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Abstract

In situ diagnostic techniques provide a means of understanding the internal workings
of fuel cells so that improved designs and operating regimes can be identified. Here,
a novel metrology approach is reported that combines current and temperature
mapping with water visualisation using neutron radiography.

The approach enables a hydro-electro-thermal performance map to be generated
that is applied to an air-cooled, open-cathode polymer electrolyte fuel cell. This type
of fuel cell exhibits a particularly interesting coupled relationship between water,
current and heat, as the air supply has the due role of cooling the stack as well as
providing the cathode reactant feed via a single source. It is found that water
predominantly accumulates under the cooling channels (thickness of 70-100 pum
under the cooling channels and 5-25 pm in the active channels at 0.5 A cm™), in a
similar fashion to the lands in a closed-cathode design, but contrary to passive open-
cathode systems. The relationship between current, temperature and water
accumulation is complex and highly dependent on location within the cell. However,
there is a general trend that higher currents and cooling limitations, especially above
0.7 A cm? and below 3.9 x 102 m*® s, leads to temperatures above 60 °C, which
dehydrate the membrane (water thickness of 10-25 um) and the cell operates below

0.5V.

Keywords
Air-cooled open-cathode polymer electrolyte fuel cell; water mapping; neutron

imaging; temperature mapping; current mapping.
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1. Introduction

Polymer electrolyte fuel cells (PEFC) fuelled with hydrogen are among the most
promising energy conversion technologies for a broad range of applications,
including portable, stationary and automotive power delivery. A range of diagnosis
techniques have been developed to understand and improve the heat and water
management in these devices with a view to improving performance, extending

durability and informing advanced design.

1.1.Current and temperature mapping in fuel cells
Current mapping studies have proven to be insightful and revealed large current
density gradients attributed to factors such as: uneven fuel consumptions [1-4],
operating conditions [5—7], stoichiometric ratios [8—11], the reactant flow orientation

[3,7], and water management issues [12].

Temperature distribution has also been extensively studied, identifying areas of
higher electrochemical activity, hot-spot formation and fuel depletion. Thermocouples
can provide a crude measure of temperature inside fuel cells [13-16] but cannot
provide high spatial resolution. Moreover, thermocouples need to be inserted inside
the fuel cell, which often requires design modifications. In contrast, infrared thermal
imaging can provide very high spatial and temperature resolution [17-22], yet
typically requires use of modified fuel cells with an infrared transparent window, or is
otherwise confined to open-cathode fuel cells [23-25] or the outer surface of a cell or

stack [26,27].
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Combined temperature and current mapping studies offer an extra dimension of
information and allow the impact of each parameter on the other to be assessed
[15,26,19,27]; however, the other important component in this equation, water,

needs to be considered in unison to see the whole picture.

1.2.Liquid water mapping in fuel cells
Effective water management is of paramount importance for fuel cell operation
(dehydration / flooding can lead to performance decay and stack failure). Water
generation and removal, and transport processes in the gas diffusion layer,
membrane and flow-field have been extensively modelled [30-36]. However, the
reliability of these models depends on the level of validation, which requires
appropriate experimental inputs. Therefore, a number of experimental methods have
been investigated, in order to evaluate, quantify, measure and / or visualise the
water dynamics and distribution under different modes of operation. Such techniques
should ideally satisfy three requirements as defined by Stumper et al. [37]: (i) in situ
applicability, (ii) minimal invasiveness and (iii) ability to provide information on the

distribution of liquid water over the active area.

High frequency impedance enables the ohmic resistance of a fuel cell to be
measured, which can be used to monitor changes in the membrane conductivity, and
therefore hydration content [1,7,16,29,38-44]. Localised electrochemical impedance
spectroscopy (EIS) has been achieved as well, and provides more insight on the

hydration / dehydration processes distributed across electrodes [1,5,29,45].

