 

TTP (160). Further associations were found with genes important in B cell 

development and function, and a large-scale GWAS study by the same 

group is underway. 

1.6.2.2 Environmental factors 
 

Environmental triggers are important in the development of TTP. HIV is well 

recognised as a cause of TTP (161), but many other infectious agents have 

been implicated including influenza A, parvovirus and Brucella (162-164). 

The large variety of microorganisms implicated suggests that direct 

molecular mimicry is unlikely as a mechanism. Triggering of the innate 

immune system by microbes via pattern recognition receptors (PRR) results 
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in upregulation of MHC class II and co-stimulatory molecules like CD40 and 

promotes the development of autoimmune lymphocytes (165). Pos et al have 

suggested that this may play a role at the onset of acquired TTP by lowering 

the threshold for activation of intermediate-affinity ADAMTS13-specific T 

cells that have escaped negative selection in the thymus (166). The 

inflammatory response may also lead to the release of DNA and histones, 

potentially precipitating the disease (167). 

 

TTP may occur during pregnancy and the post-partum period. In the South 

East England Registry, 5% episodes were triggered by pregnancy (57). This 

may be due to alteration in substrate-enzyme balance precipitated by the 

increase in VWF and decrease in ADAMTS13 that occur in pregnancy (168). 

However, oestrogen has also been shown to affect the differentiation and 

function of antigen presenting cells (169), and TTP may also be triggered by 

the combined oral contraceptive pill (57). 

 

Drugs may also trigger autoimmunity. A variety of agents have been 

described which precipitate a TTP-like syndrome, but the majority of these 

actually cause a non-immune mediated TMA. Only quinine and ticlopidine 

have been shown to act via an immune mechanism, and quinine is 

associated with antibodies against platelets rather than ADAMTS13 (170). 

However, ticlopidine therapy increases the risk of developing anti-

ADAMTS13 inhibitory autoantibodies by 200- to 300-fold (171) (172). Despite 

initial suspicions, clopidogrel has not been shown to increase the 

development of ADAMTS13 inhibitors (173). 

 

Survival and maturation of autoreactive B cells at various stages depends on 

survival signals such as B-cell activating factor (BAFF). Plasma BAFF levels 

were elevated at presentation in one study of 66 patients with idiopathic 

antibody-mediated TTP (174). It is unclear whether increased BAFF is a 

primary cause of autoimmunity or whether autoimmunity is related to 

increases in pro-inflammatory cytokines such as type 1 interferons known to 

promote BAFF production (175) and which are upregulated in acute TTP 

(176). Interestingly, BAFF levels were not elevated in the cases of HIV-TTP 
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investigated which all had anti-ADAMTS13 IgG, suggesting the increase 

seen in idiopathic disease is not merely  marker of tissue damage (174). 

1.6.3 Antigen presentation in TTP 
 

ADAMTS13 is efficiently internalised by antigen-presenting cells (APC) via 

the macrophage mannose receptor (177). A recent study has shown that 

dendritic cells exposed to ADAMTS13 presented peptides derived from 

several ADAMTS13 domains, and peptides derived from the CUB2 domain 

were presented with the highest efficiency (178). Dendritic cells from donors 

with an HLA-DRB1*11 allele exposed to a higher concentration of 

ADAMTS13 presented only differently processed versions of the same CUB2 

peptide, which contains the predicted DRB1*11-binding sequence 

FINVAPHAR (178). The authors hypothesised that functional presentation of 

CUB2-derived peptides on HLA-DRB1*11 contributes to the onset of 

acquired TTP by stimulating low-affinity self-reactive CD4+ T cells (Figure 

1.10). 
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Figure 1.10  Hypothetical model for the activation of self-reactive ADAMTS13- specific 
CD4+ T cells  

Triggering of the innate immune system by micro-organisms via pattern recognition 
receptors (PPR) results in upregulation  of MHC class II and co-stimulatory molecules like 
CD40. ADAMTS13 is internalised by APC via the macrophage mannose receptor (177). 
CUB-2 derived peptides are preferentially presented in an HLA-DRB1*11 dependent manner 
(178). This may result in the activation of intermediate-affinity ADAMTS1-specific T cells that 
have escaped negative selection in the thymus. Oestrogens have been shown to affect the 
functional properties of APC. Adapted and modified from Pos et al, 2011(166). 
 
 
 

1.6.4 The role of T cells in TTP 
 

The association between HLA-DRB1*11 and acquired idiopathic TTP 

suggests that antigen-specific CD4+ cells contribute to anti-ADAMTS13 

autoantibody formation. Additional evidence for the involvement of T cells in 

the pathophysiology of TTP comes from a clinical observation during 

therapeutic plasma exchange (166). After initial improvement, patients often 

experience a drop in the platelet count around day 7-10, a phenomenon that 

may be associated with an increase in ADAMTS13 inhibitor titres and is 

referred to as inhibitor boosting or exacerbation (179, 180). This 

phenomenon occurred less frequently in patients who received the T-cell 

immunosuppressant ciclosporin A (181). 
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The contribution of T regulatory cells to TTP pathophysiology has been 

evaluated by two groups. McDonald et al studied 50 patients with acquired 

TTP at different timepoints, and found no difference in T reg numbers at TTP 

presentation or during remission (182). Mariani et al reported increased 

numbers of CD4+/CD25+ T cells during remission in patients with a history of 

TTP when compared to healthy controls, and found that those with a history 

of recurrent disease had a lower percentage of CD4+/CD25+ cells than 

patients who had only had a single episode of TTP (183). However, CD25 

positivity alone does not define cells with a regulatory function, and when the 

same authors investigated CD4+CD25+bright cells and FoxP3+ cells, these 

were not altered in TTP cases. No group to date has performed functional 

analysis of these CD4+CD25+bright cells and FoxP3+ cells which could reveal 

a qualitative change in Treg function, as has been described in some other  

autoimmune diseases (184, 185).  
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1.6.5 The antibody response in TTP 
 

The autoantibody-mediated response appears central to most cases of acute 

idiopathic TTP. Autoantibodies directed towards ADAMTS13 are present in 

the plasma of the majority of acquired TTP patients with ADAMTS13 activity 

<5% (138).  

1.6.5.1 Isotype and subclasses of anti-ADAMTS13 antibodies 
 

Anti-ADAMTS13 antibodies are comprised predominantly of immunoglobulin 

class G (IgG), although IgM and IgA have been reported in a limited number 

of patients (83-85). The clinical significance of non-IgG antibodies is unclear.  

The main IgG subclasses of anti-ADAMTS13 antibodies are IgG4 (69-90%) 

and IgG1 (52-73%) (50, 84, 186). Lower levels of IgG2 are present (50, 84). 

Levels of IgG3 varied in different studies with Ferrari et al and Pos et al 

finding lower titres (average 20%) but Bettoni et al and McDonald et al 

finding high IgG3 titres during acute TTP episodes (50, 84, 186, 187).  

 

In one study, both mortality and number of PEX to remission increased with 

increasing number of IgG subclasses present (186), and IgG2 was 

associated with mortality and cardiac disease. However, another study found 

that high levels of IgG1 with low / undetectable IgG4 were associated with an 

adverse outcome (84). The same group found high levels of IgG4 to be 

associated with increased risk of relapse. All relapsed cases had IgG4 

antibodies and IgG4 levels were inversely correlated with IgG1 (84). This may 

be explained by subclass switching from IgG1 to IgG4, possibly resulting from 

continuous antigenic stimulation (166).  

 

However, the significance of an elevated IgG4 titre is unclear, since IgG4 

cannot activate complement (in contrast to IgG1 antibodies which activate the 

classical complement pathway by binding FcγRs). High titre IgG4 may 

activate T reg cells secreting IL-10, thereby stimulating the TH2 response 

and downregulating the TH1 response leading to a dysregulated humoral 

immune response as is seen in autoimmune pancreatitis (188, 189). In 

general, a broader isotype/subtype usage of antibodies not only indicates a 
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more extensive B cell activation but, more importantly, implies that different 

effector functions can cooperate to enhance autoimmune disease (144). 

1.6.5.2 Immune complexes 
 

The extent to which anti ADAMTS13 antibodies circulate free or in a complex 

with ADAMTS13 (thus forming immune complexes, IC) and how this 

changes over time has been studied by one group using both co-

immunoprecipitation of ADAMTS13 with immunoglobulins, and an ELISA 

technique (92, 190).  They analysed a cohort of 68 patients with acquired 

TTP at presentation and found that 100% had free IgG antibodies and 95% 

had ADAMTS-13 specific IC.  

 

In the 28 patients studied in remission, 75% had free antibodies (mainly IgG) 

and a remarkable 93% had persisting immune complexes. The IC mainly 

comprised IgG4 antibodies, and whilst ADAMTS13 inhibitor, anti-ADAMTS13 

antibody titre and levels of IgG1-3 IC all decreased in remission, IgG4 immune 

complexes persisted over years even in patients who had received rituximab 

and showed no sign of relapse (92). The clinical relevance of these IgG4 

complexes in remission is unclear, as IgG4 is unable to fix complement and 

tends to form small-sized ICs, which would have limited effector functions. 

There was an inverse correlation between free and complexed anti-

ADAMTS13 antibodies during the acute phase in the four patients studied 

longitudinally, but this relationship did not hold in remission (92, 190). 

 
 
Lotta et al measured total ADAMTS13 IC with another novel ELISA in TTP 

patients with anti-ADAMTS13 IgG by WB and ADAMTS13 activity <10% at 

presentation, and found IC in seven out of 15 acute presentations and 10/21 

patients in remission (191). Seven out of 19 patients with negative anti-A13 

WB and activity <45% at presentation had circulating ADAMTS13 IC, and 

this was confirmed by immunoprecipitation. ADAMTS IC were not associated 

with ADAMTS13 activity, antigen or anti-ADADMTS13 IgG in this cohort. 

However, in the 15 patients studied with acute TTP, increasing levels of 
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ADAMTS13 IC were associated with increased number of PEX to remission 

(191). 

 

1.6.5.3 Domain specificity of anti-ADAMTS13 antibodies 

1.6.5.3.1 Spacer domain 
 

Work on epitope mapping of antibodies in patients with acquired TTP has 

identified antibodies to the spacer domain in virtually all the patients studied 

to date (50, 192-196). The investigators used a range of different materials 

and methods – see Figure 1.11 and Table 1.3. 

 

 

 

 

 

Figure 1.11  Summary of results of domain specificity of anti-ADAMTS13 IgG 
antibodies in acquired TTP in published studies 

Number of patients positive for antibodies against domains/numbers tested shown beneath
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Study Method ADAMTS13 
protein 
expression 

No. of  
patients 

Domain Result 

Luken et al, 
2006 (194) 

Ig V gene 
phage-display 
library → mAb 
IP 

Insect 1 
(remission) 

S 
DT 

3 mAb 
1 mAb 

Yamaguchi 
et al, 2011 
(197) 

ADAMTS13 
phage library 
immobilised & 
in solution 

Bacterial  13 
(2 failed) 

Peptides from  
 
Signal/pro 
M 
D 
T 
C 
S 
2-8 
CUB 

 
 
2/11 
5/11 
2/11 
1/11 
2/11 
7/11 
7/11 
1/11 

 
Table 1.3  Other methods used for epitope mapping of anti-ADAMTS13 antibodies 

M=metalloprotease domain, D=disintegrin-like domain, T=TSP1 domain, 
DT=disintegrin/TSP1 domain fragment, C=cys-rich domain, S=spacer domain, 2-8=TSP2-8 
domains, CUB=CUB domains 
 

 

Further work identified two amino acid regions in the spacer domain 

containing residues necessary for the binding of anti-ADAMTS13 

autoantibodies (198). These two regions were not exclusively required for 

antibody binding, as several other regions also contributed to the antigenicity 

of the spacer domain. The majority of anti-ADAMTS13 antibodies in patients 

with acquired TTP in a subsequent study targeted a single epitope 

comprising Arg660, Tyr661, and Tyr 665 (RYY) on the outer surface of the spacer 

domain – Figure 1.12 (199). Further work showed that residues Arg568 and 

Phe592 also contribute to this antigenic surface (50), and epitope analysis of 

ADAMTS13 autoantibodies by a Japanese group using a phage library 

expressing various ADAMTS13 peptides found the peptide sequence Gly662-

Val687 in multiple clones in 5 out of 11 patients (197).  
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Figure 1.12  Antigenic surface of spacer domain shown on the crystal structure of 
DTCS 

Residues R660, Y661 and Y665 align as a cluster on the surface of ADAMTS13 MDTCS. 
Adapted from Pos et al, 2010 (199) 

 

Deuterium-hydrogen exchange coupled with mass spectrometry has been 

used by one group recently to identify the autoantibody binding site of a 

human monoclonal antibody fragment (single-chain Fv, scFv) isolated by 

phage display from a TTP patient (200). They demonstrated that the scFv 

bound residues Arg636, Leu637, Arg639 and Leu640 in the spacer domain and 

termed this ‘exosite 4’. The mAb fragment also bound RYY in exosite 3, as 

well as Lys608 upstream. Site-directed mutagenesis of these residues 

abolished/significantly reduced the antibody fragment binding but also 

abolished/ reduced ADAMTS13 activity in a FRETS assay and in proteolysis 

of multimeric VWF, suggesting this epitope is also part of the VWF binding 

site (200).  

 

These results are consistent with studies demonstrating the critical role of the 

ADAMTS13 spacer domain in the binding and proteolysis of VWF (48, 49, 

201). As discussed previously, the spacer domain binds a cryptic VWF A2 

domain exosite that is revealed upon unfolding of globular VWF (202). 

Autoantibodies binding these residues are likely to interfere with binding of 

ADAMTS13 to unfolded VWF A2 domain and limit VWF processing (199). 

Whether the spacer domain is particularly immunogenic, or resembles 

epitopes found in microbial pathogens is not known. 
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1.6.5.3.2 Antibodies targeting other N terminal domains  
 

Despite the frequency of autoantibodies against the spacer domain, patients 

may have additional antibodies that recognise other domains (Figure 1.11) 

demonstrating the polyclonal nature of the autoimmune response.  

 

More than half of the patients in one study using bacterially expressed 

material had antibodies detected against the first TSP1 domain (192). There 

was some discrepancy between this and other studies which found no 

reactivity with the disintegrin-TSP1 domains (193), and only 12% of patients’ 

samples reacting with a fragment comprising the metalloprotease-disintegrin-

TSP1 domains (MDT) (196).  The role of the TSP1 region is not clear but it 

may facilitate interactions either directly with VWF (49), or possibly with cells 

via CD36 (203). Although antibodies against the MP and Dis domains are 

less common, given the essential role of these domains in VWF proteolysis 

(51, 204), it is expected that autoantibodies against these regions would 

most likely be inhibitory.  

 

The exact function and frequency of antibodies against the cys-rich domain 

is also unclear. Several groups studied the cys-rich spacer fragment (either 

directly or by subtraction) and found antibodies against this region in the 

majority of patients investigated (192, 193, 195, 196). However further 

analysis by Luken et al showed the 6 patients in their study had anti-spacer 

antibodies. They were not able to study the cys-rich domain in isolation as it 

was retained intracellularly (193) but in subsequent work 6/6 patients did not 

bind DTCSpacer1 (a hybrid construct with the spacer domain from 

ADAMTS1) suggesting no autoantibody formation against the cys-region 

domain in this group (198). Epitope analysis using a phage library expressing 

various peptides of ADAMTS13 found 2 out of 13 patients had IgG which 

recognised peptides from the cys-rich domain (205), although this approach 

only allows detection of short linear sequences. 
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1.6.5.3.3 Antibodies targeting the C terminal domains  
 

Antibodies to the distal region of the ADAMTS13 protein may interfere with 

substrate recognition or lead to ADAMTS13 depletion by the formation of 

antibody-antigen complexes, but there is conflicting evidence in the literature 

on their prevalence. In an early study using a Western blotting technique with 

bacterially expressed material, two-thirds of patients had antibodies against 

the CUB domains (192). A prevalence of approximately one-third was found 

in two studies using an immunoprecipitation technique with mammalian 

expressed material (50, 196), whilst a smaller study found no anti-CUB 

antibodies in the seven patients tested using immunoprecipitation with 

ADAMTS13 fragments expressed in insect cells (193).  

 

The prevalence of anti-TSP2-8 antibodies at presentation has been variously 

reported as 14-37% (50, 192, 193, 196). One study found the presence of 

IgG antibodies against TSP2-8 and/or CUB was inversely correlated with 

patient platelet counts on admission (196).  A handful of patients have been 

described with IgG that predominantly targets C-terminal domains with no or 

weak reactivity towards the N-terminal fragment MDTCS (196, 206).  A 

recent study using a novel flow cytometric methodology found IgGs from 

25/26 patients with acquired TTP bound to cells expressing a GPI-anchored 

C-terminal fragment  TSP2-8 plus CUB (207). 
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Thus, previous studies of the domain specificity of anti-ADAMTS13 

antibodies have used a range of different protein expression methods and 

assay techniques. Early studies used bacterially expressed material which 

whilst allowing synthesis of large quantities of protein, does not allow for 

normal glycosylation and may not result in material being correctly folded / 

displaying physiological epitopes. Expression of proteins in mammalian cells 

is more time-consuming with much lower yields, but is more likely to result in 

correctly folded protein. Immunoblotting is potentially straightforward, gives a 

good overview of the domains affected by an autoimmune response, but may 

not identify conformation-specific epitopes. In contrast, immunoprecipitation 

allows antibody-antigen binding in solution, meaning conformation-specific 

epitopes are not disrupted, but is labour-intensive for large numbers of 

samples and protein fragments. Peptide libraries offer good coverage of the 

protein in short peptides but again cannot detect conformational epitopes 

 

From the available studies to date, the spacer domain appears to be the 

major antibody binding domain in patients with idiopathic TTP, although 

antibodies with specificity for other regions including the C-terminal domains 

have been identified in subsets of TTP patients.  

 

Interestingly, whereas the dominant B cell epitope lies in the spacer domain, 

the major T cell epitope appears to be in the CUB domain (178). Although T 

cell and B cell epitopes are often close or even overlap, they can also be 

derived from spatially distant regions of a protein, because the presentation 

of T cell and B cell epitopes to the immune system is fundamentally different 

(208). CD4+ T cell epitopes consist of short contiguous peptide fragments 

bound to MHC class II on antigen presenting cells which are recognised by 

the TCR. In contrast, B cell epitopes are 3-dimensional surfaces of folded 

proteins which are recognised by antibodies or the receptors of memory 

cells, and are often comprised of non-contiguous amino acid sequences 

(208). However, given the recent data on the ‘closed’ conformation of 

ADAMTS13 in circulation mediated by a CUB-spacer domain interaction 

(53), the major B cell and T cell epitopes may indeed be in close proximity. 
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1.6.5.4 Non-neutralising antibodies 
 

The use of Western blotting or immunoprecipitation techniques gives a good 

overview of the regions and domains affected by an autoimmune response, 

and allows major immunogenic regions to be identified (192). It does not, 

however, reveal the extent to which the different antibodies contribute to the 

IgG levels identified from routine ELISA assays, and which are inhibitory or 

non-inhibitory. In some TTP patients, non-neutralising IgG antibodies can 

occur that do not inhibit protease activity in vitro but may compromise 

ADAMTS function in vivo by influencing plasma half-life (209). Studies have 

found that 10-15% of the autoantibodies found in patients with acquired TTP 

are non-neutralising (83, 84). These studies used an ELISA to detect anti-

ADAMTS13 IgG in TTP patients and a Bethesda-type assay using a full-

length VWF substrate ADAMTS13 activity assay to detect inhibitors. It should 

be remembered that no one ADAMTS13 activity assay reflects the in vivo 

situation in TTP, and the requirement for a denaturant in the activity assay 

may alter the proportion of antibodies found to be inhibitory. 

 

A recent study investigated the anti-ADAMTS13 IgG found in up to 5% of 

healthy individuals (81, 210). They isolated anti-ADAMTS13 autoantibodies 

in a 2-step chromatographic purification procedure (ADAMTS13 affinity 

matrix and protein G) from three acquired TTP patients and a pool of 45 

randomly selected healthy donors (134). The anti-ADAMTS13 autoantibodies 

present in healthy individuals were non-neutralising in the FRETS-VWF73 

activity assay, and showed low affinity towards ADAMTS13 using Biacore (in 

contrast to the high affinity inhibitory IgG in the three patients).  

 

Epitope mapping of the anti-ADAMTS13 IgG from the normal donors using 

immunoprecipitation of mammalian ADAMTS13 fragments showed a similar 

pattern to the TTP patients, in that that it interacted with full length 

ADAMTS13, MDT and MDTCS but recognised the C terminal domains more 

weakly. However, unlike the TTP IgG which recognised MDTCS more 

strongly than MDT, the IgG from normal donor bound more strongly to MDT 

than MDTCS (134). The group also used peptide arrays for epitope mapping  
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and demonstrated that the anti-ADAMTS13 IgG in healthy individuals shares 

linear epitopes with TTP patient IgG, with shared recognition of peptides 

from the metalloprotease, disintegrin-like and spacer domains, and also 

TSP8 and CUB (134). However, the usefulness of the peptide array 

approach is called into question by the fact that no hit was observed for the 

peptide including the spacer residues Arg660, Tyr661 and Tyr665 (RYY), which 

is considered the main target for autoantibodies from many acquired TTP 

patients (199). However, the group speculated that low affinity non-inhibitory 

anti–ADAMTS13 antibodies occurring in some healthy individuals might 

provide a template for the emergence of high affinity pathogenic antibodies in 

acquired TTP. 

 

To date, the precise role and domain specificity of non-inhibitory anti-

ADAMTS13 antibodies in TTP patients have not been defined.  Antibodies 

directed against the C terminal domains of ADAMTS13 which block VWF 

binding might modulate enzyme function beyond what is measured routinely. 

 

1.6.5.5 The role of VH1-69 
 

Gene analysis of the variable heavy chain of anti-ADAMTS13 antibodies 

revealed predominant usage of the VH1-69 germline gene (211). Pos et al 

hypothesised that “shape complementarity” between VH1-69 encoded 

variable domain residues and exposed exosites in the spacer domain 

explains the frequent usage of the VH1-69 gene segment in anti-spacer 

antibodies (166). The heavy chain complementarity determining region 2 

(HCDR2) of the VH1-69 germline contains a unique hydrophobic “Ile-Ile-Pro-

Ile-Phe” motif  (211) which may interact with hydrophobic residues Tyr661 and 

Tyr665 present on the antigenic surface of the spacer domain (26, 199). 
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1.6.5.6 Longitudinal analysis of the anti-ADAMTS13 humoral response 
 

There has been very limited work on the longitudinal immune response in 

TTP to date. One study in a single patient studied the evolution of the anti-

ADAMTS13 immune response (100).  The patient had a normal ADAMTS13 

activity by static and flow-based ADAMTS13 activity assays at presentation 

and experienced five relapses over eight years during which he developed a 

severe ADAMTS13 deficiency, first by the flow-based assay and 

subsequently in the static assays.  

 

Epitope mapping was performed by immunoprecipitation using the fragments 

PMDTCS-13 (N-terminal domains of ADAMTS13 from propeptide to spacer), 

PMDTCS-1 (a hybrid construct with the spacer domain from ADAMTS1), 

TSP2-8 and CUB1-2 expressed in insect cells. The principal antigenic 

epitope in all the acute TTP episodes was in the spacer domain since 

antibodies from each episode recognised PMDTCS-13 but reacted weakly 

with PMDTCS-1. There were weak anti-CUB antibodies in all episodes but 

no evidence of anti TSP2-8 antibodies. There was no evidence of epitope 

spreading to other domains during the evolution of the immune response in 

this study. 

 

A possible explanation of the observed change in properties of the anti-

ADAMTS13 antibodies in this case from non-inhibitory to inhibitory might be 

affinity maturation by somatic hypermutation of the patient’s immunoglobulin 

genes (100). B cells producing non-neutralising antibodies might be 

precursor cells from which inhibitory anti-ADAMTS13 B cells can then evolve 

by somatic hypermutation later in the disease. Another possible explanation 

might be IgG subclass switching (189). In this patient, the demonstration of 

ADAMTS13 inhibition in activity assays coincided with a rising titre of anti-

ADAMTS13 antibodies, thus another explanation might be that very low 

levels of such antibodies might be sufficient to lead to an acute episode of 

TTP but not be sufficient to make in vitro assays demonstrate severe 

ADAMTS13 deficiency (99). 
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However, this study was of single atypical patient. The patient had HIV-TTP 

and thus had major immunological defects in the T-cell as well as B-cell 

compartments. He was non-compliant with highly active anti-retroviral 

therapy (HAART), had recurrent Staphylococcal aureus infections and 

responded unusually quickly to plasma exchange in the first episode 

(requiring only five PEX to remission with no exacerbation on stopping). This 

case is therefore not generalisable to idiopathic acquired TTP. 

 

In another longitudinal study of a single patient, the rising inhibitor titre was 

due to both an increase in anti-ADAMTS13 IgG concentration and increased 

inhibitory activity of the antibodies (212). There was also a shift in the IgG 

subclasses from IgG1 to IgG2. Previous studies on the same patient showed 

that throughout the disease course her antibodies interacted with  full length 

ADAMTS13, but not with fragments truncated upstream of the spacer 

domain, suggesting the presence of anti-N terminal antibodies alone (213). 

 

Thus, IgG antibodies play a central role in the pathogenesis of most cases of 

acute TTP but the immunological response in TTP has not been studied in 

detail longitudinally nor the relative contribution of inhibitory / non-inhibitory 

antibodies against different domains determined.  
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1.7  Hypothesis 
 

TTP remains a life-threatening disease with a 10-20% mortality rate, which 

has not improved significantly since the introduction of PEX therapy. 

Relapses have been reported in up to 50% cases. We currently have only 

limited ability to identify those individuals with a more severe disease 

phenotype who are most at risk of death, or to determine which patients are 

more likely to relapse. It is currently unclear which are the primary 

pathogenic species of antibody. Thorough investigation of the antibody 

repertoire in TTP patients performed both at presentation and longitudinally 

may improve our ability to prognosticate in acquired TTP. 

 

TTP is unlike many autoimmune disorders inasmuch as the target is a single 

soluble plasma protein. This is unusual as many autoimmune targets are 

cellular and involve complement activation on the surface of those cells. The 

basis of the hypothesis was that different domains of ADAMTS13 are 

variably functionally important, and therefore antibodies against different 

domains may also have different pathogenic potential. 

 

I therefore hypothesise that: 

1. Autoantibodies against different ADAMTS13 domains inhibit ADAMTS13 

to different extents and therefore contribute variably to the pathogenesis of 

TTP. 

2. The identification and characterisation of the repertoire of antibodies in 

longitudinally collected samples in a number of patients with acute idiopathic 

TTP, provides a means to identify those patients most likely to achieve 

remission and those at higher risk of relapse. This in turn, may allow a 

means of monitoring TTP patients during treatment and possibly tailoring 

therapy accordingly. 
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1.8   Aims 
 

The main aim of this study was to identify a better way to risk stratify patients 

with acquired TTP, in order to identify individuals who might die from the 

disease as opposed to those who would respond well to treatment. It is clear 

from existing work that the autoimmune response in acquired TTP is 

polyclonal. However, it is not known whether or not antibodies directed 

against different domains of ADAMTS13 are variably pathogenic. It is also 

unclear how the domain specificity of the antibodies changes in response to 

treatment and whether re-emergence of antibodies against different domains 

may be indicative of/predictive of relapse. 

  

To test my hypothesis with specific reference to these unknowns, the thesis 

is divided into chapters with aims as follows: 

 

1. To express recombinant ADAMTS13 domain fragments in both 

bacterial and mammalian expression systems to use in domain 

specificity studies (chapter 3). 

2. To develop novel assays to determine the domain specificity of anti-

ADAMTS13 antibodies (chapter 3). 

3. To determine the domain specificity of anti-ADAMTS13 antibodies at 

presentation of acquired TTP and study the clinical correlates of this 

(chapter 4). 

4. To explore the contribution of different pathogenic mechanisms in 

acquired TTP (chapter 5). 

5. To study the humoral response in TTP longitudinally through therapy, 

remission and relapse (chapter 6). 
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2 METHODOLOGY 

2.1 Expression, purification and refolding of ADAMTS13 domain 
fragments in bacteria 

2.1.1 Generation of bacterial expression vectors 

2.1.1.1 Bacterial ADAMTS13 domain fragment vectors generated 
 

Certain bacterial expression vectors (pET100 (Invitrogen) - fusing a 

polyhistidine and Xpress epitope tag to the amino-terminus of different 

ADAMTS13 domain coding regions - Figure 2.1) had previously been 

generated in our lab from earlier work in the group. Available expression 

vectors were MP, Dis-TSP1, Spacer, TSP2-4, TSP5-8 and CUB1/2 (Figure 

2.2). 

