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The reaction diffusion systemwith anomalous diffusion and a balance law 𝑢
𝑡
+(−Δ)

𝛼/2
𝑢 = −𝑓 (𝑢, V), V

𝑡
+(−)

𝛽/2V = 𝑓 (𝑢, V), 0 < 𝛼,
𝛽 < 2, is con sidered. The existence of global solutions is proved in two situations: (i) a polynomial growth condition is imposed
on the reaction term 𝑓 when 0 < 𝛼 ≤ 𝛽 ≤ 2; (ii) no growth condition is imposed on the reaction term 𝑓 when 0 < 𝛽 ≤ 𝛼 ≤ 2.

1. Introduction

In this paper, we consider the system of nonlinear and
nonlocal in space reaction diffusion equations

𝑢
𝑡
+ (−Δ)

𝛼/2
𝑢 = − 𝑓 (𝑢, V) , 𝑥 ∈ R

𝑁
, 𝑡 > 0, (1)

V
𝑡
+ (−Δ)

𝛽/2V = 𝑓 (𝑢, V) , 𝑥 ∈ R
𝑁
, 𝑡 > 0, (2)

supplemented with the initial conditions

𝑢 (𝑥, 0) = 𝑢
0
(𝑥) , V (𝑥, 0) = V

0
(𝑥) , 𝑥 ∈ R

𝑁
, (3)

where the initial data 𝑢
0
(𝑥), V
0
(𝑥) are given positive bounded

functions.
Here the nonlocal operator (−Δ)𝛿/2, 0 < 𝛿 ≤ 2 ( 𝛿 = 𝛼

or 𝛽 ) accounts for anomalous diffusion (see, e.g., [1–3]) and
can be defined via the Fourier transform pairF andF−1 as

(−Δ)
𝛿/2
𝑢 (𝑥) = F

−1
(




𝜉





𝛿

F (𝑢) (𝜉)) (𝑥) , 𝑢 ∈ S (R
𝑁
) ,

(4)

where S(R𝑁) is the Schwartz class of smooth real rapidly
decreasing functions, or equivalently (see [4]) by the formula

(−Δ)
𝛿/2
𝑢 (𝑥) = 𝐶

𝑁
𝑃𝑉∫

R𝑁

𝑢 (𝑥) − 𝑢 (𝑦)





𝑥 − 𝑦






𝑁+𝛿
𝑑𝑦, (5)

with𝐶
𝑁
= (𝛿2𝛿−1/𝜋𝑁/2)(Γ((𝑁+𝛿)/2)/Γ(1−(𝛿/2))) a normal-

izing constant, and | ⋅ | denotes the usual norm of R𝑁.
A typical type of system under our consideration is given

by the irreversible molecular combination

𝑚𝑈 + 𝑛𝑉 → (𝑛 + 1)𝑉, (6)

where𝑈 and 𝑉 are two chemical species. If 𝑢 and V represent
the concentrations of the species 𝑈 and 𝑉, respectively, then
according to the law of mass action due to Gulberg and
Waage, the reaction diffusion system describing the chemical
reaction can be written as

𝑢
𝑡
− Δ𝑢 = − 𝑢

𝑚V𝑛, 𝑥 ∈ Ω, 𝑡 > 0,

V
𝑡
− ΔV = 𝑢𝑚V𝑛, 𝑥 ∈ Ω, 𝑡 > 0,

(7)

where Ω ⊆ R𝑁. This system has been studied by Masuda [5]
via a judicious Lyapunov functional, Hollis et al. [6] by using
the duality argument, Collet and Xin [7] in the case of the
Euclidean space.