To investigate water content, it is possible to weigh the fuel cell before and after
operation [46], or to visualise liquid water via optical imaging open channels [24,47].
These methods are attractive because of their simplicity, but the most powerful
method for water visualisation, (satisfying all three criteria from Stumper et al. [37]) is

4
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neutron imaging. This technique is based on attenuation of a neutron by hydrogen-
containing compounds such as water, and transparency to neutrons of most fuel cell
construction materials (aluminium, stainless steel). Neutron imaging can identify
water in the in-plane orientation (with the membrane place parallel to the beam) and
through-plane orientation (with the membrane plane perpendicular to the beam),
enabling in the first case to differentiate the water content from the cathode and the
anode [48-50] and in the second case the effect of different designs, components,
and operating conditions [45,51-65]. Neutron imaging has been combined with other
modelling and experimental techniques, such as current mapping [66], CFD models
validation [32,51,65], optical imaging [47], neutron scattering [61] and localised EIS
[45].

1.3. Air-cooled, Open-Cathode Fuel Cells
Unlike conventional closed-cathode fuel cells, self-breathing fuel cells offer the
advantages of simpler design and integration into systems, using diffusion from the
atmosphere without compressors. Passive air-breathing systems are typically limited
to a maximum current density of ~0.6 A cm® [67—71] due to heat and water
management issues, since water cannot be removed from the membrane, except
through evaporation [69,72]. In the so-called ‘air-cooled, open-cathode’
configuration, air is forced through the cathode channels using fans, which improves
performance and enables higher current densities to be attained [73-77]. In air-
cooled, open-cathode systems the temperature depends on the voltage and current
density [46,67], air cooling flow rate [73,76], and heat transfer characteristics of the
stack. Temperature monitoring is therefore crucial to ensure effective and durable
operation. In practice, this is normally performed using a single-point thermocouple
inserted in the centre of the cell [16,26,75], or for development work using multiple

micro thermocouple measurements at various locations in the fuel cell [13,78,79].
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Here, we present the results obtained by applying a novel metrology approach to an
air-cooled, open-cathode two-cell stack, operated without external humidification: the
technique combines water visualisation using neutron imaging, with current and
temperature mapping using a printed circuit board (PCB) sensor plate [80]. The
effect and relationship between the key hydro-electro-thermal properties allows

important new insight into this type of fuel cell to be achieved.

2. Experimental

Fuel cell testing - A 2-cell (60 cm? active area) air-cooled / air-breathing fuel cell
stack was used for testing (Intelligent Energy Ltd., UK). The membrane electrode
assembly was composed of commercially available gas diffusion layers (GDLs) and
commercially available membranes with Pt loading of 0.1 and 0.4 mg cm™ on the

anode and cathode, respectively.

The test station [26] supplied dry hydrogen at ambient temperature (with a purity of
99.995 %) to the anodes and air was forced through the stack by a single fan
(SanAce 36, Sanyo Denki) to the open-cathode channels (Figure 1). The exhaust
hydrogen flow rate in through-flow mode was measured using a thermal mass flow
meter (MassVIEW, Bronkhorst) to be 4.7 SLPM, which ensures a stoichiometric ratio
of 2 at 1 A cm™. The fans, which provide cooling and air supply to the cathode, were
controlled by a programmable power supply (3649A Agilent). The current drawn from
the PEFC was controlled using an electronic load (PLZ664WA, Kikusui) in
galvanostatic mode. An in-house computer controlled system controls the air,
hydrogen, cooling and electrical valves (LabVIEW, National Instruments) as well as
recording and presenting data using a data acquisition card (USB 6363, National
Instruments). Ambient temperature, pressure (absolute) and relative humidity (RH)
were measured at 25 € + 0.2 °C, 0.97 £ 0.02 bar and 40% RH respectively, during
6
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all tests. The operation of this fuel cell in terms of cathode design, cooling and active
channels and materials [26,27], temperature uncertainty [27] and water management
in dead-ended anode mode [26], has been described in previous reports. In this work

the anode and cathode are operated in through-flow mode.