 

Figure 2.1  Map of pET100/D-TOPO bacterial expression vector 

Ampicillin = ampicillin resistance gene; Xpress 
TM

 epitope=tag for detection; 6xHis = 
polyhistidine tag which aids in purification.  
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The pET100 vector has a T7/lac promoter for high level isopropyl β-D-1-

thiogalactopyranoside (IPTG)-inducible expression of the gene of interest in 

E. coli expression, and directional TOPO© cloning site for directional cloning 

of blunt-ended PCR products. It has a cleavable detection tag (Xpress), 

6xHis tag for purification and antibiotic resistance marker for selection in 

E.coli. High level expression is achieved because the T7 RNA polymerase is 

more processive than native E.coli polymerase and is dedicated to the 

transcription of the gene of interest (Invitrogen). 

 

I generated vectors for the remaining domain fragments (TSP1 and Cys – 

Figure 2.2) by PCR amplification using KOD XtremeTM Hot Start DNA 

polymerase (Novagen) and full-length ADAMTS13 plasmid DNA as a 

template, as detailed in the following sections. 

 

 

Figure 2.2  ADAMTS13 domains expressed in E.coli   

Bacterial expression vectors MP, Dis-TSP1, Spacer, TSP2-4, TSP5-8 and CUB(1/2) were 
available from earlier work. The remaining domain fragments (TSP1, Cys) were generated 

by PCR amplification and cloned into the pET100 vector. = novel vector 
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2.1.1.2 Generation of ADAMTS13 domain fragments by PCR 
 

Blunt-end PCR products encoding for the domain fragments TSP1 and Cys 

were generated by PCR amplification using KOD XtremeTM Hot Start DNA 

polymerase (Novagen) and full-length ADAMTS13 plasmid DNA as a 

template. Primers were designed according to the guidelines in the KOD 

HotStart DNA polymerase protocol (Novagen). The four base pair sequences 

(CACC) necessary for directional cloning were included on the 5’ end of the 

forward primer. All primers were manufactured and HPLC purified by Thermo 

Fisher, Germany. PCR reactions were performed using 1μl KOD XtremeTM 

Hot Start DNA polymerase (1U/μl); 1.5μl of sense (5’) primer and 1.5μl of 

anti-sense (3’) primer (10μM each); 10ng of plasmid DNA template;  25μl of 

2x reaction buffer, 10μl of dNTP’s (2mM each) and PCR grade water to a 

final volume of 50μl. The basic amplification conditions were as follows:  

polymerase activation (94°c, 2min); 25 cycles of denaturation (98°c, 10 sec), 

annealing (lowest primer Tm°c, 30 sec) and extension (68°c, 1 min per kb) 

with a final extension at 68°c for 7 minutes. 

2.1.1.3 Agarose gel electrophoresis 
 

Agarose gel electrophoresis was used to separate DNA fragments according 

to size and determine the success of PCR in generating a product of the 

expected size as a single discrete band. 1-1.2% agarose gels (w/v) were 

prepared in TBE buffer (89mM Tris-HCL, 89mM boric acid and 2mM EDTA) 

containing 5μg/ml SYBRTM safe DNA gel stain (Invitrogen). Plasmid DNA or 

a 1 kb ladder (NEB) was mixed with 6xDNA loading buffer (40% w/v sucrose 

and 0.09% bromophenol blue), loaded and run on the agarose gel at 50v for 

30 minutes. DNA was visualised using a Safe ImagerTM blue light 

transilluminator (Invitrogen), and the amount of the PCR product estimated 

by comparison to the ladder. 

2.1.1.4 DNA extraction from an agarose gel 
 

DNA bands of the predicted size containing fragments of interest were 

purified using the QIAQuick Spin gel extraction kit according to 

manufacturer’s instructions (QIAgen). Briefly, gel slices containing DNA were 

re-suspended in three volumes of solubilisation buffer and incubated at 50°c 
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for ten minutes. One volume of isopropanol was added and the sample 

applied to column containing a silica membrane for selective adsorption of 

plasmid DNA in high-salt, low pH buffer. After centrifugation, the column was 

washed with an ethanol-containing buffer and the DNA eluted with 50μl low-

salt buffer of higher pH. 

2.1.1.5 Directional TOPO cloning 
 

Once a PCR product of the correct size was obtained, the cDNA fragment 

was cloned by directional TOPO© cloning into the pET100/D-TOPO vector 

(Invitrogen) according to manufacturer’s protocol. This PET vector has 

topoisomerase covalently attached to its end allowing the PCR fragment to 

be readily ligated into the linearised vector (Figure 2.3). 

 

Figure 2.3  Directional TOPO
©
 cloning (Invitrogen) 

Directional joining of dsDNA using TOPO
©
-charged vector with a four nucleotide overhang. 

PCR products are directionally cloned by adding four bases to the forward primer (CACC). 
The overhang in the cloning vector (GTGG) invades the 5’ end of the PCR product, anneals 
to the added bases and stabilises the PCR product in the correct orientation. 
 

 

A 1:1 molar ratio of PCR product to vector was used in a salt solution and the 

reaction mix incubated for 5 minutes at room temperature (RT). The ligation 

product was then placed on ice and immediately used to transform 

competent Escherichia coli (E.coli). 
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2.1.1.6 Transformation of competent cells 
 

Competent cells (One shot TOP10 cells, Invitrogen; NEB Turbo cells, New 

England Biolabs or XL-10 Gold cells, Stratagene) were transformed with the 

ADAMTS13 vector according to manufacturer’s instructions. 3μl of the TOPO 

cloning reaction was added to a vial of chemically competent E. coli. The 

tube was incubated on ice for 30 minutes, then the cells were heat-pulsed in 

a water-bath at 42°c for 30 seconds, before being placed back on ice for an 

additional 2-5 minutes. Transformed bacteria were grown in 250-950μl of 

preheated S.O.C. medium at 37°c for 1 hour with shaking. Bacteria were 

subsequently plated out on a pre-warmed LB-agar (Invitrogen) selection 

plate containing 100μg/ml ampicillin and incubated at 37°c overnight. 

Ampicillin-resistant colonies were picked and grown in 5ml LB-broth 

(Invitrogen) with 100μg/ml ampicillin overnight at 37°c with shaking. 

2.1.1.7 Generation of glycerol stocks 
 

700μl of the bacterial culture from section 2.1.1.6 was mixed with 300μl of 

autoclaved 50% glycerol solution. This glycerol stock was vortexed and 

stored at -80°c, and could be partially thawed if additional transformed 

bacteria were required at a later date. 

2.1.1.8 Plasmid miniprep and sequencing 
 

Plasmid DNA was extracted from the small volume bacterial culture using the 

Qiagen Miniprep kit according to manufacturer’s instructions. Briefly, the 

culture was centrifuged for 20 minutes at 4000rpm and the supernatant 

decanted. The cell pellet was resuspended in 250μl resuspension buffer 

containing RNase and mixed with 250μl alkaline lysis buffer. After five 

minutes, 350μl of neutralisation buffer was added and precipitated proteins, 

cell debris and chromosomal DMA were spun down by centrifugation at 

13000rpm for 20 minutes. Supernatant was passed over a column containing 

a silica membrane for the selective adsorption of plasmid DNA in high-salt 

buffer. The column was washed with an ethanol-containing buffer, then 

plasmid DNA was eluted with 50μl low-salt buffer. All new vectors were 

verified by sequencing prior to use using T7 or T7 reverse primers. DNA was 

sequenced at the MRC CSC Genomics Core Laboratory. 
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2.1.2 Expression in Rosetta E.coli 
 

All recombinant ADAMTS13 domain fragments were expressed at very high 

levels in Rosetta DE3 E.coli (Novagen) (72).  The Rosetta cells are 

genetically modified to allow encoding of eukaryotic tRNA species that are 

rare in bacteria, thereby enhancing eukaryotic protein synthesis. DE3 

indicates that the cells carry a chromosomal copy of the T7 RNA polymerase 

gene under the control of the lacUV5 promoter, and are therefore suitable for 

protein production from target genes cloned in pET vectors by induction with 

IPTG. 

 

Competent Rosetta DE3 cells were transformed with 1ng of each construct 

DNA. Briefly, DNA was added to 20μl cells and mixed gently. After incubation 

on ice, the cells were heat-shocked at 42°c for 30 seconds then immediately 

transferred to ice. Transformed bacteria were grown in 80μl of preheated 

S.O.C. medium at 37°c for 1 hour with shaking, then each transformation 

reaction was plated onto a pre-warmed selection plate and incubated 

overnight at 37°c. 

 

Cultures of transformed Rosetta E.coli in 2xYT broth (1.6% tryptone, 1% 

yeast extract, 0.5% NaCl, pH7.0) were grown at 37°c with shaking until in 

Log-phase growth (OD600 0.6-1.0 or approximately 2-6 hours). Recombinant 

protein expression was induced by the addition of 1M IPTG to a final 

concentration of 1mM. Cells were cultured for a further 12-18 hours at 

37˚C/250rpm. Bacteria were harvested by centrifugation at 5000xg for 30 

minutes at 4°c; the supernatant was discarded and the cell pellet stored at -

80°c.  

 

2.1.3 Purification and refolding of bacterially expressed proteins 

2.1.3.1 Inclusion body preparation 
 

The high level of ADAMTS13 domain expression in the bacteria results in 

insoluble protein aggregates known as inclusion bodies. Inclusion bodies 

containing the recombinant domain fragments were prepared using 

BugBuster reagent (Novagen), rLysozyme and Benzonase Nuclease 
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(Novagen), according to manufacturer’s instructions. The resulting pellet of 

purified inclusion bodies was stored at -80°c. 

2.1.3.2 A13 domain purification and refolding by metal ion affinity 
chromatography 

 

ADAMTS13 domain fragments were purified from inclusion body 

preparations under denaturing conditions (8M urea) by fast pressure liquid 

chromatography (FPLC) in a single step using a Ni2+-chelating HiTrap 

column coupled to an ÄKTA FPLC (GE Healthcare) with Unicorn 5.1 

software. This was combined with a novel on-column refolding strategy in an 

attempt to produce soluble, correctly folded protein. 

 

A Ni2+ chelating HiTrap column (GE Healthcare) was charged with nickel(II) 

sulphate hexahydrate. The column was equilibrated with solubilisation/ 

loading buffer (8M urea, 500mM NaCl, 20mM Tris pH 8.0, 30mM imidazole). 

Inclusion bodies were resuspended from the pellet using 5ml 

solubilisation/loading buffer and 10mM dithiothreitol (DTT) with vortexing and 

10-20 minute incubation. Samples were diluted with solubilisation/loading 

buffer to a volume of 40ml (thus reducing DTT concentration to <2mM) and 

incubated with mixing for 20 minutes, before centrifuging to remove bacterial 

debris. The supernatant was filtered through a 0.45μm syringe filter before 

being loaded onto the Ni2+-chelating HiTrap column. The column was then 

washed with solubilisation/loading buffer. 

 

To optimise on-column refolding, buffers containing a glutathione redox pair 

(500mM NaCl, 20mM Tris pH 8.0, 1mM reduced glutathione, 0.1mM oxidised 

glutathione), glycerol and sucrose (500mM NaCl, 20mM Tris pH 8.0, 15% 

(v/v) glycerol and 8% (w/v) sucrose) were sequentially passed over the 

column (Figure 2.4). 
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Figure 2.4  On-column refolding strategy 

The unfolded protein is loaded onto the column in a denaturing buffer with low imidazole 
concentration to reduce non-specific protein binding. The protein binds via the metal ion 
binding His-tag. Sequential buffer change removes the urea in the presence of agents to 
optimise correct refolding on column, then the folded protein is eluted with a higher 
concentration of imidazole. 

 

The His-tagged proteins were eluted by a gradient over 5-10 minutes into 

ice-cold elution buffer containing a higher concentration of imidazole (500mM 

NaCl, 20mM Tris pH 8.0, 300mM imidazole, 15% (v/v) glycerol and 8% (w/v) 

sucrose). This aimed to gradually increase the protein concentration in the 

eluted fractions and thus reduce the risk of aggregation, and also to reduce 

the amount of non-specific bacterial proteins by gradually increasing the 

imidazole. The column was stripped with stripping buffer (500mM NaCl, 

20mM Tris pH 8.0, 50mM EDTA) to remove any aggregated protein from the 

column matrix and remove the Ni2+ ions. 
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2.1.4 Analysis and characterisation of bacterially expressed proteins 

2.1.4.1 SDS-PAGE/Coomassie 
 

SDS-PAGE under reducing (15% β-mercaptoethanol, β-ME) and non-

reducing conditions were performed to ascertain which fraction from FPLC 

contained the desired protein. Samples were heated at 95°c for 5-10 minutes 

and electrophoresis was performed on 12% precast NuPAGE Novex Bis-Tris 

gels (Invitrogen) at 200V for 30-40 minutes. Gels were washed for 3x5 

minutes in ddH20, then either stained for one hour using Imperial stain 

(Thermo Scientific) and destained in ddH20 for 1-2 hours; or used for 

Western blot analysis (section 2.1.4.3). 

 

Recombinant proteins were dialysed into 20mM Tris (pH8.0), 500mM NaCl, 

5% sucrose, 5% glycerol (except for the stripped spacer domain which was 

dialysed into 20mM Tris pH8.0, 500mM NaCl, 4M urea).  

 

2.1.4.2 Quantification of total protein (BCA) 
 

Proteins were then quantified by the Pierce© bicinchoninic (BCA) total protein 

assay (Thermo Scientific) according to manufacturer’s instructions. This 

method is based on the reduction of Cu2+ to Cu1+ by proteins in alkaline 

conditions. The reaction product of BCA and Cu1+ is purple and the change 

in light absorbance is proportional to the protein concentration. Dilutions of 

bovine serum albumin (BSA) of known concentration were used to generate 

a standard curve and a number of dilutions of each sample were prepared. 

25μl of each standard or sample were applied in duplicate to the wells of a 

microtitre plate (Sterilin, Thermo Scientific). 200μl of the working reagent was 

added to each well and the plate incubated for 30 minutes at 37°c on a plate 

shaker. The absorbance was measured at 560nm using a spectrophotometer 

(uQuant, Biotek). 

  



79 

 

2.1.4.3 Western blot 
 

Western blot with anti-Xpress epitope monoclonal antibody (Invitrogen) was 

also used to quantitate the ADAMTS13 domains relative to each other. This 

was normalised for each protein to ensure approximately equal loading (in 

molar terms) of each domain fragment for subsequent analysis of patient 

antibodies.  

 

Western blots were performed by transferring protein separated by SDS-

PAGE to a nitrocellulose membrane (Hybond-ECL, Amersham Biosciences). 

Proteins were transferred to the membrane in a transfer buffer (25mM Tris 

base, 190mM glycine, 20% methanol). The transfer was performed at 33V 

for 60 minutes. Membranes were blocked with 5% milk/ phosphate buffered 

saline (PBS, 10mM phosphate buffer, 2.7mM potassium chloride, 137mM 

sodium chloride) for one hour and ADAMTS13 and fragments were detected 

using anti-Xpress monoclonal antibody (Invitrogen diluted 1 in 5000 in 

blocking buffer). Following a 3x5 minute wash with PBS/0.1% Tween 

(PBST); membranes were incubated with peroxidase conjugated polyclonal 

goat anti-mouse antibody (Dako, 1 in 5000 in blocking buffer). The 

membrane was washed for 4x5 minutes and developed with 

chemiluminescent horseradish peroxidase substrate Immobilon (Millipore) 

and Amersham hyperfilm ECL (GE Healthcare).   

 

Western blotting was also performed using a polyclonal anti-human 

ADAMTS13 antibody raised in rabbit to determine whether the recombinant 

domains were recognised by a more physiological detection antibody. The 

protocol was as above but using rabbit polyclonal anti-ADAMTS13 (1 in 

7000, in-house) as the primary antibody, and peroxidase conjugated goat 

anti-rabbit antibody (1 in 50 000, Dako) as the secondary antibody. 
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2.2 Expression and purification of ADAMTS13 domain fragments in 
mammalian cells 

2.2.1 Generation of ADAMTS13 fragment expression vectors 

2.2.1.1 Mammalian ADAMTS13 expression vector and ADAMTS13 domain 
fragment vectors generated 

 

A mammalian expression vector (pcDNA3.1/myc-His 5.5kb Invitrogen 

containing full-length wild-type ADAMTS13 complementary deoxyribonucleic 

acid (cDNA) was available from previous studies (72, 214-216). pcDNA3.1 is 

a mammalian expression vector with multiple cloning sites preceding the C-

terminal myc epitope and 6xHis tag, an ampicillin resistance gene and a 

cytomegalovirus (CMV) promoter to drive high level transcription in 

mammalian cells (Figure 2.5).  

 

Figure 2.5  Mammalian expression vector pcDNA3.1/myc-His  

From Invitrogen. Ampicillin = ampicillin resistance gene; PCMV = cytomegalovirus promoter to 
initiate gene expression; Neomcin = neomycin resistance gene; 6xHis = polyhistidine tag 
which aids in purification.  
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The vectors that express the truncated ADAMTS13 variants MP-Dis, MDTCS 

and TSP2-4 were also available from previous work from the group. I aimed 

to generate domain fragments that spanned ADAMTS13 to provide material 

to use in subsequent domain specificity assays. I therefore used the vector 

for full-length ADAMTS13 and the existing truncated variants to generate 

novel domain fragments as detailed in the following sections (Figure 2.6). 

TCS and MDTC were generated by PCR using pcDNA3.1/myc-His MDTCS 

as a template. Vectors expressing the ADAMTS13 fragments TSR2-8 and 

TSR5-8 had been previously generated, but contained errors associated with 

PCR-based amplification and I performed site directed mutagenesis to 

correct these. 

 

 

 

Figure 2.6  ADAMTS13 fragments expressed in HEK293T cells  

A mammalian expression vector (pcDNA3.1/myc-His) containing full-length ADAMTS13 
cDNA was available from previous studies. Vectors expressng the ADAMTS13 fragments 
MP-Dis, MDTCS and TSP2-4 were also available. I generated vectors for fragments TCS, 

MDTC, TS2-8 and TSP5-8. = novel vector 
 

 

 

 

 

 

 

 

 

 



82 

 

2.2.1.2 Site directed mutagenesis 
 

Vectors expressing the ADAMTS13 fragments TSR2-8 and TSR5-8 had 

been previously generated by the group but contained errors associated with 

PCR-amplification. Site directed mutagenesis was performed to correct 

these. Single point mutations were introduced using primers which contained 

the desired mutation and annealed to the corresponding sequence on 

opposite strands of the plasmid.  

 

Primers were designed according to the guidelines in the KOD HotStart DNA 

polymerase protocol (Novagen). A higher TM is required for site directed 

mutagenesis due to the longer specific primers. All primers were 

manufactured and HPLC purified by Thermo Fisher, Germany. PCR 

reactions were performed using 1U KOD HotStart DNA polymerase, 1.5μl of 

sense (5’) primer and 1.5μl of anti-sense (3’) primer (10μM each); 10ng of 

plasmid DNA template;  25μl of 2x reaction buffer, 10μl of dNTP’s (2mM 

each), 1μl of dimethylsulfoxide (DMSO) solution which acts as a denaturant, 

and PCR grade water to a final volume of 50ul.  

 

The basic amplification conditions were as follows: polymerase activation 

(95°c, 2min); 18 cycles of denaturation (95°c, 15 sec); annealing (60°c, 30 

sec) and extension (68°c, 1 min per kb) with a final extension at 68°c for 7 

minutes. The PCR products were treated with DpnI endonuclease at 37°c for 

one hour. DpnI is specific for methylated DNA and thus digests the template 

but not the PCR products. Competent cells were transformed with 5μl of the 

PCR reaction as described in section 2.1.1.6. If no colonies were obtained, 

the PCR product was checked by agarose gel electrophoresis as described 

in section 2.1.1.3 and the PCR or transformation repeated with modifications 

to the reaction conditions. 
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2.2.1.3 Generation of ADAMTS13 truncation mutants by PCR 
 

Domain fragments TCS and MDTC were generated by PCR using 

pcDNA3.1/myc-His MDTCS as a template, by amplifying the template vector 

excluding the domains that were to be excised (thus splicing them out) and 

reannealing the vector. PCR reactions were performed as in section 2.1.1.2 

but without the addition of DMSO. The basic amplification conditions were as 

follows: polymerase activation (94°c, 2 min); 22 cycles of denaturation (98°c, 

10 sec); annealing (57°c, 30 sec) and extension (68°c, 1 min per kb) with a 

final extension at 68°c for 7 minutes. The PCR products were treated with 

DpnI at 37°c for one hour and run on a 1% agarose gel to verify size and 

yield (section 2.1.1.3), before gel extraction and sequencing. 

 

2.2.1.4 DNA phosphorylation and ligation 
 

For the truncation variants, DpnI treated PCR products were phosphorylated 

and ligated to reform circular plasmids. The linearised pcDNA3.1/TCS or 

pcDNA3.1/MDTC vector was phosphorylated with T4 polynucleotide kinase 

(Ambion) for 37°c for at least one hour. The reaction was then heated at 65°c 

for 10 minutes to deactivate the phosphorylase and T4 ligase used to 

reanneal the vector, with 0.2U of T4 ligase in a 50μl reaction incubated at 4°c 

overnight. Competent cells were transformed with 5μl of the ligated vector as 

described in section 2.1.1.6. If no colonies were obtained, the PCR product 

was checked by agarose gel electrophoresis as described in section 2.1.1.3, 

and PCR repeated with modifications to the reaction conditions.  

 

Repeated attempts to generate TCS were made with no success, so an AscI 

digestion step was introduced after the ligation. The metalloprotease domain 

of ADAMTS13 has a unique restriction site for AscI and this was used to 

remove PCR products containing MP.  
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2.2.1.5 Transformation of competent cells, isolation of plasmids and 
sequencing 

 

Competent cells were transformed with the mutated/truncated ADAMTS13 

vectors as described in section 2.1.1.6. Plasmid DNA was isolated from 

colonies by endo-free plasmid Minipreps (Qiagen) as described in section 

2.1.1.8. All new vectors were verified by sequencing prior to use using the T7 

forward primer and rBGH reverse primer. DNA was sequenced at the MRC 

CSC Genomics Core Laboratory. 

 

 

2.2.1.6 Large scale plasmid preparation and quantification 
 

Bacteria containing the desired ADAMTS13 vector were cultured on a large 

scale (200ml – 2500ml) to obtain sufficient amounts of plasmid (up to 10mg) 

for large scale transfection of mammalian cells. DNA was extracted by 

Maxiprep /Megaprep/Gigaprep (Qiagen) depending on amount required, as 

per manufacturer’s instructions. These methods use similar principles to 

those outlined in section 2.1.1.8 with minor differences in protocol as follows. 

 

After lysis of the bacteria, cell debris and precipitated chromosomal DNA 

were removed by filter rather than centrifugation. The column was 

equilibrated with a low salt buffer to allow plasmid binding, washed with an 

ethanol-containing buffer and plasmid DNA eluted using a high salt buffer.  

An isopropanol precipitation was performed to concentrate and desalt the 

DNA. The DNA was pelleted by centrifugation at 5000rpm for 90+minutes. 

The DNA pellet was washed with 70% ethanol, air dried and resuspended in 

endotoxin-free buffer TE (Qiagen).  

 

The DNA was quantitated with a NanoDrop spectrophotometer by measuring 

the absorbance at 260nm. DNA concentrations were verified using the 

Quant-iTTM dsDNA assay measuring fluorescence on the QubitTM fluorometer 

according to manufacturer’s instructions (Invitrogen). 
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2.2.2 Expression of ADAMTS13 domain fragments 

2.2.2.1 Mammalian cell culture 
 

HEK293T cells which do not normally express ADAMTS13 were used for 

transient transfection. The stable cell line HEK293 ADAMTS13 was already 

available from previous work in the group and the stable cell line HEK293 

TSP2-8 was kindly gifted by J. Voorberg. Cells were cultured at 37°c, 5% 

CO2, in complete media: minimal essential media (MEM, Invitrogen) 

supplemented with 10% fetal calf serum (FCS, Biosera), 2mM L-glutamine 

(Invitrogen), 50 000U penicillin / 50 000μg streptomycin and 1x non-essential 

amino acids (NEAA, Invitrogen) and were generally grown in T175 or T175 

triple flasks. When confluent, cells were washed with PBS (5ml/T175 flask) 

then split 1:4 using 1ml trypsin /T175 flask to detach cells, and grown to 

confluence again in 3-4 days.  

 

2.2.2.2 Transient transfection of HEK293T cells 
 

ADAMTS13 vectors were transiently transfected into 70-80% confluent 

HEK293T cells. To enable purification of adequate amounts of each 

ADAMTS13 truncation, up to 18x T175-triple flasks/vector of HEK293T cells 

were transfected. The cells were transfected using a DNA concentration of 

up to 3μg/ml and linear polyethylenimine (PEI, Polysciences Inc) with a 

DNA/PEI ratio of 1:2.25. 111μg of DNA was used per triple flask with a 

working volume of 75ml / triple flask. Briefly, for one T175-triple flask, 250μl 

of 1mg/ml linear PEI was diluted into 3.75ml of 0.15M autoclaved NaCl. The 

resulting PEI solution was added dropwise to 3.75ml of 0.15M autoclaved 

NaCl containing 111 μg of DNA and the DNA/PEI complex incubated at RT 

for 20 minutes. The DNA/PEI complex was added to 67.5ml OptiMEM® 

reduced-serum media (Invitrogen). Each T175-triple flask was washed with 

PBS and cells were cultured in the 75ml OptiMEM® reduced-serum media 

(Invitrogen) for 3-4 days before harvesting. 
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2.2.2.3 Cryopreservation of mammalian cells 
 

HEK293T cells and ADAMTS13 and TSP2-8 stable cell lines were 

cryopreserved in liquid nitrogen for future use. Once cells reached 

confluence in a T175 flask, they were washed with PBS, trypsinised with 1ml 

of trypsin and transferred to a 50ml tube. Trypsin was neutralised by adding 

45ml complete media and the cells were centrifuged at 1200rpm for 5-10 

minutes. The supernatant was discarded and cells were resuspended in 

1.5ml complete medium. 1.5ml of freezing medium (cold complete medium 

with 10% DMSO) was added dropwise with gentle swirling. Cells were 

aliquoted in 1ml fractions in cryovials and stored in an isopropanol-containing 

cryofreezing container (Nalgene) at -80°c overnight prior being transferred to 

liquid nitrogen. 

 

To recover cryopreserved cells, vials were removed from the liquid nitrogen 

to ice then thawed at 37°c until only a small amount of ice remained.  The 

cells were transferred to a 50ml tube and 40ml of cold complete medium 

added. The cells were then spun down for 5min at 1200rpm and the pellet 

resuspended in 12.5ml warm complete medium, thus removing the DMSO. 

The cells were seeded into a T75 flask. 

 

2.2.2.4 Harvesting of ADAMTS13 and fragments 
 

Both stable and transiently transfected cells were cultured in T175 triple 

flasks containing 75ml of OptiMEM®. After 3-4 days, conditioned media was 

harvested, centrifuged and filtered to remove cell debris, and concentrated 

up to 40-fold using tangential flow filtration coupled to a 10kDa MWCO unit 

(Amicon). Cells were harvested by adding protein loading buffer and using a 

cell scraper. 

 

Conditioned media samples for use in activity assays were not purified, but 

were further concentrated by Amicon Ultra centrifugal filter devices 

(Millipore), aliquoted and stored at -80°C. Conditioned media samples for 

use in domain specificity assays were dialysed into 20mM Tris pH8.0, 
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500mM Tris, 20mM imidazole, then purified by metal ion affinity 

chromatography (section 2.2.3.1).     

       

2.2.3 Purification of mammalian expressed proteins 

2.2.3.1 ADAMTS13 purification by metal ion affinity chromatography 
 

ADAMTS13 and ADAMTS13 truncations were purified using Ni2+-chelating 

chromatography as previously described (51, 204). Fast protein liquid 

chromatography (FPLC) was performed using an ÄKTA purifier (GE 

Healthcare) and the Unicorn 5.1 software and a Ni2+-chelating column. The 

method used was similar to that in section 2.1.3.2 for bacterially-expressed 

proteins but without a refolding gradient.  

 

Briefly, a Ni2+ chelating HiTrap column (GE Healthcare) was charged with 

nickel(II) sulphate hexahydrate. The column was equilibrated with 20mM 

Tris-HCL (pH7.8), 500mM NaCl, 20mM imidazole. Conditioned medium 

containing full-length ADAMTS13 or an ADAMTS13 fragment was passed 

over the column, allowing the construct to bind via the metal ion binding His-

tag. The column was washed with 20mM Tris-HCL, 500mM NaCl, 20mM 

imidazole and then the protein was eluted using a buffer containing 500mM 

imidazole. Peak fractions were dialysed into PBS. 