Let us now dwell for a while on the available literature
concerning anomalous diffusion equations. Fractional dif-
ferential equations have been used as effective mathematical
tools for modeling diffusive processes associated with sub-
diffusion (fractional in time), superdiffusion (fractional in
space), or both. Further examples can be found in physics,
mathematical biology, or hydrology. These equations also
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appear in finance because of the relationship with certain
option pricing mechanisms and heavy tailed stochastic pro-
cesses [8]. In water resources, fractional models have been
used to describe chemical and contaminant transport in
heterogeneous aquifers [9]. In spatial complex environment,
reaction diffusion equationmay not obey Fick’s Law [10]. One
idea is to replace the flux, say 𝐹, by its fractional counterpart
[11]:

𝐹 = −K∇
𝛾
𝑢, 0 < 𝛾 ≤ 1, (8)

where K is the diffusion tensor and ∇
𝛾

=

(𝜕
𝛾
/𝜕𝑥
𝛾
, 𝜕
𝛾
/𝜕𝑦
𝛾
, 𝜕
𝛾
/𝜕𝑧
𝛾
)
𝑇 is theRiemann-Liouville fractional

gradient, where

𝜕
𝛾

𝜕𝑥
𝛾
𝑢 (𝑥, 𝑦, 𝑧) =

1

Γ (1 − 𝛾)

𝜕

𝜕𝑥

∫

𝑥

0

(𝑥 − 𝑥)
−𝛾
𝑢 (𝑥, 𝑦, 𝑧) 𝑑𝑥,

(9)

with similar expressions for 𝜕𝛾/𝜕𝑦𝛾 and 𝜕𝛾/𝜕𝑧𝛾 [12]. The
fractional Fick’s Law for (8) implies nonlocality in space and
in time. This modification, in the absence of external force,
leads to the fractional diffusion equation

𝜕

𝜕𝑡

𝑢 − ∇ ⋅ (K∇
𝛾
𝑢) = 0. (10)

Equivalently, in the isotropic setting [13], the space fractional
reaction diffusion can be written as

𝜕

𝜕𝑡

𝑢 +K(−Δ)
𝛾/2
𝑢 = 𝑓 (𝑢) , 0 < 𝛾 ≤ 1, (11)

where (−Δ)𝛾/2 is the fractional Laplacian operator; see also
the valuable contribution of Douglas [14] for the use of the
fractional Laplacian in polymer sciences.

In our consideration, we take into account the diffusion
of two interacting species, diffusing at different rates.

The reaction term 𝑓 : [0, +∞)
2
→ [0, +∞) is locally

Lipschitz continuous, namely,




𝑓 (𝑢, V) − 𝑓 (�̃�, Ṽ)


≤ 𝐶 (𝑅) (|𝑢 − �̃�| + |V − Ṽ|) , (12)

for all 0 ≤ 𝑢, V, �̃�, Ṽ ≤ 𝑅.
Further, it is assumed that there exist positive numbers

𝐿(𝑅), 𝑀(𝑅), and 𝜅 such that




𝑓 (𝑢, V)


≤ 𝐿 (𝑅) |𝑢|

𝜅
+𝑀(𝑅) , (13)

for all 𝑢, V ≥ 0 with |𝑢| ≤ 𝑅, and

∀𝑢, V ≥ 0, 𝑓 (0, V) = 0 ≤ 𝑓 (𝑢, 0) . (14)

(Note that 𝑓(𝑢, V) ≥ 0 for all 𝑢, V ≥ 0.)
We first prove that system (1)–(3) admits global solutions

for reaction terms of polynomial growth relying on the
duality argument that has been used byHollis et al. [6] for the
case when the space variable belongs to a bounded domain
and 𝛼 = 𝛽 = 2. Notice that estimates obtained by this method
have been recently improved by Cañizo et al. [15] in the same
case 𝛼 = 𝛽 = 2. In case of 𝑥 ∈ R𝑁, the duality method has

been used successfully by Fitzgibbon et al. [16] still in the case
𝛼 = 𝛽 = 2.