Current and temperature mapping

Current and temperature mapping were performed using a 16-segment printed
circuit board sensor plate (S++ Simulation Services, Germany). Each segment
covers an area of 3.75 cm?®. The temperature is measured using copper ‘meanders’
with a 2 mA current applied, as the resistance of copper is very sensitive to
temperature changes; the local current at each contact was measured using shunt
resistors made of a special alloy insensitive to temperature changes. Further details

on the approach can be found in previously published work.[80]

Neutron imaging facility

Neutron radiography was performed at the neutron imaging facility NEUTRA of the
SINQ spallation source (Paul Scherrer Institute, Switzerland) [81]. Thermal neutrons
provided by the source are extracted from a moderator tank in the thermal energy
range of 1 x 10 to 10 eV with a Maxwellian spectrum energy of 25 x 10 eV. The
third position was used on the beamline since it offers a beam diameter of 40 cm
[81], and a maximal detector field of view of 36 x 38 cm, hence suitable for larger
scale samples. In order to image the water distribution over the entire surface of the
electrodes area, the cell faced the neutron beam in through-plane orientation (Figure
1 a-b). The detector consists of a neutron-sensitive LiF/ZnS scintillator and a charge-
coupled CCD device (Ikon-L, Andor) camera housed in a light-tight box (Figure 1 a).
The neutron beam is converted into a photonic field by the scintillator, whereby the
intensity of evoked light is proportional to the intensity of the incoming neutron beam

[56].
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Measurements were performed with an exposure time of 10 s (time during which the
camera opens a built-in shutter and integrates the light), and a sampling time of 2-3 s
per image (time during which the image is processed), for sufficient resolution and
noise reduction. This exposure time is well within the range typically used for neutron
imaging on PEFCs (typically between 1 and 25 s [45,51-59,82]). Since the current
study investigates steady-state operation, the 12 s temporal resolution is sufficient.
The intensity images are generated in FITS format, and are processed using PSI in-

house software written in the IDL language.

Quantification of the water thickness from neutron images
All the materials of the cell contribute to the attenuation of the transmitted neutron

beam, following the Beer-Lambert law (Equation 1).

11, = exP(~Hyqzertwater) (1)
With | the intensity of the beam in operation, |, the intensity of the beam for the dry
cell (without water), tuater the attenuation coefficient of water, twater the thickness of
water. | and |, are determined after all necessary corrections (filtering, subtraction of

background components, alignment of “working” and reference images) [83].

The water thickness is then extracted by taking the logarithm, divided by the

attenuation coefficient .-

(/)

ﬂwater

twater -

(2)

In our case, u, the attenuation coefficient of neutrons in liquid water, was

ater’

measured in the NEUTRA beamline for the given setup at 3.5 cm™ [84]. In the
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following sections, the water content will be expressed as the effective water

thickness twater in pm.

3. Results

3.1.Sensor plate neutron transparency

The sensor plate was imaged at the Paul Scherrer Institute prior to its insertion in the
stack and was found to be 80 % transparent, which is suitable for imaging.
Therefore, the combined neutron imaging and current and temperature mapping is
possible with this choice of hardware. The sensor plate is inserted between the first
and the second cell (Figure 2c), to measure the average current and temperature

distribution of both cells.

3.2.Neutron imaging for water visualisation

Although high frequency EIS provides a useful indication of the membrane
conductivity, it is limited in spatial resolution to the size of the localised current
collector. In EIS, it is common to assume that changes in the purely Ohmic
resistance are due to the electrolyte membrane (and its water content); however,
other factors such as changes in contact resistance associated with membrane
swelling can complicate interpretation of this electrical measurement. Neutron
imaging allows a high resolution map of the water distribution to be generated that
can unequivocally discern between the water in the channel and under the land
positions. It is the combination of these techniques, with knowledge of the local

temperature, that makes this correlative approach particularly powerful.
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The stack technology investigated uses an electrically insulating layer between the
endplates and the current collector / bipolar plates. This is relatively opaque to
neutrons; therefore, a modification was made to the insulating layer so as to retain
functionality but allow substantial open areas so that water imaging could take place.
This resulted in the opaque pattern shown in Figure 2 (a-b). Since the cell is
operated using dry gases, at open circuit potential, it does not have any water

(Figure 2a).