 
 

2.2.4 Analysis and characterisation of mammalian expressed proteins 

2.2.4.1 Western blotting 
 

The conditioned medium and cell pellets were analysed by Western blotting 

to estimate the ADAMTS13 fragment expression levels, secretion and 

intracellular retention. Western blots were performed as described in section 

2.1.4.3. Later Western blots used a PVDF membrane (Immobilon®-P, 

Millipore). This required pre-wetting in 100% methanol for 15 seconds then 

ddH2O for 2 minutes, and equilibrating for at least 5 minutes in the transfer 

buffer before use. ADAMTS13 and ADAMTS13 fragments were detected 

using anti-His (C terminal)-HRP (1 in 5000, Invitrogen) or anti-myc-HRP (1 in 
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5000, Invitrogen). The construct MD does not have a myc tag as this was 

removed for earlier work, thus only anti anti-His (C terminal)-HRP could be 

used. Fragments MDTC and TSP2-8 have V5 epitopes and anti-V5-HRP 

was used for detection of these (1 in 2000, Invitrogen). 

 

Western blotting was also performed using a polyclonal anti-human 

ADAMTS13 antibody raised in rabbit to determine whether the recombinant 

domains were recognised by a more physiological detection antibody as 

described in section 2.1.4.3 . 

 

Semi-quantitative Western blotting using anti-tag antibodies was used to 

estimate the concentration of ADAMTS13 fragments relative to each other 

and to a standard (full-length ADAMTS13 of known concentration, as 

determined by ELISA - section 2.2.4.3). 

 

2.2.4.2 SDS-PAGE/Coomassie 
 

SDS-PAGE under non-reducing conditions with Coomassie staining was 

performed to assess the purity of the different ADAMTS13 fragments 

expressed at sufficient concentration to be visualised on a gel, as described 

in section 2.1.4.1. 

 

2.2.4.3 ADAMTS13 antigen ELISA 
 

Full-length ADAMTS13 was quantitated using an ELISA previously 

developed by the group (86), where ADAMTS13 is captured by a polyclonal 

rabbit anti-ADAMTS13 antibody (anti-TSP2-4 depleted) and detected by 

biotinylated anti-TSP2-4 antibody. Briefly, a 96 well plate was coated with 

rabbit polyclonal anti-ADAMTS13 antibodies (anti-TSP2-4 depleted) at a 

concentration of 5μg/ml in 50mM sodium carbonate (pH 9.6) overnight at 

4°c. Normal human plasma (Technoclone, Austria) was used to generate a 

standard curve. The plate was washed with PBST after each incubation step. 

After blocking for one hour (PBS/2% BSA), dilutions of control plasma and 

test samples were added and incubated for 2 hours at RT. Bound 
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ADAMTS13 was detected by biotinylated anti-TSP2-4 antibody (0.2μg/ml, 1 

hour) followed by streptavidin-HRP (1 in 1000, GE Healthcare or 1 in 500 

Sigma) for 1 hour. Finally, plates were washed and incubated with ortho-

phenylene-diamine (OPD, Sigmafast) for colour development, which was 

stopped with 2.5M H2SO4. Absorption at 492nm was read using a 

spectrophotometer. 

 

2.2.4.4 ADAMTS13 vs. MDTCS ELISA 
 

A novel ELISA was developed to determine the relative molar concentration 

of the N-terminal fragment MDTCS compared to full length ADAMTS13. A 

monoclonal antibody directed against the metalloprotease domain (3H9, 

gifted by H. Feys (217)) was used to capture the antigen, and anti-myc-HRP 

(Invitrogen) used for detection via the myc tag. Purified myc-tagged full-

length ADAMTS13 (previously quantitated by the ADAMTS13 antigen ELISA 

described in section 2.2.4.3) used as the standard.  

 

A Maxisorb plate was coated with 5μg/ml of anti-metalloprotease mAb in 

50mM sodium carbonate (pH 9.6) overnight at 4°c. The plate was washed 

three times with PBST after each incubation step. After blocking for two 

hours with PBS/2.5% BSA, dilutions of the standard ADAMTS13 and 

MDTCS of unknown concentration in PBS/1%BSA were applied to the plate 

and incubated for 2 hours at RT on a plate shaker. Bound ADAMTS13 and 

MDTCS were detected using HRP-conjugated anti-myc antibody (1 in 1000, 

Invitrogen) in PBS/1%BSA incubated for 2 hours at RT on a shaker. Finally, 

plates were washed and incubated with 170μl OPD for colour development 

which was stopped with 2.5M H2SO4. Absorption at 492nm was read using a 

spectrophotometer. A standard curve of 0-20nM of ADAMTS13 was fitted 

and samples were diluted to ensure that they fell on the linear part of the 

curve. 
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2.2.4.5 ADAMTS13 vs. MDTC ELISA 
 

A similar novel ELISA was developed to measure the concentration of the 

V5-tagged construct MDTC. The method was as described in section 2.2.4.4 

but the standard was purified V5-tagged ADAMTS13 quantitated by the 

ELISA in section 2.2.4.3 (kindly gifted by Dr Brenda Luken), and the 

detection antibody was anti-V5-HRP (Invitrogen). 

 

2.2.4.6 Quantification of total protein  
 

For proteins which appeared pure by Coomassie staining, total protein 

concentration was measured by reading the absorbance at 280nm in a 

NanoDrop 2000 spectrophotometer (Thermo Scientific). The Beer-Lambert 

law for concentration c=A/ε L was used with an extinction coefficient 

calculated for each fragment.    
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2.3 Plasma samples and antibody extraction 

2.3.1 Patients 
 

Citrated plasma samples from a non-sequential cohort of 78 patients with 

acquired idiopathic TTP referred to our reference centre between 2000 and 

2012 were analysed. Presenting samples from 92 acute episodes of TTP 

were included in the domain-specificity study, of which 43 subsequently 

underwent IgG extraction for functional analysis.  

 

TTP patients were diagnosed clinically based on the combination of 

microangiopathic haemolytic anaemia with thrombocytopenia and end-organ 

damage with no other known cause (62). Patients with other thrombotic 

microangiopathies, or TTP secondary to HIV or pregnancy were excluded. 

All presentation samples were taken before plasma exchange or rituximab 

were commenced (one sample was taken after a plasma infusion). All 

patients had severe deficiency in plasma ADAMTS13 activity (<10%), with 

the exception of one patient with 12% activity, and one with 27% activity, 

(taken after plasma infusion had been given), and were positive for anti-

ADAMTS13 IgG (65, 67, 82, 218).  

 

Patients were selected based on their medium/high anti-ADAMTS13 titre (i.e. 

>15% using the anti-ADAMTS13 IgG ELISA –section 2.3.4 (82)). Through 

exclusion of patients with low-titre anti-ADAMTS13 antibodies, this cohort of 

patients was consequently enriched for those patients that relapsed and/or 

died during a TTP episode, facilitating analysis of the longitudinal humoral 

response and disease severity. For the purpose of the study, relapse was 

defined as either clinical relapse, or acute drop in plasma ADAMTS13 activity 

(to <10%) during follow-up, despite normal routine laboratory parameters, 

necessitating treatment with elective rituximab. Follow-up ended on May 14th 

2014.  

 

Citrated plasma samples were also collected from 67 normal healthy adult 

volunteers for use as controls. The research was approved by the Research 

Ethics Committee (08/H0810/54, 08/H0810/54, 08/H0716/72). Informed 
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consent was obtained from all patients and healthy volunteers. Assent was 

obtained from the patient representatives for those TTP patients that lacked 

capacity to give informed consent.  

 

2.3.2 Plasma samples 

2.3.2.1 Sample collection and preparation 
 

Blood for ADAMTS13 assays was collected by peripheral cannulation using 

a 21G needle into a Vacutainer® system (Beckton Dickinson) containing 

0.5ml 0.105M sodium citrate. Platelet-poor plasma was separated from 

citrated blood by centrifugation within four hours of collection. Samples were 

spun at 2000g for 15 minutes at RT and the top two-thirds of plasma 

carefully removed and transferred to a polypropylene tube. After a further 

centrifugation at 2000g for 15 minutes, the platelet poor plasma was 

aliquotted into 2ml polypropylene tubes or 1.5ml Eppendorf tubes and stored 

at -80°C. Plasma samples sent from other hospital were double spun at site 

and transferred frozen on dry ice. 

2.3.2.2 Samples tested 
 

Samples from patients with acquired TTP containing high titres of anti-

ADAMTS13 IgG were used for optimisation of assays. Plasma exchange 

(PEX) fluid from the first plasma exchange was also available from selected 

patients at presentation and offered a larger volume for preliminary work. 

Pooled normal human plasma from 16 healthy volunteers with no detectable 

ADAMTS13 inhibitor was used as a negative control for all antibody assays.   

 

2.3.3 ADAMTS13 activity assays 
 

Plasma ADAMTS13 activity was measured by collagen binding assay, as 

described by Gerritsen with modifications, until May 2010 (65) (218). 

ADAMTS13 activity was expressed as a percentage relative to the activity in 

pooled normal plasma (PNP) (normal range 55%-126%; lower limit of 

detection 5%). ADAMTS13 activity was measured by a fluorescence 

resonance energy transfer (FRET) assay from May 2010 onwards (67). 
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ADAMTS13 activity was again expressed as a percentage relative to the 

activity in PNP (normal range 60%-123%; lower limit of detection 5%). 

 

2.3.4 Total anti-ADAMTS13 IgG assay 
 

Total plasma anti-ADAMTS13 IgG was measured using an ELISA technique 

as previously described (82). Briefly, microtitre plates were coated with 

purified recombinant full-length ADAMTS13 (Baxter Bioscience), patient 

plasma was added and incubated for one hour and any bound anti-

ADAMTS13 IgG was detected using anti-human globulin. A standard curve 

was prepared by diluting an index reference plasma containing high levels of 

anti-ADAMTS13 IgG in PBS/BSA to achieve 100%, 80%, 40%, 20%, 10%, 

5% and 0% concentrations. The normal range was <6.1%, calculated as the 

95th percentile of 49 healthy controls. 

 

2.3.5 IgG extraction 

2.3.5.1 Protein G IgG extraction 
 

Total IgG was isolated from plasma (or PEX) taken from each patient at 

diagnosis using protein G spin columns according to manufacturer’s 

instructions (GE Healthcare). 500μl of plasma was applied to the equilibrated 

column, washed with binding buffer and total IgG eluted using a low pH 

elution buffer and immediately neutralised upon elution using neutralisation 

buffer. The protocol resulted in an approximately 2.6 fold dilution of the IgG. 

Eluted fractions were dialysed into 20mM Tris, 150mM NaCl, pH 7.6 prior to 

use in VWF 115 activity assays. 

2.3.5.2 Melon gel IgG extraction 
 

A MelonTM gel IgG purification system was also used. This uses physiological 

pH to prevent adverse effects upon isolated IgG and a mild purification buffer 

suitable for use in activity assays (Thermo Scientific). The melon gel binds 

non-antibody plasma proteins, such as albumin and transferrin, which are 

often present in high abundance, allowing antibody to flow through. Total IgG 

was isolated from plasma (or PEX) taken from each patient at diagnosis 
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using melon gel spin columns according to manufacturer’s instructions. To 

avoid dilution of the IgG, samples were buffer exchanged into the melon gel 

purification buffer using ZebaTM desalting spin columns (Pierce) before 

applying to the melon gel.  

2.3.6 Quantification of total IgG 

2.3.6.1 Quantification of IgG using a NanoDrop spectrophotometer 
 

To quantitate the total IgG in the samples, the absorbance at 280nm was 

read using a NanoDrop 2000 spectrophotometer (Thermo Scientific). 

Unknown protein concentrations are calculated using the mass extinction 

coefficient of 13.7 at 280nm for a 1% (10mg/ml) IgG solution. The 

spectrophotometer was first blanked using the appropriate buffer (melon gel 

purification buffer or TBS). A 2μl sample volume was used to establish 

adequate liquid column formation, and good replicates were achieved.  

2.3.6.2 Human IgG ELISA 
 

Total IgG was also quantitated using a human IgG quantitation ELISA 

according to manufacturer’s instructions (Bethyl Laboratories). A 96 well 

plate was coated with goat anti-human IgG-Fc antibody (1:100 dilution in 

0.05M carbonate-bicarbonate pH9.6) for 1 hour at RT. The plate was washed 

5 times between each incubation step with 50mM Tris, 0.14M NaCl, 0.05% 

Tween 20, pH8.0. After blocking with 50mM Tris, 0.14M NaCl, 1% BSA, 

pH8.0, diluted standards (human reference serum 0-500ng/ml IgG) or 

samples (1 in 2500- 1 in 1280000) were applied to the plate and incubated at 

RT for 1 hour. Bound IgG was detected using HRP-conjugated goat anti-

human IgG-Fc antibody. After washing, the plate was incubated with 

3,3’,5,5’-tetramethylbenzidine (TMB, Sigma) for colour development which 

was stopped with 0.18M H2SO4. Absorption at 450nm was read using a 

spectrophotometer. 
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2.4 Determination of domain specificity of TTP patient 
autoantibodies 

2.4.1 Immunoblotting using bacterially expressed material 
 

To ascertain which domains the anti-ADAMTS13 autoantibodies from each 

TTP patient recognise, immunoblotting techniques using bacterially 

expressed material were first used.  The bacterially expressed and purified 

ADAMTS13 domain fragments (up to 500ng) were electrophoresed on a 

12% precast NuPAGE Novex Bis-Tris gel (Invitrogen), and then transferred 

to a nitrocellulose membrane (Hybond-ECL, Amersham Biosciences) – see 

section  2.1.4.3. Full length ADAMTS13 expressed in mammalian cells was 

used as a positive control.  

 

Detection of these fragments was performed by incubating plasma or protein 

G purified IgG from TTP patients (section 2.3.5.1) diluted 1 in 25 in PBS/3% 

milk/3% bovine serum albumin (BSA, Sigma Aldrich) with the membrane. 

After washing with PBST, the domains recognised by each patient’s 

antibodies were visualised using an anti-human IgG-HRP conjugate (1 in 

3000, AbCam) and Immobilon (Millipore) detection reagents.  A monoclonal 

human-derived anti-spacer antibody II-1 (211) was also used to determine 

whether the physiological epitope comprising Arg660, Tyr661, and Tyr 665 (RYY) 

was available in the spacer material. 

 

2.4.2 Immunoblotting using mammalian expressed material 
 

Western blots were performed by transferring purified recombinant full length 

ADAMTS13 and fragments separated by non-reducing SDS-PAGE to a 

nitrocellulose membrane (Hybond-ECL, Amersham Biosciences). Later 

Western blots used a PVDF membrane (Immobilon) – see section 2.2.4.1. 

 

Membranes were blocked with PBS/5% milk for one hour. Detection of the 

fragments was performed by incubating protein G purified IgG from TTP 

patients (section 2.3.5.1) diluted 1 in 25 in PBS/5% milk with the membrane 

overnight at 4°C. After washing with PBST, the fragments recognised by 
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each patient’s antibodies were visualised using an anti-human IgG-HRP 

conjugate (1 in 3000, AbCam). The membrane was washed for 4x5 minutes 

and developed with ECL chemiluminescent horseradish peroxidase 

substrate Immobilon (Millipore) and Amersham hyperfilm ECL (GE 

Healthcare). 

 

2.4.3 Immunoprecipitation 
 

Immunoprecipitation allows antibody-antigen binding in solution, meaning 

conformation-specific epitopes are not disrupted. This strategy had also been 

used successfully by other groups studying the autoimmune response in TTP 

(193, 196). Antibodies from 170μl of plasma or PEX were allowed to bind 

50μl protein G (Protein G Mag Sepharose, GE Healthcare) in Tris-buffered 

saline (TBS- 50mM Tris, 150mM NaCl pH7.5), 1%BSA and 0.6% protease 

inhibitor complex (Sigma-Aldrich) for at least one hour. Pooled normal 

human plasma was used as a negative control. After washing with TBS/0.1% 

Tween (TBST), purified mammalian expressed ADAMTS13 fragments (up to 

1μg in a total volume of 300μl) were added to antibody-loaded sepharose 

and incubated in TBS/1%BSA with slow end-over-end mixing overnight. 

 

After washing five times with TBST (with the bead solution transferred to a 

fresh tube during last wash), bound proteins were eluted with 50μl 2.5% 

acetic acid and electrophoresed in reducing or non-reducing conditions on a 

4-12% Bis-Tris acrylamide gel and transferred to a PVDF membrane. 

Mammalian expressed full length ADAMTS13 or MDTCS was included as a 

positive control. Blots were probed with anti-myc HRP (1 in 1000, Invitrogen) 

or anti-V5 HRP (1 in 1000, Invitrogen) for V5 tagged constructs. 
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2.4.4 ELISA and competition assays 

2.4.4.1  Initial ELISA development  
 

A variety of strategies were employed to develop an ELISA for detection of 

domain-specific antibodies as such an approach could potentially allow high-

throughput with screening of multiple samples against different fragments of 

ADAMTS13, without the requirement for labour-intensive multiple 

immunoprecipitations and detection by Western blot, and would require less 

plasma. 

 

Various strategies were tried including using anti-His tag antibodies (Figure 

2.7A) or polyclonal rabbit anti-human ADAMTS13 to capture the ADAMTS13 

fragments (Figure 2.7C) with detection of bound anti-ADAMTS13 antibodies 

with anti-human IgG-HRP. Coating the plate with purified IgG from TTP 

patients was also attempted (Figure 2.7B) with bound proteins detected with 

anti-tag antibody.  

 

 

 

Figure 2.7  Development of an ELISA to detect domain-specific anti-ADAMTS13 
antibodies 

Strep-HRP=streptavidin HRP; CM= conditioned media 
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The most successful strategy was to coat the plate directly with full length 

ADAMTS13 or fragments (Figure 2.7D), and this assay was developed 

further. However, direct coating did not work for some of the ADAMTS13 

fragments, presumably because the proteins bound to the plate through their 

antigenic surfaces. This was circumvented by using both a direct ELISA for 

some fragments (TSP2-8, section 4.1.2.2) and spiking other fragments into 

an ELISA detecting antibodies against full-length ADAMTS13 (section 

4.1.2.1).  
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2.5 Determination of inhibitory potential of TTP patient 
autoantibodies 

2.5.1 VWF 115 and VWF 106 activity assays 

2.5.1.1 Expression of VWF115 
 

VWF115 is a 115 amino acid VWF A2 domain fragment (Glu1554-Arg1668 

Figure 2.8). This short substrate had previously been cloned by our group 

into the bacterial expression pET100 (Invitrogen), which adds a polyhistidine 

tag and the Xpress epitope to the N-terminus of the fragment (72). VWF115 

was expressed at high level in Rosetta DE3 E.coli cells (Novagen). 

Competent DE3 cells were transformed with ~1ng of the vector as described 

in section 2.1.1.6.  A bacterial colony was used to inoculate 12ml of LB broth 

containing 100ug/ml ampicillin. Cultures were grown at 37°C with shaking 

until in Log-phase growth (OD600 0.6-1.0 or approximately 3-4 hours). The 

culture medium was stored overnight at 4°C. The culture media was spun to 

collect the bacterial pellet which was then resuspended in 5 ml of fresh 

medium and used to inoculate 1L 2xYT broth. The cultures were grown at 

37°C with shaking to an OD600 of 0.6-1.0 (2-6 hours). 

 

Recombinant protein expression was induced by the addition of IPTG to a 

final concentration of 1mM and left for 16 hours. Bacterial cells were 

harvested by centrifugation and the pellet stored at -80°C. Inclusion bodies 

were harvested using BugBuster reagent (Novagen) as per manufacturer’s 

instructions (section 2.1.3.1). 

2.5.1.2 Purification of VWF115 
 

Inclusion bodies were solubilised in a buffer containing 20mM Tris (pH 7.8), 

500mM NaCl, 20mM imidazole and 8M urea. VWF115 was then purified 

using a nickel HiTrap column coupled to an ÄKTA FPLC system (GE 

Healthcare). A linear gradient from the solubilisation buffer to a refolding 

buffer (20mM Tris pH 7.8, 500mM NaCl, 40mM imidazole) over one hour 

was used to remove the urea and refold the protein. The VWF115 was eluted 

from the column with a buffer containing 500mM imidazole and the substrate 

was then thoroughly dialysed against 20mM Tris-HCL, 150mM NaCl (pH7.8) 
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using a 3-6kDa cut-off membrane. The purity of the protein was confirmed by 

SDS-PAGE with Coomassie staining (section 2.1.4.1) and it was quantitated 

using a BCA assay (Thermo Scientific, section 2.1.4.2).  

2.5.1.3 VWF115 activity assay 
 

The ability of the patient autoantibodies to inhibit ADAMTS13 function was 

assessed using an established activity assay (51, 72, 204, 216). IgG for use 

in VWF 115/106 assays was dialysed into 20mM Tris, 150mM NaCl, pH 7.6 

prior to use. Briefly, 2nM ADAMTS13 in concentrated conditioned medium 

(expressed and quantified as previously described in sections 2.5.1.1-2) in 

20mM Tris pH 7.6, 150mM NaCl was preincubated for one hour with 5mM 

CaCl2, both with and without 17µM total IgG isolated from TTP or control 

plasmas. 5M purified VWF115 was added to start the reaction and 

incubated at 37°C.  At 0 to 60 mins, subsamples were stopped with EDTA 

(50mM final concentration). EDTA stops the proteolysis of VWF115 by 

chelating Zn2+ and Ca2+ ions. Samples were stored at -80°C until analysis by 

SDS-PAGE and Coomassie staining.  

 

2.5.1.4 VWF106 activity assay 
 

VWF106 (Glu1554-Arg1659) is a short VWF A2 domain fragment which lacks 

the nine C-terminal amino acids of VWF115 (Figure 2.8). VWF106 was 

available from previous work in our lab and was kindly gifted by Dr Brenda 

Luken. 3.5nM ADAMTS13 in concentrated conditioned medium in 20mM Tris 

pH 7.6, 150mM NaCl was preincubated at 37˚C with 5mM CaCl2 and 29µM 

total IgG for one hour. Purified VWF106 (5 M) was added to start the activity 

assay and various time point aliquots were removed and stopped with EDTA 

(50mM final concentration). A higher concentration of enzyme was used and 

reaction times extended to two hours, because the cleavage of VWF106 is 

less efficient than that of VWF115. Samples were stored at -80°c until 

analysis by SDS-PAGE and Coomassie staining. 
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2.5.1.5 SDS-PAGE analysis of VWF115 and VWF106 proteolysis 
 

Samples from the assays described in sections 2.5.1.3-4 were loaded on a 

4-12% Bis-Tris gel and run for 30 minutes at 200V. Gels were stained with 

Coomassie stain (Imperial protein stain, Pierce) allowing visualisation of 

uncleaved VWF115 (17kDa) and the cleavage products (10kDa and 7kDa). 

Similarly, VWF106 (16kDa) and its cleavage products (10kDa and 6kDa) 

could be visualised. 

 

 

 

 

Figure 2.8  VWF A2 domain short substrates VWF115 and VWF106 and their cleavage 
by ADAMTS13 

VWF115 is a 17kDa VWF A2 domain fragment which contains the scissile bond and binding 
exosites for the metalloprotease, disintegrin-like, cysteine-rich and spacer domains of 
ADAMTS13. VWF106 is identical to VWF115, but lacks nine residues from its C-terminus 
that are critical to ADAMTS13 spacer domain binding. 
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2.5.2 Fluorescence resonance energy transfer (FRETS) assay 
 

MDTCS (in concentrated conditioned medium, final concentration 0.125nM) 

in 5mM Bis Tris, 25mM CaCl2, 0.005% Tween, pH 6.0 was preincubated at 

37°C for 30 minutes with 0-5.6µM total IgG from TTP or healthy plasmas,  to 

allow calcium binding and antibody-antigen interaction. 1µM FRETS-VWF73 

substrate (Peptide International) was added and fluorescence was measured 

over one hour to monitor substrate proteolysis (Fluorostar Omega). After 

titration of each IgG preparation, assays were repeated at three IgG 

concentrations spanning the IC50 for each sample. This was performed both 

with and without preincubation with 10nM purified MDTC, to ascertain the 

proportion of inhibition attributable to anti-spacer domain antibodies.  

 

2.6 Statistical analysis 
 

Statistical analysis of the results was performed using SPSS Statistics and 

GraphPad Prism version 6 software. For continuous variables, differences 

between patients with varying patterns of domain specificity were evaluated 

by Mann Whitney U test or the Kruskal Wallis test, as the data sets were not 

normally distributed.  

 

For discrete variables, differences were evaluated using the χ2 test or 

Fisher’s exact test for smaller numbers. Cumulative incidence and Gray’s 

test were used to compare the incidence of relapse between groups. Logistic 

regression analysis was applied to compute odds ratios and 95% confidence 

intervals, which were used as an estimate of the likelihood of mortality. A 

probability (p) value of <0.05 was taken as statistically significant. 
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3 Expression and purification of ADAMTS13 domain 
fragments and development of assays to determine the 
domain specificity of anti-ADAMTS13 antibodies 

 

 

The first aim of this project was to express isolated domains and domain 

fragments of ADAMTS13 to allow the development of novel assays to 

determine the domain specificity of anti-ADAMTS13 antibodies in acquired 

TTP. Eukaryotic expression systems are most likely to give correctly folded 

protein but only in limited quantity. Bacterial expression systems allow rapid 

synthesis of large quantities (up to mg amounts of protein). Based on this, I 

started with a panel of individual domains or small domain fragments 

synthesised in bacteria due to the ease of expression. 

3.1 Methods 

3.1.1 Expression, purification and refolding of ADAMTS13 domain 
fragments in bacteria 

See section 2.1 for methodology 

3.1.2 Expression and purification of ADAMTS13 domain fragments in 
mammalian cells 

See section 2.2 

3.1.3 Determination of domain specificity of TTP patient autoantibodies 

3.1.3.1 Immunoblotting using bacterially expressed material 
See section 2.4.1 

3.1.3.2 Immunolotting using mammalian expressed material 
See section 2.4.2 

3.1.3.3 Immunoprecipitation 
See section 2.4.3 

3.1.3.4 Initial ELISA development 
See section 2.4.4 

 

 



 

 

 

Construct Construct Novel  
vector 

Predicted 
MW (kDa) 

Expressed 
in Rosetta 
DE3 

His tag 
purified 

Soluble 
protein 

Quantity of 
purified 
protein (mg) 

Issues 

MP 

   

No 27 Yes Yes Yes 635  

DisT 

   

No 17 Yes Yes Yes 104  

TSP1 

       

Yes 10 Yes Yes Yes 66  

Cys 

     

Yes 17 Yes Yes Yes 186  

Spac 
   

No 19 Yes Yes No 816 Aggregated 
Not recognised by 
spacer mAb II-1 

TSP2-4 

   

No 23 Yes Yes Yes 795  

TSP5-8 

 

No 30 Yes Yes Yes 217  

CUB1/2 

    

No 
 

36 Yes Yes Yes 25  

 
Table 3.1  Bacterial ADAMTS13 domain constructs expressed, purified and quantitated in this study 

 Domain organisation of full-length ADAMTS13. Predicted molecular weights of bacterially expressed 

ADAMTS13 domains including His tag and Xpress epitope are given. Total amounts of purified protein were determined by the BCA assay.
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3.2 Results 

3.2.1 Expression, purification and refolding of ADAMTS13 domain 
fragments in bacteria 

 

The ADAMTS13 domain fragments expressed in bacteria and subsequently 

purified, refolded and quantitated in this study are summarised in Table 3.1. 

3.2.1.1 Generation of bacterial ADAMTS13 domain vectors 
 

I successfully generated the domain fragments TSP1 and Cys by PCR 

amplification using full-length ADAMTS13 plasmid DNA as a template, and 

cloned them into the pET100/D-TOPO vector. Previously generated bacterial 

vectors that express recombinant MP, Dis-TSP1, Spacer, TSP2-4, TSP5-8 

and CUB1/2 were available from earlier work in the group. I verified all 

existing and novel vectors by sequencing prior to protein expression. 

3.2.1.2 Expression of ADAMTS13 domains in bacteria 
 

I went on to express all of the domain fragments at high levels in Rosetta 

DE3 E.coli. The ADAMTS13 fragments synthesised spanned all domains of 

the enzyme. The predicted molecular weights of the various fragments 

including tag are shown in Table 3.1 (bacterially expressed domains lack 

glycans). 

 

3.2.1.3 ADAMTS13 domain purification and refolding by FPLC 
 

I subsequently partially purified all the bacterially expressed ADAMTS13 

domain fragments using a Ni2+-chelating HiTrap column coupled to an ÄKTA 

FPLC. A novel on-column refolding strategy yielded soluble protein in the 

elution fraction for all domains except for the spacer domain, which 

aggregated on the column and had to be stripped off using a denaturing 

buffer containing 8M urea.  