A central role in the proof is played by a recent 𝐿𝑝
regularity result due to Zhang [17] for the solution of the
backward heat equation

−𝜑
𝑡
+ (−Δ)

𝛽/2
𝜑 = 𝜗, 𝑡 ∈ (0, 𝑇) , 𝑥 ∈ R

𝑁
, 0 < 𝛽 < 2,

(15)

supplemented with the condition

𝜑 (𝑥, 𝑇) = 0, 𝑥 ∈ R
𝑁
, (16)

which will be stated in Section 2.
Next, we prove our second result; namely, global solutions

of problem (1)–(3) exist for any growth of the reaction terms
whenever 𝛽 ≤ 𝛼.

Our second result has to be compared in some sense with
that of Martin and Pierre [18]. It has been shown in [18]
that the following problem admits global solutions for any
nonlinearity 𝑓 under the condition 𝑏 ≤ 𝑎:

𝑢
𝑡
− 𝑎Δ𝑢 = −𝑓 (𝑢, V) , 𝑥 ∈ R

𝑁
, 𝑡 > 0,

V
𝑡
− 𝑏ΔV = 𝑓 (𝑢, V) , 𝑥 ∈ R

𝑁
, 𝑡 > 0,

(17)

supplemented with positive and bounded initial data.
The result of [18] is recalled in the appendix for the reader

in order to compare our result with the result of Martin and
Pierre.

The result of [18] has been extended by Kanel and Kirane
[19] for the triangular system

𝑢
𝑡
− 𝑎Δ𝑢 = −𝑓 (𝑢, V) , 𝑥 ∈ Ω, 𝑡 > 0,

V
𝑡
− 𝑐Δ𝑢 − 𝑑ΔV = 𝑓 (𝑢, V) , 𝑥 ∈ Ω, 𝑡 > 0,

𝜕𝑢

𝜕]
=

𝜕V
𝜕]
, 𝑥 ∈ 𝜕Ω, 𝑡 > 0,

𝑢 (𝑥, 0) = 𝑢
0
(𝑥) , 𝑢 (𝑥, 0) = 𝑢

0
(𝑥) , 𝑥 ∈ Ω,

(18)

whereΩ is a bounded regular domain with boundary 𝜕Ω, ] is
the outward normal derivative to 𝜕Ω, and 𝑎, 𝑐, 𝑑 > 0 (𝑎 > 𝑑)
are the positive diffusion constants.

2. Preliminary Results

Notation. Consider 𝑄
𝑇

= R𝑁 × (0, 𝑇), ‖𝑢‖
𝑝

=

(∫
R𝑁
|𝑢(𝑥)|

𝑝
𝑑𝑥)

1/𝑝, and ‖𝑢‖
𝑝,𝑇
= (∫
𝑄𝑇

|𝑢(𝑥, 𝑡)|
𝑝
𝑑𝑥 𝑑𝑡)

1/𝑝.
The proof of our first result is based on a recent lemma of

Zhang [17] (Lemma 2) and a known interpolation inequality
(Lemma 3).

Lemma 1. Let 𝑆
𝛿
(𝑡) := 𝑒

−𝑡(−Δ)
𝛿

be the linear semigroup
generated by the following linear anomalous diffusion problem:

Ψ
𝑡
+ (−Δ)

𝛿
Ψ = 0, (𝑥, 𝑡) ∈ 𝑄

∞
,

Ψ (𝑥, 0) = 𝜓 (𝑥) , 𝑥 ∈ R
𝑁
.

(19)
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Let 1 ≤ 𝑟 ≤ 𝑝 ≤ ∞ and 𝜓 ∈ 𝐿𝑟(R𝑁). Then the solution of (19)
satisfies the estimate





(−Δ)

]/2
𝑆
𝛿
(𝑡)𝜓(𝑥)





𝑝
≤ 𝐶𝑡
−(]/2𝛿)−(𝑁/2𝛿)((1/𝑟)−(1/𝑝))




𝜓



𝑟

(20)

for 𝛿 > 0 and ] ≥ 0.