Throughout this study, a two cell stack is imaged, for enhancement of water
detection and behaviour closer to stack operation (Figure 2 c). A water ‘thickness’ of
75 um per cell is within the range of water contents previously reported for single

cells (30 - 2000 um) [47,54,55,85,86].

Under practical operation of this commercial stack technology, a single thermocouple
is inserted into the central cooling channel for monitoring and control purposes.
Therefore, when considering overall performance compared to cell temperature and
average current density, the water content of the central cooling channel (Figure 2 b)

is used.

A special variation in water thickness is consistently observed, as seen by the
repeating sequence of blue and yellow regions in Figure 2 b. From the enhanced
view, correlated with the cathode plate geometry (Figure 2 c-d), it is clear that the
area under the cooling channels contains most of the water. This is an important
finding and contrasts with self-breathing fuel cells where substantial build-up of water
in open channels has been identified using neutron imaging and standard
visualisation techniques [24,49]. Here, the very high flow rate of air through the
active channels (5.6 x 10° m® s™) dehydrates the fuel cell in locations directly under
the open channels by constantly removing most of the water vapour and liquid water

10
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droplets, substantially hindering its accumulation. On the other hand, in the cooling
channels, the cold air cools down the metal plate without removing any of the water,
since the electrode is not in direct contact with the air stream.

This result agrees with the model of Xing et al. [36], which describes 10 times more
water under the rib than under the channel areas. This feature is also in agreement
with the measurements performed under the ribs and channels in closed-cathode
configuration, with a dry cathode. The water almost exclusively concentrated under

the land, and not under the channels [82,87].

Since the cell is imaged in through-plane mode, it is not possible to assess the
location of the water through the thickness of the cell, and differentiate between
water in the channel, GDL or membrane. Rather, the through-plane technique
provides a quantitative measure of total water content through the plane of the fuel

cell at that point.

3.3.Hydro-Electro-thermal performance analysis

To understand how the fuel cell’'s performance is affected by the distribution of water,
it is necessary to characterise how the water content is affected by the air flow rate
and current density. This is first investigated on a whole-cell scale, looking at the
effect of the current and air flow rate on the voltage, temperature and average water
content in a cooling channel in the centre of the cell. For further analysis, the
localised distributions are investigated via current, temperature and water mapping

as a single dataset in the hydro-electro-thermal analysis.

11
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3.3.1. Hydro-electro-thermal profile as a function of the air flow rate and

current density.

Electro-thermal performance maps have been introduced in previous work as a
novel way to display the influence of the air flow rate and current density on the
voltage and temperature of fuel cell operation [88]. Including the water content
provides another dimension in understanding the coupled nature of processes

occurring in operational fuel cells.

To acquire the ‘map’ data, a series of four air flow rates, 2.7, 3.9, 4.7 and 5.6 x 107
m® st were investigated, holding the voltage constant for 10 minutes to obtain steady
state performance, from open circuit, with an increment of 0.083 A cm™, and the
polarisation was interrupted once the voltage dropped below 0.5 V. The entire test,
adding an extra 15 minutes to leave the cell to dry and reach ambient temperature
between changes of flow rate, lasted 8 hours. Overall, 42 different conditions of
current densities and air flow rates were measured. The hydro-thermal profile
represents the influence of the air flow rate and current density on the mean cell
voltage, and water thickness and temperature of the central cooling channel. It was
generated by averaging the neutron images for the last 10 frames (2 minutes) prior
to the change of current density, then extracting with ImageJ® the average water

thickness in the central cooling channel (Figure 2).