 

A representative FPLC chromatogram is shown in Figure 3.1 with the milli-

absorbance units (mAU) at 280nm displayed against the volume of liquid 

flowing through the column.  
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Figure 3.1 FPLC chromatogram of purification and refolding of the fragment Dis-TSP1 

The 280nm absorbance (blue line) is plotted against the elution volume over time.  
Buffer gradients are shown in green. The unfolded protein is loaded onto the column in a 
denaturing buffer with low imidazole concentration to reduce non-specific protein binding. 
The Dis-TSP1 protein binds via the metal ion binding His-tag, and the other non-tagged 
bacterial proteins appear in the flow through (FT) as an absorbance peak containing large 
amount of protein (approx. 600mAU)  Sequential buffer change gradually removes the urea 
in the presence of agents to optimise correct refolding (glutathione redox pair, glycerol and 
sucrose) - refolding gradient shown in green. The folded protein is eluted by a gradient over 
10 minutes into ice-cold elution buffer containing a higher concentration of imidazole (elution 
gradient shown in green). This aims to gradually increase the protein concentration in the 
eluted fractions and thus reduce the risk of aggregation. The smaller elution peak (EP) is 
seen, which should contain the refolded protein of interest. The column is stripped with 
EDTA-containing stripping buffer (Strip = stripping peak) to remove any aggregated protein 
from the column matrix and remove the Ni

2+
 ions. Fractions of the flow-through, elution and 

stripping peaks are then analysed by SDS-PAGE to determine which contains the protein of 
interest. 
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3.2.1.4 Analysis and characterisation of bacterially expressed proteins 
 

SDS-PAGE under reducing and non-reducing conditions were performed for 

each ADAMTS13 domain fragment purified to ascertain which fraction from 

FPLC (flow through, elution peak or stripping peak) contained the desired 

protein (e.g. Figure 3.3 for Dis-TSP1). The protein was present in the elution 

peak for all the ADAMTS13 fragments, except the spacer domain which had 

to be stripped off the column and was present in the stripping peak. 

  

Coomassie staining under reducing (Figure 3.2) and non-reducing conditions 

of the bacterially expressed material showed proteins of expected molecular 

weight. (Silver staining was not required as sensitivity was not an issue).  

Coomassie staining revealed bands of approximately 28kDa for the 

metalloprotease domain (MP), 17kDa for the domain fragment Dis-TSP1 

(DisT), 10kDa for the TSP1 domain (TSP) and 17kDa for the cysteine-rich 

domain (Cys). Bands were also seen of approximately 19kDa for the spacer 

domain (Spac), 23kDa for TSP2-4, 30kDa for TSP5-8 (5-8) and 36kDa for 

the CUB domain fragment (CUB). 

 

 

 

Figure 3.2  Coomassie stain of bacterially expressed and purified ADAMTS13 domains 
under reducing conditions 

MP= metalloprotease domain , DisT =Dis-TSP1, TSP= TSP1 domain, Cys=cysteine-rich 
domain, Spac=spacer domain, 2-4=TSP2-4, 5-8=TSP5-8, CUB=CUB domains1/2 . 
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Additional bands of higher molecular weight proteins were seen in non-

reducing conditions for several domains, reflecting multimeric material due to 

intermolecular disulphide bond formation. These higher molecular weight 

bands were also seen for the Dis-TSP1 and spacer domains under reducing 

conditions (Figure 3.2), either because reducing conditions did not persist for 

long enough or more likely due to protein aggregation taking place, despite 

the presence of SDS. 

 

Based on the results seen in the previous gel with evidence of multimeric 

material, I attempted to reduce multimerisation by gradually increasing the 

imidazole concentration when eluting the bacterially expressed ADAMTS13 

domains from the Ni2+-chelating column. For this, I eluted using a linear 

gradient over ten minutes. With this strategy, the imidazole concentration 

and hence His-tagged protein concentrations are lower initially, reducing the 

risk of aggregation. The strategy resulted in reduced multimerisation of the 

eluted proteins (Figure 3.3). This is demonstrated by a single band 

representing monomeric material in the first fraction of the elution peak (EP1) 

with lower imidazole concentrations, in both non-reducing and reducing 

conditions. 
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Figure 3.3   Coomassie stain of FPLC fractions from purification of bacterially 
expressed Dis-TSP1 domains with increasing imidazole concentrations  

FT=flowthrough, EP=elution peak, Strip=stripped fraction 
NR=non-reducing conditions, R=reducing conditions  
No protein of the correct size is seen in the flow through, which represents non-specfic 
bacterial proteins. The 17kDa DisTSP1 is seen in the elution peak with a single band 
representing monomeric material in the first fraction of the elution peak (EP1) with lower 
imidazole concentrations, in both non-reducing and reducing conditions. DisTSP1 is seen in 
the stripped peak but there are also higher order multimers/aggregates. 

 
 
Total amounts of purified protein of the different bacterially expressed 

ADAMTS13 domains as determined by the BCA assay are shown in Table 

3.1. Western blot analysis using an anti-Xpress tag antibody (specific for the 

Xpress epitope tag on the amino-terminus of the different constructs) 

confirmed that the purified ADAMTS13 domains were isolated as bands of 

the expected molecular weight, but with evidence of multimerisation (Figure 

3.4), similar to the Coomassie. The Western blot revealed bands of 

approximately 28kDa for the metalloprotease domain, 17kDa for the domain 

fragment Dis-TSP1, and 17kDa for the cysteine-rich domain. Bands were 

also seen of approximately 19kDa for the spacer domain, 23kDa for TSP2-4, 

30kDa for TSP5-8 and 36kDa for the CUB domain fragment. The TSP1 

domain has a predicted molecular weight of 10kDa but only a higher 

molecular weight band could be seen in the Western blot, suggesting 

reducing conditions did not persist for long enough or that protein 

aggregation was taking place, despite the presence of SDS. 
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Figure 3.4.  Western blot of bacterial domains with anti-Xpress antibody in reducing 
conditions 

Bands are seen of approximately 28kDa for the metalloprotease domain (MP), 17kDa for the 
domain fragment Dis-TSP1 (DisT), and 17kDa for the cysteine-rich domain (Cys). Bands 
were also seen of approximately 19kDa for the spacer domain (Spac), 23kDa for TSP2-4 (2-
4), 30kDa for TSP5-8 (5-8) and 36kDa for the CUB domain fragment. Only a higher 
molecular weight band could be seen for TSP1. 
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To examine whether the bacterially expressed ADAMTS13 domains were 

recognised by a more physiological detection antibody, Western blotting was 

also performed using a polyclonal anti-human ADAMTS13 antibody raised in 

rabbit. The majority of the bacterially expressed ADAMTS13 domains were 

recognised by the rabbit polyclonal anti-human ADAMTS13 (Figure 3.5). 

 

 

  

Figure 3.5.  Western blot of bacterial domains with rabbit polyclonal anti-human 
ADAMTS13 antibody 

Bands are seen of approximately 17kDa for the domain fragment Dis-TSP1 (DisT), 10kDa 
for TSP1 domain (boxed in red) and 17kDa for the cysteine-rich domain (Cys). Bands were 
also seen of approximately 19kDa for the spacer domain (Spac), 23kDa for TSP2-4 (2-4), 
30kDa for TSP5-8 (5-8) and 36kDa for the CUB domain fragment. MP=metalloprotease 
domain. 

 

Interestingly, there was no reactivity against the recombinant 

metalloprotease domain (Figure 3.5). This was consistent with results of 

previous affinity isolation of anti-MP antibodies from the rabbit polyclonal 

antibody which demonstrated little anti-MP activity - data not shown. The 

antibody was strongly reactive against TSP2-4 (also correlating with results 

of previous affinity isolation from the rabbit polyclonal antibody which 

demonstrated a high titre of anti-TSP2-4 - data not shown). A band is now 

seen at the expected molecular weight of 10kDa for the TSP1 domain (boxed 

in red), but most the material is of higher molecular weight. Again in this 

Western blot, some higher molecular weight multimers persisted despite 

reducing conditions, indicative of some aggregation. 
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Based on these studies, the ADAMTS13 domains expressed in bacteria 

were all of the expected molecular weight, but there were issues with 

aggregation and some incorrect disulphide bond formation. Despite this, the 

bacterially expressed ADAMTS13 domains were still recognised by 

antibodies which recognise mammalian full length ADAMTS13 suggesting 

they could be of use in determining the domain specificity of anti-ADAMTS13 

IgG by Western blotting. I therefore proceeded to immunoblotting using 

bacterially expressed material (section 3.2.3.1). 
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3.2.2 Expression and purification of ADAMTS13 domain fragments in 
mammalian cells 

 

The easiest way to ensure that proteins adopt their native fold is to express 

them in a mammalian expression system. After problems developing an 

immunoblotting strategy using bacterially expressed material (section 

3.2.3.1), I switched to mammalian cell expression to produce ADAMTS13 

domain fragments. The ADAMTS13 domain fragments expressed in 

mammalian cells and subsequently purified, refolded and quantitated in this 

study are summarised in Table 3.2. 

3.2.2.1 Generation of ADAMTS13 fragment vectors 
 

A mammalian expression vector (pcDNA3.1/myc-His) containing full-length 

ADAMTS13 cDNA was available from previous studies. I successfully 

generated novel vectors for domain fragments TCS and MDTC by PCR 

using pcDNA3.1/myc-His MDTCS as a template. Previously generated 

vectors expressing the ADAMTS13 fragments TSR2-8 and TSR5-8 

contained errors associated with PCR-based amplification. The vector for 

TSR2-8 required insertion of T at position 1135, and TSR5-8 required 

deletion of CA after the signal peptide and I corrected these by site directed 

mutagenesis. The vectors that express the truncated ADAMTS13 variants 

MP-Dis, MDTCS and TSP2-4 were available from previous work in the group 

(see also Figure 2.6 for list of novel and existing vectors). I verified all novel 

and existing vectors by sequencing prior to expression work. 

3.2.2.2 Expression of ADAMTS13 fragments 
 

Full-length ADAMTS13 and ADAMTS13 fragments MDTCS, TSP2-8 and 

CUB1-2 were successfully expressed by large scale transient transfection of 

HEK23T cells. HEK293T cells were specifically chosen as I did not want to 

use a cell line that expressed ADAMTS13 endogenously (e.g. liver cells), as 

it would have the potential to contaminate the ADAMTS13 fragment I was 

expressing. Endothelial cells are not viable expression host cells due to 

difficult growing and transfection protocols. HEK cells have been used 

routinely and ADAMTS13 from these cells has been robustly and 

biochemically characterised. 



 

 

Construct Construct Novel 
vector 

MW 
(kDa) 

Expressed 
in HEK293T 

Issues Solutions 
attempted  

(see text for details) 

His tag 
purified 

Tag Quantitation  
method 

Final 
conc 
(nM) 

ADAMTS13  No 188 Yes         -         - Yes Myc ELISA 3850 

MD 
          

No 40 Yes          - 
 

         - Yes 
§
 WB 

Nanodrop 
3000 

TCS 
       

Yes 55 No Not expressed 
 

Repeat transfections 
Resequenced 

No Myc - - 

MDTC 
 

Yes 80 No MDTC Gly
560

  
not expressed 
 

Cropped to Cys
555

  
Resequenced. 
V5-tagged vector used* 

Yes V5 ELISA 
WB 

150 

MDTCS 

 

No 95 Yes           -         - Yes Myc ELISA 
WB  

Nanodrop 

750 

TSP2-4 
           

No 25  Yes Wrong size 
(50kDa) 
 

Vector resequenced. 
Reducing gels  
?dimerising. 
Deglycosylated. 

Yes Myc - - 

TSP5-8 
        

Yes 32 No Retained 
intracellularly 
 

          - No Myc - - 

TSP2-8 
     

Yes 70  Yes Low concentration 
 

Larger scale 
transfections. 
Stable cell line with Ig-κ 
signal peptide used**  

Yes V5 WB 1500 

CUB1/2 
              
 

No 40 Yes          -           - Yes Myc WB 40 

 

Table 3.2  Mammalian ADAMTS13 domain constructs expressed, purified and quantitated in this study         

Predicted molecular weights (MW) of mammalian expressed ADAMTS13 domains including His tag, detection tag and predicted glycans are given.    
Concentrations of purified protein were determined by ELISA, comparative Western blotting (WB) and confirmed if pure by Nanodrop.                                                                                        
§
construct MD has no myc tag as this was removed for earlier work  * construct kindly gifted by Sadler  ** construct kindly gifted by Voorberg
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The fragment TCS did not express in repeated small scale and larger scale 

transfections. The TCS vector was checked again by resequencing, but 

transfection attempts remained unsuccessful. TSP5-8 was expressed but not 

secreted and was retained intra-cellularly (Figure 3.6 - TSP5-8 is seen in the 

cell lysate, but is not in the conditioned media). 

 

 

Figure 3.6  Western blot of expression of mammalian C-terminal TSP domain 
fragments 

2-4=TSP2-4 domain fragment, 5-8=TSP5-8, 2-8=TSP2-8, Cells=cell lysate, CM=conditioned 
media. TSP2-4 is expressed and secreted, but is of incorrect size (see later). TSP5-8 is 
retained intracellularly. TSP2-8 has not expressed in this particular small scale transient 
transfection. Western blot probed with anti-His antibody. 

 

 

Similarly, MDTC truncated at glycine560 was not secreted. On review of the 

literature, MDTC terminating at cysteine555 had been successfully 

synthesised by another group (49). I therefore cropped the vector to that 

point. Despite this, a further attempt to express MDTC terminating at 

cysteine555 in the pcDNA3.1/myc-His vector was also not secreted (Figure 

3.7). However, MDTC555
 in a pcDNA3.1/V5-His vector was kindly gifted by 

J.E Sadler and this construct was successfully expressed and secreted, 

albeit at a lower level than full length ADAMTS13. Possible reasons for this 

are considered in the discussion section of this chapter. I checked that 

MDTC was likely correctly folded (despite the low secretion levels) by 

confirming that it had activity in a FRETS assay. 
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Figure 3.7  Western blot of expression of MDTC
555

 in pcDNA3.1/myc-His vector 

Western blot probed with rabbit polyclonal anti-ADAMT113 antibody. A band is seen at 
80kDa in the cell lysate indicating that MDTC

555
 has expressed, but there is no 

corresponding band in the 25-fold concentrated (CMx25) or 10-fold concentrated (CMx10) 
conditioned media. A non-specific band is seen at approximately 66kDa in the highly 
concentrated conditioned media. This is likely to represent BSA (rabbit polyclonal anti-
ADAMTS13 antibody is known to contain antibodies vs. BSA). 

 

 

The fragment TSP2-8 was secreted at an extremely low level, making use of 

transient transfections impractical as a source of this material. The stable cell 

line HEK293 TSP2-8 V5 His, which has an Ig-κ signal peptide cloned in front 

of the coding region of the TSP2-8 construct in order to increase the level of 

expression of the variant (50), was kindly gifted by J. Voorberg and I used 

the stable cell line to provide sufficient material for purification. 

 
 
 
 

3.2.2.3 ADAMTS13 fragment purification by FPLC 
 

I then went on to partially purify full-length ADAMTS13 and all the 

ADAMTS13 fragments on a Ni2+-chelating HiTrap column. Figure 3.8 

illustrates this purification step for the fragment CUB1/2. Fractions of the 

flow-through, elution and stripping peaks were analysed by SDS-PAGE to 

determine which fraction contained the protein of interest. The mammalian 

expressed ADAMTS13 fragments were present in the elution peaks for each 

construct. 
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Figure 3.8  FPLC chromatogram of the purification of CUB1/2 

The 280nm absorbance (blue line) is plotted against the elution volume over time.  
Buffer gradients are shown in green. The unfolded protein is loaded onto the column in a 
denaturing buffer with low imidazole concentration to reduce non-specific protein binding. 
The CUB1/2 protein binds via the metal ion binding His-tag, and the other non-tagged 
proteins appear in the flow through (FT) as an absorbance peak containing large amount of 
protein (approx. 120mAU). The desired protein is eluted by a gradient over 10 minutes into 
elution buffer containing a higher concentration of imidazole (elution gradient shown in 
green). This aims to gradually increase the protein concentration in the eluted fractions and 
thus reduce the risk of aggregation. The smaller elution peak (EP) is seen, which should 
contain the desired protein (CUB1/2). The column is stripped with EDTA-containing stripping 
buffer (Strip= stripping peak) to remove any aggregated protein from the column matrix and 
remove the Ni2+ ions.   
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3.2.2.4 Analysis and characterisation of mammalian expressed proteins 
 

The ADAMTS13 fragments expressed spanned the enzyme from the 

metalloprotease domain to CUB1/2. Predicted molecular weights of the 

various fragments including tag are shown in Table 3.2. The construct MD 

does not have a myc tag as this was removed for earlier work, and MDTC 

and TSP2-8 have V5 epitopes. Western blot analysis using anti-tag antibody 

confirmed that the purified ADAMTS13 fragments were mainly isolated as 

single undegraded bands of the expected molecular weight with little 

multimerisation. 

 

 

 

Figure 3.9   Semi-quantitative Western blot of mammalian expressed ADAMTS13 
fragments with anti-tag antibodies 

A13 = full length ADAMTS13, MDTCS = metalloprotease-spacer domain fragment, 
MDTC =metalloprotease-cys-rich domain fragment, 2-4= TSP2-4 domains, CUB = CUB1/2 
domains. Blot probed with anti-myc-HRP (A13, MDTCS, 2-4, CUB) + anti-V5-HRP (MDTC) 

 

Figure 3.9 shows one of series of semi-quantitative Western blot used to 

ensure approximately equal loading (in molar terms) of each domain 

fragment for subsequent analysis of patient antibodies. Bands are seen at 

190kDa for full-length ADAMTS13, 95kDa for MDTCS, 50kDa for TSP2-4, 

40kDa for CUB1/2 and 80kDa for MDTC. 
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The fragment TSP2-4 was not reliably detected by Western blotting with anti-

myc HRP and was poorly detected by the rabbit polyclonal antibody anti-

TSP2-4 in Western blots. It migrated at approximately 50kDa (Figure 3.9), 

although the predicted molecular weight was closer to 25kDa. The vector 

was again resequenced and confirmed to be correct.  Interestingly, the 

TSP2-4 harvested from the cell lysate was the correct size, with a smaller 

band seen at approximately 50kDa (Figure 3.6). TSP2-4 has free cysteines, 

suggesting that the 50kDa band might represent dimeric material. 

 

A reducing gel of TSP2-4 (using DTT as the reducing agent and including a 

reducing agent in the running buffer, ClearPAGE, C.B.S. Scientific) with anti-

myc-HRP was performed to see if the protein was dimerising, but did not 

detect the fragment. A sample of TSP2-4 was deglycosylated with PNGase F 

(NEB), and the size of the glycosylated and deglycosylated forms assessed 

by Western blot with anti-myc HRP. However, the deglycosylated TSP2-4 

still ran at greater than 40kDa – significantly bigger than the predicted 

molecular weight. Use of the fragment TSP2-4 was therefore abandoned, 

due to the difficulty in detecting it reliably in Western blots and concerns 

about the size of the fragment. 

 

Quantitation of purified full-length ADAMTS13, MDTCS and MDTC by 

ELISAs revealed concentrations of 3850nM, 750nM and 150nM respectively. 

Semi-quantitative Western blotting using anti-tag antibodies was used to 

estimate the concentration of ADAMTS13 fragments relative to each other 

and to a standard (full-length ADAMTS13 of known concentration determined 

by ELISA), by altering the volume loaded to give bands of approximately 

equal size. This allowed the concentrations of the smaller fragments to be 

estimated (Table 3.2). Analysis of the purity of the ADAMTS13 fragments by 

Coomassie revealed that MDTCS and MD migrated as single bands of 

expected molecular weight (Figure 3.10). The concentration of these purified 

samples was assessed by absorbance at 280nm, which corroborated the 

concentrations obtained by ELISA/Western blot. 
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Figure 3.10  Coomassie of mammalian expressed ADAMTS13 fragments MDTCS and 
MD 

MDTCS and MD migrated as single bands of expected molecular weight (95kDa and 40kDa 
respectively). 
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3.2.3 Determination of domain specificity of TTP patient autoantibodies 

3.2.3.1 Immunoblotting using bacterially expressed material 
 

This strategy was chosen as immunoblotting is potentially straightforward, 

gives a good overview of the domains affected by an autoimmune response 

and allows major immunogenic regions to be identified. Bacterially expressed 

material was used in the first instance due to the ease of expression allowing 

synthesis of large quantities (up to mg amounts of protein). 

 

Repeated attempts were made to optimise this assay. Initial high background 

was improved by altering membrane blocking by increasing the percentage 

of blocking agent and incubating overnight. Background was further reduced 

by using purified IgG (rather than plasma or PEX) as a source of anti-

ADAMTS13 antibodies. 

 

The only specific band seen in Western blotting with TTP IgG was the 

positive control: mammalian expressed full-length ADAMTS13 (Figure 3.10). 

Non-specific bands were seen in the normal control. Many human plasma 

samples contain anti-E.coli antibodies, and there is the possibility that 

contaminating bacterial proteins could give rise to false positive results.  

 

 

Figure 3.11  Western blot of bacterially expressed domains of ADAMTS13 probed with 
TTP IgG and normal IgG in non-reducing conditions 

No specific bands are seen other than the positive control- mammalian expressed full-length 
ADAMTS13. Note high background.  
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To determine whether the lack of reactivity of TTP IgG with the bacterially 

expressed fragments might be due to non-native conformation under 

reducing conditions, I repeated the Western blots under non-reducing 

conditions but this did not alter the results. No improvement was seen using 

a PVDF membrane rather than nitrocellulose. 

 

The monoclonal human-derived anti-spacer antibody recognised 

mammalian-expressed full length ADAMTS13 but did not recognise the 

bacterially expressed spacer domain (not shown) suggesting the material 

was not correctly folded / displaying physiological epitopes.  

 

3.2.3.2 Immunoblotting using mammalian expressed material 
 

The approach was changed to use mammalian expressed material when it 

became clear that the bacterially expressed material, in particular the critical 

spacer domain, was not recognised by anti-ADAMTS13 antibodies from TTP 

patients in the context of Western blotting. Expression of proteins in 

mammalian cells is more time-consuming with much lower yields, but is more 

likely to result in correctly folded protein. 

 

Repeated attempts were made to optimise an immunoblotting assay using 

mammalian expressed material by altering the amount of protein loaded; the 

blocking strategy; the buffer (TBS vs. PBS) and using purified IgG rather 

than plasma. Initially the fragment MDTCS was recognised by TTP IgG 

(Figure 3.12), but no antibodies were detected against full-length ADAMTS13 

or other fragments.  
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Figure 3.12  Western blot of mammalian expressed fragments of ADAMTS13 probed 
with TTP IgG and normal IgG in non-reducing conditions  

TTP IgG extracted from PEX shows reactivity against MDTCS but not full-length 
ADAMTS13. Note high background with normal IgG. 

 

Some improvement was seen using a PVDF membrane rather than a 

nitrocellulose membrane, in that antibodies against full-length ADAMTS13 

could be demonstrated as well as antibodies against MDTCS (Figure 3.13). 

No antibodies were detected that recognised MD, MDTC or the C-terminal 

domains in three patients examined. However, problems remained with high 

background and non-specific binding, and the decision was made to try an 

alternative strategy of immunoprecipitation. 

 

 

 

Figure 3.13   Western blot of mammalian expressed fragments of ADAMTS13 using 
PVDF membrane probed with TTP IgG and normal IgG in non-reducing conditions 

Immunoblotting with TTP IgG showing reactivity against full length ADAMTS13 and MDTCS 
(boxed in red). Non-specific bands are seen with both TTP and normal IgG. 
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3.2.3.3 Immunoprecipitation 
 

Plasma exchange fluid from patients with TTP was able to immunoprecipitate 

full length ADAMTS13 and the N-terminal fragment MDTCS (Figure 3.14 A 

and B).  

 

 

Figure 3.14  Immunoprecipitation of full length ADAMTS13 and MDTCS by TTP PEX 
fluid  

+=positive control (20-40ng of his-tag purified recombinant A13, MDTCS or CUB). Detection 
with anti-myc-HRP 

 

 

MDTCS was generally more readily immunoprecipitated than the full length 

ADAMTS13 as shown in Figure 3.14B by TTP PEX fluid from two different 

patients - TTPI and TTPII. (Interestingly, patients TTPI and TTPII were later 

demonstrated to have solely antibodies directed against the N-terminal 

domains of ADAMTS13, whilst TTPIII, where the preferential IP of MDTCS 

was not seen, was shown to also have a large proportion of antibodies 

against the C-terminal domains).  

 

Increasing the volumes of protein G, antibody and antigen for a given elution 

volume meant that the assay could be utilised in patients with a more 

moderate titre of anti-ADAMTS13 IgG, thus improving sensitivity (Figure 

3.15). 
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Figure 3.15  Immunoprecipitation of full-length ADAMTS13 by plasma exchange fluid 
from TTP patients 

PNP=pooled normal plasma   TTP=PEX from TTP patient   
+=positive control  (20ng his-tag purified recombinant A13). Detection with anti-myc-HRP 
The amount of protein G, antibody (volume of PEX fluid) and ADAMTS13 were doubled for 
TTP2 and trebled for TTP1 for the same elution volume to try to improve the sensitivity of the 
assay. This allowed detection of anti-ADAMTS13 antibodies by immunoprecipitation in a 
sample with a moderate titre (TTP1 =40%) 

 
 
PEX from four patients tested was able to immunoprecipitate MDTCS but not 

MDTC, suggesting that the antibodies immunoprecipitating MDTCS are 

directed against the spacer domain.  PEX from seven patients were 

screened for reactivity against the fragment TSP2-8, two of whom had 

detectable anti-TSP2-8 antibodies (Figure 3.16) 

 

 

 

Figure 3.16  Immunoprecipitation of the fragment TSP2-8 by plasma exchange fluid 
from TTP patients 

+ = positive control (50ng his-tag purified TSP2-8). Detection with anti-V5-HRP 
TTP1 and TTP5 have anti-TSP2-8 antibodies 
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PEX from the same seven patients was screened for anti-CUB antibodies 

using this technique with no reactivity found. As material remained at the top 

of the lanes in the Western blots of the CUB immunoprecipitation, these were 

repeated in reducing conditions. However, no reactivity against the CUB 

domains could be detected in the samples.  

 

The plasma requirement for immunoprecipitation (170μl) was prohibitive, 

meaning this assay could not be rolled out to patient samples. Thus, an 

alternative strategy of an ELISA-based assay was sought. 

 

3.2.3.4 ELISA 

3.2.3.4.1 Initial assay development 
 

I decided to develop an ELISA for detection of domain-specific antibodies as 

such an approach could potentially allow high-throughput with screening of 

multiple samples against different fragments of ADAMTS13 with lower 

plasma requirements. 

 

I tried various strategies including using polyclonal rabbit anti-human 

ADAMTS13 or anti-His tag antibodies to capture the ADAMTS13 fragments 

with detection of bound anti-ADAMTS13 antibodies with anti-human IgG-

HRP. Coating the plate with purified IgG from TTP patients was also 

attempted with bound proteins detected with anti-tag antibody. 

 

 

Capturing the his-tagged full length ADAMTS13 or ADAMTS13 fragments 

using anti-His antibody was tried first (Figure 2.7A), as this method was used 

in the original description of an ELISA to detect anti-ADAMTS13 IgG (81). 

However, this strategy did not result in good capture of my partially purified 

full length ADAMTS13, and did not permit detection of anti-ADAMTS13 IgG. 

This was not improved by using a more specific anti-human IgG HRP 

(Abcam vs Dako). 

 

Capturing ADAMTS13 using the in-house rabbit polyclonal anti-ADAMTS13 

antibody (Figure 2.7C) allowed detection of anti-ADAMTS13 antibodies in 
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TTP PEX. However, this strategy could not have been used for all the 

fragments, as the antibody has been depleted of anti-TSP2-4 activity. 

 

Inverting the assay and using patient IgG to coat the plate and detecting 

captured ADAMTS13 with a polyclonal biotinylated anti-TSP2-4 antibody and 

streptavidin-HRP to amplify the signal (Figure 2.7B) allowed me to 

distinguish between TTP PEX and normal plasma, but gave only a weak 

signal. This is likely to be because only a very small percentage of total IgG 

will be anti-ADAMTS13 IgG, even in the acute setting. A different detection 

system, e.g. anti tag antibodies, would also be required to roll this assay out 

to all the fragments. 

 

The most promising strategy was to coat the plate directly with full-length 

ADAMTS13 or fragments, and I developed this assay further. However, 

direct coating did not work for some of the ADAMTS13 fragments e.g. 

MDTCS and CUB1/2, presumably because the proteins bound to the plate 

through their antigenic surfaces. This was circumvented by using both a 

direct ELISA for the fragment TSP2-8, and spiking other fragments (MDTCS, 

MDTC, MD, CUB) into an ELISA detecting antibodies against full-length 

ADAMTS13. 

 

The development and results of these novel domain specificity assays at 

presentation of acute TTP are discussed in chapter 4.  