The proof of this lemma follows from the Young inequal-
ity combined with scaling properties of the kernel

K (𝑥, 𝑡) = (2𝜋)
𝑁/2

∫

R𝑁
𝑒
𝑖⟨𝑥,𝜉⟩−𝑡|𝜉|

2𝛿

𝑑𝜉 = 𝑡
−(𝑁/2𝛿)

K(

𝑥

𝑡
1/2𝛿

)

(21)

with

K = (2𝜋)
𝑁/2

∫

R𝑁
𝑒
𝑖⟨𝑥,𝜉⟩−|𝜉|

2𝛿

𝑑𝜉, (22)

where ⟨𝑥, 𝜉⟩ is the ordinary inner product at the points 𝑥, 𝜉 ∈
R𝑁 and |𝜉|2 = ⟨𝜉, 𝜉⟩.

The lemma is used for the local existence (] = 0), as well
as for the global existence (] ≥ 0).

Lemma 2. Let 1 < 𝑞 < ∞ and suppose that 𝜗 ∈ 𝐿𝑞(𝑄
𝑇
).

Then (15)-(16) has a unique positive solution 𝜑 such that 𝜑
𝑡
∈

𝐿
𝑞
(𝑄
𝑇
), (−Δ)

𝛽/2
𝜑 ∈ 𝐿

𝑞
(𝑄
𝑇
). Moreover, there exists a constant

𝐶(𝑝, 𝑇), independent of 𝜑 such that





𝜑



𝑞,𝑇

+




𝜑



𝑞
+






(−Δ)
𝛽/2
𝜑





𝑞,𝑇

+




𝜑
0




𝑞
≤ 𝐶 ‖𝜗‖

𝑞,𝑇
. (23)

Lemma 3. Let (X, ‖ ⋅ ‖) be a Banach space and 𝐴 a positive
operator onX. Then, for 0 ≤  < 𝜎 < 𝛾, there exists a constant
𝐶
,𝜎,𝛾

such that for 𝑥 ∈ 𝐷(𝐴𝛾) (the domain of 𝐴𝛾)





𝐴
𝜎
𝑥




≤ 𝐶
,𝜎,𝛾





𝐴
𝛾
𝑥





(𝜎−)/(𝛾−) 



𝐴

𝑥





(𝛾−𝜎)/(𝛾−)

. (24)

The proof of our second result is based on the following
interesting lemma of Lopez-Mimbela and Morales [20].

Let 𝑓
𝛿
(𝑥, 𝑡) be the continuous transition density of the

symmetric stable process {𝑋(𝑡); 𝑡 ≥ 0} in R𝑁 of index 𝛿,
0 < 𝛿 ≤ 2, which is uniquely determined by

𝑒
−𝑡|𝜉|
𝛿

= ∫

R𝑁
𝑒
𝑖⟨𝑥,𝜉⟩

𝑓
𝛿
(𝑥, 𝑡) 𝑑𝑥. (25)

Lemma 4. Let 𝑓
𝛼𝑖
(𝑥, 𝑡), 𝑡 > 0 be the transition density of the

symmetric 𝛼
𝑖
-stable process in R𝑁, 𝑖 = 1, 2. If 𝛼

1
≤ 𝛼
2
, then

there exists a constant 𝐾 ≥ 1 such that, for every 𝑡 > 0 and
𝑥 ∈ R𝑁,

𝑓
𝛼𝑖
(𝑥, 𝑡) ≤ 𝐾𝑓

𝛼1
(𝑥, 𝑡
𝛼1/𝛼𝑖

) , 𝑖 = 1, 2. (26)

If in addition 𝑡 ≥ 1, then

𝑓
𝛼𝑖
(𝑥, 𝑡) = 𝐾𝑡

𝑁((1/𝛼1)−(1/𝛼2))
𝑓
𝛼1
(𝑥, 𝑡)

≤ 𝐾𝑡
𝑁/𝛼1

𝑓
𝛼1
(𝑥, 𝑡) , 𝑥 ∈ R

𝑁
.