The ‘electro-thermal’ map is coupled with the ‘hydro-thermal’ map, to form a so-
called ‘hydro-electro-thermal’ profile; this allows analysis of the link between current

density, temperature, water content and air flow rate (Figure 3).

An initial hydration of the cell occurs between 0 and 0.4 A cm, in the activation and
beginning of the ohmic predominance region. This is the cell self-hydration, as the

12
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amount of water generated increases with increasing load, as described by
Faraday’'s Law; while the low temperature (<40 °C) is in favour of water
condensation [89]. A maximum hydration is reached between 35 and 45 °C, for a
current density between 0.35 and 0.67 A cm™ for low and high air flow rate,
respectively. This corresponds to the centre of the ohmic region on the electro-
thermal map. It overlaps with the optimum operating zone, determined using the
current of lowest resistance, introduced in previous work [88]. Gradual dehydration

starts above 45 °C, with a ‘dry’ state reached above 60°C.

These results confirm the conclusions from previous work based on electro-thermal
profiles alone [88], which showed that the purely ohmic resistance (proxy for
membrane hydration) initially drops (during self-hydration), reaches a plateau, and
then increases above 60°C during the dehydration. This hydration / dehydration
process has been experimentally reported for self-breathing, open-cathode fuel cells

[46], and modelled [89]; but only now can the role of water be confirmed.

To fully understand the hydro-electro-thermal process and its direct influence on the
voltage decay across a polarisation, it is necessary to investigate the localised maps

and full scale neutron images.

3.3.2. Locally resolved hydro-electro-thermal maps.

In order to understand how the current density, temperature and the water content
locally affect performance, spatial maps for each quantity were investigated in unison
for a given current density and air flow rate. The water maps were generated using

the averaging over 2 minutes prior to the change of current density.

13
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At open circuit potential, the cell is entirely dry, as discussed earlier (Figure 2a) and

has an even temperature of 25 + 0.2°C across the cell (ambient).

The operating points labelled (a) to (f) in Figure 3 were selected to represent the
range of operation from ‘low’ (a-b, between 25-40°C), ‘intermediate’ (c-d, between
40-50 °C) and ‘high’ current densities (e-f between 50-75°C). Initially, at (a), (Figure
4), water is only observed towards the air exhaust, and in the cooling channels (10-
15 ym). This water gradient is caused by the higher current density (0.097-0.085 A
cm™), whereas it is lower near the air inlet (0.078-0.071 A cm™). The temperature
variation across the cell is only 1°C. For all of the points measured (a-f) there is a
general decrease in current density from the hydrogen inlet to outlet (left to right in
the figures), this is associated with consumption of the hydrogen as it flow through
the cell.

At (b), the hydro map reveals that the cell has fully self-hydrated, with water present
in the entire cooling channel (40-100 ym), and to some extent in the active channels
(5 ym). Higher water content is observed near the air exhaust with 75-90 ym, against
40-45 ym near the air inlet, consistent with the current density gradient. The higher
temperature near the air exhaust increases the reaction rate, hence causing a higher

current density.

Relatively uniform water profiles exist under the cooling channels across the extent
of the cell at (c) and (d) (Figure 5). Although the current density is higher near the air
exhaust, and will result in more water generation, more water evaporates due to the
higher temperature ([0 40 °C); hence water distribution is balanced along the air

channel direction.

Closer analysis of the water content along the central channel for point (c) and (d) is
shown in Figure 6. The quantitative profiles show that despite generating more

14
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current in (d), the higher temperature leads to greater evaporation and a decrease in
the water thickness. Effectively, the entire cell is starting to dehydrate, with an

increase in the evaporation rate.