 

The results of the domain specificity assays longitudinally through therapy, 

remission and relapse are discussed in chapter 6. 
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3.2.4 Antibody extraction 
 

Total IgG extracted from TTP PEX or plasma or pooled normal human 

plasma using protein G spin columns was used for initial work. It was utilised 

for immunoblotting with ADAMTS13 fragments synthesised in both bacterial 

and mammalian expression systems. I was able to demonstrate antibodies 

against mammalian expressed full-length ADAMTS13 and the N-terminal 

fragment MDTCS using protein G extracted IgG. A protein G approach was 

also used to extract IgG from PEX for immunoprecipitation, which allowed 

me to demonstrate antibodies against full-length ADAMTS13, MDTCS and 

TSP2-8, albeit with a large plasma requirement. 

 

However, when work was commenced optimising the VWF115 activity 

assays using IgG extracted from TTP PEX, no inhibition could be detected. 

The ability of these TTP IgG to bind ADAMTS13 was tested using the ELISA 

described in section 2.3.4 for detection of anti ADAMTS13 antibodies, and no 

binding was detected. Quantitation of the total IgG by Nanodrop and IgG 

ELISA (Bethyl Laboratories) revealed a concentration of only 1mg/ml. 

Normal plasma IgG concentration is 10-15mg/ml. The protocol resulted in an 

approximately 2.6 fold dilution of the IgG, meaning that only 20-30% of the 

available IgG was being extracted using this method. 

 

Melon gel IgG extraction was therefore tried instead. Work using VWF115 

assays to compare the inhibitory potential of IgG extracted from TTP PEX 

using melon gel with protein G extracted IgG showed that melon gel 

extracted antibodies retained their inhibitory potential. However, the melon 

gel protocol results in a 10-fold dilution of the IgG, so I used a buffer 

exchange protocol prior to melon gel extraction to avoid this dilution step. 

 

Total IgG purified using melon gel with buffer exchange to eliminate dilution 

step had concentrations of 8-15 mg/ml, commensurate with plasma IgG 

concentrations. There was good agreement between values obtained by IgG 

ELISA and by measuring absorbance at 280nm. Total IgG extracted from 
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patient samples or pooled normal plasma using this protocol was therefore 

used in subsequent VWF115/106 assays and FRETS assays (chapter 5). 

 

 

3.3 Discussion 
 

In order to generate material for use in assays investigating the domain 

specificity of anti-ADAMTS13 antibodies, I expressed and purified 

recombinant proteins spanning ADAMTS13 synthesised in both bacterial and 

mammalian systems. I used a novel on-column refolding strategy for 

bacterially expressed domains purified from inclusion bodies which yielded 

soluble protein for all domains, except the spacer. The spacer domain lacks 

disulphide bonds which normally give structural stability to a protein. The 

spacer domain is stabilised by multiple hydrophobic interactions both within 

the domain and with the neighbouring cys-rich domain, and loss of the cys-

rich domain may adversely affect its structure. 

 

The domains expressed in E.coli (with the exception of MP) were recognised 

by a rabbit polyclonal anti-human ADAMTS13 (raised against full-length 

ADAMTS13 expressed in mammalian cells) giving initial hope that these 

domains might also serve as tools for exploring TTP patients’ autoantibody 

specificity. However it should, of course, be remembered that this polyclonal 

antibody was invoked by immunisation of rabbits with human ADAMTS13, a 

much more immunogenic scenario than an autoimmune response. 

 

However, my preliminary work on antibody detection using immunoblotting 

with bacterially expressed material was unsuccessful, with none of the 

domains being specifically recognised by TTP patient plasma or IgG purified 

from patient plasma or PEX. This was not due to antibody concentration as 

the TTP plasma/IgG recognised the positive control: mammalian expressed 

full-length ADAMTS13. This is most likely to reflect a problem with correct 

folding of the bacterially expressed material, or possibly lack of post-

translational modifications such as glycosylation. The fact that the patient-

derived monoclonal anti-spacer antibody II-1 failed to recognise the 

bacterially expressed spacer domain confirms that the critical antigenic 
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surface involving Arg660, Tyr661, and Tyr 665 (RYY- see Figure 1.12) was not 

available or correctly folded to enable antibody binding.   

 

A previous study had successfully used bacterially expressed domains in a 

Western blotting strategy to study the domain specificity of anti-ADAMTS13 

antibodies (192). The difference is likely to lie in the different 

expression/refolding strategies used and also the choice of fragments 

synthesised. Klaus et al used a pBAD/Thio-TOPO expression vector where 

the ADAMTS13 fragments were produced as thioredoxin fusion proteins with 

His tags. HP-thioredoxin acts as a translation leader to facilitate high-level 

expression and, in some cases, solubility (Invitrogen), and TSP1 was indeed 

obtained from the soluble fraction in the study by Klaus et al, although the 

other fragments were from the insoluble fraction (192). It may be that my on-

column refolding strategy was not as effective, although it did generate 

soluble protein for all the ADAMTS13 domains, except the spacer domain. 

Importantly, Klaus et al also mainly expressed larger domain fragments 

(MDT, cys-rich/spacer, TSP2-8) rather than single domains, and did not 

attempt to express the spacer domain in isolation (192). These larger domain 

fragments may have been more likely to adopt a native fold than isolated 

domains. As discussed above, the spacer domain lacks disulphide bonds 

and is instead stabilised by multiple hydrophobic interactions both within the 

domain and with the neighbouring cys-rich domain. 

 

I went on to express domain fragments spanning ADAMTS13 in a eukaryotic 

system. Full-length ADAMTS13 and ADAMTS13 fragments MDTCS, TSP2-8 

and CUB1-2 were successfully expressed by large-scale transient 

transfection of HEK23T cells. I encountered some issues with expressing 

other domain fragments and used different strategies to investigate this 

further in an attempt to resolve the problems. ADAMTS13 fragments TSR5-8 

and MDTC (truncated at Gly560) in the pcDNA3.1/myc-His vector were not 

secreted and were retained intracellularly. Cropping MDTC in pcDNA3.1-

myc-His vector to Cys555 did not improve secretion. However, the fragment 

MDTC555 in a V5-tagged vector was secreted (albeit at reduced levels 

compared to full-length ADAMTS13). This may be because the V5-epitope is 
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larger and possibly plays a protective role. The cys-rich domain has a large 

interface with the spacer domain and lack of the spacer may cause 

misfolding: the V5 tag may act as a surrogate for the spacer domain and help 

correct folding. 

 

The fragment TSP2-4 was expressed and His-tag purified, but there was 

difficulty in detecting it reliably in Western blots. It migrated at approximately 

50kDa, although the predicted molecular weight was 25kDa and the vector 

was confirmed by resequencing. I investigated whether it might be dimerising 

or heavily glycosylated, but as the domains were included in the fragment 

TSP2-8, this material was used instead for assay development. 

 

Detection of TTP autoantibodies by Western blotting using mammalian 

expressed ADAMTS13 fragments allowed detection of antibodies that 

specifically recognised either / both full-length ADAMTS13 or the N-terminal 

fragment MDTCS. However, high background and additional non-specific 

bands remained a problem despite repeated attempts to optimise assay 

conditions. No antibodies were detected that recognised MD, MDTC or the 

C-terminal domains in three patients examined, either because the 

antibodies detected in these patients were solely directed against the spacer 

domain, or because Western blotting is unable to pick up antibodies against 

other domains because conformation-specific epitopes are lost, as Western 

blotting solely detects antibodies directed against linear epitopes. 

 

Immunoprecipitation offered a more physiological approach as antibody-

antigen binding occurs in solution with the antigen in native conformation, not 

denatured as in SDS-PAGE and then immobilised on a membrane, or 

unfolded as on an ELISA plate. I was able to reproducibly detect antibodies 

against the N-terminal fragment MDTCS using this approach. Indeed, 

MDTCS was more readily immunoprecipitated, and thus appears more 

readily recognised by anti-ADAMTS13 antibodies, than the full-length 

ADAMTS13 of the same concentration. This is likely to reflect the availability 

of the critical antigenic surface in the spacer domain that may be shielded / 

partially shielded in ‘closed’ conformation full-length ADAMTS13 by the C-
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terminal domains. Further support for this concept is provided by South et al 

who studied IP of full-length ADAMTS13 by the patient-derived anti-spacer 

mAb II-1. When converted to its open conformation by binding to VWF D4CK 

fragment, recognition of full-length ADAMTS13 increased dramatically (53). 

 

Immunoprecipitation demonstrated anti-TSP2-8 antibodies in PEX from two 

out of seven TTP patients tested. However, immunoprecipitation did not 

allow me to detect any anti-CUB antibodies in the seven samples tested. 

This may be because these patients lacked antibodies directed against the 

CUB domains but, given the frequency of C-terminal antibodies in the 

literature (widely varying but around 30% in several studies (50, 196)), may 

represent a sensitivity issue when detecting these antibodies using 

immunoprecipitation. The washing conditions for the assay are fairly 

stringent and might be causing dissociation of the antigen from the antibody, 

if antibodies against CUB domains are of lower affinity.  

 

Initial attempts at developing an ELISA to assess domain specificity 

demonstrated that direct coating of the fragment on the plate represents the 

best strategy, as opposed to antibody-mediated capture. Full-length 

ADAMTS13 appears to be relatively more easily recognised by 

autoantibodies in this ELISA than in immunoprecipitation, likely reflecting a 

conformational change induced by direct coating on the plate, thus ‘opening’ 

up ADAMTS13 and unmasking important antibody recognition sites that are 

hidden in solution phase. However, direct coating did not work for some of 

the ADAMTS13 fragments e.g. MDTCS and CUB1/2, presumably because 

the proteins bound to the plate through their antigenic surfaces. 

 

I went on to develop a combination of direct ELISAs and competition assays 

(chapter 4), which allow analysis of the domain specificity of anti-ADAMTS13 

antibodies. These have been used to determine the domain specificity of 

anti-ADAMTS13 antibodies, both at presentation of acquired TTP (chapter 

4), and longitudinally through therapy, remission and relapse (chapter 6). 

The inhibitory potential of the anti-ADAMTS13 antibodies directed against 

different domains is discussed in chapter 5.   
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4 Domain specificity of TTP patient autoantibodies at 
presentation 

 

Autoantibodies against ADAMTS13, predominantly IgG, are present in the 

majority of acquired TTP patients and cause profound loss of VWF-cleaving 

function (83-85, 138). Antibodies that bind the N-terminal domains of 

ADAMTS13 (MDTCS) are detected in most patients, although antibodies 

recognising the C-terminal domains of ADAMTS13 have also been reported 

(50, 192-196). Little work has been done on the clinical significance of these 

antibody patterns. 

 

The aim of the work presented in this chapter was to determine the domain 

specificity of anti-ADAMTS13 antibodies at presentation of acquired TTP 

using novel ELISAs and competition assays, and also to study the clinical 

correlates of the patterns of domain specificity. We currently have only 

limited ability to identify those individuals with a more severe disease 

phenotype who are most at risk of death, or to determine which patients are 

more likely to relapse. Thorough investigation of the antibody repertoire in 

TTP patients may improve our ability to prognosticate in acquired TTP. 

4.1 Methods 

4.1.1 Development of domain specificity assays 
 

To examine the domain specificity of anti-ADAMTS13 autoantibodies in TTP 

patients at presentation, combinations of ELISA-based and competition 

assays were developed using the full-length ADAMTS13 and ADAMTS13 

fragments that I had expressed in mammalian cells and purified by Ni2+ 

chelating chromatography (section 2.2.4).  

 

In the direct ELISA to detect all antibodies recognising full-length 

ADAMTS13, recombinant ADAMTS13 was coated on Maxisorb plates. Once 

blocked, diluted TTP plasma or PNP was added. After washing, bound anti-

ADAMTS13 antibodies were detected using an HRP-conjugated secondary 

anti-human IgG (Dako). 
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All TTP patient plasmas exhibited robust immunoaffinity for full-length 

ADAMTS13 immobilised on a 96-well plate (Figure 4.4) and I proceeded to 

optimise certain variables in this assay. The amount of ADAMTS13 coated 

on Maxisorb plates was titrated (1, 2.5 and 5μg/ml), with 2.5μg/ml providing 

maximum signal and being chosen for coating as being most sensitive to 

detect anti-ADAMTS13 IgG (5μg/ml did not give a further increase in signal). 

 

Plasma dilution was also titrated with 1 in 100, 1 in 50 and 1 in 20 dilutions 

being assayed. A 1 in 50 dilution of plasma was used routinely as it was 

sufficiently sensitive, but a  1 in 20 dilution of plasma was used to detect 

lower titre antibodies (anti-ADAMTS13 IgG<35%). 

 

I then tried to develop direct ELISAs for the other ADAMTS13 fragments I 

had expressed in mammalian cells and purified. Interestingly, when MDTCS 

was immobilised directly to a 96-well plate, this material was comparatively 

poorly recognised by patient antibodies even when 1 in 20 plasma dilutions 

were used (data not shown), suggesting that direct coupling of MDTCS to the 

plate appreciably compromises its immunoreactivity (or that antibodies do 

not recognise these domains. However, given previous data on antibody 

specificity, this latter contention was unlikely). 

 

To circumvent the apparent loss of immunoreactivity of MDTCS when 

directly immobilised on the plate, I developed a competition assay in which 

the TTP plasma dilutions were preincubated both with and without an excess 

of MDTCS in solution prior to incubation with wells coated with full length 

ADAMTS13. The concentration of MDTCS spiked was determined by 

titration using a patient sample with one of the highest total anti-ADAMTS13 

titres (Figure 4.1). 
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Figure 4.1  Titration of MDTCS concentration required for competition assay 

5nM of MTCS was able to compete for 100% of ADAMTS13 binding in patient sample #16 
(anti-ADAMTS13 IgG titre=105%). The IC50 was approximately 1.5nM. Based on these 
results, 10nM MDTCS was chosen for the competition assay. 

 

 

When the assays were performed in parallel (i.e. ±MDTCS preincubation), 

this approach enabled estimation of the proportion of total anti-ADAMTS13 

antibodies that recognised MDTCS. The residual binding detected (i.e. % 

non-MDTCS autoantibodies) was likely, therefore, to represent 

autoantibodies that recognised the C-terminal TSP2-8 and/or CUB1/2 

domains (Figure 4.3).  

 

I attempted to develop a direct ELISA for the two C-terminal domain 

fragments TSP2-8 and CUB1/2. When the fragment CUB1/2 was 

immobilised directly on the plate, it was not recognised by anti-ADAMTS13 

antibodies in TTP patient plasma, despite coating up 20nM and using plasma 

at up to 1 in 10 dilution. Higher concentrations of CUB1/2 could not be used 

because of the limited amount of recombinant protein available. 

 

However, the fragment TSP2-8 was recognised by anti-ADAMTS13 

antibodies in patient plasma in a direct ELISA and I went on to optimise this 

assay further by determining the coating concentration required to give the 

most robust/sensitive detection (100nM) and the optimal plasma dilution (1 in 

50 for higher titre anti-ADAMTS13 IgG, 1 in 20 for samples with anti-
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ADAMTS13 IgG<35%). A cut-off of 2x the mean signal for pooled normal 

plasma was used to assign positivity in the direct TSP2-8 ELISA. Seven 

samples had previously been tested for the presence or absence of anti-

TSP2-8 antibodies by immunoprecipitation (Figure 3.16), and the results of 

the IP were in agreement with those from the TSP2-8 ELISA. 

 

In the final optimised assays, the direct anti-ADAMTS13 ELISA was 

performed in parallel with the competition assay and samples tested for the 

same time for their reactivity against TSP2-8 (Figure 4.2).  

 

 

 Figure 4.2  Novel assays for analysis of domain specificity of anti-ADAMTS13 IgG 

Diluted TTP patient plasmas were analysed in parallel for IgG that recognised immobilised 
full length ADAMTS13 both without (A) and with (B) preincubation of plasmas with 10nM 
MDTCS. Plasma samples were also analysed for the presence of anti-TSP2-8 IgG in a 
separate ELISA (C). 

 

 

Each assay (direct ADAMTS13 ELISA, MDTCS competition assay and 

TSP2-8 ELISA) was performed in duplicate at the same time. Pooled normal 

plasma was used on each plate and acted as an internal control. The intra-

assay coefficients of variation (CV - average value calculated from the 

individual CVs for all of the duplicates) for each assay were 6.7% for the 

direct ADAMTS13 ELISA, 7.3% for the MDTCS competition assay and 8.1% 

for the TSP2-8 direct ELISA. 
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The results of the assay were left as mean absorbance, as the assay was 

not quantitative in absolute terms, but rather provided a description of the 

pattern of the antibody repertoire in a given patient. For the ADAMTS13 

ELISA ±MDTCS preincubation, the mean absorbance at 492nm (optical 

density, OD) for the PNP on the plate was subtracted from the mean OD of 

each sample, before converting the result into a proportion of non-MDTCS 

antibodies (C-terminal antibodies) using the formula: 

 

 (Mean sample OD– mean PNP OD)  with MDTCS precincubation         x100      

(Mean sample OD - mean PNP OD) without MDTCS preincubation 

 

Ten samples were run on three separate dates for the MDTCS competition 

assay (once as part of the main assay to determine domain specificity, once 

for MDTC competition and once for MD + MDTC competition). The average 

difference in % C-terminal reactivity on different runs was 4.2% (mean 

difference 4.2%; range 0-8%), and no sample changed category (i.e. N-

terminal only vs. N+C antibodies). 

 

4.1.2 Methodology for domain specificity assays 

4.1.2.1 Competition ELISA to detect antibodies against the N-terminal 
fragments MDTCS, MDTC and MD 

 

Maxisorb 96-well plates (Nunc) were coated with 2.5μg/ml His tag purified 

ADAMTS13 in 50mM sodium carbonate buffer pH 9.6. Wells were washed 

with phosphate buffered saline/0.1% Tween-20 (PBST) and blocked with 

PBS/2.5% BSA/1% fetal calf serum (FCS) and incubated for 2 hour with 

shaking. TTP patient, or pooled healthy control plasmas were diluted 1 in 50 

(or 1 in 20 if patient anti-ADAMTS13 IgG titre was <35%) in PBS/1% 

BSA/1% FCS and incubated with wells (100µl/well in duplicate) for 1 hour 

(Figure 4.2A). Wells were washed and bound anti-ADAMTS13 antibodies 

were detected with anti-human IgG-HRP (Dako). Wells were washed, and 

OPD (Sigma) was used for colour development, which was stopped with 

2.5M H2SO4, and absorption at 492nm measured.  
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In parallel, identical experiments were set up except that diluted plasma 

samples were incubated at 37°c for two hours in duplicate with and without 

either 20nM MD, 20nM MDTC or 10nM MDTCS (Figure 4.2B), before 

applying to the plate.  

 

The ability of each of these fragments to compete for the binding of the 

autoantibodies to immobilised full length ADAMTS13 was used to assess the 

proportion of total anti-ADAMTS13 antibodies that recognised these domain 

fragments.  

4.1.2.2 TSP2-8 ELISA 
 

A second direct ELISA to detect antibodies directed against the TSP2-8 

domains was performed as above for full-length ADAMTS13, except TSP2-8 

was immobilised on the plate (Figure 4.2C). Maxisorb plates were coated 

with 100nM His-tag purified TSP2-8 in 50mM sodium carbonate pH 9.6 and 

incubated overnight at 4C. Wells were washed 4 times between each step 

with PBST. The plate was blocked with PBS/2.5%BSA/10%CM and 

incubated for at least 2 hour at RT with shaking. Plasma was diluted 1 in 50 

(or 1 in 20 if anti-ADAMTS13 IgG titre<35%) in PBS/1%BSA/10%CM before 

applying to the plate and incubating for 1 hour. Pooled normal plasma was 

used as a control. Bound anti-ADAMTS13 antibodies were detected with 

anti-human IgG-HRP (Dako) at a dilution of 1 in 1000 in PBS/ 1% 

BSA/10%CM for 1 hour at RT.  Finally, plates were washed and incubated 

with 100μl OPD for colour development, which was stopped with 50μl 2.5M 

H2SO4. Absorption at 492nm was read using a spectrophotometer. In this 

assay, the OD is proportional to the titre of anti-TSP2-8 antibodies 
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4.1.2.3 Classification of domain specificity of anti-ADAMTS13 antibodies 
 

Based on the results of these assays, patients were divided into categories:  

 

Anti-N-terminal autoantibodies alone: MDTCS competed for >85% of full-

length ADAMTS13 binding, and patients exhibited no specific 

immunoreactivity with TSP2-8 domains in a separate ELISA 

Anti-TSP2-8 autoAb: immunoreactivity with TSP2-8 domains. 

Anti-CUB1/2 autoAb: MDTCS competed for <85% of full-length ADAMTS13 

binding and patient plasma exhibited no specific immunoreactivity with 

TSP2-8 domains by ELISA. 

 

Further spiking experiments to confirm the presence of anti-CUB antibodies 

were performed where diluted plasma samples were incubated in duplicate 

with and without 10nM MDTCS, or 10nM MDTCS plus 20nM CUB, before 

applying to the plate. 

 

4.2 Results 

4.2.1 Patient characteristics 
 

Presenting samples from 92 acute episodes of TTP were included in the 

domain-specificity study. A flowchart of sample distribution of the 92 acute 

episodes is shown in Figure 4.3.  
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Figure 4.3  Flowchart of the 92 acute TTP episodes  

 

The clinical and laboratory characteristics of the 92 TTP episodes in 78 

patients are summarised in Table 4.1. All presentation samples were taken 

before plasma exchange or rituximab were commenced. All patients had 

severe deficiency in plasma ADAMTS13 activity (<10%), with the exception 

of one patient with 12% activity, and one with 27% activity, (although this 

sample was taken after plasma infusion had been given), and were positive 

for anti-ADAMTS13 IgG . 

 

Patients were selected based on their medium/high anti-ADAMTS13 titre (i.e. 

>15%). Through exclusion of patients with low-titre anti-ADAMTS13 

antibodies, this cohort of patients was consequently enriched for those 

patients that relapsed and/or died during a TTP episode, facilitating analysis 

of the longitudinal humoral response and disease severity. For the purpose 

of the study, relapse was defined as either clinical relapse, or acute drop in 

plasma ADAMTS13 activity (to <10%) during follow-up, despite normal 
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routine laboratory parameters, necessitating treatment with elective 

rituximab. Follow-up ended on May 14th 2014.  

 

There were 62 de novo, and 25 relapse presentations. Data on whether 

samples were first or subsequent presentations were not available on the 

remaining five presentations. Initial presentations were more severe than 

relapses, as reflected by the increased frequency of neurological symptoms 

(median 81% vs. 60%, p<0.05); lower haemoglobin (Hb) [median 8.0 g/dl 

(range 3.6-11.8 g/dl) vs. 10.8 g/dl (4.8-13.8 g/dl), p<0.0005]; higher lactate 

dehydrogenase (LDH) [2046 IU/l (165-5000 IU/l) vs. 921 IU/l (276-3174 IU/l), 

p<0.005]; higher anti-ADAMTS13 IgG titre [65% (18-164%) vs. 34% (9-

101%), p<0.0001] and the increased plasma volumes (pv) of PEX required to 

achieve remission (21.5 pv (4-92) vs. 12.25 pv (4-32.5), p<0.005).  

 

Patients presenting with relapsed episodes were more likely to experience 

further relapse than those at first presentation [15/25 (60%) vs. 12/62 (19%), 

p<0.005]. Of the 21 deaths amongst the patients in this cohort, 16 were 

during first presentation and three during a relapse episode (it was not 

known if the remaining two deaths occurred during first presentation or a 

relapse). The high mortality rate amongst this cohort of patients reflects the 

selection of patients with higher anti-ADAMTS13 IgG titre, and hence more 

severe disease (139). 
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 TTP Episodes  

 All (n=92) First  
(n=62) 

Relapse 
(n=25) 

p  

Age, years (range) 43 (13-78) 44 (13-78) 40 (14-75) 0.38
§
 

Sex, n (%)  
    Female 

 
64 (70%) 

 
43 (69%) 

 
18 (72%) 

 
1.0*

 

Ethnicity, n (%) 
    Caucasian 
    Afro-Caribbean 
    Asian 
    SE Asian 
    Mixed race 
    Unknown 

 
49 (53%) 
23 (25%) 
9 (10%) 
2 (2%) 
3 (3%) 
6 (7%) 

 
37 (60%) 
14 (23%) 

5 (8%) 
2 (3%) 
2 (3%) 
2 (3%) 

 
11 (44%) 
9 (36%) 
4 (16%) 
0 (0%) 
1 (4%) 
0 (0%) 

 
- 
- 
- 
- 
- 
- 

Clinical features, n (%) 
    Neurology 
    Cardiac  
    Renal  
    GI  
    Fever  

 
65 (71%) 
38 (41%) 
34 (37%) 
29 (32%) 
30 (33%) 

 
50 (81%) 
28 (45%) 
25 (40%) 
22 (35%) 
25 (40%) 

 
15 (60%) 
10 (40%) 
9 (36%) 
7 (28%) 
5 (20%) 

 
<0.05* 
0.63* 
0.81* 
0.61* 
0.08* 

Blood results (range) 
    Hb, g/dl 
    Platelets, x10

9
/l  

    LDH, IU/l (NR 470-900 IU/l) 

 
8.4 (3.6-13.8) 

13 (3-89) 
1569 (165-

5000) 

 
8.0 (3.6-11.8) 

13 (3-60) 
2046 (165-

5000) 

 
10.8(4.8-13.8) 

18 (3-89) 
921 (276-

3174) 

 
<0.0005

§
 

0.17
§
 

<0.005
§
 

ADAMTS13 assays (range) 
  ADAMTS13, % activity 
 (NR 55-126%) 
 Anti-ADAMTS13, % titre  
(NR<6.1%) 

 
<5 (<5-27) 

 
58 (9-164) 

 
<5 (<5-12) 

 
65 (18-164) 

 
<5 (<5-27) 

 
34 (9-101) 

 
- 
 

<0.0001
§
 

PEX to remission, pv (range) 
 

16 (4-92) 21.5 (4-92) 12.25 (4-33) <0.005
§
 

Subsequent relapses  
    Number (%) 
    Time to relapse, months 
(range) 

 
27 (29%) 
19 (2-52) 

 
12 (19%) 

28.5 (4-50) 

 
15 (60%) 
16 (2-52) 

 
<0.005* 

0.24
§
 

Deaths (%) 
 

21 (23%) 16 (26%) 3 (12%) 0.25* 

Follow up, years (range) 
 

5.6 (1.7-13.6)    

 
 

Table 4.1.  Demographic and clinical features at presentation 

Tabulation of the parameters for all cases, subsequently divided into first episode and 
relapses, in a selected cohort based on high anti-ADAMTS13 IgG antibody levels. Hb = 
haemoglobin, LDH = lactate dehydrogenase, NR = normal range, pv = plasma volumes. 
Data is presented as medians (range). Differences in clinical and laboratory parameters are 
statistically presented.

 
Comparison of first presentation and relapses by 

§ 
Mann-Whitney test 

for non-normally distributed continuous variables or * Fisher’s exact test (two tailed) for 
categorical variables.  
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4.2.2 Domain specificity of  TTP autoantibodies at presentation 
 

 

In 89/92 (97%) of presentation samples, MDTCS competed for >5% of 

binding to full length ADAMTS13, suggesting that most acquired TTP 

patients have detectable autoantibodies against the N-terminal domains of 

ADAMTS13. Only in 3/92 patient samples (patients #64, #91 and #92) did 

MDTCS fail to detectably compete for full length ADAMTS13 binding, 

suggesting that the autoantibodies present in these three patients primarily 

recognise epitopes located in the C-terminal domains alone. Of note, these 

patients had lower titre antibodies. 

 

38/92 (41%) patients (patients #1 to #38) were designated to have 

autoantibodies that predominantly recognised epitopes within the N-terminal 

domains, as MDTCS competed for >85% of full-length ADAMTS13 binding 

(Figure 4.4) and these patient samples exhibited no, or very low 

immunoreactivity for the immobilised TSP2-8 domains in a separate ELISA.  

 

Using a cut-off of 2x the signal for pooled normal plasma in a direct TSP2-8 

ELISA to assign positivity, 26/92 (28%) patients had autoantibodies that 

recognised the TSR2-8 domains. 25 of these 26 patients also had antibodies 

that recognised MDTCS. 

 

The remaining 28/92 (31%) patients for whom MDTCS only partially 

competed for binding to full length ADAMTS13, but that exhibited no or little 

immunoreactivity against the TSP2-8 domains, were, by elimination, 

determined to have antibodies that recognised the CUB1/2 domains. 26 of 

these 28 patients also had antibodies that recognised MDTCS.  

 

This enabled me to assign patients to different groups based on the domain 

specificity (i.e. 38/92 “anti-N-terminal alone”, 51/92 “anti-N- & C-terminal” and 

3/92 “anti-C-terminal alone” - Figure 4.5).          
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Figure 4.4  Graphs depicting anti-ADAMTS13 domain specificity ELISAs for 92 TTP 
patient episodes 

Left graph; TTP patient plasmas (diluted 1/50) were analysed for IgG that recognised 
immobilised full length ADAMTS13 (grey bars) and also when preincubated with 10nM 
MDTCS at 37°c for two hours (dark grey bars). Mean absorbance for every sample is 
shown. All samples (±MDTCS) were performed in parallel on the same plate. The 
background associated with pooled normal plasma (PNP) is shown and marked by the 
dotted line. Right graph; TTP patient plasmas (diluted 1/50) were analysed for IgG that 
recognised immobilised TSP2-8 (black bars). Mean absorbance for every sample is shown. 
The background associated with pooled normal plasma (PNP) is shown and marked by the 
dotted line. 