(27)

As the proof is nice and instructive, we present it for the
convenience of the reader.

Proof. ByTheorem 2.1 [21], we have

lim
|𝑥|→∞

|𝑥|
𝑁+𝛼𝑖

𝑓
𝛼𝑖
(𝑥, 1)

= 𝛼
𝑖
2
𝛼−1
(

1

𝜋

)

(𝑁/2)+1

sin(
𝛼
𝑖
𝜋

2

) Γ (

𝛼
𝑖

2

) Γ (

𝑁 + 𝛼
𝑖

2

)

= 𝐶
𝛼𝑖
> 0, (𝛼

𝑖
< 2) .

(28)

If 𝛼
1
< 𝛼
2
, then 𝑓

𝛼2
(𝑥, 1)/𝑓

𝛼1
(𝑥, 1) ∼ (𝐶

𝛼2
/𝐶
𝛼1
)|𝑥|
𝛼1−𝛼2

→ 0

as |𝑥| → ∞. Hence, there exists a constant 𝐶 > 0 such that
𝑓
𝛼2
(𝑥, 1)/𝑓

𝛼1
(𝑥, 1) ≤ 1 for all |𝑥| > 𝐶. Since𝑓

𝛼2
(𝑥, 1)/𝑓

𝛼1
(𝑥, 1)

is continuous and {𝑦 ∈ R𝑁; |𝑦| ≤ 𝐶} is compact, there exists
𝑀 > 0 such that 𝑓

𝛼2
(𝑥, 1)/𝑓

𝛼1
(𝑥, 1) ≤ 𝑀 for all |𝑥| ≤ 𝐶. Thus

𝑓
𝛼2
(𝑥, 1) ≤ 𝐾𝑓

𝛼1
(𝑥, 1) for all 𝑥 ∈ R𝑁, where 𝐾 = max{1,𝑀}.

From scaling properties of stable densities, we get

𝑓
𝛼2
(𝑥, 𝑡) = 𝑡

−𝑁/𝛼2
𝑓
𝛼2
(𝑥𝑡
−1/𝛼2

, 1)

≤ 𝑡
−𝑁/𝛼2

𝐾𝑓
𝛼1
(𝑥𝑡
−1/𝛼2

, 1)

= 𝑡
−𝑁/𝛼2

𝐾(𝑡
𝛼1/𝛼2

)

𝑁/𝛼1

𝑓
𝛼1
(𝑥, 𝑡
𝛼1/𝛼2

)

= 𝐾𝑓
𝛼1
(𝑥, 𝑡
𝛼1/𝛼2

) ,

(29)

which is (26).
Now assume that 𝑡 ≥ 1. Using (29) and the fact that

𝑓
𝛼1
(𝑥, 1) is radially decreasing, we may write

𝑓
𝛼2
(𝑥, 𝑡) ≤ 𝐾𝑡

−𝑁/𝛼2
𝑓
𝛼1
(𝑥𝑡
−1/𝛼2

, 1)

= 𝐾𝑡
𝑁((1/𝛼1)−(1/𝛼2))

(𝑡
−(𝑁/𝛼1)

𝑓
𝛼1
(𝑥𝑡
−(1/𝛼2)

, 1))

≤ 𝐾𝑡
𝑁((1/𝛼1)−(1/𝛼2))

𝑓
𝛼1
(𝑥, 𝑡) .

(30)

3. Main Results

Now, we are ready to announce and prove our main results.
Local existence of a classical nonnegative solution (𝑢, V)

of (1)–(3) on a maximal interval of existence [0, 𝑇max) is
obtained as usual (see, e.g., [22]).