Figure 7 shows two points (e-f), into the dehydration zone, with distinctively different
features from the ones observed in a-d. As the total current increases, the regime
of operation changes such that a combination of factors result in a local minimum in
the current distribution along the air channel flow direction, as seen in (e). The
substantial increase in temperature towards the air exhaust acts to evaporate water
from the MEA, compromising membrane hydration and limiting the ability to generate
more current. However, the cooling effect of the air intake means that the entrance

region retains hydration, allowing the current to continue to increase.

As the load is increased further into region (f), the cell temperature towards the air
exit reaches 74 °C and the cell is substantially dehydrated. The water profile is now
inverted from that at point (a), a slight amount of water only discernible near the air
inlet (5-15 ym). This means that the current is now greatest at the air inlet and goes

through a minimum further along the air channel.

Overall, this cell dehydration is caused by the limitations in the cooling. The hydro-
electro-thermal mapping reveals that evenly distributed amounts of water across the
cell ensure stable and optimum performance. Operations around 45 to 50 °C at high
load hinders water evaporation. Therefore, this is a target for the operations of air-
cooled open cathode fuel cells. Up to a point, increasing the air flow rate would
regulate the temperature and enable higher loads; however, the subsequent
parasitic power losses would significantly increase, as highlighted in previous studies
[90], and a suitable trade-off needs to be determined.

15
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4. Conclusion

A new approach for probing the operation of open-cathode, air-breathing fuel cells
has been presented that uses a ‘hydro-electro-thermal’ mapping process through the
combined use of water imaging, current and temperature mapping. This
methodology allows the action of hydration and dehydration to be studied under
different load and flow rate conditions and allows zones of optimal operation to be
identified. ~ Water accumulates mainly under the cooling channels, which is

analogous to the land in conventional closed-cathode systems.

Water removal within the cell is determined by local temperature, flow of air in the
active channels and the transport of water from under the cooling channels into the
active channels. Other factors are likely to affect the transport of water, such as the
gas diffusion layer thickness, porosity, hydrophobicity and degree of compression, as

well as the electrolyte membrane properties.

Finally, it should be noted that all three techniques are required to be used in unison
in order to obtain a complete picture of water management. This approach allows the
complex mechanisms that determine the generation, accumulation, transport and

removal of water in operating fuel cells to be investigated.
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Figure 1. (a) Simplified Schematic and picture (b) of the fuel cell set-up for through-plane

measurement in NEUTRA [81], facing the LiF/ZnS scintillator.

Figure 2. (a) Neutron imaging at open circuit potential, (b) neutron image at 0.5 A cm?, 5.6 x

10° m*s*; (c) cross-section of the two-cell stack; (d) corresponding through-plane image.
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Figure 3. Hydro-electro-thermal profile of the cell, displaying the “electro-thermal” and
“hydro-thermal” maps. (a-f) correspond to representative zones of operation discussed in the

text. The saw-tooth shape at high current density is an artefact of the extrapolation.

Figure 4. Localised hydro-electro-thermal maps at points (a) and (b) from Figure 3. The
green arrow represents the air flow from inlet to exhaust, the red arrow the hydrogen flow

from inlet to exhaust. (a, air flow rate of 5.6 x 10° m*s™*; b, 4.7 x 10° m®s™).

Figure 5. Localised hydro-electro-thermal maps at points (c) and (d) from Figure 4. The
green arrow represents the air flow from inlet to exhaust, the red arrow the hydrogen flow
from inlet to exhaust. The dashed boxes in the hydro map are further discussed in Figure 6.

(c, air flow rate of 5.6 x 10° m®s™; d, 3.9 x 10° m®s™?).

Figure 6. Close up view of the areas of the hydro maps, in (¢) and (d) highlighted in Figure 5,

and average corresponding water thickness.

Figure 7. Localised hydro-electro-thermal maps at points (e) and (f) from Figure 3. The green
arrow represents the air flow, the red arrow the hydrogen flow directions. The dashed ellipse
on the hydro map of (f) is used as a guide for the eye. (e, air flow rate of 4.7 x 10° m®s®; f,

2.7 x10°m3s™).
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