  

 

 

 

 
 
Figure 4.5  Summary of domain specificity ELISA results for 92 TTP patient episodes 

For each patient, the proportion of full length ADAMTS13 binding that MDTCS could not compete for is plotted in grey (left axis; proportion non-MDTCS Abs, 
%). Plasma samples were also analysed for the presence of anti-TSP2-8 IgG in a separate ELISA plotted in black (right axis: TSP2-8, mAU). All patients were 
positive for anti-N-terminal antibodies, except samples labelled with *, denoting the three patients in which MDTCS could not compete at all for full-length 
ADAMTS13 binding. Patients 1-38 are termed anti-N-terminal alone, as MDTCS competed for >85% (dotted line) full length ADAMTS13 binding and these 
samples exhibited no/very low recognition of TSP2-8. Patients 39-64 are positive for anti-TSP2-8 antibodies. Patients 65-92 are termed anti-CUB, as MDTCS 
competed for <85% (dotted line) of full length ADAMTS13 binding, consistent with the presence of anti-C-terminal antibodies, but these samples exhibited 
no/very low recognition of TSP2-8. 
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I further analysed a subgroup of 25 patients that had a high proportion of 

antibodies recognising MDTCS (total anti-ADAMTS13 IgG >40%, >80% anti-

MDTCS), using a competition ELISA specifically to detect antibodies against 

either MD or MDTC domain fragments. Interestingly, none of the patients 

tested exhibited any evidence of immunoreactivity against either MD or 

MDTC (Figure 4.6). There was no effect on the signal when TTP plasmas 

were pre-incubated with these fragments before applying to the plate, in 

contrast to the profound drop in absorbance seen with MDTCS incubation. 

This strongly suggests that autoantibodies recognising the N-terminal 

domains MDTCS primarily bind epitopes located within the ADAMTS13 

spacer domain.   

 

 

 

 

Figure 4.6  Competition ELISAs with MD, MDTC and MDTCS. 

TTP patient plasmas (diluted 1/50) were analysed for IgG that recognised immobilised full 
length ADAMTS13 (black bars) and also after preincubation with 10nM MDTCS (red), 20nM 
MDTC (grey) or 20nM MD (purple). Mean absorbance for each sample is shown. All 
samples (±MDTCS/MDTC/MD) were performed in parallel on the same plate. The 
background associated with pooled normal plasma (PNP) is shown. There was no evidence 
of immunoreactivity against MD or MDTC.   
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The presence of anti-CUB antibodies was confirmed in a small number of 

patients by another competition ELISA (Figure 4.7), using the fragments 

MDTCS and CUB. Patient episodes #55 and 56, with a high proportion of 

anti-C terminal antibodies but known anti-TSP2-8 antibodies, show no 

significant reduction in absorbance after preincubation with CUB in addition 

to MDTCS. In contrast, episodes #77 and 90, with a high proportion of anti-

C-terminal antibodies but no detectable anti-TSP2-8 antibodies, demonstrate 

a reduction in ADAMTS13 binding after CUB spiking, consistent with the 

presence of anti-CUB antibodies. However, this assay could not be used 

more widely as it required patients to have a high proportion of anti-C 

terminal antibodies in order to be sensitive to a drop in OD after CUB spiking, 

and utilised a large amount of recombinant CUB antigen. 

 

 

Figure 4.7  Detecting anti-CUB antibodies by competition ELISA 

TTP patient plasmas (diluted 1/100) were analysed for IgG that recognised immobilised full 
length ADAMTS13 (black) and also when preincubated with 10nM MDTCS (red) or 10nM 
MDTCS plus 20nM CUB (green).  
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A summary of the autoantibody domain specificity results at TTP 

presentation is shown in Figure 4.8. 

 

 

 
 
Figure 4.8  Summary of domain specificity of anti-ADAMTS13 antibodies at 
presentation of acquired TTP in the 92 patient episodes studied 
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4.2.3 Domain specificity and total anti-ADAMTS13 IgG titre 
 

There was no difference in median total anti-ADAMTS13 IgG titre between 

the 38 patients assigned to the “anti-N-terminal alone” group, and the 54 

patients with anti-C-terminal antibodies – i.e “anti-N- & C-terminal” + “anti-C-

terminal alone” – Figure 4.9. Thus, antibodies directed against the C-terminal 

domains could be detected even in patients with lower titres of anti-

ADAMTS13 antibodies indicating that it is not a question of assay sensitivity. 

Conversely, domain specificity does not appear to influence titre. 

 

 

 

Figure 4.9  Total anti-ADAMTS13 IgG titre at presentation by domain specificity of 
anti-ADAMTS13 IgG  

There was no difference in median total anti-ADAMTS13 IgG titre (horizontal line) between 
patients with anti-N-terminal antibodies alone and patients with anti-C-terminal antibodies 
[median 58% anti-N-terminal alone (range 12-150) vs. 52% (9-164), p=1.0, Mann-Whitney U 
test for non-normally distributed continuous variable].  
 

  



  

150 

 

I then went on to study whether there is a difference in how antibodies 

against different domains might influence the disease. Patients with anti-C-

terminal antibodies at first presentation were older than those in the anti-N-

terminal alone group (Figure 4.10), although there were very similar age 

ranges. Neither sex nor ethnicity differed between domain specificity groups. 

 

 

Figure 4.10  Age of patients at first presentation in patients by domain specificity of 
anti-ADAMTS13 IgG 

Patients with anti-C-terminal antibodies at first presentation were older than those in the anti-
N-terminal alone group [median 48 years (13-76) vs. 35 years (13-78), p<0.05, Mann-
Whitney U test]. Median age is shown by horizontal line.  
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4.2.4 Domain specificity and disease severity 
 

Analysis of the prognostic implications of domain specificity of anti-

ADAMTS13 antibodies was performed only on the 62 first presentation 

samples to avoid intra-patient confounding. 

4.2.4.1 Domain specificity and mortality 
 

Sixteen patients died during their first presentation. The median Hb and LDH 

at presentation were not different in patients who died. The platelet count at 

presentation was slightly lower in patients who died [median 10x109/l in 

deaths (range 5-19 x109/l) vs. 14x109/l in survivors (range 3-60 x109/l), 

p<0.05, Figure 4.11A]. However, this was skewed by a handful of survivors 

who had much higher presenting platelet counts, suggesting that platelet 

count at presentation is not a robust prognostic indicator. Although anti-

ADAMTS13 IgG titre did not correlate with disease severity as previously 

reported (139), this was likely due to those patients with lower titre antibodies 

being excluded from this study during patient selection. Domain specificity 

was examined in patients who died and those who survived (Figure 4.11B). 

There was no difference in domain specificity between those who died and 

survivors. 

 

 

Figure 4.11 (A) Platelet count and (B) Domain specificity of anti-ADAMTS13 antibodies 
at presentation in patients who died or survived their first TTP episode 

(A) Median platelet count (horizontal line) was slightly lower in patients who died [median 
10x10

9
/l in deaths (range 5-19 x10

9
/l) vs. 14x10

9
/l in survivors (range 3-60 x10

9
/l), p<0.05, 

Mann-Whitney U test]. 
(B) There was no difference in outcome (deaths or survivorship) for patients with N terminal 
antibodies only, anti TSP2-8 antibodies or anti-CUB antibodies by Chi-square tests. 
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4.2.4.2 Domain specificity and clinical presentation 
 

Severe neurological or cardiac involvement at presentation is associated with 

a worse patient outcome (57). Domain specificity was not different in patients 

with or without cardiac features at presentation (Figure 4.12A), suggesting 

that the domains recognised by the autoantibodies do not alter the clinical 

presentation. Neurological presentation was less common in patients with 

anti-TSR2-8 antibodies at presentation (14/20 patients with anti-TSR2-8 

antibodies (70%) vs. 36/38 patients without anti-TSR2-8 (95%), p<0.05; 

Figure 4.12B), although the numbers here are small, which warrants caution 

in extrapolating these data. 

 

 

 

Figure 4.12  Domain specificity and clinical presentation  

(A) Domain specificity at presentation in patients with and without cardiac involvement 
(B) Domain specificity at presentation in patients with and without neurological involvement 
 
There was no difference in likelihood of cardiac or neurological presentations for patients 
with N-terminal antibodies only or anti-CUB antibodies, by Chi-square tests. Neurological 
presentation was less common in patients with anti-TSR2-8 antibodies at presentation 
(14/20 patients with anti-TSR2-8 antibodies (70%) vs. 36/38 patients without anti-TSR2-8 
(95%), p<0.05; Chi square test) 
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4.2.4.3 Domain specificity and Hb, platelets and LDH at presentation 
 

In this cohort, there was no difference in median platelet count between 

patients with antibodies directed against the C-terminal domains and those 

with solely N-terminal antibodies (Figure 4.13), once the potential 

confounding factor of first vs. relapsed presentation was removed - as 

relapse is often caught earlier and thus platelet counts tend to be higher. 

 

Haemoglobin levels at first presentation did not differ between patients with 

antibodies directed against the C-terminal domains (8.0g/dl (3.6-11.8g/dl) 

and those with N-terminal antibodies alone (7.5g/dl (5.2-11.3g/dl); p=0.54) 

Similarly, LDH levels did not differ with domain specificity of the 

autoantibodies (median 1190iu/dl N-terminal antibodies alone (165-

5000iu/dl) vs. 1870iu/dl N+C terminal antibodies (498-4177iu/dl; p=0.42)). 

 

 

Figure 4.13  Domain specificity of anti-ADAMTS13 antibodies and platelet count at 
first presentation 

There was no difference in median platelet count at first presentation (horizontal line) 
between patients with antibodies directed against the C-terminal domains (14 x10

9
/l (range 

3-60x10
9
/l) and those with solely N-terminal antibodies (median 12 x10

9
/l, (4-52 x10

9
/l); 

p=0.76, Mann-Whitney U test). 
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4.2.4.4 Domain specificity and plasma exchanges to remission 
 

The median number of plasma exchanges to remission, another marker of 

disease severity, did not differ with the domain specificity of the anti-

ADAMTS13 autoantibodies at first presentation (Figure 4.14). 

 

 
Figure 4.14 Domain specificity and number of plasma exchanges to complete 
remission 

Median plasma volumes of PEX to remission (horizontal line) did not differ with the domain 
specificity of the anti-ADAMTS13 autoantibodies at first presentation (median PEX to CR N 
terminal antibodies alone 22pv (6-92) vs. 18pv (4-34) for N+C terminal antibodies; p=0.41, 
Mann-Whitney U test). pv=plasma volumes. 
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4.2.5 Domain specificity and relapse 

4.2.5.1 Domain specificity at first presentation vs. relapse 
 

The domain specificity of the 62 first presentations was compared to the 25 

relapse episodes. There was no difference in the proportion of patients with 

anti-N-terminal alone, and those with anti-C-terminal antibodies at first 

presentation and at relapse (Figure 4.15). There was a trend to fewer anti-

TSR2-8 antibodies in relapsed presentations, but this did not reach statistical 

significance [4/25 (16%) in relapses vs. 21/62 (34%) first presentations, p= 

0.25]. 

 

 

Figure 4.15  Domain specificity of anti-ADAMTS13 antibodies at first presentation and 
in relapsed episodes 

There was no difference in the proportion of patients with anti-N-terminal alone, and those 
with anti-C-terminal antibodies (TSR2-8 plus CUB) at first presentation and at relapse [C 
terminal antibodies in 39/62 patients (63%) first presentation vs. 13/25 (52%) relapses, 
p=0.47, Fisher’s exact test]. There was a trend to fewer anti-TSR2-8 antibodies in relapsed 
presentations, but this did not reach statistical significance [4/25 (16%) in relapses vs. 21/62 
(34%) first presentations, p=0.25, Fisher’s exact test]. 
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4.2.5.2 Domain specificity as a predictor of relapse 
 

Relapse rate was examined in those patients who had received rituximab 

during the acute episode of TTP. Rituximab is known to alter the biology of 

the disease and there is increasing evidence that it may reduce relapse risk 

(61), therefore only patients receiving anti-CD20 therapy were studied to 

avoid confounding. Only first presentations were analysed to prevent intra-

patient confounding.  

 

There were 44 first episodes where patients received rituximab. Three 

patients died leaving 41 analysable episodes. Nine patients relapsed after a 

median of 27 months (4-50 months). Patients were followed up for a median 

of 5.7 years (2.1- 7.9 years). Cumulative incidence and Gray’s test were 

used to compare the incidence of relapse between groups.  There was no 

association of domain specificity of ADAMTS13 autoantibodies at first 

presentation and subsequent relapse rate (Figure 4.16). 

 

 

 

Figure 4.16  Kaplan Meier plots of relapse by domain specificity of anti-ADAMTS13 
antibodies at first presentation 

A) Anti-CUB antibodies and relapse. Cumulative incidence and Gray’s test were used to 
compare the incidence of relapse between groups. Time to relapse in patients with (blue 
line) and without anti-CUB antibodies (green line) at first presentation of acquired TTP. 
There was no difference in relapse rate (p=0.84).  
B) Anti TSP2-8 antibodies and relapse. Time to relapse in patients with (blue line) and 
without anti-TSP2-8 antibodies (green line) at first presentation of acquired TTP. There was 
no difference in relapse rate (p=0.22). 
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4.3  Discussion 
 

I developed novel assays to determine the domain specificity of anti-

ADAMTS13 antibodies using the mammalian full-length ADAMTS13 and 

ADAMTS13 fragments I had expressed and purified. All TTP patient plasmas 

exhibited robust recognition of full-length ADAMTS13 immobilised on a 96-

well plate, however, direct coupling of MDTCS to the plate appreciably 

compromised its immunoreactivity. This was circumvented by devising the 

competition assay in which dilutions of plasma from acquired TTP patients 

were pre-incubated both with and without an excess of the N-terminal 

fragment of ADAMTS13 (MDTCS) in solution, prior to incubation with wells 

coated with full-length ADAMTS13. When the assays were performed in 

parallel (i.e. ±MDTCS pre-incubation), this approach enabled estimation of 

the proportion of total anti-ADAMTS13 antibodies that recognised MDTCS, 

with the residual binding representing autoantibodies recognising the C-

terminal TSP2-8 and/or CUB1/2 domains. Samples were tested for the same 

time for their reactivity against TSP2-8 in a direct ELISA, giving an indication 

of the autoantibody repertoire in each patient. 

 

I then used these domain-specificity assays to investigate a large well-

characterised cohort of acquired TTP patients (92 acute episodes in 78 

patients). 

 

This patient group represents a typical TTP cohort in terms of age, sex and 

clinical features (neurological 71% patients, cardiac 41%), when compared to 

other registries (79, 85). It is the largest cohort of TTP patients studied to 

date in which domain specificity of anti-ADAMTS13 antibodies have been 

analysed (50, 196), and has the unique benefit of detailed accompanying 

clinical and outcome data, allowing the clinical significance of the different 

antibody patterns to be studied both in terms of disease severity and relapse. 

 

Similar to a previous report, initial TTP presentations were more severe than 

relapses (64), with increased frequency of neurological symptoms; lower Hb; 
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higher LDH; higher anti-ADAMTS13 IgG titre and increased plasma volumes 

of PEX required to achieve remission. 

 

At presentation of an acquired TTP episode, 89/92 (97%) patients had 

detectable antibodies against the N-terminal domains MDTCS. Of these, 38 

patient samples had antibodies only against these N-terminal domains. 54/92 

(59%) patient samples had antibodies against the C-terminal domains, with 

28% having immunoreactivity against TSR2-8. There was no difference in 

total anti-ADAMTS13 IgG titre between patients with anti-C-terminal 

antibodies and those with only anti-N-terminal antibodies, meaning it was not 

just an issue of assay sensitivity.  

 

In contrast to Klaus et al. and Zheng et al. who, respectively, found 

antibodies against MDT in 56% and 12% of patients (192, 196), I found no 

evidence of antibodies that recognised either MD or MDTC in 25 patients 

tested. The advantages of my novel assays and possible reasons for this 

discrepancy with previously published studies are discussed in the final 

chapter of this thesis. 

 

In this TTP patient cohort, patients with anti-C-terminal antibodies at first 

presentation were older (median 48 years) than those with anti-N-terminal 

antibodies alone (median 35 years). The reason for this remains unclear, but 

this could perhaps be due to an increase in clonality with age. In contrast, 

there was no difference with sex or ethnicity. 

 

Importantly, domain specificity of anti-ADAMTS13 antibodies at presentation 

had no prognostic implication for disease severity in terms of mortality, 

likelihood of a neurological/cardiac presentation, or number of PEX to 

remission. A previous study found the presence of IgG antibodies against 

TSP2-8 and/or CUB was inversely correlated with patient platelet counts on 

admission (196). However in this cohort, there was no difference in median 

platelet count between patients with antibodies directed against the C-

terminal domains and those with solely anti-N-terminal antibodies, once the 

potential confounding factor of first versus relapsed presentation was 
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removed. In keeping with two published studies, I found no association 

between autoantibody / inhibitor titre and domain specificity (192, 196). 

 

There was no difference in the proportion of patients with anti-N-terminal 

alone, and those with anti-C-terminal antibodies at first presentation and at 

relapse. Relapse rate was examined in patients who had received rituximab 

during their first acute episode of TTP and there was no association of 

domain specificity of ADAMTS13 autoantibodies at presentation and relapse 

rate.  

 

Part of my original hypothesis was that the identification and characterisation 

of the antibody repertoire in a number of patients with acute idiopathic TTP 

might provide a means to identify those most likely to achieve remission and 

those at higher risk of relapse. However, it is not possible to risk stratify 

patients, either in terms of disease severity or risk of relapse, based on their 

antibody pattern at presentation using these assays.  
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5 Pathogenic mechanisms of TTP patient autoantibodies 
 

Epitope mapping studies alone do not identify the antibodies that are 

inhibitory and/or pathogenic. For example, non-inhibitory IgG antibodies that 

do not impair ADAMTS13 function in vitro may still be pathogenic and 

compromise VWF processing in vivo (209). Autoantibodies against different 

ADAMTS13 domains likely inhibit enzyme function to different extents, and 

may cause deficiency in vivo via distinct mechanisms. The aim of the work 

presented in this chapter was to determine the inhibitory potential of different 

anti-ADAMTS13 antibodies and investigate the pathogenic mechanisms of 

TTP patient autoantibodies. 

5.1 Methods 

5.1.1 VWF115 and VWF 106 activity assays 
See section 2.5.1.3-4 

5.1.2 FRETS VWF73 activity assay 
See section 2.5.2.  

5.1.3 Measurement of ADAMTS13 antigen levels 
See section 2.2.4.3 

 

5.2 Results  

5.2.1 VWF 115 activity assay 
 

To explore the inhibitory potential of TTP patient autoantibodies, functional 

analyses were performed using total IgG isolated from TTP patient plasmas. 

To assess the ability of purified total IgG from TTP patients to inhibit the 

proteolysis of the short VWF A2 domain substrate VWF115, full-length 

ADAMTS13 was incubated with VWF115 at 37°C in the presence or absence 

of either control or patient IgG. At various time points (0, 30 and 60 minutes) 

reactions were stopped with EDTA and analysed by SDS-PAGE. Proteolysis 

was assessed by the generation of the 10kDa and 6.9kDa cleavage products 

and the disappearance of the uncleaved 16.9kDa VWF115 (Figure 5.1). 
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2nM full-length ADAMTS13 proteolysed the VWF115 (16.9kDa) to 

completion, into 10kDa and 6.9kDa fragments, within 60 minutes (Figure 5.1, 

-IgG). Normal human IgG (17μM, ~1/4 normal plasma concentration, the 

highest concentration that could be achieved with the reaction conditions) did 

not inhibit this reaction, as is seen by the appearance of the 10kDa and 

6.9kD fragments by the 30 minute timepoint. In contrast, addition of  rabbit 

polyclonal anti-ADAMTS13 (7μM) (86) led to complete inhibition with no 

cleavage products being seen even at the 60 minute timepoint. (The vast 

excess of anti-ADAMTS13 antibody was simply used to demonstrate 

antibody-mediated inhibition of the enzyme and provide a positive control). 

 

Purified total IgG (17μM) from a TTP patient at presentation with high titre 

anti-ADAMTS13 IgG (105%, normal range cut-off < 6.1%) directed solely 

against the N-terminal domains (patient episode #16) appreciably inhibited 

VWF115 proteolysis, shown by the persistence of the uncleaved 16.9kDa 

VWF115 at the 30 and 60 minute timepoints. However, trace quantities of 

cleavage products (10kDa and 6.9kDa bands) were detected, suggesting 

that inhibition of ADAMTS13 was not complete under these conditions. A 

contaminating band from IgG extraction is seen at approximately 12kDa. 

 

In contrast, purified total IgG from a patient with a very similar anti-

ADAMTS13 titre that had anti-C-terminal, but undetectable anti-N-terminal, 

antibodies (episode #81, remission sample, anti-ADAMTS13=97%)had no 

inhibitory effect upon VWF115 proteolysis with appearance of the 10kDa and 

6.9kD fragments by the 30 minute timepoint, consistent with the C-terminal 

domains of ADAMTS13 not playing a role in this assay.  

 

Patient #61 at presentation with a similar anti-ADAMTS13 IgG titre (99%) 

and with antibodies directed against both N-terminal (~15% of total anti-

ADAMTS13 IgG) and the C-terminal domains, demonstrated less inhibition of 

VWF115 cleavage at this concentration. This is shown by persistence of the 

uncleaved 16.9kDa band out to the 60 minute timepoint, despite appearance 

of the 10kDa and 6.9kDa cleavage products.  
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Figure 5.1  Inhibition of VWF115 proteolysis by ADAMTS13 

ADAMTS13 activity assays using VWF115 in the presence and absence of isolated IgG 
samples from patients with high titre anti-ADAMTS13 IgG (TTP#16=105%,#81=97%, 
#61=99%). 2nM ADAMTS13 proteolysed VWF115 (boxed in red) into 10kDa and 6.9kDa 
fragments (boxed in blue) (-IgG), within 60 minutes. 17μM normal human IgG (NH IgG) did 
not inhibit this reaction, whereas 7μM rabbit polyclonal anti-ADAMTS13 led to complete 
inhibition. Identical reactions containing isolated total IgG (17μM) from TTP patient samples 
#16, #81 (remission sample) and #61 are shown (* denotes contaminating band from IgG 
extraction seen in #16 and #61). 

 

  



  

163 

 

5.2.2 VWF 106 activity assay 
 

To further examine the domain specificity of inhibitory autoantibodies, I 

examined the proteolysis of VWF106, which is identical to VWF115, but 

lacks 9 residues from its C-terminus that are critical to ADAMTS13 spacer 

domain binding (Figure 2.8). As full-length ADAMTS13 proteolyses VWF106 

more slowly than VWF115, a higher concentration of ADAMTS13 (3.5nM) 

was used over a longer reaction time. Under these conditions, VWF106 was 

partially proteolysed by ADAMTS13 after 120 minutes (Figure 5.2). This is 

shown by persistence of the uncleaved 16kDa band out to the 60 minute 

timepoint, despite appearance of the 10kDa and 6kDa cleavage products. 

 

 

 

 

 
Figure 5.2  Inhibition of VWF106 proteolysis by ADAMTS13 

ADAMTS13 activity assays using VWF106 in the presence and absence of isolated IgG 
samples. The proteolysis of VWF106, which lacks 9 residues that are critical to ADAMTS13 
spacer domain binding, was investigated using 3.5nM ADAMTS13 and 2 hour reaction 
times. VWF106 is boxed in red with cleavage products boxed in blue. Under these 
conditions, VWF106 was only partially proteolysed by ADAMTS13 after 120 minutes (-IgG). 
Cleavage was unaffected by normal IgG (NH IgG), but completely inhibited by rabbit 
polyclonal anti-ADAMTS13. Reactions containing isolated total IgG (29μM) from TTP patient 
samples #16, #81 and #61 are shown. TTP patient IgG does not inhibit proteolysis of 
VWF106. (Note a contaminating band from IgG extraction is seen at approximately 12kDa is 
seen in the reaction with TTP#16 but not with a different preparation of IgG from TTP#61). 
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As before, cleavage was unaffected by normal IgG, but completely inhibited 

by rabbit polyclonal anti-ADAMTS13. Again, purified total IgG from a patient 

anti-C-terminal antibodies alone (episode #81, remission sample) had no 

inhibitory effect upon VWF115 proteolysis with appearance of the 10kDa and 

6kD fragments by the 30 minute timepoint, consistent with the C-terminal 

domains of ADAMTS13 not playing a role in this assay. 

 

When ADAMTS13 was preincubated with isolated IgG from #61 and #16, 

neither exhibited an inhibitory effect upon VWF106 proteolysis with 

appearance of the 10kDa and 6kD fragments by the 30 minute timepoint, 

strongly suggesting that in both cases the inhibition observed in the VWF115 

assay (Figure 5.1) is mediated by antibodies that recognise the spacer 

domain. Moreover, it suggests that any autoantibodies in these samples that 

recognise the MDTC domains either do not impair ADAMTS13 function and / 

or are only present at very low concentrations.   

 

Whilst these assays are not quantitative, they allowed me to generate the 

hypothesis that anti-spacer antibodies are the main inhibitory antibodies in 

acquired TTP and I proceeded to test this hypothesis with another assay.   

 

5.2.3 FRETS VWF73 activity assay 
 

To examine further the inhibitory potential of the autoantibodies in a larger 

number of samples, I assayed the ability of isolated total IgG to inhibit 

proteolysis of FRETS-VWF73 by the ADAMTS13 N-terminal domains, 

MDTCS. Total IgG from 43 patients (29 first presentation and 14 relapse 

samples) was isolated and titrated into FRETS-VWF73 activity assays to 

estimate the IgG concentration at which 50% enzyme inhibition was 

achieved (IC50) (Fig 5.3A-G). 

 

The first group of patients (n=10; TTP episodes #1, 2, 6, 14, 16, 21, 22, 23, 

32, 34) consisted of those assigned to the anti-N-terminal alone group 

(termed here Group I). Total IgG from all of these patients dose-dependently 

inhibited 125pM MDTCS (median IC50 1.0µM; range 0.2-2.8µM) (Figure 5.3A 
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and 5.3D, inhibition at 0.7µM total IgG shown), whereas total IgG from 

normal human plasma had no effect upon ADAMTS13 function.  

 

To determine the contribution of anti-spacer domain antibodies to the 

inhibitory function of these antibodies, reactions were set up in parallel in 

which varying concentrations of total IgG were first preincubated with an 80-

fold excess (10nM) of mammalian expressed purified MDTC (purified MDTC 

exhibited little/no FRETS-VWF73 cleaving activity in the control IgG samples 

– Figure 5.3A). In these experiments, MDTC would compete with MDTCS 

(125pM) for all antibodies that recognise the N-terminal domains except for 

those against the spacer domain. In all 10 patient episodes from this group, 

preincubation with MDTC failed to detectably alter the IC50 (Figure 5.3A). 

These results strongly suggest that anti-spacer domain antibodies are the 

primary inhibitory antibodies, and that any antibodies against the MDTC 

domains are unlikely to contribute appreciably to ADAMTS13 inhibition. 
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Figure 5.3  Analysis of the inhibitory potential of total IgG isolated from acquired TTP 
patients 

A) and B) 125pM MDTCS was incubated with increasing concentrations of IgG isolated from 
either normal or TTP patient plasmas in the absence (solid lines) and presence of 
preincubation with 10nM MDTC (dotted lines). A) Normal IgG had no effect on MDTCS 
activity, and addition of MDTC did not affect the activity detected. Three examples of TTP 
patients with anti-N-terminal alone antibodies are shown ±MDTC. All samples were inhibitory 
and this inhibition was not influenced by MDTC. B) as in A, except examples of IgG isolated 
from patients with both anti-N- and C-terminal antibodies are shown. Note the different x-
axis scale highlighting that these IgG preparation are not as inhibitory. IgG from patients 
#51, #55 and #86 had no inhibitory effect upon MDTCS activity. C) Graph depicting the IgG 
concentration at which 50% enzyme inhibition was achieved (IC50) for each patient tested 
with antibodies with different domain specificities. Patients are separated in five groups 
(Group I-V) based on their domain specificity and the inhibitory potential of their IgG. D) 
Inhibition of 125pM MDTCS by 0.7µM total IgG isolated from Group I samples, all samples 
shown inhibit MDTCS appreciably at this concentration. E) Inhibition of 125pM MDTCS by 
1.4µM total IgG isolated from Group II samples. Samples shown inhibit MDTCS variably at 
this concentration.  F) Inhibition of 125pM MDTCS by 5.6µM total IgG isolated from Group III 
samples. Samples shown inhibit MDTCS by ~50% at 5.6µM total IgG. G) Inhibition of 125pM 
MDTCS by 5.6µM total IgG isolated from Group IV samples. At 5.6µM total IgG little or no 
inhibition of MDTCS was detected for these samples. 
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The inhibitory potential of total IgG isolated from the three patients with only 

anti-C-terminal domain antibodies (termed Group V) was examined (Figure 

5.3C). As expected, these antibodies failed to inhibit the activity of MDTCS 

even at the highest IgG concentration tested (5.6µM). This corroborates the 

earlier findings that these patients have no autoantibodies that recognise 

MDTCS. 