Theorem 5. Assume 𝑢
0
, V
0
∈ 𝐿
∞
(R𝑁), 𝑢

0
, V
0
≥ 0 a.e.

on R𝑁. Let the nonlinearity 𝑓 satisfy (12), (14), and the
polynomial growth condition (13).Then problem (1)–(3) admits
a nonnegative classical solution on R𝑁 × (0, +∞).

Proof. First, as 𝑢
0
≥ 0, V

0
≥ 0 and 𝑓 satisfies condition (14),

we have 𝑢 ≥ 0 and V ≥ 0.
In view of the maximum principle, we have the estimate

‖𝑢‖
𝑝,𝑇
≤




𝑢
0




𝑝,𝑇

. (31)

Case 1 (0 < 𝛼 ≤ 𝛽 ≤ 2). From (1) and (2), we have

𝑢
𝑡
+ V
𝑡
+ (−Δ)

𝛼/2
(𝑢) + (−Δ)

𝛽/2
(V) = 0, (32)
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which can alternatively be rewritten as

(𝑢 + V)
𝑡
+ (−Δ)

𝛽/2
(𝑢 + V) + (−Δ)𝛼/2 (𝑢) − (−Δ)𝛽/2 (𝑢) = 0.

(33)

Now, we use the duality argument. By multiplying (33)
throughout by 𝜑, the solution of (15)-(16), and integrating by
parts over 𝑄

𝑇
, we obtain

∫

𝑄𝑇

(𝑢 + V) (−𝜑
𝑡
+ (−Δ)

𝛽/2
(𝜑))

= ∫

R𝑁
(𝑢
0
+ V
0
) 𝜑 (𝑥, 0)

+ ∫

𝑄𝑇

𝑢 ((−Δ)
𝛽/2
(𝜑) − (−Δ)

𝛼/2
(𝜑))

(34)

or

∫

𝑄𝑇

(𝑢 + V) 𝜗 = ∫
R𝑁
(𝑢
0
+ V
0
) 𝜑 (𝑥, 0)

+ ∫

𝑄𝑇

𝑢 ((−Δ)
𝛽/2
(𝜑) − (−Δ)

𝛼/2
(𝜑)) .

(35)

Using Lemma 2, we have




𝜑



𝑞
+




𝜑



𝑞,𝑇

≤ 𝐶‖𝜗‖
𝑞,𝑇
,






(−Δ)
𝛽/2
𝜑





𝑞,𝑇

≤ 𝐶‖𝜗‖
𝑞,𝑇
.

(36)

Making use of inequality (24) together with  = 0, 𝜎 = 𝛼/2,
and 𝛾 = 𝛽/2, we obtain






(−Δ)
𝛼/2
𝜑





𝑞
≤ 𝐶






(−Δ)
𝛽/2
𝜑







𝛼/𝛽

𝑞





𝜑





1−(𝛼/𝛽)

𝑞
. (37)

Using estimates (36) and (37), we have






(−Δ)
𝛼/2
𝜑





𝑞,𝑇

≤ 𝐶(‖𝜗‖
𝑞,𝑇
)

𝛼/𝛽

(‖𝜗‖
𝑞,𝑇
)

1−(𝛼/𝛽)

≤ 𝐶‖𝜗‖
𝑞,𝑇
.

(38)

Now, we have the estimates

∫

𝑄𝑇

𝑢






(−Δ)
𝛽/2
(𝜑)






≤ ‖𝑢‖
𝑝,𝑇
+






(−Δ)
𝛽/2
(𝜑)





𝑞,𝑇
,

𝑝 + 𝑞 = 𝑝𝑞,

∫

𝑄𝑇

𝑢






(−Δ)
𝛼/2
(𝜑)






≤ (‖𝑢‖

𝑝,𝑇
+






(−Δ)
𝛼/2
(𝜑)





𝑞,𝑇
)

≤ 𝐶 (‖𝑢‖
𝑝,𝑇
+ ‖𝜗‖
𝑞,𝑇
) , 𝑝 + 𝑞 = 𝑝𝑞.