 

Finally, the inhibitory potential of IgG isolated from 30 TTP patient episode 

samples containing varying proportions of anti-N- and anti-C-terminal 

antibodies was examined. Interestingly, in 12/30 (40%) patient samples 

(termed Group IV), either no, or minimal inhibition of MDTCS was detected at 

the highest IgG concentration tested (5.6µM) (Figure 5.3C and 5.3G). These 

patient samples (#51-55, 57, 59, 60, 85, 86, 88, 90) all had comparatively 

low proportions (<33%) of total anti-ADAMTS13 antibodies that recognised 

the N-terminal domains (Figure 4.2). The remaining 18/30 (60%) patient 

samples with both anti-N- and anti-C-terminal antibodies were inhibitory. 

However, the median IC50 (3.3µM; range 0.2-5.6µM) was appreciably higher 

than for the 10 patient samples containing only anti-N-terminal antibodies 

(p<0.05). These patients could be separated into two groups. Those with an 

inhibitory profile similar to Group I (Group II, n=9) (Figure 5.3C and 5.3E, 

inhibition at 1.4µM total IgG shown), and those with modest inhibitory 

potential (Group III, n=9) (Figure 5.3C and 5.3F, inhibition at 5.6µM total IgG 

shown).  

 

The nine Group II patient samples were also investigated using the MDTC 

competition assay to test for the presence of inhibitory antibodies other than 

those that recognise the spacer domain. In all (9/9) samples, MDTC failed to 

influence the estimated IC50, once again strongly suggesting that the 

inhibitory antibodies present in these samples are limited to those that 

recognise the spacer domain. 
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TTP 
episode  

Group Age 
/sex 

Episode 
number 

Domain 
specificity 

Rituximab Outcome 
 

TTR (mo)  
or F/U  

#51 IV 34F 1 N+2-8 Y No 
relapse 

86 

#52 IV 51M 1 N+2-8 Y No 
relapse 

58 

#53 IV 71M 1 N+2-8 Y No 
relapse 

42 

#54 IV 42F 1 N+2-8 Y No 
relapse 

77 

#55 
 

IV 24F* 1 N+2-8 N Relapse 34 

#57 IV 52M 1 N+2-8 Y No 
relapse 

94 

#59 
 

IV 38F 1 N+2-8 N Died - 

#60 
 

IV 73F 1 N+2-8 N Died - 

#64 
 

V 65F 2 2-8 only Y Died - 

#85 
 

IV 61F 1 N+CUB N Died - 

#86 
 

IV 74M** 3 N+CUB Y Relapse 5 

#88 
 

IV 63M 3 N+CUB Y Relapse 2 

#90 
 

IV 75M** 4 N+CUB Y Relapse 13 

#91 V 40F 2 CUB only Y No 
relapse 

41 

#92 
 

V 27F* 3 CUB only N Relapse 19 

 

Table 5.1  Characteristics of fifteen patient episodes with no evidence of anti N-
terminal inhibitory antibodies (IC50>5.6μM) at presentation of a TTP episode (groups 
IV and V) 

TTR=time to relapse  
* and **subsequent episodes in same patient – all other episodes are different individuals. 

 
 

 

The inhibition assays suggested that the anti-ADAMTS13 autoantibodies 

from patients in Groups IV (n=12) and V (n=3) listed in Table 5.1 (and 

potentially also those from Group III, n=9) may be unlikely to cause severe 

functional deficiency of ADAMTS13 through inhibition alone, due to their 

limited inhibitory capacity.  
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I therefore hypothesised that the loss in ADAMTS13 activity at TTP 

presentation in these patients may be due to antibody-mediated depletion of 

ADAMTS13 antigen, and went on to measure the ADAMTS13 antigen levels 

at presentation in these and all the presentation samples. 

 

5.2.4 ADAMTS13 antigen levels at presentation – the role of antigen 
clearance 

 

In 67 healthy normal volunteers, median plasma ADAMTS13 antigen levels 

were 951ng/ml (range 515-1829ng/ml; IQR 799-1143ng/ml) (Figure 5.4), 

very similar to previously published normal ranges (41, 42, 46, 47).  In the 91 

TTP presentation samples tested (one sample was lost to analysis due to 

insufficient sample size), ADAMTS13 concentrations were significantly lower 

(p<0.0001, Mann Whitney U test): median ADAMTS13 antigen level was 

58ng/ml (6% normal) with a range of 0-450ng/ml (0%-47%). 83/91 of 

samples had <25% normal ADAMTS13 antigen levels, and 42/91 had 

ADAMTS13 antigen levels <5% normal. 

 

 

 

Figure 5.4  ADAMTS13 antigen levels at presentation of TTP 

Plasma ADAMTS13 antigen levels (left axis, ng/ml; right axis % normal levels) were 
measured by ELISA in 67 normal healthy controls and 91 acquired TTP patient samples at 
presentation. Median antigen levels are shown by the horizontal lines. To ensure that 
reduced ADAMTS13 levels were not attributable to epitope masking by the autoantibodies, 
ADAMTS13 levels were measured in pooled normal plasma (PNP) that was preincubated in 
the presence of IgG isolated from 14 different TTP patient episodes.  
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To ensure that the reduced ADAMTS13 levels detected were not attributable 

to epitope masking by the autoantibodies preventing efficient capture / 

detection by the rabbit polyclonal ADAMTS13 IgG used in the antigen assay, 

ADAMTS13 levels were measured in pooled normal plasma in the presence 

of IgG isolated from 14 different TTP patient episodes. In this control 

experiment, the presence of TTP patient IgG only led to very minor 

differences in ADAMTS13 concentration measured, suggesting that the 

magnitude of the reduction seen in the TTP plasmas likely represents a true 

picture of the ADAMTS13 concentrations in these samples.  

 

At first presentation, patients with anti-N-terminal antibodies alone (n=23) 

had a median ADAMTS13 concentration of 81 ng/ml (8.5%); range 13-

331ng/ml (Figure 5.5A). Those patients at first presentation with no evidence 

of any inhibitory antibodies in the FRETS-VWF73 assays (n= 9) had a 

significantly lower ADAMTS13 concentration [median 2 ng/ml (0.2%) range 

0-141ng/ml; p=0.005]. Indeed, only three of these samples were above the 

detection threshold of the ELISA. Those patients at first presentation with 

both anti-N- and C-terminal antibodies that exhibited evidence of inhibitory 

function showed a trend to lower ADAMTS13 antigen levels by comparison 

to those with anti-N-terminal alone [median 30 ng/ml (3.2%); range 0-

356ng/ml; p=0.08] (Figure 5.5A), but that were significantly higher than those 

without inhibitory antibodies (p<0.05). The same trend / pattern was also 

observed when the ADAMTS13 antigen levels were plotted in patients at first 

presentation assigned to Groups I-IV (Figure 5.5B). 

 

These data suggest that antigen depletion is the major cause of ADAMTS13 

deficiency – however, in the presence of inhibitory antibodies, depletion does 

not need to be as severe/profound. 
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Figure 5.5  ADAMTS13 antigen levels by domain specificity 

A. Plasma ADAMTS13 antigen levels at presentation in acquired TTP patients separated 
into anti-N-terminal alone, anti-N- and C-terminal antibodies, and patients with apparently 
non-inhibitory antibodies (Group IV and V patients from Figure 5.3C) 
B. Plasma ADAMTS13 antigen levels in acquired TTP patients separated into patients with 
anti-N-terminal alone (Group I), and anti-N- and C-terminal antibodies that were potently 
inhibitory (Group II), mildly inhibitory (Group III) and apparently non-inhibitory antibodies 
(Group IV) from Figure 5.3. Individual concentrations are shown and the median represented 
with a horizontal line. 
  



  

172 

 

5.2.5 Clinical correlation of ADAMTS13 antigen levels at presentation 
 

To examine the importance of antigen depletion as a pathogenic mechanism, 

I analysed the relationship between ADAMTS13 antigen levels and mortality. 

ADAMTS13 antigen levels were significantly lower at presentation in patients 

that died during their first episode [median antigen 12 ng/ml (0-165) deaths 

vs. 57 ng/ml (0-356) in survivors; p<0.05, Figure 5.6]. Moreover, severe 

deficiency of ADAMTS13 antigen [ADAMTS13 antigen levels in the lowest 

quartile (<13.5ng/ml)] was associated with increased mortality (odds ratio 

5.4; 95% confidence interval 1.5 to 19.3; p=0.008), and this remained 

statistically significant when multivariate analysis was performed taking age 

and sex as co-variates (OR 5.7; 95% confidence interval 1.5-21.8; p=0.01). 

 

 

 

 

Figure 5.6  ADAMTS13 antigen levels and mortality 

Plasma ADAMTS13 antigen levels in acquired TTP patients at first presentation that 
survived their first episode or died. Individual concentrations are shown; the median is 
represented by a horizontal line. Comparison of antigen levels in survivors and deaths by 

 

Mann-Whitney U test. 
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5.2.6 Prognostic effect of non-inhibitory anti-ADAMTS13 antibodies 
alone (IC50>5.6μM) at presentation  

 

The relationship between the presence of solely non-inhibitory antibodies at 

first TTP presentation (IC50>5.6μM, group IV) and patient outcome was 

investigated. Again, analysis was performed only on the first presentation 

samples to avoid intra-patient confounding. IC50>5.6μM was not associated 

with an effect on mortality, or disease severity as assessed by likelihood of a 

cardiac / neurological presentation, total anti-ADAMTS13 IgG levels, Hb, 

platelets or LDH at presentation, or number of PEX to complete remission.  

 

However, none of the five patients with non-inhibitory antibodies at first 

presentation treated with rituximab went on to relapse during a 42-94 month 

follow up period, in contrast to 9/36 patients with inhibitory antibodies (TTR 

27 months, range 4-50 months, Figure 5.7). This difference did not reach 

statistical significance because of the small numbers involved (p=0.22). 

 

 
 
Figure 5.7  Kaplan Meier plot of relapse by inhibitory potential of anti-ADAMTS13 
antibodies at first presentation  

All patients received rituximab as part of initial therapy. Time to relapse in patients with (blue 
line) and without inhibitory antibodies (green line) at first presentation of acquired TTP.  
Cumulative incidence and Gray’s test were used to compare the incidence of relapse 
between groups.   
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5.3 Discussion 
 

Although the domain specificity of anti-ADAMTS13 autoantibodies in 

acquired TTP has been previously investigated, those studies were not 

combined with analysis of antibody function (192, 196). This work attempted 

to investigate the contribution of antibodies against different ADAMTS13 

domains to the inhibitory potential in plasma and investigate the pathogenic 

mechanism of TTP patient autoantibodies. 

 

 My results demonstrate the critical role of anti-spacer antibodies in 

mediating ADAMTS13 inhibition. Indeed, no antibodies other than those 

directed against the spacer domain were detected that were capable of 

inhibiting MDTCS function. Although it cannot be excluded that inhibitory 

antibodies against the MDTC domains exist amongst the patients analysed, 

these results suggest that, even if such antibodies are present, their 

inhibitory contribution relative to those targeting the spacer domain is small. 

Given that 0/25 patients had evidence of non-spacer anti N-terminal 

antibodies in the competition ELISA (Figure 4.6), it is tempting to extrapolate 

these findings to all TTP patients. 

 

The spacer domain has long been suspected as the primary antigenic target 

for inhibitory antibodies, which has been corroborated by a recent analysis of 

monoclonal antibodies derived from two acquired TTP patients (219). 

However, no other study has demonstrated in this many patients that 

inhibitory antibodies are limited to those that recognise this domain.  

 

Despite the high frequency of anti-N-terminal antibodies, anti-spacer domain 

antibodies are not necessary for the development of TTP, as 3/92 patients at 

presentation had no evidence of anti-MDTCS antibodies and yet presented 

with severe ADAMTS13 deficiency (<10%). 

 

Although anti-spacer domain IgG appears to be the major inhibitory antibody 

species in TTP, ADAMTS13 inhibition is not the exclusive pathogenic 

mechanism responsible for severe ADAMTS13 deficiency in TTP. I identified 
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15/43 TTP patients (Groups IV and V) with anti-ADAMTS13 IgG with little or 

no inhibitory function, suggesting that the inhibitory potency of autoantibodies 

in many TTP patients may, by itself, be insufficient to cause the severe 

ADAMTS13 deficiency (i.e.<10% plasma activity). In these assays, I used 

0.125nM ADAMTS13, which is 1/40th of the plasma ADAMTS13 

concentration. Based on the normal plasma IgG concentration of 80µM, this 

might suggest that in those patients with IC50 values >2µM (i.e. 1/40th plasma 

IgG concentration) the inhibitory potential of the autoantibodies would be 

insufficient to cause severe deficiency in the absence of any other 

pathogenic mechanism. This, in turn, implies that in potentially 32/43 of the 

patient samples from this cohort, inhibition cannot account for the deficiency 

state, and that only in 11/43 patient samples might the inhibitory actions of 

the autoantibodies be of sufficient potency to appreciably contribute to 

ADAMTS13 deficiency. This finding prompted me to determine the 

ADAMTS13 antigen levels in all the acquired TTP patient samples. 

 

ADAMTS13 antigen levels were significantly lower in all TTP patient plasma 

samples (median 6% normal), with over 90% samples having <25% normal 

ADAMTS13 antigen levels.  Indeed, 46% samples had ADAMTS13 antigen 

levels of <5% - sufficient in itself to cause TTP, without the need to invoke 

inhibitory antibodies. These results support the contention that enhanced, 

antibody-mediated clearance of ADAMTS13 antigen from plasma is the 

major cause of deficiency in acquired TTP, and thus this mechanism should 

be considered to play a significant role in disease pathogenesis.  

 

Previous studies on small numbers of less well characterised TTP patients 

have revealed reduced ADAMTS13 concentration (31, 32) (section 1.4.4.3). 

However, none of those studies have had ELISAs that have been 

demonstrated not to be sensitive to epitope masking, or been able to 

demonstrate the extent of the reduction in ADAMTS13 concentration. 

Moreover, other studies have not simultaneously looked at the inhibitory 

potential of the anti-ADAMTS13 antibodies. 
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Thus, although ADAMTS13 antigen levels in smaller groups of acquired TTP 

patients have been previously reported to be low, the magnitude of antigen 

clearance as a disease mechanism has been frequently underplayed, with 

far greater attention placed on the role of the inhibitory antibodies. One group 

investigated the relationship of ADAMTS13 antigen levels to anti-ADAMTS13 

IgG and inhibitor titre, and concluded that antigen levels were lower in 

idiopathic TTP patients with inhibitory autoantibodies than those with non-

inhibitory IgG or no IgG/inhibitor (87). However, this finding was significantly 

limited by the inclusion of patients with only moderately reduced / normal 

ADAMTS13 activity or no autoantibody in their cohort. 

 

Importantly, ADAMTS13 antigen levels at presentation also appear to have 

prognostic significance. ADAMTS13 antigen levels were lower at 

presentation in patients who died (median 1.0% vs. 5.5%). This finding is in 

keeping with a smaller study of four patients by Yang et al. (91). Indeed, 

ADAMTS13 antigen levels in the lowest quartile at first presentation 

(<13.5ng/ml, <1.4% normal) increased the likelihood of mortality by 

approximately 5-fold. Whether this reflects more severe disease in these 

individuals, or that the patients presented later is unclear, but the association 

of antigen levels and patient outcome is consistent with clearance being an 

important pathogenic mechanism. 

 

As the patient samples with no evidence of inhibitory anti-N-terminal 

antibodies had the lowest ADAMTS13 antigen levels, the primary pathogenic 

mechanism of anti-C-terminal antibodies is likely to be increased ADAMTS13 

clearance. It remains possible that some anti-C-terminal antibodies may also 

inhibit ADAMTS13 function. For example, there were two patients at first 

presentation without evidence of inhibitory antibodies against MDTCS, but 

with antigen levels >10% (Figure 5.5A). These two individuals may thus 

harbour autoantibodies that recognise the C-terminal tail, but that may be 

capable of compromising the function of full length ADAMTS13 (rather than 

MDTCS), potentially either through blocking the binding of ADAMTS13 to 

globular VWF or through steric hindrance of spacer domain function.  
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It should also be noted that anti-spacer domain autoantibodies operate 

through clearance as well as inhibition, as patients with anti-N-terminal 

antibodies alone have reduced antigen levels. Another piece of evidence to 

support this contention is the fact that the spacer domain only contributes to 

the activity of ADAMTS13, it is not essential. Deletion of the spacer domain 

binding region of the VWF A2 domain leads to a modest (~5-6 fold) reduction 

in ADAMTS13 proteolysis (199). Thus, even complete inhibition of the spacer 

domain would leave residual ADAMTS13 activity, meaning that there must 

be an additional mechanism i.e. clearance. 

 

However, not all anti-ADAMTS13 antibodies promote clearance as antibody 

titre did not correlate with ADAMTS13 antigen. This was further exemplified 

by two patients that entered clinical remission with normalisation of 

ADAMTS13 activity and antigen levels (see subsequent chapter, Figure 

6.1E) but persistent high titre antibodies that recognised ADAMTS13. 

 

The original hypothesis to be tested was that autoantibodies against different 

ADAMTS13 domains inhibit ADAMTS13 to different extents, and therefore 

contribute variably to the pathogenesis of TTP. This work has demonstrated 

that anti-spacer domain autoantibodies are the major inhibitory antibodies in 

acquired TTP. Importantly, it has also shown that depletion of ADAMTS13 

antigen (rather than enzyme inhibition) is the prevailing pathogenic 

mechanism in the disease. The importance and relevance of this will be 

discussed further in the final chapter of the thesis. 
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6 Longitudinal analysis of the domain specificity of TTP 
patient autoantibodies  

 

 

The majority of studies of TTP patient autoantibodies have analysed 

presentation samples, which provides only a snapshot of the disease. There 

has been very limited work on the longitudinal humoral immune response in 

TTP. The aim of the work presented in this chapter was to characterise the 

repertoire of antibodies in patients with acute idiopathic TTP and, for the first 

time, to monitor this through therapy, remission and relapse. In this way, 

important features of response to therapy, remission and also relapse might 

be identified. 

6.1 Methods 

6.1.1 Response criteria 
 

In all TTP cases, treatment response was defined as a platelet count > 

150x109/l for two consecutive days, accompanied by normal/normalising 

LDH and stable / improving neurological deficits (220). Clinical remission was 

defined as a durable treatment response, lasting at least 30 days after 

discontinuation of PEX (220). Relapse was defined as recurrent disease 30 

days or longer after remission (62). 

 

Elective rituximab prophylaxis was given to patients considered at high risk 

of relapse in remission (111), and consisted of therapy once weekly for four 

weeks. In the majority of cases, patients were given rituximab if their 

ADAMTS13 activity levels fell to <5%. In two cases, patients with higher 

ADAMTS13 activity level (but still <15%) were treated, as they were deemed 

at high risk of relapse based on previous experience with the individual 

patients concerned (111). 

6.1.2 Assays 
 

The domain specificity of anti-ADAMTS13 antibodies was analysed at 

different timepoints through therapy, remission and, where applicable, 

relapse using the assays described in sections 4.1.2.  ADAMTS13 activity 

and total anti-ADAMTS13 IgG were measured as described in sections 
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2.3.3-4. ADAMTS13 antigen levels were measured at specific points, as 

described in section 2.2.4.3. 

6.1.3 Patient selection 
 

Patients were selected on the basis of availability of serial samples in which 

there was detectable anti-ADAMTS13 IgG after treatment. 

 

6.2 Results - patient groups 
 

Four different patterns of clinical response to therapy were identified in 

patients surviving their index episode of TTP: 

1. Patients who did not relapse within the study period and in whom the 

anti-ADAMTS13 autoantibody titre fell after therapy (n=6). 

2. Patients with subsequent relapse in whom the anti-ADAMTS13 

autoantibody titre fell after initial therapy, but then rose again with 

relapse (n=16). 

3. Patients with persisting inhibitory anti-ADAMTS13 IgG in clinical 

remission (n=2). 

4. Patients with non-inhibitory anti-ADAMTS13 IgG in clinical remission 

(n=2).  

 

6.2.1 No relapse  
 

Six patients were studied who did not go on to relapse during the study 

period. The domain specificity of anti-ADAMTS13 antibodies was analysed at 

presentation, at one month post presentation and in remission. All patients 

received standard therapy with PEX and steroids, and also rituximab as part 

of their acute therapy. Median follow up was 3.3 years (range 1-6.3 years). 

The results are summarised in Table 6.1.  
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Patient Presentation One month Clinical remission 

TTP 
episode 

Domain 
pattern 

Act 
(%) 

αA13 
IgG 

Ag 
(%) 

Domain 
pattern 

Act 
(%) 

αA13 
IgG 

Ag 
(%) 

Domain 
pattern 

Act 
(%) 

αA13 
IgG 

Ag 
(%) 

Timing 
(mo) 

#32 N <5 96 23 N 105 19 57 - 157 8 188 6 

#26 N <5 62 1 N <5 33 31 - 106 9 147 12 

#73 N+C <5 23 3 N <5 55 6 - 62 3 55 12 

#45 N+2-8 <5 86 4 N
*
 7 29 17 N 38 10 60 7 

#57 N+2-8 <5 160 0 N+C 82 22 46 N >66 7 91 >12 

#51 N+2-8 <5 50 15 N+C 35 25 72 - 71 7 120 9 

 

Table 6.1   Serial domain specificity of anti-ADAMTS13 IgG in non-relapsing patients 

TTP episode number refers to Figure 4.4 
Act = ADAMTS13 activity, αA13 IgG = anti-ADAMTS13 IgG titre (NR<6.1%), 
Ag=ADAMTS13 antigen,  - = below limit of detection of assay    
*2 month time point as no detectable Ab at one month 

 
 
 
Total anti-ADAMTS13 IgG titre fell following therapy with PEX, steroids and 

rituximab in 5/6 patients, as previously described (82). However, all patients 

studied still had detectable anti-ADAMTS13 IgG at one month that enabled 

analysis of ADAMTS13 domain specificity. 

 

There were two cases with solely anti-N-terminal antibodies at presentation 

that disappeared with time. The results from one of the patients are shown 

graphically in Figure 6.1A. Four patients with both anti-N and C-terminal 

antibodies at presentation all cleared anti-C-terminal antibodies prior to anti-

N-terminal antibodies. At one month, two patients had normal ADAMTS13 

activity, but low titre autoantibodies (19% and 22%) suggesting the anti-N 

terminal antibodies that persisted were not pathogenic. Anti-ADAMTS13 

antibodies took 3-12 months to clear, coinciding with recovery of ADAMTS13 

antigen to normal levels. 



  

181 

 

 

Figure 6.1  Longitudinal analysis of TTP patients 

A-E) Longitudinal analysis 
of five acquired TTP 
patients following an 
initial presentation.  
ADAMTS13 activity (blue), 
ADAMTS13 antigen (green), 
anti-ADAMTS13 IgG (red) 
shown as % normal (left 
axis). Platelet counts are 
also shown (black, right 
axis). TTP episode number 
(e.g. #32) refers to episodes 
denoted in Figure 4.3. 
Rituximab therapy (Rtx) is 
shown by purple arrows. 
Anti-ADAMTS13 domain 
specificity results at different 
time points are marked in 
orange.  
A) represents a patient that 
did not relapse after their 
first episode.  
B) and C) are patients that 
relapsed and whose anti-
ADAMTS13 domain 
specificity had changed at 
relapse.  
D) represents a patient that 
entered clinical remission, 
but had persistent low 
ADAMTS13 activity and 
inhibitory IgG and relapsed 
repeatedly.  
E) represents a patient that 
responded well to rituximab 
and entered remission. 
Despite persistent anti-
ADAMTS13 antibodies, 
ADAMTS13 antigen and 
activity normalised. 
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6.2.2 Relapse  
 

Sixteen patients were studied who relapsed during the study period. Relapse 

was defined as either a clinical relapse, or acute drop in plasma ADAMTS13 

activity to <5% normal during routine follow-up, with accompanying normal 

routine laboratory parameters, which prompted treatment with elective 

rituximab (111). The median time to either clinical relapse or elective 

rituximab was 31 months (range 4-52 months) -Table 6.2. Thirteen out of 

sixteen patients received rituximab as part of their acute management of the 

initial episode.  

 

Nine out of sixteen patients exhibited altered domain specificity profile at 

relapse. The most frequent pattern (5/9 patients) was the loss of anti-C-

terminal reactivity, but reappearance of anti-N-terminal antibodies at disease 

recurrence (Fig 6.1C). 3/9 patients had anti-N-terminal as well as high titre 

anti-TSR2-8 antibodies at initial presentation, but at relapse no longer had 

detectable anti TSR2-8 antibodies, although still had anti-C-terminal 

antibodies. These could represent anti-CUB antibodies present at first 

presentation but masked by the high titre anti TSR2-8, or a fall in the anti 

TSR2-8 titre. 

 

Of particular note, one patient developed novel anti-C-terminal antibodies at 

incipient relapse, four years after the original episode. At first presentation 

the patient (episode #14 from Figure 4.4) had only N terminal antibodies 

detectable, but when his ADAMTS13 activity fell to <5% after a prolonged 

period of clinical and biochemical remission, both N terminal and evolving 

anti-C terminal antibodies were detected (Fig 6.1C). This is of interest as 

these results suggest a further development of the autoimmune response to 

ADAMTS13, rather than just re-emergence of the pathogenic clone.



  

 

 

 

 
 

Table 6.2  Longitudinal analysis of domain specificity of anti- ADAMTS13 IgG titre, ADAMTS13 antigen and activity in relapsing acquired TTP patients  

TTP episode number refers to episodes denoted in Figure 4.1 and 4.2. N = anti-N-terminal Ab, CUB = anti-CUB, 2-8 = anti-TSP2-8 Ab.  
Relapse = clinical relapse   Elect Rtx = elective rituximab therapy. - = elective rituximab (patient episodes are not presented in Figures 4.4 and 4.5)    
* no rituximab at initial presentation.  n.d = not determined (insufficient sample).  ^=post PEX sample.  TTR = time to relapse (months). 

First Presentation Relapse 

TTP  
episode 

AutoAb 
specificity 

Activity 
(%) 

αA13 
IgG (%) 

Antigen 
(%) 

TTP 
episode 

AutoAb 
specificity 

Activity 
(%) 

αA13 
IgG (%) 

Antigen 
(%) 

Relapse/ 
Elect Rtx 

TTR 
(mo) 

#72 * N & CUB <5 40 26 #19 N 5 12 47 Relapse 6 

#65 N & CUB <5 84 6 - N <5 20 14 ER 34 

#61 N & 2-8 <5 99 2 #29 N <5 26 10 Relapse 21 

#46 N & 2-8 <5 25 3 #27 N <5 34 6 Relapse 27 

#42 N & 2-8 <5 30 4 - N 15 18 0 ER 52 

#55 * N & 2-8 6 68 0 #92 N & CUB <5 68 1 Relapse 34 

#56 * N & 2-8 <5 126 n.d #87 N & CUB <5 13 2 Relapse 36 

#48 N & 2-8 <5 92 6 #64 N & CUB 27^ 9 40 Relapse 4 

#14 N <5 40 9 - N & CUB <5 39 15 ER 50 

#23 N <5 23 7 #13 N <5 53 13 Relapse 17 

#22 N <5 62 24 - N 11 13 44 ER 42 

#34 N <5 23 23 - N <5 9 88 ER 31 

#49 N & 2-8 <5 18 17 #44 N & 2-8 <5 23 3 Relapse 30 

#62 N & 2-8 <5 34 22 #58 N & 2-8 <5 n.d 7 Relapse 46 

#86 N & CUB <5 51 10 #90 N & CUB <5 84 10 Relapse 5 

#84 N & CUB <5 44 2 #80 N & CUB <5 48 2 Relapse 6 
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Median ADAMTS13 antigen levels were not higher at relapse than at first 

presentation in the paired samples (6% (0-26%) first presentation vs. 7% (0-

47%) at relapse). Antigen levels were markedly reduced in all but one of the 

patients who received elective rituximab for a fall in ADAMTS13 activity 

(median 15% (range 0-88%)). The fact that antigen levels fall when anti-

ADAMTS13 IgG titres rise, and before any drop in platelet count or clinical 

symptoms arise, suggests that antigen clearance is a primary antibody-

mediated phenomenon, rather than a secondary consumptive one seen with 

active thrombotic microangiopathy.   

 

 

6.2.3 Inhibitory anti-ADAMTS13 IgG in clinical remission  
 

The typical serological response to rituximab therapy has been well 

documented (82). Treated patients tend to clear anti-ADAMTS13 IgG over a 

period of several weeks to months. There is a concomitant recovery in 

ADAMTS13 activity and patients enter clinical remission. There is a rare 

group of patients who do not respond typically to rituximab. These patients 

respond clinically, recover their platelet counts and go into remission. 

However, despite no evidence of ongoing TTP symptoms, these patients 

have persistent low ADAMTS13 activity in conjunction with persistent anti-

ADAMTS13 antibodies. Such patients generally relapse on multiple 

occasions, but appear to require a ‘second hit’ such as intercurrent infection 

or other physiological stressor to precipitate relapse. This pattern appears to 

be more common in AfroCaribbean patients (personal comm, M. Scully). 

 

The domain specificity of the anti-ADAMTS13 antibodies in two such patients 

was analysed both during remission and relapse. Both patients failed to 

recover their ADAMTS13 activity to normal levels despite going into clinical 

remission and had medium to high titre anti-ADAMTS13 IgG (50-100%, 

NR<6.1%) detectable. The results from one of the patients are shown 

graphically in Figure 6.1D. The domain specificity of these anti-ADAMTS13 

antibodies was analysed both during remission and relapse, and it could be 

demonstrated that the persisting inhibitory IgG in clinical remission was 
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directed against the N terminal domains of ADAMTS13. In further analyses 

using the competition ELISA described in section 4.1.2 and inhibition assay 

described in section 2.5.2, no antibodies other than those directed against 

the spacer domain were detected. 

 

The ADAMTS13 antigen levels in these patients varied between 20-60% in 

clinical remission samples, although plasma ADAMTS13 activity was 

persistently <5%, indicating the inhibitory nature of the persisting anti-

ADAMTS13 antibodies. 

 

 

6.2.4 Non-inhibitory IgG in remission  
 

Rarely, patients may have detectable anti-ADAMTS13 IgG in clinical 

remission and yet have normal ADAMTS13 activity. Two such patients were 

identified and investigated. Both patients achieved sustained remission 

(follow up 5·1 and 6·3 years) after standard therapy and rituximab. 

ADAMTS13 activity returned to, and remained at, normal levels within 1-2 

months after initial treatment, but both cases had persistent detectable 

medium-high titre anti-ADAMTS13 IgG (25-100%) in clinical remission. 

ADAMTS13 antigen levels in remission were normal, suggesting that their 

anti-ADAMTS13 IgG did not promote clearance. The persisting non-inhibitory 

IgG was directed predominantly against the TSR2-8 domains (Figure 6.1E).  
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6.3 Discussion 
 

A major strength of this study is the availability of serial plasma samples from 

each TTP patient through immunosuppressive treatment. These samples 

have been taken at different time points during treatment, remission, and 

also during relapse of TTP, allowing me to examine how the autoantibody 

repertoire changes during immunosuppression and remission, and also 

during cases of relapse. I have endeavoured to determine whether 

immunosuppression / remission involves reduction in antibodies with 

particular specificities, and whether relapse involves the reappearance of 

antibodies against specific domains, or whether new antibodies with 

alternative specificities arise. 

 

My results show that (at least in some patients) there is continual 

development of the autoimmune response during treatment that can result in 

altered domain specificity at relapse. This may, in part, be explained by the 

failure of rituximab to eradicate all the clones of autoimmune B cells 

responsible for the anti-ADAMTS13 immune response. 5/9 of the patients 

with altered domain specificity at relapse had loss of anti-C-terminal 

reactivity, leaving only N-terminal antibodies at disease recurrence, 

suggesting that the clones directed against the C-terminal domains had been 

eliminated but not those directed against the N-terminal domains. Similarly, 

3/9 patients had anti-N-terminal as well as high titre anti-TSR2-8 antibodies 

at initial presentation, but at relapse no longer had detectable anti TSR2-8 

antibodies, although still had anti-C-terminal antibodies. These could 

represent anti-CUB antibodies present at first presentation but masked by 

the high titre anti-TSR2-8, or a fall in the anti-TSR2-8 titre below the cut-off 

for positivity of the assay. 

 

However, one patient developed a novel antibody specificity at relapse, with 

the development of anti-CUB antibodies in addition to the anti-N-terminal 

antibodies detected at first presentation. This epitope spreading suggests 

that there may be further development of the autoimmune response, rather 
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than just simple re-emergence of the clones of autoimmune B cells 

responsible for the initial anti-ADAMTS13 immune response. 

 

It may be that the autoimmune response to ADAMTS13 can be reconstituted 

from escaped CD20 positive B cells or long lived memory cells (CD20 

positive or negative) hiding in secondary lymphoid organs, as has been 

described for tetanus/measles/pneumococcal specific B cells (221) (222). 

Indeed, a recent study has shown that the spleen harbours ADAMTS13 

specific memory B cells following acute acquired TTP (219). This may 

explain part of the mechanism of action for splenectomy as a (historic) 

therapy in TTP. 

 

There may be a difference in the domain specificity pattern of anti-

ADAMTS13 antibodies when assessed at the point where patients first drop 

their ADAMTS13 activity and receive elective rituximab, as opposed to at full 

clinical relapse (which is likely to be later). Patients are treated earlier, so the 

period for further autoantibody development is shorter. This is likely to 

underestimate the degree of epitope spreading in the cohort. 

 

It is clear from this work that not all persistent anti-ADAMTS13 antibodies in 

remission behave in a comparable manner. Patients may have persistent 

inhibitory anti-N-terminal antibodies (likely anti-spacer) causing severe 

deficiency of ADAMTS13 activity in remission (although only mildly reduced 

antigen levels). This renders them very susceptible to further relapses. 

 

In contrast, persistent anti-ADAMTS antibodies may be non-inhibitory, non-

pathogenic antibodies directed against the TSR2-8 domains, which do not 

affect ADAMTS13 proteolytic ability or antigen levels, at least not enough to 

cause quantitative or qualitative deficiency, and do not appear to affect the 

risk of relapse. These may be similar to the low affinity non-inhibitory anti-

ADAMTS13 antibodies occurring in some healthy individuals (210), and need 

to be distinguished from persistent pathogenic antibodies. 
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7 DISCUSSION AND CONCLUDING REMARKS 
 

The main aim of this study was to identify a better way to risk stratify patients 

with acquired TTP in order to identify individuals who might die from the 

disease, as opposed to those who would respond well to treatment, and to 

understand more about the pathogenesis of the disease. TTP remains a life-

threatening disease with a 10-20% mortality rate, which has not improved 

significantly since the introduction of PEX therapy. Relapses have historically 

been reported in up to 50% cases (78, 130-132). We currently have only 

limited ability to identify those individuals with a more severe disease 

phenotype who are most at risk of death, or to determine which patients are 

more likely to relapse.  

 

It is clear from existing work that the autoimmune response in acquired TTP 

is polyclonal and there have been previous studies investigating the domain 

specificity of anti-ADAMTS13 antibodies in acquired TTP (50, 192, 193, 195, 

198, 199). However, it was not known whether or not antibodies directed 

against different domains of ADAMTS13 might be variably pathogenic. It was 

also previously unclear how the domain specificity of the antibodies might 

change in response to treatment, and whether re-emergence of antibodies 

against different domains may be indicative of/predictive of relapse. 

 

I hypothesised that autoantibodies against different ADAMTS13 domains 

inhibit ADAMTS13 to different extents and therefore contribute variably to the 

pathogenesis of TTP. I also hypothesised that the identification and 

characterisation of the repertoire of antibodies in longitudinally collected 

samples in patients with acute idiopathic TTP might provide a means to 

identify those patients most likely to achieve remission and those at higher 

risk of relapse. This in turn, might allow a means of monitoring TTP patients 

during treatment and possibly tailoring therapy accordingly. 
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The study therefore aimed to characterise acquired TTP patient 

autoantibodies, both in terms of their domain specificity but also their 

pathogenic role.  

 

To that end, I expressed recombinant ADAMTS13 domain fragments in both 

bacterial and mammalian expression systems and then used the domain 

fragments to develop novel assays to determine the domain specificity of 

anti-ADAMTS13 antibodies. I developed a competition assay in which 

dilutions of plasma from acquired TTP patients were pre-incubated both with 

and without an excess of the N-terminal fragment of ADAMTS13 (MDTCS) in 

solution, prior to incubation with wells coated with full-length ADAMTS13. 

When the assays were performed in parallel (i.e. ±MDTCS pre-incubation), 

this approach enabled estimation of the proportion of total anti-ADAMTS13 

antibodies that recognised MDTCS, with the residual binding representing 

autoantibodies recognising the C-terminal TSP2-8 and/or CUB1/2 domains. 

Samples were tested for the same time for their reactivity against TSP2-8 in 

a direct ELISA, giving an indication of the autoantibody repertoire in each 

patient. 

 

The domain specificity results broadly support the findings from other studies 

(50, 192, 196) with 89/92 (97%) patients having detectable antibodies 

against the N-terminal domains MDTCS. Of these, 38 patient samples had 

antibodies only against these N-terminal domains. 54/92 (59%) patient 

samples had antibodies against the C-terminal domains, with 28% having 

immunoreactivity against TSR2-8. In contrast to Klaus et al. and Zheng et al. 

who, respectively, found antibodies against MDT in 56% and 12% of patients 

(192, 196), I found no evidence of antibodies that recognised either MD or 

MDTC in 25 patients tested.  

 

However, from the work in this thesis and elsewhere (53, 54), it is clear that 

the conformation of the protein is vital. Western blotting needs to be 

interpreted with caution, as it has the potential to pick up antibodies not 

recognising the native conformation of the protein. This questions the validity 

of the domain-specificity studies using Western blotting, as positivity of these 
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assays could be due to recognition of non-exposed regions which may not 

be relevant. Western blotting-based methods do not tell us if antibodies 

detected are binding to the exposed surface of the enzyme and are therefore 

potentially pathogenic. The same problem may apply to methods using 

phage display and hence investigating only linear epitopes (194, 197, 210). 

In addition, Klaus et al used bacterially expressed domains and, potentially, 

this methodology may have detected non–specific antibodies against 

residual bacterial proteins (192). 

 

In terms of other existing assays, the GPI-anchored assay developed by 

Zheng’s group potentially allows the antigen fragments to adopt a native 

conformation on the cell surface, but cannot be used to compare samples 

(207). It simply gives a presence or absence of antibody against the two 

ADAMTS13 fragments studied. Quantitation of the amount of antibody or the 

proportion directed against a particular fragment is not possible, as one 

cannot determine how much of the antigen is expressed on the surface of 

the cells. 

 

Immunoprecipitation as used by some groups to investigate the domain 

specificity of anti-ADAMTS13 antibodies does allow antibody-antigen binding 

in solution and hence in native conformation, but is very laborious and 

difficult to do on a larger scale (50, 193, 196). Zheng et al and Pos et al used 

mammalian material which is more likely to be correctly folded (50, 196). 

However, immunoprecipitation only detects the presence or absence of 

antibodies against a domain fragment and there may be problems with 

sensitivity. 

 

There are several advantages to the domain specificity assays I developed in 

this work over the existing assays looking at the domain-specificity of anti-

ADAMTS13 antibodies.  These novel assays use mammalian expressed 

material (which is, as previously discussed, more likely to be in native 

physiological conformation), but require only a low quantity of recombinant 

antigen and are easy to perform for large numbers of samples.  
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Another important advantage of the competition ELISA using MDTCS is that 

it enables the estimation of the proportion of total anti-ADAMTS13 antibodies 

that recognise the N-terminal domains, rather than the assessment of 

whether a domain fragment-specific antibody is merely present or absent, 

which is how all other studies investigating domain specificity of anti-

ADAMTS13 antibodies have been performed. This, in combination with the 

anti-TSR2-8 ELISA, gives an indication of the autoantibody repertoire in each 

patient.  

 

There are, of course, some limitations to the domain specificity assays 

developed in this thesis. The cut-off for categorising patients as having solely  

anti-N terminal antibodies based on MDTCS competing for >85% full length 

ADAMTS13 binding is arbitrary (but is certainly indicative of the primary 

autoimmune response being towards the N-terminal domains). In addition, 

whilst these assays give a broad overview of the repertoire of anti-

ADAMTS13 antibodies in each patient in terms of domains targeted, and 

allow patterns to be determined, they do not allow for detailed epitope 

mapping and remain qualitative. 

 

Thus, these novel assays allow multiple samples to be run in parallel to 

determine the proportion of C-terminal reactivity in each sample, as well as 

the presence/absence of TSP2-8 antibodies. This, in combination, with the 

large number of samples tested and the accompanying detailed patient data 

is the strength of this study. 

 

The accompanying clinical and outcome data enabled the clinical 

significance of different antibody patterns to be explored. I went on to study 

the clinical correlates of the patterns of domain specificity of anti-ADAMTS13 

antibodies at presentation of acquired TTP. The original hypothesis to be 

tested was that characterisation of the repertoire of antibodies in patients 

with acute idiopathic TTP might provide a means to identify those most likely 

to achieve remission, and those at higher risk of relapse, with a view 

potentially to tailoring therapy accordingly. 
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I therefore investigated whether the domain specificity of anti-ADAMTS13 

antibodies at presentation might be a prognostic factor in acquired TTP. 

However, domain specificity of autoantibodies was not predictive of either 

disease severity or relapse risk. A previous study found the presence of IgG 

antibodies against TSP2-8 and/or CUB was inversely correlated with patient 

platelet counts on admission (196). However in this cohort, there was no 

difference in median platelet count between patients with antibodies directed 

against the C-terminal domains and those with solely anti-N-terminal 

antibodies, once the potential confounding factor of first versus relapsed 

presentation was removed. In keeping with two previous studies, I found no 

association between autoantibody/inhibitor titre and domain specificity (192, 

196). The lack of association of domain specificity with disease severity 

suggests that antibodies against different domains may to some extent 

behave similarly in causing TTP, rather than antibodies against functionally 

important domains being more pathogenic. 

 

In the longitudinal analysis, I demonstrated that remission involves reduction 

in anti-ADAMTS13 IgG with antibodies against the C-terminal domains often 

being cleared first. More than 50% patients studied exhibited altered domain 

specificity profile at relapse, but this was usually the loss of anti-C-terminal 

reactivity, with the reappearance of anti-N-terminal antibodies at disease 

recurrence. Only one patient developed novel antibodies with alternative 

domain specificity (anti-CUB) at relapse. 

  

Although the domain specificity of anti-ADAMTS13 autoantibodies in 

acquired TTP at presentation has been previously investigated, those studies 

were not combined with analysis of antibody function (192, 196). In order to 

explore the pathogenicity of antibodies against different domains of 

ADAMTS13, I performed functional assays (VWF115/106 activity assays and 

FRETS activity assays) and identified the spacer domain of ADAMTS13 as 

the target of inhibitory antibodies.  

 

I detected no antibodies other than those directed against the spacer domain 

that were capable of inhibiting MDTCS function. This suggests that, even if 
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antibodies that recognise MDTC are present, their inhibitory contribution 

relative to those targeting the spacer domain is not significant. The spacer 

domain has long been suspected as the primary antigenic target for inhibitory 

antibodies, corroborated by mutagenesis studies (223). However, no other 

study has demonstrated in this many patients that inhibitory antibodies are 

limited to those that recognise the spacer domain. Despite their high 

frequency, anti-spacer domain antibodies are not a prerequisite for the 

development of TTP, as 3/92 patients at presentation had no evidence of 

anti-MDTCS antibodies and yet presented with severe ADAMTS13 

deficiency. 

 

Importantly, this work has shed further light on the pathophysiology of 

acquired TTP. Over 70% of the TTP patients’ samples that I analysed had 

antibodies with inhibitory function insufficient alone to account for the severe 

deficiency state, but there was severe antigen depletion (median 6% normal 

levels) in all acquired TTP presentation samples, supporting the contention 

that enhanced, antibody-mediated clearance of ADAMTS13 antigen from 

plasma is a major cause of ADAMTS13 deficiency in the disease. 

 

Given the apparent importance of antibody-mediated clearance of 

ADAMTS13 as a significant pathogenic mechanism underlying ADAMTS13 

deficiency in acquired TTP, characterisation of the mechanism(s) underlying 

antibody-mediated clearance of ADAMTS13 and analysis of the kinetics of 

clearance are necessary. ADAMTS13 antigen / antibody immune complexes 

(IC) have been described in acute TTP and during remission (92, 190, 191), 

and are likely to play an important role. Naturally, detection and assessment 

of the importance of ICs at TTP presentation is potentially challenging if the 

ADAMTS13 antigen levels are already very low. Moreover, the persisting ICs 

may not be the pathogenic or important ones. 

 

The clearance of IgG-containing immune complexes (IC) is known to occur 

primarily in the liver (224-228). Both Kupffer cells and sinusoidal epithelial 

cells in the liver are believed to be involved in the clearance of ICs from the 
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circulation via Fc-receptor dependent uptake (227). Although Fc receptors 

are widely expressed, the largest relative uptake of ICs occurs in the liver, 

implying there may be an Fc-receptor independent uptake of ICs in this 

organ (224).  

 

Complement can also play an important role in the elimination of immune 

complexes. When antigen / antibody ICs first form in the circulation, 

complement inhibits their aggregation through binding of C3b to the IC 

keeping them soluble (225). Erythrocytes bind these opsonised immune 

complexes in the circulation via C3b receptors (complement receptor 1), and 

deliver them to tissue macrophages (such as Kupffer cells in the liver) for 

elimination (226). 

 

The spleen has also been implicated in the clearance of ICs in some studies 

(227), and the size and type of immune complexes may influence the relative 

contribution of different clearance mechanisms (224). Under some 

circumstances, ICs are not transported to the liver and cleared effectively, 

but are instead deposited in the tissues. There is, however, currently no 

evidence for the deposition of complement-fixing IC in organs such as the 

kidney in TTP, making this unlikely. 

 

Identifying the mode of clearance may enable intervention in the clearance 

pathway to limit this pathogenic mechanism, and thus provide a novel 

therapeutic opportunity. Blockade of macrophage Fc receptors has been 

considered one of the mechanisms of action of intravenous immunoglobulin 

(IVIG) in patients with immune thrombocytopenia and other autoantibody-

mediated cytopenias (229), but IVIG has no clinical benefit in TTP (230). If 

complement is shown to play a role in elimination of ADAMTS13 immune 

complexes, it is interesting to speculate on whether complement blockade at 

a specific point may be beneficial in reducing clearance of the enzyme. 

 

Understanding how antibodies may alter the kinetics of clearance of 

ADAMTS13 will perhaps have more profound and immediate implications. 

ADAMTS13 has a relatively long active plasma half-life of 2-3 days (231), 
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suggesting its baseline rate of clearance is normally relatively slow. As up to 

70% of the TTP patients’ samples that I analysed had no or low inhibitory 

potential, this could suggest that provision of recombinant ADAMTS13 

(rADAMTS13) to acquired TTP patients may not result in rapid inhibition of 

the enzyme in an appreciable proportion of patients. If the autoantibodies in 

these patients are non-inhibitory and their enhancement of clearance is not 

very rapid (which seems unlikely), this may allow recombinant ADAMTS13 a 

window of therapeutic benefit in these patients.  

 

Recombinant ADAMTS13 is already undergoing a phase I trial in the 

congenital form of the disease. If rADAMTS13 is well-tolerated in the early 

phase trials in congenital TTP, further studies of its role as an adjunct to PEX 

in acquired TTP will be important to determine if there is a consequent 

reduction in the number of PEX required to achieve remission. Given that 

PEX is not without complications (232), and is a lengthy procedure requiring 

specialised staff, this could have significant advantages. However, there is a 

possibility that giving rADAMTS13 might increase the antibody titre, and 

patients will still require immunosuppression to treat the underlying immune 

pathology.  Further studies to explore the kinetics of ADAMTS13 antigen 

clearance in antibody-mediated TTP are now necessary and are in 

development (see later).   

 

Some important questions remain to be answered. The mechanism of 

ADAMTS13 in treating TTP needs to be established in more detail: for 

example, does replacing ADAMTS13 merely stop the formation of new 

microthrombi, or does it play a role in actually clearing existing thrombi? 

ADAMTS13 has previously been shown to have thrombolytic effect in a ferric 

chloride injury model of venous thrombosis in mice (36), but whether this is 

the case in TTP still remains unclear. 

 

Other recently developed potential therapeutic strategies for TTP are less 

likely to be effective, given the work in this thesis highlighting the importance 

of clearance as a mechanism. Jian et al have described a spacer domain 

mutant of ADAMTS13 which does not bind TTP autoantibodies (223). This 
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spacer domain mutant also has increased activity, which has recently been 

shown to be due to disruption of the CUB-spacer interaction, leading to 

conformational activation of ADAMTS13 (53).  Whilst this gain-of-function 

mutant ADAMTS13 could potentially be effective in patients with anti-N 

terminal antibodies alone (in whom I found only anti-spacer antibodies), 60% 

patients have antibodies directed towards the C-terminal domains. In these 

patients the mutant is unlikely to be any more efficacious than WT 

ADAMTS13, as it will still be prone to clearance. 

 

In this study, I demonstrated that the domain specificity of anti-ADAMTS13 

autoantibodies at presentation was not predictive of disease severity or 

relapse risk. In contrast, ADAMTS13 antigen levels at presentation appear to 

represent a novel prognostic factor, with antigen levels in the lowest quartile 

amongst acquired TTP patients being associated with a five-fold increase in 

mortality during the first presentation. Initial interest in measuring 

ADAMTS13 antigen levels diminished when it was recognised to be of 

limited use in diagnosis, as not all patients had very low levels. In my 

opinion, there should now be a return to measuring antigen levels at 

presentation of acquired TTP, to help risk stratify patients and potentially 

guide intensification of therapy. 

 

Acquired TTP is an unusual autoimmune disease in as much as it has just a 

single autoantigen – ADAMTS13. Unlike many other autoimmune conditions, 

there is no known spread to other antigens, and indeed the longitudinal 

results of this study show only minimal evidence of intramolecular epitope 

spreading with only one patient developing novel antibodies with alternative 

domain specificity at relapse. Although more than half of the patients studied 

exhibited altered domain specificity profile at relapse, this was usually the 

loss of anti-C-terminal reactivity, with the reappearance of anti-N-terminal 

antibodies at disease recurrence.  

 

There are potential applications of the longitudinal data that could improve 

current and future clinical practice. For example, if inhibitory N-terminal 

antibodies are identified in patients in clinical remission (using a combination 
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of anti-ADAMTS13 IgG titre, then activity and ADAMTS13 antigen assays), 

then it may be appropriate to treat the patients further with 

immunosuppressive therapy (e.g. rituximab) to protect against relapse. 

However, this work has demonstrated that not all persistent anti-ADAMTS13 

antibodies are pathogenic, with anti-TSP2-8 antibodies in two patients having 

no effect on ADAMTS13 antigen or activity levels and therefore not requiring 

any treatment.  

 

In the future, use of newer monoclonal antibodies targeting B cells may be 

more effective at reducing anti-ADAMTS13 autoantibody production. The 

newer anti-CD20 agents such as ofatumumab and ocrelizumab, which target 

epitopes on CD20 that are distinct from the rituximab binding site, are 

already in use in B cell malignancies and autoimmune conditions such as 

multiple sclerosis, and have more complement-dependent cytotoxic (CDC) 

activity or antibody-dependent cellular cytotoxicity (ADCC) than rituximab 

(233). Unlike CD20, expression of CD19 is maintained on plasmablasts and 

subsets of plasma cells (234, 235). CD19 is important for regulating the 

threshold for B cell activation and studies of anti-CD19 therapy in murine 

models of autoimmunity almost completely inhibited the generation of IgG 

autoantibodies, suggesting targeting CD19 for B cell depletion may have a 

more pronounced effect on autoantibody production than CD20 (233, 236). 

Phase 2 trials of anti-CD19 agents in both B cell malignancies and 

autoimmune conditions are ongoing (NCT02200770, EudraCT: 2011-

002565-38). 

 

ADAMTS13 may be a target of an autoimmune response because it naturally 

can adopt different molecular conformations. Such a phenomenon has 

previously been described in other autoimmune diseases: 

1) Anti-phospholipid syndrome, where plasma-derived β2GPI has a closed, 

circular conformation (237). However, after exposure to anionic structures 

such as negatively charged phospholipids, β2GPI binds and undergoes a 

conformational change exposing the epitope of the autoantibodies which can 

then in turn bind (238).  Thus, these antibodies only recognise phospholipid 

bound β2GPI. 
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2) Heparin-induced thrombocytopenia, where the autoantibodies against 

platelet factor 4 (PF4) only recognise the conformation induced by binding to 

heparin (239).  

3) Wegener’s granulomatosis, where autoantibodies are directed against the 

neutrophil azurophil granule constituent, proteinase 3. Proteinase 3 is a 

serine protease zymogen which undergoes a conformational change when 

the activation peptide is removed. Intriguingly, the autoantibodies target this 

activated form, rather than the zymogen (240). 

It is interesting to consider whether these autoantigens are targeted due to 

the existence of different conformations. 

 

As in previous studies, I found that the majority of patients with TTP have 

autoantibodies against ADAMTS13 spacer domain. Recent work by South et 

al and Muia et al suggests that this may be because the spacer domain is 

naturally cryptic, shielded by the CUB domains (53, 54). They propose that 

ADAMTS13 circulates in ‘closed’ conformation, maintained by a CUB-spacer 

domain binding interaction (53, 54). ADAMTS13 becomes conformationally 

activated on demand through interaction of the TSR or CUB domains with 

VWF, ‘opening’ the enzyme up (Figure 1.7). During this process of 

ADAMTS13 activation, cryptic epitopes are revealed and these might be 

recognised as foreign during immune activation e.g. in response to infection 

(53).  

 

Support for this hypothesis is provided by the increased recognition of the 

spacer domain by a patient-derived anti-spacer monoclonal antibody, when 

ADAMTS13 is in its ‘open’ conformation, but comparatively poorly 

recognised in its ‘closed’ form (53). The results on the conformational 

activation of ADAMTS13 provide insight into the potential mechanism of 

autoantibody formation in TTP. It remains to be seen whether the anti-spacer 

antibodies detected in my work are indeed conformationally sensitive, and 

whether the other autoantibodies targeting the TSP2-8 domains and the CUB 

domains are also directed against the cryptic antigenic surface or the 

exposed surface. This may well have an impact on the likelihood of the 

autoantibodies forming ICs in the circulation. This is important as it, along 
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with the IgG subclass of the anti-ADAMTS13 antibody, may be a major 

determinant of antibody-mediated clearance in acquired TTP. 

 

As a co-applicant, I have recently been awarded a project grant from the 

British Heart Foundation to examine the ability of TTP patient IgG to bind to 

the circulating ‘closed’ and ‘open’ forms of ADAMTS13. We will determine 

the prevalence of different IgG subclasses (IgG1-4) that recognise 

‘open’/’closed’ ADAMTS13, and explore the relative contribution of these 

subclasses to ADAMTS13 clearance and inhibition. We shall also ascertain 

the kinetics of ADAMTS13 immune complex formation, antibody-mediated 

ADAMTS13 clearance and mechanisms of clearance in acquired TTP 

patients following plasma exchange therapy. 

 

A pilot genome-wide association study (GWAS) of acquired antibody-

mediated TTP in 44 Caucasian TTP patients found multiple SNPs in the 

HLA-II region which were significantly associated with TTP (160), thereby 

validating the approach (as HLA associations with TTP have previously been 

characterised). Interestingly, further associations were found with genes 

important in B cell development and function, and a large-scale GWAS study 

is underway. It will be critical to pull the information gleaned from the GWAS 

study together with the detailed clinical and laboratory results already 

available to ‘deep phenotype’ acquired TTP patients. This bioinformatics 

approach is likely to generate important information on the different clinical 

subtypes seen in TTP, which may lead to more tailored therapy. 

 

In conclusion, this study has improved our understanding of the 

immunological basis of acquired TTP, which accounts for the majority of TTP 

cases. It has for the first time investigated the contribution of antibodies 

against different ADAMTS13 domains to the inhibitory potential in plasma, 

and revealed that antibodies against the spacer domain are the primary 

inhibitory species. The results have also implicated ADAMTS13 depletion as 

a dominant pathogenic mechanism underlying severe loss of enzyme activity 

in acquired TTP. The findings have considerable relevance to patient 

management and have the potential to improve outcomes. Measuring 
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ADAMTS13 antigen levels at presentation could help identify patients who 

need early intensive treatment. The appreciable proportion of acquired TTP 

patients with non-inhibitory / weakly inhibitory anti-ADAMTS13 IgG suggests 

that provision of recombinant ADAMTS13 may not result in rapid enzyme 

inhibition in many patients and imply that it could have therapeutic potential, 

potentially transforming the face of TTP treatment in the future.  
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