(39)

Finally, we have

∫

𝑄𝑇

(𝑢 + V) 𝜗 ≤ 𝐶 (

𝑢
0
+ V
0




𝑝
+ ‖𝑢‖
𝑝,𝑇
+ ‖𝜗‖
𝑞,𝑇
+




𝜑
0




𝑞
)

(40)

thanks to the above inequalities.

Since 𝜗 is arbitrarily nonnegative in 𝐿𝑞(𝑄
𝑇
) and 𝑢, V ≥ 0,

therefore it follows by duality that

‖𝑢 + V‖
𝑝,𝑇
≤ 𝐶 (





𝑢
0
+ V
0




𝑝
+ ‖𝑢‖
𝑝,𝑇
+ ‖𝜗‖
𝑞,𝑇
+




𝜑
0




𝑞
) .

(41)

Therefore, for all 𝑝 < ∞, the 𝐿𝑝-norm of 𝑢 and V remains
finite on 𝑄

𝑇max
. From the polynomial growth assumption on

the nonlinearity, it follows that 𝑓(𝑢, V) is also in 𝐿𝑝(𝑄
𝑇max
) for

all 𝑝 ∈ (1,∞). If we take 𝑝 > (𝑁 + 1)/2, we deduce that
V ∈ 𝐿𝑝(𝑄

𝑇max
):

‖V‖
∞,𝑇max

≤ 𝐶




𝑓(𝑢, V)

𝑝,𝑇max
< +∞. (42)

This implies that 𝑇max = ∞.

Case 2 (0 < 𝛽 ≤ 𝛼 ≤ 2). This case can be treated in the same
way by making use of inequality (20) with ] = 1.

The next theorem deals with the “no growth” restriction
on 𝑓.

Theorem 6. Assume 0 < 𝛽 ≤ 𝛼 ≤ 2 and 𝑢
0
, V
0
∈ 𝐿
∞
(R𝑁),

𝑢
0
, V
0
≥ 0 a.e. on R𝑁. Let the nonlinearity 𝑓 satisfy (12) and

(14). Then problem (1)–(3) has a classical solution on R𝑁 ×

(0, +∞).

Proof. Let 𝑆
𝛿
(𝑡) be the semigroup generated by (−Δ)𝛿/2 on

R𝑁. Then we have
𝑢 (𝑥, 𝑡) = 𝑆

𝛼
(𝑡) 𝑢
0
(𝑥) −F

𝛼
(𝑥, 𝑡) ,

V (𝑥, 𝑡) = 𝑆
𝛽
(𝑡) V
0
(𝑥) +F

𝛽
(𝑥, 𝑡) ,

(43)

where F
𝛿
(𝑥, 𝑡) = ∫

𝑡

0
∫
R𝑁
𝑓
𝛿
(𝑦, 𝑠)𝑢(𝑥 − 𝑦, 𝑡 − 𝑠)𝑓(V(𝑥 − 𝑦, 𝑡 −

𝑠))𝑑𝑦 𝑑𝑠, 𝛿 = 𝛼, or 𝛿 = 𝛽.
From (26), we have

0 ≤ F
𝛼
(𝑥, 𝑡) ≤ 𝑆

𝛼
(𝑡) 𝑢
0
(𝑥) ≤ 𝐶





𝑢
0




∞
. (44)

Using Lemma 1 for 𝑡 ≥ 1, we obtain

F
𝛽
(𝑥, 𝑡) = ∫

𝑡

0

∫

R𝑁
𝑓
𝛽
(𝑦, 𝑠) 𝑢 (𝑥 − 𝑦, 𝑡 − 𝑠)

× 𝑓 (V (𝑥 − 𝑦, 𝑡 − 𝑠)) 𝑑𝑦 𝑑𝑠

≤ 𝐾𝑡
𝑁/𝛼

∫

𝑡

0

∫

R𝑁
𝑓
𝛽
(𝑦, 𝑠) 𝑢 (𝑥 − 𝑦, 𝑡 − 𝑠)

× 𝑓 (V (𝑥 − 𝑦, 𝑡 − 𝑠)) 𝑑𝑦 𝑑𝑠

≤ 𝐾𝑡
𝑁/𝛼

F
𝛼
(𝑡, 𝑥) ≤ 𝐶𝐾𝑡

𝑁/𝛼



𝑢
0




∞
.

(45)

So F
𝛽
(𝑡, 𝑥) is bounded for any finite 𝑡, whereupon the

solution is global.

Remark 7. Our results remain valid when the reaction terms
𝑓(𝑢, V) in the first equation and𝑔(𝑢, V) in the second equation
satisfy

𝑓 (𝑢, V) + 𝑔 (𝑢, V) ≤ 𝐿 (𝑢 + V) + 𝑀, ∀𝑢, V ≥ 0, (46)
where 𝐿 and𝑀 are nonnegative constants.
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Appendix

Here we present the result of Martin and Pierre [18] concern-
ing the determination of the bound on the component V of
the system

𝜕

𝜕𝑡

𝑢 − 𝑎Δ𝑢 = −𝑓 (𝑢, V) , (𝑥, 𝑡) ∈ R
𝑁
× (0,∞) ,

𝜕

𝜕𝑡

V − 𝑏ΔV = +𝑓 (𝑢, V) , (𝑥, 𝑡) ∈ R
𝑁
× (0,∞) ,

𝑢 (⋅, 0) = 𝑢
0
(⋅) , V (⋅, 0) = V

0
(⋅) , 𝑥 ∈ R

𝑁
,

(A.1)

where 𝑓 satisfies hypotheses (12) and (14).

Theorem 8. Assume
𝑏 ≤ 𝑎,

𝑢
0
, V
0
∈ 𝐿
∞
(R
𝑁
) , 𝑢

0
, V
0
≥ 0 𝑎.𝑒 𝑥 ∈ R

𝑁
.

(A.2)

Then (A.1) has a classical solution on R𝑁 × (0,∞).

Proof. For 𝑡 ∈ (0, 𝑇max), we can write

𝑢 (𝑡) = 𝑆
𝑎
(𝑡) 𝑢
0
− ∫

𝑡

0

𝑆
𝑎
(𝑡 − 𝑠) 𝑓 (𝑢, V) (𝑠) 𝑑𝑠, (A.3)

V (𝑡) = 𝑆
𝑏
(𝑡) 𝑢
0
+ ∫

𝑡

0

𝑆
𝑏
(𝑡 − 𝑠) 𝑓 (𝑢, V) (𝑠) 𝑑𝑠 (A.4)

via the semigroups 𝑆
𝑎
(𝑡) and 𝑆

𝑏
(𝑡), where

𝑆
𝜆
(𝑡) 𝑢
0
(𝑥) = (4𝜋𝜆𝑡)

−𝑁/2
∫

R𝑁
exp(−





𝑥 − 𝑦






2

4𝜆𝑡

)𝑢
0
(𝑦) 𝑑𝑦.

(A.5)

It is not difficult to see that

∫

𝑡

0

𝑆
𝑏
(𝑡 − 𝑠) 𝑓 (𝑢, V) (𝑠) 𝑑𝑠

≤ (

𝑎

𝑏

)

𝑁/2

∫

𝑡

0

𝑆
𝑎
(𝑡 − 𝑠) 𝑓 (𝑢, V) (𝑠) 𝑑𝑠.

(A.6)

From (A.3)–(A.6) and 𝑢 ≥ 0, we deduce

V (𝑡) ≤ 𝑆
𝑏
(𝑡) V
0
+ (

𝑎

𝑏

)

𝑁/2

𝑆
𝑎
(𝑡) 𝑢
0
, (A.7)

which provides a uniform 𝐿
∞-bound for V.
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